mirror of
https://github.com/meilisearch/meilisearch.git
synced 2025-01-18 08:48:32 +08:00
clean warnings
This commit is contained in:
parent
9e093d5ff3
commit
a273c46559
@ -1,7 +1,7 @@
|
||||
use std::borrow::Cow;
|
||||
|
||||
use crate::Index;
|
||||
use crate::search::word_typos;
|
||||
use crate::search::word_derivations;
|
||||
|
||||
use roaring::RoaringBitmap;
|
||||
|
||||
@ -124,7 +124,7 @@ fn query_docids(ctx: &dyn Context, query: &Query) -> anyhow::Result<RoaringBitma
|
||||
if query.prefix && ctx.in_prefix_cache(&word) {
|
||||
Ok(ctx.word_prefix_docids(&word)?.unwrap_or_default())
|
||||
} else if query.prefix {
|
||||
let words = word_typos(&word, true, 0, ctx.words_fst())?;
|
||||
let words = word_derivations(&word, true, 0, ctx.words_fst())?;
|
||||
let mut docids = RoaringBitmap::new();
|
||||
for (word, _typo) in words {
|
||||
let current_docids = ctx.word_docids(&word)?.unwrap_or_default();
|
||||
@ -136,7 +136,7 @@ fn query_docids(ctx: &dyn Context, query: &Query) -> anyhow::Result<RoaringBitma
|
||||
}
|
||||
},
|
||||
QueryKind::Tolerant { typo, word } => {
|
||||
let words = word_typos(&word, query.prefix, *typo, ctx.words_fst())?;
|
||||
let words = word_derivations(&word, query.prefix, *typo, ctx.words_fst())?;
|
||||
let mut docids = RoaringBitmap::new();
|
||||
for (word, _typo) in words {
|
||||
let current_docids = ctx.word_docids(&word)?.unwrap_or_default();
|
||||
@ -155,14 +155,14 @@ fn query_pair_proximity_docids(ctx: &dyn Context, left: &Query, right: &Query, p
|
||||
if prefix && ctx.in_prefix_cache(&right) {
|
||||
Ok(ctx.word_prefix_pair_proximity_docids(left.as_str(), right.as_str(), proximity)?.unwrap_or_default())
|
||||
} else if prefix {
|
||||
let r_words = word_typos(&right, true, 0, ctx.words_fst())?;
|
||||
let r_words = word_derivations(&right, true, 0, ctx.words_fst())?;
|
||||
all_word_pair_proximity_docids(ctx, &[(left, 0)], &r_words, proximity)
|
||||
} else {
|
||||
Ok(ctx.word_pair_proximity_docids(left.as_str(), right.as_str(), proximity)?.unwrap_or_default())
|
||||
}
|
||||
},
|
||||
(QueryKind::Tolerant { typo, word: left }, QueryKind::Exact { word: right, .. }) => {
|
||||
let l_words = word_typos(&left, false, *typo, ctx.words_fst())?;
|
||||
let l_words = word_derivations(&left, false, *typo, ctx.words_fst())?;
|
||||
if prefix && ctx.in_prefix_cache(&right) {
|
||||
let mut docids = RoaringBitmap::new();
|
||||
for (left, _) in l_words {
|
||||
@ -171,19 +171,19 @@ fn query_pair_proximity_docids(ctx: &dyn Context, left: &Query, right: &Query, p
|
||||
}
|
||||
Ok(docids)
|
||||
} else if prefix {
|
||||
let r_words = word_typos(&right, true, 0, ctx.words_fst())?;
|
||||
let r_words = word_derivations(&right, true, 0, ctx.words_fst())?;
|
||||
all_word_pair_proximity_docids(ctx, &l_words, &r_words, proximity)
|
||||
} else {
|
||||
all_word_pair_proximity_docids(ctx, &l_words, &[(right, 0)], proximity)
|
||||
}
|
||||
},
|
||||
(QueryKind::Exact { word: left, .. }, QueryKind::Tolerant { typo, word: right }) => {
|
||||
let r_words = word_typos(&right, prefix, *typo, ctx.words_fst())?;
|
||||
let r_words = word_derivations(&right, prefix, *typo, ctx.words_fst())?;
|
||||
all_word_pair_proximity_docids(ctx, &[(left, 0)], &r_words, proximity)
|
||||
},
|
||||
(QueryKind::Tolerant { typo: l_typo, word: left }, QueryKind::Tolerant { typo: r_typo, word: right }) => {
|
||||
let l_words = word_typos(&left, false, *l_typo, ctx.words_fst())?;
|
||||
let r_words = word_typos(&right, prefix, *r_typo, ctx.words_fst())?;
|
||||
let l_words = word_derivations(&left, false, *l_typo, ctx.words_fst())?;
|
||||
let r_words = word_derivations(&right, prefix, *r_typo, ctx.words_fst())?;
|
||||
all_word_pair_proximity_docids(ctx, &l_words, &r_words, proximity)
|
||||
},
|
||||
}
|
||||
|
@ -4,7 +4,7 @@ use anyhow::bail;
|
||||
use roaring::RoaringBitmap;
|
||||
|
||||
use crate::search::query_tree::{Operation, Query, QueryKind};
|
||||
use crate::search::word_typos;
|
||||
use crate::search::word_derivations;
|
||||
use super::{Candidates, Criterion, CriterionResult, Context, query_docids, query_pair_proximity_docids};
|
||||
|
||||
// FIXME we must stop when the number of typos is equal to
|
||||
@ -177,7 +177,7 @@ fn alterate_query_tree(
|
||||
},
|
||||
Operation::Query(q) => {
|
||||
if let QueryKind::Tolerant { typo, word } = &q.kind {
|
||||
// if no typo is allowed we don't call word_typos(..),
|
||||
// if no typo is allowed we don't call word_derivations function,
|
||||
// and directly create an Exact query
|
||||
if number_typos == 0 {
|
||||
*operation = Operation::Query(Query {
|
||||
@ -190,7 +190,7 @@ fn alterate_query_tree(
|
||||
let words = if let Some(derivations) = typo_cache.get(&cache_key) {
|
||||
derivations.clone()
|
||||
} else {
|
||||
let derivations = word_typos(word, q.prefix, typo, words_fst)?;
|
||||
let derivations = word_derivations(word, q.prefix, typo, words_fst)?;
|
||||
typo_cache.insert(cache_key, derivations.clone());
|
||||
derivations
|
||||
};
|
||||
@ -222,10 +222,6 @@ fn resolve_candidates<'t>(
|
||||
cache: &mut HashMap<(Operation, u8), RoaringBitmap>,
|
||||
) -> anyhow::Result<RoaringBitmap>
|
||||
{
|
||||
// FIXME add a cache
|
||||
// FIXME keep the cache between typos iterations
|
||||
// cache: HashMap<(&Operation, u8), RoaringBitmap>,
|
||||
|
||||
fn resolve_operation<'t>(
|
||||
ctx: &'t dyn Context,
|
||||
query_tree: &Operation,
|
||||
|
@ -1,26 +1,18 @@
|
||||
use std::borrow::Cow;
|
||||
use std::collections::{HashMap, HashSet};
|
||||
use std::collections::HashSet;
|
||||
use std::fmt;
|
||||
use std::time::Instant;
|
||||
|
||||
use anyhow::{bail, Context};
|
||||
use fst::{IntoStreamer, Streamer, Set};
|
||||
use levenshtein_automata::DFA;
|
||||
use levenshtein_automata::LevenshteinAutomatonBuilder as LevBuilder;
|
||||
use log::debug;
|
||||
use meilisearch_tokenizer::{AnalyzerConfig, Analyzer};
|
||||
use once_cell::sync::Lazy;
|
||||
use ordered_float::OrderedFloat;
|
||||
use roaring::bitmap::RoaringBitmap;
|
||||
|
||||
use crate::facet::FacetType;
|
||||
use crate::heed_codec::facet::{FacetLevelValueF64Codec, FacetLevelValueI64Codec};
|
||||
use crate::heed_codec::facet::{FieldDocIdFacetF64Codec, FieldDocIdFacetI64Codec};
|
||||
use crate::mdfs::Mdfs;
|
||||
use crate::query_tokens::{query_tokens, QueryToken};
|
||||
use crate::search::criteria::{Criterion, CriterionResult};
|
||||
use crate::search::criteria::typo::Typo;
|
||||
use crate::{Index, FieldId, DocumentId};
|
||||
use crate::{Index, DocumentId};
|
||||
|
||||
pub use self::facet::{FacetCondition, FacetDistribution, FacetNumberOperator, FacetStringOperator};
|
||||
pub use self::facet::{FacetIter};
|
||||
@ -69,198 +61,6 @@ impl<'a> Search<'a> {
|
||||
self
|
||||
}
|
||||
|
||||
/// Extracts the query words from the query string and returns the DFAs accordingly.
|
||||
/// TODO introduce settings for the number of typos regarding the words lengths.
|
||||
fn generate_query_dfas(query: &str) -> Vec<(String, bool, DFA)> {
|
||||
let (lev0, lev1, lev2) = (&LEVDIST0, &LEVDIST1, &LEVDIST2);
|
||||
|
||||
let stop_words = Set::default();
|
||||
let analyzer = Analyzer::new(AnalyzerConfig::default_with_stopwords(&stop_words));
|
||||
let analyzed = analyzer.analyze(query);
|
||||
let tokens = analyzed.tokens();
|
||||
let words: Vec<_> = query_tokens(tokens).collect();
|
||||
|
||||
let ends_with_whitespace = query.chars().last().map_or(false, char::is_whitespace);
|
||||
let number_of_words = words.len();
|
||||
|
||||
words.into_iter().enumerate().map(|(i, word)| {
|
||||
let (word, quoted) = match word {
|
||||
QueryToken::Free(token) => (token.text().to_string(), token.text().len() <= 3),
|
||||
QueryToken::Quoted(token) => (token.text().to_string(), true),
|
||||
};
|
||||
let is_last = i + 1 == number_of_words;
|
||||
let is_prefix = is_last && !ends_with_whitespace && !quoted;
|
||||
let lev = match word.len() {
|
||||
0..=4 => if quoted { lev0 } else { lev0 },
|
||||
5..=8 => if quoted { lev0 } else { lev1 },
|
||||
_ => if quoted { lev0 } else { lev2 },
|
||||
};
|
||||
|
||||
let dfa = if is_prefix {
|
||||
lev.build_prefix_dfa(&word)
|
||||
} else {
|
||||
lev.build_dfa(&word)
|
||||
};
|
||||
|
||||
(word, is_prefix, dfa)
|
||||
})
|
||||
.collect()
|
||||
}
|
||||
|
||||
/// Fetch the words from the given FST related to the given DFAs along with
|
||||
/// the associated documents ids.
|
||||
fn fetch_words_docids(
|
||||
&self,
|
||||
fst: &fst::Set<Cow<[u8]>>,
|
||||
dfas: Vec<(String, bool, DFA)>,
|
||||
) -> anyhow::Result<Vec<(HashMap<String, (u8, RoaringBitmap)>, RoaringBitmap)>>
|
||||
{
|
||||
// A Vec storing all the derived words from the original query words, associated
|
||||
// with the distance from the original word and the docids where the words appears.
|
||||
let mut derived_words = Vec::<(HashMap::<String, (u8, RoaringBitmap)>, RoaringBitmap)>::with_capacity(dfas.len());
|
||||
|
||||
for (_word, _is_prefix, dfa) in dfas {
|
||||
|
||||
let mut acc_derived_words = HashMap::new();
|
||||
let mut unions_docids = RoaringBitmap::new();
|
||||
let mut stream = fst.search_with_state(&dfa).into_stream();
|
||||
while let Some((word, state)) = stream.next() {
|
||||
|
||||
let word = std::str::from_utf8(word)?;
|
||||
let docids = self.index.word_docids.get(self.rtxn, word)?.unwrap();
|
||||
let distance = dfa.distance(state);
|
||||
unions_docids.union_with(&docids);
|
||||
acc_derived_words.insert(word.to_string(), (distance.to_u8(), docids));
|
||||
}
|
||||
derived_words.push((acc_derived_words, unions_docids));
|
||||
}
|
||||
|
||||
Ok(derived_words)
|
||||
}
|
||||
|
||||
/// Returns the set of docids that contains all of the query words.
|
||||
fn compute_candidates(
|
||||
derived_words: &[(HashMap<String, (u8, RoaringBitmap)>, RoaringBitmap)],
|
||||
) -> RoaringBitmap
|
||||
{
|
||||
// We sort the derived words by inverse popularity, this way intersections are faster.
|
||||
let mut derived_words: Vec<_> = derived_words.iter().collect();
|
||||
derived_words.sort_unstable_by_key(|(_, docids)| docids.len());
|
||||
|
||||
// we do a union between all the docids of each of the derived words,
|
||||
// we got N unions (the number of original query words), we then intersect them.
|
||||
let mut candidates = RoaringBitmap::new();
|
||||
|
||||
for (i, (_, union_docids)) in derived_words.iter().enumerate() {
|
||||
if i == 0 {
|
||||
candidates = union_docids.clone();
|
||||
} else {
|
||||
candidates.intersect_with(&union_docids);
|
||||
}
|
||||
}
|
||||
|
||||
candidates
|
||||
}
|
||||
|
||||
fn facet_ordered(
|
||||
&self,
|
||||
field_id: FieldId,
|
||||
facet_type: FacetType,
|
||||
ascending: bool,
|
||||
mut documents_ids: RoaringBitmap,
|
||||
limit: usize,
|
||||
) -> anyhow::Result<Vec<DocumentId>>
|
||||
{
|
||||
let mut output: Vec<_> = match facet_type {
|
||||
FacetType::Float => {
|
||||
if documents_ids.len() <= 1000 {
|
||||
let db = self.index.field_id_docid_facet_values.remap_key_type::<FieldDocIdFacetF64Codec>();
|
||||
let mut docids_values = Vec::with_capacity(documents_ids.len() as usize);
|
||||
for docid in documents_ids.iter() {
|
||||
let left = (field_id, docid, f64::MIN);
|
||||
let right = (field_id, docid, f64::MAX);
|
||||
let mut iter = db.range(self.rtxn, &(left..=right))?;
|
||||
let entry = if ascending { iter.next() } else { iter.last() };
|
||||
if let Some(((_, _, value), ())) = entry.transpose()? {
|
||||
docids_values.push((docid, OrderedFloat(value)));
|
||||
}
|
||||
}
|
||||
docids_values.sort_unstable_by_key(|(_, value)| *value);
|
||||
let iter = docids_values.into_iter().map(|(id, _)| id);
|
||||
if ascending {
|
||||
iter.take(limit).collect()
|
||||
} else {
|
||||
iter.rev().take(limit).collect()
|
||||
}
|
||||
} else {
|
||||
let facet_fn = if ascending {
|
||||
FacetIter::<f64, FacetLevelValueF64Codec>::new_reducing
|
||||
} else {
|
||||
FacetIter::<f64, FacetLevelValueF64Codec>::new_reverse_reducing
|
||||
};
|
||||
let mut limit_tmp = limit;
|
||||
let mut output = Vec::new();
|
||||
for result in facet_fn(self.rtxn, self.index, field_id, documents_ids.clone())? {
|
||||
let (_val, docids) = result?;
|
||||
limit_tmp = limit_tmp.saturating_sub(docids.len() as usize);
|
||||
output.push(docids);
|
||||
if limit_tmp == 0 { break }
|
||||
}
|
||||
output.into_iter().flatten().take(limit).collect()
|
||||
}
|
||||
},
|
||||
FacetType::Integer => {
|
||||
if documents_ids.len() <= 1000 {
|
||||
let db = self.index.field_id_docid_facet_values.remap_key_type::<FieldDocIdFacetI64Codec>();
|
||||
let mut docids_values = Vec::with_capacity(documents_ids.len() as usize);
|
||||
for docid in documents_ids.iter() {
|
||||
let left = (field_id, docid, i64::MIN);
|
||||
let right = (field_id, docid, i64::MAX);
|
||||
let mut iter = db.range(self.rtxn, &(left..=right))?;
|
||||
let entry = if ascending { iter.next() } else { iter.last() };
|
||||
if let Some(((_, _, value), ())) = entry.transpose()? {
|
||||
docids_values.push((docid, value));
|
||||
}
|
||||
}
|
||||
docids_values.sort_unstable_by_key(|(_, value)| *value);
|
||||
let iter = docids_values.into_iter().map(|(id, _)| id);
|
||||
if ascending {
|
||||
iter.take(limit).collect()
|
||||
} else {
|
||||
iter.rev().take(limit).collect()
|
||||
}
|
||||
} else {
|
||||
let facet_fn = if ascending {
|
||||
FacetIter::<i64, FacetLevelValueI64Codec>::new_reducing
|
||||
} else {
|
||||
FacetIter::<i64, FacetLevelValueI64Codec>::new_reverse_reducing
|
||||
};
|
||||
let mut limit_tmp = limit;
|
||||
let mut output = Vec::new();
|
||||
for result in facet_fn(self.rtxn, self.index, field_id, documents_ids.clone())? {
|
||||
let (_val, docids) = result?;
|
||||
limit_tmp = limit_tmp.saturating_sub(docids.len() as usize);
|
||||
output.push(docids);
|
||||
if limit_tmp == 0 { break }
|
||||
}
|
||||
output.into_iter().flatten().take(limit).collect()
|
||||
}
|
||||
},
|
||||
FacetType::String => bail!("criteria facet type must be a number"),
|
||||
};
|
||||
|
||||
// if there isn't enough documents to return we try to complete that list
|
||||
// with documents that are maybe not faceted under this field and therefore
|
||||
// not returned by the previous facet iteration.
|
||||
if output.len() < limit {
|
||||
output.iter().for_each(|n| { documents_ids.remove(*n); });
|
||||
let remaining = documents_ids.iter().take(limit - output.len());
|
||||
output.extend(remaining);
|
||||
}
|
||||
|
||||
Ok(output)
|
||||
}
|
||||
|
||||
pub fn execute(&self) -> anyhow::Result<SearchResult> {
|
||||
// We create the query tree by spliting the query into tokens.
|
||||
let before = Instant::now();
|
||||
@ -320,101 +120,6 @@ impl<'a> Search<'a> {
|
||||
|
||||
let found_words = HashSet::new();
|
||||
Ok(SearchResult { found_words, candidates: initial_candidates, documents_ids })
|
||||
|
||||
// let order_by_facet = {
|
||||
// let criteria = self.index.criteria(self.rtxn)?;
|
||||
// let result = criteria.into_iter().flat_map(|criterion| {
|
||||
// match criterion {
|
||||
// Criterion::Asc(fid) => Some((fid, true)),
|
||||
// Criterion::Desc(fid) => Some((fid, false)),
|
||||
// _ => None
|
||||
// }
|
||||
// }).next();
|
||||
// match result {
|
||||
// Some((attr_name, is_ascending)) => {
|
||||
// let field_id_map = self.index.fields_ids_map(self.rtxn)?;
|
||||
// let fid = field_id_map.id(&attr_name).with_context(|| format!("unknown field: {:?}", attr_name))?;
|
||||
// let faceted_fields = self.index.faceted_fields_ids(self.rtxn)?;
|
||||
// let ftype = *faceted_fields.get(&fid)
|
||||
// .with_context(|| format!("{:?} not found in the faceted fields.", attr_name))
|
||||
// .expect("corrupted data: ");
|
||||
// Some((fid, ftype, is_ascending))
|
||||
// },
|
||||
// None => None,
|
||||
// }
|
||||
// };
|
||||
|
||||
// let before = Instant::now();
|
||||
// let (candidates, derived_words) = match (facet_candidates, derived_words) {
|
||||
// (Some(mut facet_candidates), Some(derived_words)) => {
|
||||
// let words_candidates = Self::compute_candidates(&derived_words);
|
||||
// facet_candidates.intersect_with(&words_candidates);
|
||||
// (facet_candidates, derived_words)
|
||||
// },
|
||||
// (None, Some(derived_words)) => {
|
||||
// (Self::compute_candidates(&derived_words), derived_words)
|
||||
// },
|
||||
// (Some(facet_candidates), None) => {
|
||||
// // If the query is not set or results in no DFAs but
|
||||
// // there is some facet conditions we return a placeholder.
|
||||
// let documents_ids = match order_by_facet {
|
||||
// Some((fid, ftype, is_ascending)) => {
|
||||
// self.facet_ordered(fid, ftype, is_ascending, facet_candidates.clone(), limit)?
|
||||
// },
|
||||
// None => facet_candidates.iter().take(limit).collect(),
|
||||
// };
|
||||
// return Ok(SearchResult {
|
||||
// documents_ids,
|
||||
// candidates: facet_candidates,
|
||||
// ..Default::default()
|
||||
// })
|
||||
// },
|
||||
// (None, None) => {
|
||||
// // If the query is not set or results in no DFAs we return a placeholder.
|
||||
// let all_docids = self.index.documents_ids(self.rtxn)?;
|
||||
// let documents_ids = match order_by_facet {
|
||||
// Some((fid, ftype, is_ascending)) => {
|
||||
// self.facet_ordered(fid, ftype, is_ascending, all_docids.clone(), limit)?
|
||||
// },
|
||||
// None => all_docids.iter().take(limit).collect(),
|
||||
// };
|
||||
// return Ok(SearchResult { documents_ids, candidates: all_docids,..Default::default() })
|
||||
// },
|
||||
// };
|
||||
|
||||
// debug!("candidates: {:?} took {:.02?}", candidates, before.elapsed());
|
||||
|
||||
// // The mana depth first search is a revised DFS that explore
|
||||
// // solutions in the order of their proximities.
|
||||
// let mut mdfs = Mdfs::new(self.index, self.rtxn, &derived_words, candidates.clone());
|
||||
// let mut documents = Vec::new();
|
||||
|
||||
// // We execute the Mdfs iterator until we find enough documents.
|
||||
// while documents.iter().map(RoaringBitmap::len).sum::<u64>() < limit as u64 {
|
||||
// match mdfs.next().transpose()? {
|
||||
// Some((proximity, answer)) => {
|
||||
// debug!("answer with a proximity of {}: {:?}", proximity, answer);
|
||||
// documents.push(answer);
|
||||
// },
|
||||
// None => break,
|
||||
// }
|
||||
// }
|
||||
|
||||
// let found_words = derived_words.into_iter().flat_map(|(w, _)| w).map(|(w, _)| w).collect();
|
||||
// let documents_ids = match order_by_facet {
|
||||
// Some((fid, ftype, order)) => {
|
||||
// let mut ordered_documents = Vec::new();
|
||||
// for documents_ids in documents {
|
||||
// let docids = self.facet_ordered(fid, ftype, order, documents_ids, limit)?;
|
||||
// ordered_documents.push(docids);
|
||||
// if ordered_documents.iter().map(Vec::len).sum::<usize>() >= limit { break }
|
||||
// }
|
||||
// ordered_documents.into_iter().flatten().take(limit).collect()
|
||||
// },
|
||||
// None => documents.into_iter().flatten().take(limit).collect(),
|
||||
// };
|
||||
|
||||
// Ok(SearchResult { found_words, candidates, documents_ids })
|
||||
}
|
||||
}
|
||||
|
||||
@ -438,19 +143,17 @@ pub struct SearchResult {
|
||||
pub documents_ids: Vec<DocumentId>,
|
||||
}
|
||||
|
||||
pub fn word_typos(word: &str, is_prefix: bool, max_typo: u8, fst: &fst::Set<Cow<[u8]>>) -> anyhow::Result<Vec<(String, u8)>> {
|
||||
let dfa = {
|
||||
let lev = match max_typo {
|
||||
0 => &LEVDIST0,
|
||||
1 => &LEVDIST1,
|
||||
_ => &LEVDIST2,
|
||||
};
|
||||
pub fn word_derivations(word: &str, is_prefix: bool, max_typo: u8, fst: &fst::Set<Cow<[u8]>>) -> anyhow::Result<Vec<(String, u8)>> {
|
||||
let lev = match max_typo {
|
||||
0 => &LEVDIST0,
|
||||
1 => &LEVDIST1,
|
||||
_ => &LEVDIST2,
|
||||
};
|
||||
|
||||
if is_prefix {
|
||||
lev.build_prefix_dfa(&word)
|
||||
} else {
|
||||
lev.build_dfa(&word)
|
||||
}
|
||||
let dfa = if is_prefix {
|
||||
lev.build_prefix_dfa(&word)
|
||||
} else {
|
||||
lev.build_dfa(&word)
|
||||
};
|
||||
|
||||
let mut derived_words = Vec::new();
|
||||
|
@ -303,7 +303,7 @@ fn fetch_words(tree: &Operation, fst: &fst::Set<Cow<[u8]>>) -> FetchedWords {
|
||||
match query.kind.clone() {
|
||||
QueryKind::Exact { word, .. } => vec![(word, query.prefix)],
|
||||
QueryKind::Tolerant { typo, word } => {
|
||||
if let Ok(words) = super::word_typos(&word, query.prefix, typo, fst) {
|
||||
if let Ok(words) = super::word_derivations(&word, query.prefix, typo, fst) {
|
||||
words.into_iter().map(|(w, _)| (w, query.prefix)).collect()
|
||||
} else {
|
||||
vec![(word, query.prefix)]
|
||||
|
Loading…
Reference in New Issue
Block a user