mirror of
https://github.com/meilisearch/meilisearch.git
synced 2025-01-18 17:11:15 +08:00
Export the indexing part into a module
This commit is contained in:
parent
eb92e72e6c
commit
a122d3d466
68
src/indexing/merge_function.rs
Normal file
68
src/indexing/merge_function.rs
Normal file
@ -0,0 +1,68 @@
|
||||
use bstr::ByteSlice as _;
|
||||
use fst::IntoStreamer;
|
||||
use roaring::RoaringBitmap;
|
||||
|
||||
use crate::heed_codec::CboRoaringBitmapCodec;
|
||||
|
||||
const WORDS_FST_KEY: &[u8] = crate::WORDS_FST_KEY.as_bytes();
|
||||
const HEADERS_KEY: &[u8] = crate::HEADERS_KEY.as_bytes();
|
||||
const DOCUMENTS_IDS_KEY: &[u8] = crate::DOCUMENTS_IDS_KEY.as_bytes();
|
||||
|
||||
pub fn main_merge(key: &[u8], values: &[Vec<u8>]) -> Result<Vec<u8>, ()> {
|
||||
match key {
|
||||
WORDS_FST_KEY => {
|
||||
let fsts: Vec<_> = values.iter().map(|v| fst::Set::new(v).unwrap()).collect();
|
||||
|
||||
// Union of the FSTs
|
||||
let mut op = fst::set::OpBuilder::new();
|
||||
fsts.iter().for_each(|fst| op.push(fst.into_stream()));
|
||||
let op = op.r#union();
|
||||
|
||||
let mut build = fst::SetBuilder::memory();
|
||||
build.extend_stream(op.into_stream()).unwrap();
|
||||
Ok(build.into_inner().unwrap())
|
||||
},
|
||||
HEADERS_KEY => {
|
||||
assert!(values.windows(2).all(|vs| vs[0] == vs[1]));
|
||||
Ok(values[0].to_vec())
|
||||
},
|
||||
DOCUMENTS_IDS_KEY => word_docids_merge(&[], values),
|
||||
otherwise => panic!("wut {:?}", otherwise),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn word_docids_merge(_key: &[u8], values: &[Vec<u8>]) -> Result<Vec<u8>, ()> {
|
||||
let (head, tail) = values.split_first().unwrap();
|
||||
let mut head = RoaringBitmap::deserialize_from(head.as_slice()).unwrap();
|
||||
|
||||
for value in tail {
|
||||
let bitmap = RoaringBitmap::deserialize_from(value.as_slice()).unwrap();
|
||||
head.union_with(&bitmap);
|
||||
}
|
||||
|
||||
let mut vec = Vec::with_capacity(head.serialized_size());
|
||||
head.serialize_into(&mut vec).unwrap();
|
||||
Ok(vec)
|
||||
}
|
||||
|
||||
pub fn docid_word_positions_merge(key: &[u8], _values: &[Vec<u8>]) -> Result<Vec<u8>, ()> {
|
||||
panic!("merging docid word positions is an error ({:?})", key.as_bstr())
|
||||
}
|
||||
|
||||
pub fn words_pairs_proximities_docids_merge(_key: &[u8], values: &[Vec<u8>]) -> Result<Vec<u8>, ()> {
|
||||
let (head, tail) = values.split_first().unwrap();
|
||||
let mut head = CboRoaringBitmapCodec::deserialize_from(head.as_slice()).unwrap();
|
||||
|
||||
for value in tail {
|
||||
let bitmap = CboRoaringBitmapCodec::deserialize_from(value.as_slice()).unwrap();
|
||||
head.union_with(&bitmap);
|
||||
}
|
||||
|
||||
let mut vec = Vec::new();
|
||||
CboRoaringBitmapCodec::serialize_into(&head, &mut vec).unwrap();
|
||||
Ok(vec)
|
||||
}
|
||||
|
||||
pub fn documents_merge(key: &[u8], _values: &[Vec<u8>]) -> Result<Vec<u8>, ()> {
|
||||
panic!("merging documents is an error ({:?})", key.as_bstr())
|
||||
}
|
336
src/indexing/mod.rs
Normal file
336
src/indexing/mod.rs
Normal file
@ -0,0 +1,336 @@
|
||||
use std::fs::File;
|
||||
use std::io::{self, Read, Seek, SeekFrom};
|
||||
use std::sync::mpsc::sync_channel;
|
||||
use std::time::Instant;
|
||||
|
||||
use anyhow::Context;
|
||||
use bstr::ByteSlice as _;
|
||||
use flate2::read::GzDecoder;
|
||||
use grenad::{Writer, Sorter, Merger, Reader, FileFuse, CompressionType};
|
||||
use heed::types::ByteSlice;
|
||||
use log::{debug, info};
|
||||
use rayon::prelude::*;
|
||||
use structopt::StructOpt;
|
||||
use tempfile::tempfile;
|
||||
|
||||
use crate::Index;
|
||||
use self::store::Store;
|
||||
use self::merge_function::{
|
||||
main_merge, word_docids_merge, words_pairs_proximities_docids_merge,
|
||||
docid_word_positions_merge, documents_merge,
|
||||
};
|
||||
|
||||
mod store;
|
||||
mod merge_function;
|
||||
|
||||
#[derive(Debug, StructOpt)]
|
||||
pub struct IndexerOpt {
|
||||
/// The amount of documents to skip before printing
|
||||
/// a log regarding the indexing advancement.
|
||||
#[structopt(long, default_value = "1000000")] // 1m
|
||||
log_every_n: usize,
|
||||
|
||||
/// MTBL max number of chunks in bytes.
|
||||
#[structopt(long)]
|
||||
max_nb_chunks: Option<usize>,
|
||||
|
||||
/// The maximum amount of memory to use for the MTBL buffer. It is recommended
|
||||
/// to use something like 80%-90% of the available memory.
|
||||
///
|
||||
/// It is automatically split by the number of jobs e.g. if you use 7 jobs
|
||||
/// and 7 GB of max memory, each thread will use a maximum of 1 GB.
|
||||
#[structopt(long, default_value = "7516192768")] // 7 GB
|
||||
max_memory: usize,
|
||||
|
||||
/// Size of the linked hash map cache when indexing.
|
||||
/// The bigger it is, the faster the indexing is but the more memory it takes.
|
||||
#[structopt(long, default_value = "500")]
|
||||
linked_hash_map_size: usize,
|
||||
|
||||
/// The name of the compression algorithm to use when compressing intermediate
|
||||
/// chunks during indexing documents.
|
||||
///
|
||||
/// Choosing a fast algorithm will make the indexing faster but may consume more memory.
|
||||
#[structopt(long, default_value = "snappy", possible_values = &["snappy", "zlib", "lz4", "lz4hc", "zstd"])]
|
||||
chunk_compression_type: CompressionType,
|
||||
|
||||
/// The level of compression of the chosen algorithm.
|
||||
#[structopt(long, requires = "chunk-compression-type")]
|
||||
chunk_compression_level: Option<u32>,
|
||||
|
||||
/// The number of bytes to remove from the begining of the chunks while reading/sorting
|
||||
/// or merging them.
|
||||
///
|
||||
/// File fusing must only be enable on file systems that support the `FALLOC_FL_COLLAPSE_RANGE`,
|
||||
/// (i.e. ext4 and XFS). File fusing will only work if the `enable-chunk-fusing` is set.
|
||||
#[structopt(long, default_value = "4294967296")] // 4 GB
|
||||
chunk_fusing_shrink_size: u64,
|
||||
|
||||
/// Enable the chunk fusing or not, this reduces the amount of disk used by a factor of 2.
|
||||
#[structopt(long)]
|
||||
enable_chunk_fusing: bool,
|
||||
|
||||
/// Number of parallel jobs for indexing, defaults to # of CPUs.
|
||||
#[structopt(long)]
|
||||
indexing_jobs: Option<usize>,
|
||||
}
|
||||
|
||||
type MergeFn = fn(&[u8], &[Vec<u8>]) -> Result<Vec<u8>, ()>;
|
||||
|
||||
fn create_writer(typ: CompressionType, level: Option<u32>, file: File) -> io::Result<Writer<File>> {
|
||||
let mut builder = Writer::builder();
|
||||
builder.compression_type(typ);
|
||||
if let Some(level) = level {
|
||||
builder.compression_level(level);
|
||||
}
|
||||
builder.build(file)
|
||||
}
|
||||
|
||||
fn create_sorter(
|
||||
merge: MergeFn,
|
||||
chunk_compression_type: CompressionType,
|
||||
chunk_compression_level: Option<u32>,
|
||||
chunk_fusing_shrink_size: Option<u64>,
|
||||
max_nb_chunks: Option<usize>,
|
||||
max_memory: Option<usize>,
|
||||
) -> Sorter<MergeFn>
|
||||
{
|
||||
let mut builder = Sorter::builder(merge);
|
||||
if let Some(shrink_size) = chunk_fusing_shrink_size {
|
||||
builder.file_fusing_shrink_size(shrink_size);
|
||||
}
|
||||
builder.chunk_compression_type(chunk_compression_type);
|
||||
if let Some(level) = chunk_compression_level {
|
||||
builder.chunk_compression_level(level);
|
||||
}
|
||||
if let Some(nb_chunks) = max_nb_chunks {
|
||||
builder.max_nb_chunks(nb_chunks);
|
||||
}
|
||||
if let Some(memory) = max_memory {
|
||||
builder.max_memory(memory);
|
||||
}
|
||||
builder.build()
|
||||
}
|
||||
|
||||
fn writer_into_reader(writer: Writer<File>, shrink_size: Option<u64>) -> anyhow::Result<Reader<FileFuse>> {
|
||||
let mut file = writer.into_inner()?;
|
||||
file.seek(SeekFrom::Start(0))?;
|
||||
let file = if let Some(shrink_size) = shrink_size {
|
||||
FileFuse::builder().shrink_size(shrink_size).build(file)
|
||||
} else {
|
||||
FileFuse::new(file)
|
||||
};
|
||||
Reader::new(file).map_err(Into::into)
|
||||
}
|
||||
|
||||
fn merge_readers(sources: Vec<Reader<FileFuse>>, merge: MergeFn) -> Merger<FileFuse, MergeFn> {
|
||||
let mut builder = Merger::builder(merge);
|
||||
builder.extend(sources);
|
||||
builder.build()
|
||||
}
|
||||
|
||||
fn merge_into_lmdb_database(
|
||||
wtxn: &mut heed::RwTxn,
|
||||
database: heed::PolyDatabase,
|
||||
sources: Vec<Reader<FileFuse>>,
|
||||
merge: MergeFn,
|
||||
) -> anyhow::Result<()> {
|
||||
debug!("Merging {} MTBL stores...", sources.len());
|
||||
let before = Instant::now();
|
||||
|
||||
let merger = merge_readers(sources, merge);
|
||||
let mut in_iter = merger.into_merge_iter()?;
|
||||
|
||||
let mut out_iter = database.iter_mut::<_, ByteSlice, ByteSlice>(wtxn)?;
|
||||
while let Some((k, v)) = in_iter.next()? {
|
||||
out_iter.append(k, v).with_context(|| format!("writing {:?} into LMDB", k.as_bstr()))?;
|
||||
}
|
||||
|
||||
debug!("MTBL stores merged in {:.02?}!", before.elapsed());
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn write_into_lmdb_database(
|
||||
wtxn: &mut heed::RwTxn,
|
||||
database: heed::PolyDatabase,
|
||||
mut reader: Reader<FileFuse>,
|
||||
) -> anyhow::Result<()> {
|
||||
debug!("Writing MTBL stores...");
|
||||
let before = Instant::now();
|
||||
|
||||
let mut out_iter = database.iter_mut::<_, ByteSlice, ByteSlice>(wtxn)?;
|
||||
while let Some((k, v)) = reader.next()? {
|
||||
out_iter.append(k, v).with_context(|| format!("writing {:?} into LMDB", k.as_bstr()))?;
|
||||
}
|
||||
|
||||
debug!("MTBL stores merged in {:.02?}!", before.elapsed());
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn csv_bytes_readers<'a>(
|
||||
content: &'a [u8],
|
||||
gzipped: bool,
|
||||
count: usize,
|
||||
) -> Vec<csv::Reader<Box<dyn Read + Send + 'a>>>
|
||||
{
|
||||
let mut readers = Vec::new();
|
||||
|
||||
for _ in 0..count {
|
||||
let content = if gzipped {
|
||||
Box::new(GzDecoder::new(content)) as Box<dyn Read + Send>
|
||||
} else {
|
||||
Box::new(content) as Box<dyn Read + Send>
|
||||
};
|
||||
let reader = csv::Reader::from_reader(content);
|
||||
readers.push(reader);
|
||||
}
|
||||
|
||||
readers
|
||||
}
|
||||
|
||||
pub fn run<'a>(
|
||||
env: &heed::Env,
|
||||
index: &Index,
|
||||
opt: IndexerOpt,
|
||||
content: &'a [u8],
|
||||
gzipped: bool,
|
||||
) -> anyhow::Result<()>
|
||||
{
|
||||
let jobs = opt.indexing_jobs.unwrap_or(0);
|
||||
let pool = rayon::ThreadPoolBuilder::new().num_threads(jobs).build()?;
|
||||
pool.install(|| run_intern(env, index, opt, content, gzipped))
|
||||
}
|
||||
|
||||
fn run_intern<'a>(
|
||||
env: &heed::Env,
|
||||
index: &Index,
|
||||
opt: IndexerOpt,
|
||||
content: &'a [u8],
|
||||
gzipped: bool,
|
||||
) -> anyhow::Result<()>
|
||||
{
|
||||
let before_indexing = Instant::now();
|
||||
let num_threads = rayon::current_num_threads();
|
||||
let linked_hash_map_size = opt.linked_hash_map_size;
|
||||
let max_nb_chunks = opt.max_nb_chunks;
|
||||
let max_memory_by_job = opt.max_memory / num_threads;
|
||||
let chunk_compression_type = opt.chunk_compression_type;
|
||||
let chunk_compression_level = opt.chunk_compression_level;
|
||||
let log_every_n = opt.log_every_n;
|
||||
|
||||
let chunk_fusing_shrink_size = if opt.enable_chunk_fusing {
|
||||
Some(opt.chunk_fusing_shrink_size)
|
||||
} else {
|
||||
None
|
||||
};
|
||||
|
||||
let readers = csv_bytes_readers(content, gzipped, num_threads)
|
||||
.into_par_iter()
|
||||
.enumerate()
|
||||
.map(|(i, rdr)| {
|
||||
let store = Store::new(
|
||||
linked_hash_map_size,
|
||||
max_nb_chunks,
|
||||
Some(max_memory_by_job),
|
||||
chunk_compression_type,
|
||||
chunk_compression_level,
|
||||
chunk_fusing_shrink_size,
|
||||
)?;
|
||||
store.index_csv(rdr, i, num_threads, log_every_n)
|
||||
})
|
||||
.collect::<Result<Vec<_>, _>>()?;
|
||||
|
||||
let mut main_readers = Vec::with_capacity(readers.len());
|
||||
let mut word_docids_readers = Vec::with_capacity(readers.len());
|
||||
let mut docid_word_positions_readers = Vec::with_capacity(readers.len());
|
||||
let mut words_pairs_proximities_docids_readers = Vec::with_capacity(readers.len());
|
||||
let mut documents_readers = Vec::with_capacity(readers.len());
|
||||
readers.into_iter().for_each(|readers| {
|
||||
main_readers.push(readers.main);
|
||||
word_docids_readers.push(readers.word_docids);
|
||||
docid_word_positions_readers.push(readers.docid_word_positions);
|
||||
words_pairs_proximities_docids_readers.push(readers.words_pairs_proximities_docids);
|
||||
documents_readers.push(readers.documents);
|
||||
});
|
||||
|
||||
// This is the function that merge the readers
|
||||
// by using the given merge function.
|
||||
let merge_readers = move |readers, merge| {
|
||||
let mut writer = tempfile().and_then(|f| {
|
||||
create_writer(chunk_compression_type, chunk_compression_level, f)
|
||||
})?;
|
||||
let merger = merge_readers(readers, merge);
|
||||
merger.write_into(&mut writer)?;
|
||||
writer_into_reader(writer, chunk_fusing_shrink_size)
|
||||
};
|
||||
|
||||
// The enum and the channel which is used to transfert
|
||||
// the readers merges potentially done on another thread.
|
||||
enum DatabaseType { Main, WordDocids, WordsPairsProximitiesDocids };
|
||||
let (sender, receiver) = sync_channel(3);
|
||||
|
||||
debug!("Merging the main, word docids and words pairs proximity docids in parallel...");
|
||||
rayon::spawn(move || {
|
||||
vec![
|
||||
(DatabaseType::Main, main_readers, main_merge as MergeFn),
|
||||
(DatabaseType::WordDocids, word_docids_readers, word_docids_merge),
|
||||
(
|
||||
DatabaseType::WordsPairsProximitiesDocids,
|
||||
words_pairs_proximities_docids_readers,
|
||||
words_pairs_proximities_docids_merge,
|
||||
),
|
||||
]
|
||||
.into_par_iter()
|
||||
.for_each(|(dbtype, readers, merge)| {
|
||||
let result = merge_readers(readers, merge);
|
||||
sender.send((dbtype, result)).unwrap();
|
||||
});
|
||||
});
|
||||
|
||||
let mut wtxn = env.write_txn()?;
|
||||
|
||||
debug!("Writing the docid word positions into LMDB on disk...");
|
||||
merge_into_lmdb_database(
|
||||
&mut wtxn,
|
||||
*index.docid_word_positions.as_polymorph(),
|
||||
docid_word_positions_readers,
|
||||
docid_word_positions_merge,
|
||||
)?;
|
||||
|
||||
debug!("Writing the documents into LMDB on disk...");
|
||||
merge_into_lmdb_database(
|
||||
&mut wtxn,
|
||||
*index.documents.as_polymorph(),
|
||||
documents_readers,
|
||||
documents_merge,
|
||||
)?;
|
||||
|
||||
for (db_type, result) in receiver {
|
||||
let content = result?;
|
||||
match db_type {
|
||||
DatabaseType::Main => {
|
||||
debug!("Writing the main elements into LMDB on disk...");
|
||||
write_into_lmdb_database(&mut wtxn, index.main, content)?;
|
||||
},
|
||||
DatabaseType::WordDocids => {
|
||||
debug!("Writing the words docids into LMDB on disk...");
|
||||
let db = *index.word_docids.as_polymorph();
|
||||
write_into_lmdb_database(&mut wtxn, db, content)?;
|
||||
},
|
||||
DatabaseType::WordsPairsProximitiesDocids => {
|
||||
debug!("Writing the words pairs proximities docids into LMDB on disk...");
|
||||
let db = *index.word_pair_proximity_docids.as_polymorph();
|
||||
write_into_lmdb_database(&mut wtxn, db, content)?;
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
debug!("Retrieving the number of documents...");
|
||||
let count = index.number_of_documents(&wtxn)?;
|
||||
|
||||
wtxn.commit()?;
|
||||
|
||||
info!("Wrote {} documents in {:.02?}", count, before_indexing.elapsed());
|
||||
|
||||
Ok(())
|
||||
}
|
443
src/indexing/store.rs
Normal file
443
src/indexing/store.rs
Normal file
@ -0,0 +1,443 @@
|
||||
use std::collections::{BTreeMap, HashMap};
|
||||
use std::convert::TryFrom;
|
||||
use std::fs::File;
|
||||
use std::io::Read;
|
||||
use std::iter::FromIterator;
|
||||
use std::time::Instant;
|
||||
use std::{cmp, iter};
|
||||
|
||||
use anyhow::Context;
|
||||
use bstr::ByteSlice as _;
|
||||
use csv::StringRecord;
|
||||
use heed::BytesEncode;
|
||||
use linked_hash_map::LinkedHashMap;
|
||||
use log::{debug, info};
|
||||
use grenad::{Reader, FileFuse, Writer, Sorter, CompressionType};
|
||||
use roaring::RoaringBitmap;
|
||||
use tempfile::tempfile;
|
||||
|
||||
use crate::heed_codec::{CsvStringRecordCodec, BoRoaringBitmapCodec, CboRoaringBitmapCodec};
|
||||
use crate::tokenizer::{simple_tokenizer, only_token};
|
||||
use crate::{SmallVec32, Position, DocumentId};
|
||||
|
||||
use super::{MergeFn, create_writer, create_sorter, writer_into_reader};
|
||||
use super::merge_function::{main_merge, word_docids_merge, words_pairs_proximities_docids_merge};
|
||||
|
||||
const LMDB_MAX_KEY_LENGTH: usize = 511;
|
||||
const ONE_KILOBYTE: usize = 1024 * 1024;
|
||||
|
||||
const MAX_POSITION: usize = 1000;
|
||||
const MAX_ATTRIBUTES: usize = u32::max_value() as usize / MAX_POSITION;
|
||||
|
||||
const WORDS_FST_KEY: &[u8] = crate::WORDS_FST_KEY.as_bytes();
|
||||
const HEADERS_KEY: &[u8] = crate::HEADERS_KEY.as_bytes();
|
||||
const DOCUMENTS_IDS_KEY: &[u8] = crate::DOCUMENTS_IDS_KEY.as_bytes();
|
||||
|
||||
pub struct Readers {
|
||||
pub main: Reader<FileFuse>,
|
||||
pub word_docids: Reader<FileFuse>,
|
||||
pub docid_word_positions: Reader<FileFuse>,
|
||||
pub words_pairs_proximities_docids: Reader<FileFuse>,
|
||||
pub documents: Reader<FileFuse>,
|
||||
}
|
||||
|
||||
pub struct Store {
|
||||
word_docids: LinkedHashMap<SmallVec32<u8>, RoaringBitmap>,
|
||||
word_docids_limit: usize,
|
||||
words_pairs_proximities_docids: LinkedHashMap<(SmallVec32<u8>, SmallVec32<u8>, u8), RoaringBitmap>,
|
||||
words_pairs_proximities_docids_limit: usize,
|
||||
documents_ids: RoaringBitmap,
|
||||
// MTBL parameters
|
||||
chunk_compression_type: CompressionType,
|
||||
chunk_compression_level: Option<u32>,
|
||||
chunk_fusing_shrink_size: Option<u64>,
|
||||
// MTBL sorters
|
||||
main_sorter: Sorter<MergeFn>,
|
||||
word_docids_sorter: Sorter<MergeFn>,
|
||||
words_pairs_proximities_docids_sorter: Sorter<MergeFn>,
|
||||
// MTBL writers
|
||||
docid_word_positions_writer: Writer<File>,
|
||||
documents_writer: Writer<File>,
|
||||
}
|
||||
|
||||
impl Store {
|
||||
pub fn new(
|
||||
linked_hash_map_size: usize,
|
||||
max_nb_chunks: Option<usize>,
|
||||
max_memory: Option<usize>,
|
||||
chunk_compression_type: CompressionType,
|
||||
chunk_compression_level: Option<u32>,
|
||||
chunk_fusing_shrink_size: Option<u64>,
|
||||
) -> anyhow::Result<Store>
|
||||
{
|
||||
// We divide the max memory by the number of sorter the Store have.
|
||||
let max_memory = max_memory.map(|mm| cmp::max(ONE_KILOBYTE, mm / 3));
|
||||
|
||||
let main_sorter = create_sorter(
|
||||
main_merge,
|
||||
chunk_compression_type,
|
||||
chunk_compression_level,
|
||||
chunk_fusing_shrink_size,
|
||||
max_nb_chunks,
|
||||
max_memory,
|
||||
);
|
||||
let word_docids_sorter = create_sorter(
|
||||
word_docids_merge,
|
||||
chunk_compression_type,
|
||||
chunk_compression_level,
|
||||
chunk_fusing_shrink_size,
|
||||
max_nb_chunks,
|
||||
max_memory,
|
||||
);
|
||||
let words_pairs_proximities_docids_sorter = create_sorter(
|
||||
words_pairs_proximities_docids_merge,
|
||||
chunk_compression_type,
|
||||
chunk_compression_level,
|
||||
chunk_fusing_shrink_size,
|
||||
max_nb_chunks,
|
||||
max_memory,
|
||||
);
|
||||
|
||||
let documents_writer = tempfile().and_then(|f| {
|
||||
create_writer(chunk_compression_type, chunk_compression_level, f)
|
||||
})?;
|
||||
let docid_word_positions_writer = tempfile().and_then(|f| {
|
||||
create_writer(chunk_compression_type, chunk_compression_level, f)
|
||||
})?;
|
||||
|
||||
Ok(Store {
|
||||
word_docids: LinkedHashMap::with_capacity(linked_hash_map_size),
|
||||
word_docids_limit: linked_hash_map_size,
|
||||
words_pairs_proximities_docids: LinkedHashMap::with_capacity(linked_hash_map_size),
|
||||
words_pairs_proximities_docids_limit: linked_hash_map_size,
|
||||
documents_ids: RoaringBitmap::new(),
|
||||
chunk_compression_type,
|
||||
chunk_compression_level,
|
||||
chunk_fusing_shrink_size,
|
||||
|
||||
main_sorter,
|
||||
word_docids_sorter,
|
||||
words_pairs_proximities_docids_sorter,
|
||||
|
||||
docid_word_positions_writer,
|
||||
documents_writer,
|
||||
})
|
||||
}
|
||||
|
||||
// Save the documents ids under the position and word we have seen it.
|
||||
fn insert_word_docid(&mut self, word: &str, id: DocumentId) -> anyhow::Result<()> {
|
||||
// if get_refresh finds the element it is assured to be at the end of the linked hash map.
|
||||
match self.word_docids.get_refresh(word.as_bytes()) {
|
||||
Some(old) => { old.insert(id); },
|
||||
None => {
|
||||
let word_vec = SmallVec32::from(word.as_bytes());
|
||||
// A newly inserted element is append at the end of the linked hash map.
|
||||
self.word_docids.insert(word_vec, RoaringBitmap::from_iter(Some(id)));
|
||||
// If the word docids just reached it's capacity we must make sure to remove
|
||||
// one element, this way next time we insert we doesn't grow the capacity.
|
||||
if self.word_docids.len() == self.word_docids_limit {
|
||||
// Removing the front element is equivalent to removing the LRU element.
|
||||
let lru = self.word_docids.pop_front();
|
||||
Self::write_word_docids(&mut self.word_docids_sorter, lru)?;
|
||||
}
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
// Save the documents ids under the words pairs proximities that it contains.
|
||||
fn insert_words_pairs_proximities_docids<'a>(
|
||||
&mut self,
|
||||
words_pairs_proximities: impl IntoIterator<Item=((&'a str, &'a str), u8)>,
|
||||
id: DocumentId,
|
||||
) -> anyhow::Result<()>
|
||||
{
|
||||
for ((w1, w2), prox) in words_pairs_proximities {
|
||||
let w1 = SmallVec32::from(w1.as_bytes());
|
||||
let w2 = SmallVec32::from(w2.as_bytes());
|
||||
let key = (w1, w2, prox);
|
||||
// if get_refresh finds the element it is assured
|
||||
// to be at the end of the linked hash map.
|
||||
match self.words_pairs_proximities_docids.get_refresh(&key) {
|
||||
Some(old) => { old.insert(id); },
|
||||
None => {
|
||||
// A newly inserted element is append at the end of the linked hash map.
|
||||
let ids = RoaringBitmap::from_iter(Some(id));
|
||||
self.words_pairs_proximities_docids.insert(key, ids);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// If the linked hashmap is over capacity we must remove the overflowing elements.
|
||||
let len = self.words_pairs_proximities_docids.len();
|
||||
let overflow = len.checked_sub(self.words_pairs_proximities_docids_limit);
|
||||
if let Some(overflow) = overflow {
|
||||
let mut lrus = Vec::with_capacity(overflow);
|
||||
// Removing front elements is equivalent to removing the LRUs.
|
||||
let iter = iter::from_fn(|| self.words_pairs_proximities_docids.pop_front());
|
||||
iter.take(overflow).for_each(|x| lrus.push(x));
|
||||
Self::write_words_pairs_proximities(&mut self.words_pairs_proximities_docids_sorter, lrus)?;
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn write_headers(&mut self, headers: &StringRecord) -> anyhow::Result<()> {
|
||||
let headers = CsvStringRecordCodec::bytes_encode(headers)
|
||||
.with_context(|| format!("could not encode csv record"))?;
|
||||
Ok(self.main_sorter.insert(HEADERS_KEY, headers)?)
|
||||
}
|
||||
|
||||
fn write_document(
|
||||
&mut self,
|
||||
document_id: DocumentId,
|
||||
words_positions: &HashMap<String, SmallVec32<Position>>,
|
||||
record: &StringRecord,
|
||||
) -> anyhow::Result<()>
|
||||
{
|
||||
// We compute the list of words pairs proximities (self-join) and write it directly to disk.
|
||||
let words_pair_proximities = compute_words_pair_proximities(&words_positions);
|
||||
self.insert_words_pairs_proximities_docids(words_pair_proximities, document_id)?;
|
||||
|
||||
// We store document_id associated with all the words the record contains.
|
||||
for (word, _) in words_positions {
|
||||
self.insert_word_docid(word, document_id)?;
|
||||
}
|
||||
|
||||
let record = CsvStringRecordCodec::bytes_encode(record)
|
||||
.with_context(|| format!("could not encode CSV record"))?;
|
||||
|
||||
self.documents_ids.insert(document_id);
|
||||
self.documents_writer.insert(document_id.to_be_bytes(), record)?;
|
||||
Self::write_docid_word_positions(&mut self.docid_word_positions_writer, document_id, words_positions)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn write_words_pairs_proximities(
|
||||
sorter: &mut Sorter<MergeFn>,
|
||||
iter: impl IntoIterator<Item=((SmallVec32<u8>, SmallVec32<u8>, u8), RoaringBitmap)>,
|
||||
) -> anyhow::Result<()>
|
||||
{
|
||||
let mut key = Vec::new();
|
||||
let mut buffer = Vec::new();
|
||||
|
||||
for ((w1, w2, min_prox), docids) in iter {
|
||||
key.clear();
|
||||
key.extend_from_slice(w1.as_bytes());
|
||||
key.push(0);
|
||||
key.extend_from_slice(w2.as_bytes());
|
||||
// Storing the minimun proximity found between those words
|
||||
key.push(min_prox);
|
||||
// We serialize the document ids into a buffer
|
||||
buffer.clear();
|
||||
buffer.reserve(CboRoaringBitmapCodec::serialized_size(&docids));
|
||||
CboRoaringBitmapCodec::serialize_into(&docids, &mut buffer)?;
|
||||
// that we write under the generated key into MTBL
|
||||
if lmdb_key_valid_size(&key) {
|
||||
sorter.insert(&key, &buffer)?;
|
||||
}
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn write_docid_word_positions(
|
||||
writer: &mut Writer<File>,
|
||||
id: DocumentId,
|
||||
words_positions: &HashMap<String, SmallVec32<Position>>,
|
||||
) -> anyhow::Result<()>
|
||||
{
|
||||
// We prefix the words by the document id.
|
||||
let mut key = id.to_be_bytes().to_vec();
|
||||
let base_size = key.len();
|
||||
|
||||
// We order the words lexicographically, this way we avoid passing by a sorter.
|
||||
let words_positions = BTreeMap::from_iter(words_positions);
|
||||
|
||||
for (word, positions) in words_positions {
|
||||
key.truncate(base_size);
|
||||
key.extend_from_slice(word.as_bytes());
|
||||
// We serialize the positions into a buffer.
|
||||
let positions = RoaringBitmap::from_iter(positions.iter().cloned());
|
||||
let bytes = BoRoaringBitmapCodec::bytes_encode(&positions)
|
||||
.with_context(|| "could not serialize positions")?;
|
||||
// that we write under the generated key into MTBL
|
||||
if lmdb_key_valid_size(&key) {
|
||||
writer.insert(&key, &bytes)?;
|
||||
}
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn write_word_docids<I>(sorter: &mut Sorter<MergeFn>, iter: I) -> anyhow::Result<()>
|
||||
where I: IntoIterator<Item=(SmallVec32<u8>, RoaringBitmap)>
|
||||
{
|
||||
let mut key = Vec::new();
|
||||
let mut buffer = Vec::new();
|
||||
|
||||
for (word, ids) in iter {
|
||||
key.clear();
|
||||
key.extend_from_slice(&word);
|
||||
// We serialize the document ids into a buffer
|
||||
buffer.clear();
|
||||
let ids = RoaringBitmap::from_iter(ids);
|
||||
buffer.reserve(ids.serialized_size());
|
||||
ids.serialize_into(&mut buffer)?;
|
||||
// that we write under the generated key into MTBL
|
||||
if lmdb_key_valid_size(&key) {
|
||||
sorter.insert(&key, &buffer)?;
|
||||
}
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn write_documents_ids(sorter: &mut Sorter<MergeFn>, ids: RoaringBitmap) -> anyhow::Result<()> {
|
||||
let mut buffer = Vec::with_capacity(ids.serialized_size());
|
||||
ids.serialize_into(&mut buffer)?;
|
||||
sorter.insert(DOCUMENTS_IDS_KEY, &buffer)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn index_csv<'a>(
|
||||
mut self,
|
||||
mut rdr: csv::Reader<Box<dyn Read + Send + 'a>>,
|
||||
thread_index: usize,
|
||||
num_threads: usize,
|
||||
log_every_n: usize,
|
||||
) -> anyhow::Result<Readers>
|
||||
{
|
||||
debug!("{:?}: Indexing in a Store...", thread_index);
|
||||
|
||||
// Write the headers into the store.
|
||||
let headers = rdr.headers()?;
|
||||
self.write_headers(&headers)?;
|
||||
|
||||
let mut before = Instant::now();
|
||||
let mut document_id: usize = 0;
|
||||
let mut document = csv::StringRecord::new();
|
||||
let mut words_positions = HashMap::new();
|
||||
|
||||
while rdr.read_record(&mut document)? {
|
||||
// We skip documents that must not be indexed by this thread.
|
||||
if document_id % num_threads == thread_index {
|
||||
// This is a log routine that we do every `log_every_n` documents.
|
||||
if document_id % log_every_n == 0 {
|
||||
let count = format_count(document_id);
|
||||
info!("We have seen {} documents so far ({:.02?}).", count, before.elapsed());
|
||||
before = Instant::now();
|
||||
}
|
||||
|
||||
let document_id = DocumentId::try_from(document_id).context("generated id is too big")?;
|
||||
for (attr, content) in document.iter().enumerate().take(MAX_ATTRIBUTES) {
|
||||
for (pos, token) in simple_tokenizer(&content).filter_map(only_token).enumerate().take(MAX_POSITION) {
|
||||
let word = token.to_lowercase();
|
||||
let position = (attr * MAX_POSITION + pos) as u32;
|
||||
words_positions.entry(word).or_insert_with(SmallVec32::new).push(position);
|
||||
}
|
||||
}
|
||||
|
||||
// We write the document in the documents store.
|
||||
self.write_document(document_id, &words_positions, &document)?;
|
||||
words_positions.clear();
|
||||
}
|
||||
|
||||
// Compute the document id of the next document.
|
||||
document_id = document_id + 1;
|
||||
}
|
||||
|
||||
let readers = self.finish()?;
|
||||
debug!("{:?}: Store created!", thread_index);
|
||||
Ok(readers)
|
||||
}
|
||||
|
||||
fn finish(mut self) -> anyhow::Result<Readers> {
|
||||
let comp_type = self.chunk_compression_type;
|
||||
let comp_level = self.chunk_compression_level;
|
||||
let shrink_size = self.chunk_fusing_shrink_size;
|
||||
|
||||
Self::write_word_docids(&mut self.word_docids_sorter, self.word_docids)?;
|
||||
Self::write_documents_ids(&mut self.main_sorter, self.documents_ids)?;
|
||||
Self::write_words_pairs_proximities(
|
||||
&mut self.words_pairs_proximities_docids_sorter,
|
||||
self.words_pairs_proximities_docids,
|
||||
)?;
|
||||
|
||||
let mut word_docids_wtr = tempfile().and_then(|f| create_writer(comp_type, comp_level, f))?;
|
||||
let mut builder = fst::SetBuilder::memory();
|
||||
|
||||
let mut iter = self.word_docids_sorter.into_iter()?;
|
||||
while let Some((word, val)) = iter.next()? {
|
||||
// This is a lexicographically ordered word position
|
||||
// we use the key to construct the words fst.
|
||||
builder.insert(word)?;
|
||||
word_docids_wtr.insert(word, val)?;
|
||||
}
|
||||
|
||||
let fst = builder.into_set();
|
||||
self.main_sorter.insert(WORDS_FST_KEY, fst.as_fst().as_bytes())?;
|
||||
|
||||
let mut main_wtr = tempfile().and_then(|f| create_writer(comp_type, comp_level, f))?;
|
||||
self.main_sorter.write_into(&mut main_wtr)?;
|
||||
|
||||
let mut words_pairs_proximities_docids_wtr = tempfile().and_then(|f| create_writer(comp_type, comp_level, f))?;
|
||||
self.words_pairs_proximities_docids_sorter.write_into(&mut words_pairs_proximities_docids_wtr)?;
|
||||
|
||||
let main = writer_into_reader(main_wtr, shrink_size)?;
|
||||
let word_docids = writer_into_reader(word_docids_wtr, shrink_size)?;
|
||||
let words_pairs_proximities_docids = writer_into_reader(words_pairs_proximities_docids_wtr, shrink_size)?;
|
||||
let docid_word_positions = writer_into_reader(self.docid_word_positions_writer, shrink_size)?;
|
||||
let documents = writer_into_reader(self.documents_writer, shrink_size)?;
|
||||
|
||||
Ok(Readers {
|
||||
main,
|
||||
word_docids,
|
||||
docid_word_positions,
|
||||
words_pairs_proximities_docids,
|
||||
documents,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
/// Outputs a list of all pairs of words with the shortest proximity between 1 and 7 inclusive.
|
||||
///
|
||||
/// This list is used by the engine to calculate the documents containing words that are
|
||||
/// close to each other.
|
||||
fn compute_words_pair_proximities(
|
||||
word_positions: &HashMap<String, SmallVec32<Position>>,
|
||||
) -> HashMap<(&str, &str), u8>
|
||||
{
|
||||
use itertools::Itertools;
|
||||
|
||||
let mut words_pair_proximities = HashMap::new();
|
||||
for ((w1, ps1), (w2, ps2)) in word_positions.iter().cartesian_product(word_positions) {
|
||||
let mut min_prox = None;
|
||||
for (ps1, ps2) in ps1.iter().cartesian_product(ps2) {
|
||||
let prox = crate::proximity::positions_proximity(*ps1, *ps2);
|
||||
let prox = u8::try_from(prox).unwrap();
|
||||
// We don't care about a word that appear at the
|
||||
// same position or too far from the other.
|
||||
if prox >= 1 && prox <= 7 {
|
||||
if min_prox.map_or(true, |mp| prox < mp) {
|
||||
min_prox = Some(prox)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if let Some(min_prox) = min_prox {
|
||||
words_pair_proximities.insert((w1.as_str(), w2.as_str()), min_prox);
|
||||
}
|
||||
}
|
||||
|
||||
words_pair_proximities
|
||||
}
|
||||
|
||||
fn format_count(n: usize) -> String {
|
||||
human_format::Formatter::new().with_decimals(1).with_separator("").format(n as f64)
|
||||
}
|
||||
|
||||
fn lmdb_key_valid_size(key: &[u8]) -> bool {
|
||||
!key.is_empty() && key.len() <= LMDB_MAX_KEY_LENGTH
|
||||
}
|
@ -1,4 +1,5 @@
|
||||
mod criterion;
|
||||
mod indexing;
|
||||
mod mdfs;
|
||||
mod query_tokens;
|
||||
mod search;
|
||||
|
@ -1,40 +1,12 @@
|
||||
use std::collections::{BTreeMap, HashMap};
|
||||
use std::convert::TryFrom;
|
||||
use std::fs::File;
|
||||
use std::io::{self, Read, Write, Seek, SeekFrom};
|
||||
use std::iter::FromIterator;
|
||||
use std::path::PathBuf;
|
||||
use std::sync::mpsc::sync_channel;
|
||||
use std::time::Instant;
|
||||
use std::{cmp, iter, thread};
|
||||
|
||||
use anyhow::{Context, bail};
|
||||
use bstr::ByteSlice as _;
|
||||
use csv::StringRecord;
|
||||
use flate2::read::GzDecoder;
|
||||
use fst::IntoStreamer;
|
||||
use heed::{EnvOpenOptions, BytesEncode, types::ByteSlice};
|
||||
use linked_hash_map::LinkedHashMap;
|
||||
use log::{debug, info};
|
||||
use grenad::{Reader, FileFuse, Writer, Merger, Sorter, CompressionType};
|
||||
use rayon::prelude::*;
|
||||
use roaring::RoaringBitmap;
|
||||
use anyhow::bail;
|
||||
use heed::EnvOpenOptions;
|
||||
use structopt::StructOpt;
|
||||
use tempfile::tempfile;
|
||||
|
||||
use crate::heed_codec::{CsvStringRecordCodec, BoRoaringBitmapCodec, CboRoaringBitmapCodec};
|
||||
use crate::tokenizer::{simple_tokenizer, only_token};
|
||||
use crate::{SmallVec32, Index, Position, DocumentId};
|
||||
|
||||
const LMDB_MAX_KEY_LENGTH: usize = 511;
|
||||
const ONE_KILOBYTE: usize = 1024 * 1024;
|
||||
|
||||
const MAX_POSITION: usize = 1000;
|
||||
const MAX_ATTRIBUTES: usize = u32::max_value() as usize / MAX_POSITION;
|
||||
|
||||
const WORDS_FST_KEY: &[u8] = crate::WORDS_FST_KEY.as_bytes();
|
||||
const HEADERS_KEY: &[u8] = crate::HEADERS_KEY.as_bytes();
|
||||
const DOCUMENTS_IDS_KEY: &[u8] = crate::DOCUMENTS_IDS_KEY.as_bytes();
|
||||
use crate::indexing::{self, IndexerOpt};
|
||||
use crate::Index;
|
||||
|
||||
#[derive(Debug, StructOpt)]
|
||||
#[structopt(name = "milli-indexer")]
|
||||
@ -50,10 +22,6 @@ pub struct Opt {
|
||||
#[structopt(long = "db-size", default_value = "107374182400")] // 100 GB
|
||||
database_size: usize,
|
||||
|
||||
/// Number of parallel jobs, defaults to # of CPUs.
|
||||
#[structopt(short, long)]
|
||||
jobs: Option<usize>,
|
||||
|
||||
#[structopt(flatten)]
|
||||
indexer: IndexerOpt,
|
||||
|
||||
@ -71,667 +39,6 @@ pub struct Opt {
|
||||
csv_file: Option<PathBuf>,
|
||||
}
|
||||
|
||||
#[derive(Debug, StructOpt)]
|
||||
struct IndexerOpt {
|
||||
/// The amount of documents to skip before printing
|
||||
/// a log regarding the indexing advancement.
|
||||
#[structopt(long, default_value = "1000000")] // 1m
|
||||
log_every_n: usize,
|
||||
|
||||
/// MTBL max number of chunks in bytes.
|
||||
#[structopt(long)]
|
||||
max_nb_chunks: Option<usize>,
|
||||
|
||||
/// The maximum amount of memory to use for the MTBL buffer. It is recommended
|
||||
/// to use something like 80%-90% of the available memory.
|
||||
///
|
||||
/// It is automatically split by the number of jobs e.g. if you use 7 jobs
|
||||
/// and 7 GB of max memory, each thread will use a maximum of 1 GB.
|
||||
#[structopt(long, default_value = "7516192768")] // 7 GB
|
||||
max_memory: usize,
|
||||
|
||||
/// Size of the linked hash map cache when indexing.
|
||||
/// The bigger it is, the faster the indexing is but the more memory it takes.
|
||||
#[structopt(long, default_value = "500")]
|
||||
linked_hash_map_size: usize,
|
||||
|
||||
/// The name of the compression algorithm to use when compressing intermediate
|
||||
/// chunks during indexing documents.
|
||||
///
|
||||
/// Choosing a fast algorithm will make the indexing faster but may consume more memory.
|
||||
#[structopt(long, default_value = "snappy", possible_values = &["snappy", "zlib", "lz4", "lz4hc", "zstd"])]
|
||||
chunk_compression_type: CompressionType,
|
||||
|
||||
/// The level of compression of the chosen algorithm.
|
||||
#[structopt(long, requires = "chunk-compression-type")]
|
||||
chunk_compression_level: Option<u32>,
|
||||
|
||||
/// The number of bytes to remove from the begining of the chunks while reading/sorting
|
||||
/// or merging them.
|
||||
///
|
||||
/// File fusing must only be enable on file systems that support the `FALLOC_FL_COLLAPSE_RANGE`,
|
||||
/// (i.e. ext4 and XFS). File fusing will only work if the `enable-chunk-fusing` is set.
|
||||
#[structopt(long, default_value = "4294967296")] // 4 GB
|
||||
chunk_fusing_shrink_size: u64,
|
||||
|
||||
/// Enable the chunk fusing or not, this reduces the amount of disk used by a factor of 2.
|
||||
#[structopt(long)]
|
||||
enable_chunk_fusing: bool,
|
||||
}
|
||||
|
||||
fn format_count(n: usize) -> String {
|
||||
human_format::Formatter::new().with_decimals(1).with_separator("").format(n as f64)
|
||||
}
|
||||
|
||||
fn lmdb_key_valid_size(key: &[u8]) -> bool {
|
||||
!key.is_empty() && key.len() <= LMDB_MAX_KEY_LENGTH
|
||||
}
|
||||
|
||||
fn create_writer(typ: CompressionType, level: Option<u32>, file: File) -> io::Result<Writer<File>> {
|
||||
let mut builder = Writer::builder();
|
||||
builder.compression_type(typ);
|
||||
if let Some(level) = level {
|
||||
builder.compression_level(level);
|
||||
}
|
||||
builder.build(file)
|
||||
}
|
||||
|
||||
fn writer_into_reader(writer: Writer<File>, shrink_size: Option<u64>) -> anyhow::Result<Reader<FileFuse>> {
|
||||
let mut file = writer.into_inner()?;
|
||||
file.seek(SeekFrom::Start(0))?;
|
||||
let file = if let Some(shrink_size) = shrink_size {
|
||||
FileFuse::builder().shrink_size(shrink_size).build(file)
|
||||
} else {
|
||||
FileFuse::new(file)
|
||||
};
|
||||
Reader::new(file).map_err(Into::into)
|
||||
}
|
||||
|
||||
fn create_sorter(
|
||||
merge: MergeFn,
|
||||
chunk_compression_type: CompressionType,
|
||||
chunk_compression_level: Option<u32>,
|
||||
chunk_fusing_shrink_size: Option<u64>,
|
||||
max_nb_chunks: Option<usize>,
|
||||
max_memory: Option<usize>,
|
||||
) -> Sorter<MergeFn>
|
||||
{
|
||||
let mut builder = Sorter::builder(merge);
|
||||
if let Some(shrink_size) = chunk_fusing_shrink_size {
|
||||
builder.file_fusing_shrink_size(shrink_size);
|
||||
}
|
||||
builder.chunk_compression_type(chunk_compression_type);
|
||||
if let Some(level) = chunk_compression_level {
|
||||
builder.chunk_compression_level(level);
|
||||
}
|
||||
if let Some(nb_chunks) = max_nb_chunks {
|
||||
builder.max_nb_chunks(nb_chunks);
|
||||
}
|
||||
if let Some(memory) = max_memory {
|
||||
builder.max_memory(memory);
|
||||
}
|
||||
builder.build()
|
||||
}
|
||||
|
||||
/// Outputs a list of all pairs of words with the shortest proximity between 1 and 7 inclusive.
|
||||
///
|
||||
/// This list is used by the engine to calculate the documents containing words that are
|
||||
/// close to each other.
|
||||
fn compute_words_pair_proximities(
|
||||
word_positions: &HashMap<String, SmallVec32<Position>>,
|
||||
) -> HashMap<(&str, &str), u8>
|
||||
{
|
||||
use itertools::Itertools;
|
||||
|
||||
let mut words_pair_proximities = HashMap::new();
|
||||
for ((w1, ps1), (w2, ps2)) in word_positions.iter().cartesian_product(word_positions) {
|
||||
let mut min_prox = None;
|
||||
for (ps1, ps2) in ps1.iter().cartesian_product(ps2) {
|
||||
let prox = crate::proximity::positions_proximity(*ps1, *ps2);
|
||||
let prox = u8::try_from(prox).unwrap();
|
||||
// We don't care about a word that appear at the
|
||||
// same position or too far from the other.
|
||||
if prox >= 1 && prox <= 7 {
|
||||
if min_prox.map_or(true, |mp| prox < mp) {
|
||||
min_prox = Some(prox)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if let Some(min_prox) = min_prox {
|
||||
words_pair_proximities.insert((w1.as_str(), w2.as_str()), min_prox);
|
||||
}
|
||||
}
|
||||
|
||||
words_pair_proximities
|
||||
}
|
||||
|
||||
type MergeFn = fn(&[u8], &[Vec<u8>]) -> Result<Vec<u8>, ()>;
|
||||
|
||||
struct Readers {
|
||||
main: Reader<FileFuse>,
|
||||
word_docids: Reader<FileFuse>,
|
||||
docid_word_positions: Reader<FileFuse>,
|
||||
words_pairs_proximities_docids: Reader<FileFuse>,
|
||||
documents: Reader<FileFuse>,
|
||||
}
|
||||
|
||||
struct Store {
|
||||
word_docids: LinkedHashMap<SmallVec32<u8>, RoaringBitmap>,
|
||||
word_docids_limit: usize,
|
||||
words_pairs_proximities_docids: LinkedHashMap<(SmallVec32<u8>, SmallVec32<u8>, u8), RoaringBitmap>,
|
||||
words_pairs_proximities_docids_limit: usize,
|
||||
documents_ids: RoaringBitmap,
|
||||
// MTBL parameters
|
||||
chunk_compression_type: CompressionType,
|
||||
chunk_compression_level: Option<u32>,
|
||||
chunk_fusing_shrink_size: Option<u64>,
|
||||
// MTBL sorters
|
||||
main_sorter: Sorter<MergeFn>,
|
||||
word_docids_sorter: Sorter<MergeFn>,
|
||||
words_pairs_proximities_docids_sorter: Sorter<MergeFn>,
|
||||
// MTBL writers
|
||||
docid_word_positions_writer: Writer<File>,
|
||||
documents_writer: Writer<File>,
|
||||
}
|
||||
|
||||
impl Store {
|
||||
pub fn new(
|
||||
linked_hash_map_size: usize,
|
||||
max_nb_chunks: Option<usize>,
|
||||
max_memory: Option<usize>,
|
||||
chunk_compression_type: CompressionType,
|
||||
chunk_compression_level: Option<u32>,
|
||||
chunk_fusing_shrink_size: Option<u64>,
|
||||
) -> anyhow::Result<Store>
|
||||
{
|
||||
// We divide the max memory by the number of sorter the Store have.
|
||||
let max_memory = max_memory.map(|mm| cmp::max(ONE_KILOBYTE, mm / 3));
|
||||
|
||||
let main_sorter = create_sorter(
|
||||
main_merge,
|
||||
chunk_compression_type,
|
||||
chunk_compression_level,
|
||||
chunk_fusing_shrink_size,
|
||||
max_nb_chunks,
|
||||
max_memory,
|
||||
);
|
||||
let word_docids_sorter = create_sorter(
|
||||
word_docids_merge,
|
||||
chunk_compression_type,
|
||||
chunk_compression_level,
|
||||
chunk_fusing_shrink_size,
|
||||
max_nb_chunks,
|
||||
max_memory,
|
||||
);
|
||||
let words_pairs_proximities_docids_sorter = create_sorter(
|
||||
words_pairs_proximities_docids_merge,
|
||||
chunk_compression_type,
|
||||
chunk_compression_level,
|
||||
chunk_fusing_shrink_size,
|
||||
max_nb_chunks,
|
||||
max_memory,
|
||||
);
|
||||
|
||||
let documents_writer = tempfile().and_then(|f| {
|
||||
create_writer(chunk_compression_type, chunk_compression_level, f)
|
||||
})?;
|
||||
let docid_word_positions_writer = tempfile().and_then(|f| {
|
||||
create_writer(chunk_compression_type, chunk_compression_level, f)
|
||||
})?;
|
||||
|
||||
Ok(Store {
|
||||
word_docids: LinkedHashMap::with_capacity(linked_hash_map_size),
|
||||
word_docids_limit: linked_hash_map_size,
|
||||
words_pairs_proximities_docids: LinkedHashMap::with_capacity(linked_hash_map_size),
|
||||
words_pairs_proximities_docids_limit: linked_hash_map_size,
|
||||
documents_ids: RoaringBitmap::new(),
|
||||
chunk_compression_type,
|
||||
chunk_compression_level,
|
||||
chunk_fusing_shrink_size,
|
||||
|
||||
main_sorter,
|
||||
word_docids_sorter,
|
||||
words_pairs_proximities_docids_sorter,
|
||||
|
||||
docid_word_positions_writer,
|
||||
documents_writer,
|
||||
})
|
||||
}
|
||||
|
||||
// Save the documents ids under the position and word we have seen it.
|
||||
fn insert_word_docid(&mut self, word: &str, id: DocumentId) -> anyhow::Result<()> {
|
||||
// if get_refresh finds the element it is assured to be at the end of the linked hash map.
|
||||
match self.word_docids.get_refresh(word.as_bytes()) {
|
||||
Some(old) => { old.insert(id); },
|
||||
None => {
|
||||
let word_vec = SmallVec32::from(word.as_bytes());
|
||||
// A newly inserted element is append at the end of the linked hash map.
|
||||
self.word_docids.insert(word_vec, RoaringBitmap::from_iter(Some(id)));
|
||||
// If the word docids just reached it's capacity we must make sure to remove
|
||||
// one element, this way next time we insert we doesn't grow the capacity.
|
||||
if self.word_docids.len() == self.word_docids_limit {
|
||||
// Removing the front element is equivalent to removing the LRU element.
|
||||
let lru = self.word_docids.pop_front();
|
||||
Self::write_word_docids(&mut self.word_docids_sorter, lru)?;
|
||||
}
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
// Save the documents ids under the words pairs proximities that it contains.
|
||||
fn insert_words_pairs_proximities_docids<'a>(
|
||||
&mut self,
|
||||
words_pairs_proximities: impl IntoIterator<Item=((&'a str, &'a str), u8)>,
|
||||
id: DocumentId,
|
||||
) -> anyhow::Result<()>
|
||||
{
|
||||
for ((w1, w2), prox) in words_pairs_proximities {
|
||||
let w1 = SmallVec32::from(w1.as_bytes());
|
||||
let w2 = SmallVec32::from(w2.as_bytes());
|
||||
let key = (w1, w2, prox);
|
||||
// if get_refresh finds the element it is assured
|
||||
// to be at the end of the linked hash map.
|
||||
match self.words_pairs_proximities_docids.get_refresh(&key) {
|
||||
Some(old) => { old.insert(id); },
|
||||
None => {
|
||||
// A newly inserted element is append at the end of the linked hash map.
|
||||
let ids = RoaringBitmap::from_iter(Some(id));
|
||||
self.words_pairs_proximities_docids.insert(key, ids);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// If the linked hashmap is over capacity we must remove the overflowing elements.
|
||||
let len = self.words_pairs_proximities_docids.len();
|
||||
let overflow = len.checked_sub(self.words_pairs_proximities_docids_limit);
|
||||
if let Some(overflow) = overflow {
|
||||
let mut lrus = Vec::with_capacity(overflow);
|
||||
// Removing front elements is equivalent to removing the LRUs.
|
||||
let iter = iter::from_fn(|| self.words_pairs_proximities_docids.pop_front());
|
||||
iter.take(overflow).for_each(|x| lrus.push(x));
|
||||
Self::write_words_pairs_proximities(&mut self.words_pairs_proximities_docids_sorter, lrus)?;
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn write_headers(&mut self, headers: &StringRecord) -> anyhow::Result<()> {
|
||||
let headers = CsvStringRecordCodec::bytes_encode(headers)
|
||||
.with_context(|| format!("could not encode csv record"))?;
|
||||
Ok(self.main_sorter.insert(HEADERS_KEY, headers)?)
|
||||
}
|
||||
|
||||
fn write_document(
|
||||
&mut self,
|
||||
document_id: DocumentId,
|
||||
words_positions: &HashMap<String, SmallVec32<Position>>,
|
||||
record: &StringRecord,
|
||||
) -> anyhow::Result<()>
|
||||
{
|
||||
// We compute the list of words pairs proximities (self-join) and write it directly to disk.
|
||||
let words_pair_proximities = compute_words_pair_proximities(&words_positions);
|
||||
self.insert_words_pairs_proximities_docids(words_pair_proximities, document_id)?;
|
||||
|
||||
// We store document_id associated with all the words the record contains.
|
||||
for (word, _) in words_positions {
|
||||
self.insert_word_docid(word, document_id)?;
|
||||
}
|
||||
|
||||
let record = CsvStringRecordCodec::bytes_encode(record)
|
||||
.with_context(|| format!("could not encode CSV record"))?;
|
||||
|
||||
self.documents_ids.insert(document_id);
|
||||
self.documents_writer.insert(document_id.to_be_bytes(), record)?;
|
||||
Self::write_docid_word_positions(&mut self.docid_word_positions_writer, document_id, words_positions)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn write_words_pairs_proximities(
|
||||
sorter: &mut Sorter<MergeFn>,
|
||||
iter: impl IntoIterator<Item=((SmallVec32<u8>, SmallVec32<u8>, u8), RoaringBitmap)>,
|
||||
) -> anyhow::Result<()>
|
||||
{
|
||||
let mut key = Vec::new();
|
||||
let mut buffer = Vec::new();
|
||||
|
||||
for ((w1, w2, min_prox), docids) in iter {
|
||||
key.clear();
|
||||
key.extend_from_slice(w1.as_bytes());
|
||||
key.push(0);
|
||||
key.extend_from_slice(w2.as_bytes());
|
||||
// Storing the minimun proximity found between those words
|
||||
key.push(min_prox);
|
||||
// We serialize the document ids into a buffer
|
||||
buffer.clear();
|
||||
buffer.reserve(CboRoaringBitmapCodec::serialized_size(&docids));
|
||||
CboRoaringBitmapCodec::serialize_into(&docids, &mut buffer)?;
|
||||
// that we write under the generated key into MTBL
|
||||
if lmdb_key_valid_size(&key) {
|
||||
sorter.insert(&key, &buffer)?;
|
||||
}
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn write_docid_word_positions(
|
||||
writer: &mut Writer<File>,
|
||||
id: DocumentId,
|
||||
words_positions: &HashMap<String, SmallVec32<Position>>,
|
||||
) -> anyhow::Result<()>
|
||||
{
|
||||
// We prefix the words by the document id.
|
||||
let mut key = id.to_be_bytes().to_vec();
|
||||
let base_size = key.len();
|
||||
|
||||
// We order the words lexicographically, this way we avoid passing by a sorter.
|
||||
let words_positions = BTreeMap::from_iter(words_positions);
|
||||
|
||||
for (word, positions) in words_positions {
|
||||
key.truncate(base_size);
|
||||
key.extend_from_slice(word.as_bytes());
|
||||
// We serialize the positions into a buffer.
|
||||
let positions = RoaringBitmap::from_iter(positions.iter().cloned());
|
||||
let bytes = BoRoaringBitmapCodec::bytes_encode(&positions)
|
||||
.with_context(|| "could not serialize positions")?;
|
||||
// that we write under the generated key into MTBL
|
||||
if lmdb_key_valid_size(&key) {
|
||||
writer.insert(&key, &bytes)?;
|
||||
}
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn write_word_docids<I>(sorter: &mut Sorter<MergeFn>, iter: I) -> anyhow::Result<()>
|
||||
where I: IntoIterator<Item=(SmallVec32<u8>, RoaringBitmap)>
|
||||
{
|
||||
let mut key = Vec::new();
|
||||
let mut buffer = Vec::new();
|
||||
|
||||
for (word, ids) in iter {
|
||||
key.clear();
|
||||
key.extend_from_slice(&word);
|
||||
// We serialize the document ids into a buffer
|
||||
buffer.clear();
|
||||
let ids = RoaringBitmap::from_iter(ids);
|
||||
buffer.reserve(ids.serialized_size());
|
||||
ids.serialize_into(&mut buffer)?;
|
||||
// that we write under the generated key into MTBL
|
||||
if lmdb_key_valid_size(&key) {
|
||||
sorter.insert(&key, &buffer)?;
|
||||
}
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn write_documents_ids(sorter: &mut Sorter<MergeFn>, ids: RoaringBitmap) -> anyhow::Result<()> {
|
||||
let mut buffer = Vec::with_capacity(ids.serialized_size());
|
||||
ids.serialize_into(&mut buffer)?;
|
||||
sorter.insert(DOCUMENTS_IDS_KEY, &buffer)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn index_csv(
|
||||
mut self,
|
||||
mut rdr: csv::Reader<Box<dyn Read + Send>>,
|
||||
thread_index: usize,
|
||||
num_threads: usize,
|
||||
log_every_n: usize,
|
||||
) -> anyhow::Result<Readers>
|
||||
{
|
||||
debug!("{:?}: Indexing in a Store...", thread_index);
|
||||
|
||||
// Write the headers into the store.
|
||||
let headers = rdr.headers()?;
|
||||
self.write_headers(&headers)?;
|
||||
|
||||
let mut before = Instant::now();
|
||||
let mut document_id: usize = 0;
|
||||
let mut document = csv::StringRecord::new();
|
||||
let mut words_positions = HashMap::new();
|
||||
|
||||
while rdr.read_record(&mut document)? {
|
||||
// We skip documents that must not be indexed by this thread.
|
||||
if document_id % num_threads == thread_index {
|
||||
// This is a log routine that we do every `log_every_n` documents.
|
||||
if document_id % log_every_n == 0 {
|
||||
let count = format_count(document_id);
|
||||
info!("We have seen {} documents so far ({:.02?}).", count, before.elapsed());
|
||||
before = Instant::now();
|
||||
}
|
||||
|
||||
let document_id = DocumentId::try_from(document_id).context("generated id is too big")?;
|
||||
for (attr, content) in document.iter().enumerate().take(MAX_ATTRIBUTES) {
|
||||
for (pos, token) in simple_tokenizer(&content).filter_map(only_token).enumerate().take(MAX_POSITION) {
|
||||
let word = token.to_lowercase();
|
||||
let position = (attr * MAX_POSITION + pos) as u32;
|
||||
words_positions.entry(word).or_insert_with(SmallVec32::new).push(position);
|
||||
}
|
||||
}
|
||||
|
||||
// We write the document in the documents store.
|
||||
self.write_document(document_id, &words_positions, &document)?;
|
||||
words_positions.clear();
|
||||
}
|
||||
|
||||
// Compute the document id of the next document.
|
||||
document_id = document_id + 1;
|
||||
}
|
||||
|
||||
let readers = self.finish()?;
|
||||
debug!("{:?}: Store created!", thread_index);
|
||||
Ok(readers)
|
||||
}
|
||||
|
||||
fn finish(mut self) -> anyhow::Result<Readers> {
|
||||
let comp_type = self.chunk_compression_type;
|
||||
let comp_level = self.chunk_compression_level;
|
||||
let shrink_size = self.chunk_fusing_shrink_size;
|
||||
|
||||
Self::write_word_docids(&mut self.word_docids_sorter, self.word_docids)?;
|
||||
Self::write_documents_ids(&mut self.main_sorter, self.documents_ids)?;
|
||||
Self::write_words_pairs_proximities(
|
||||
&mut self.words_pairs_proximities_docids_sorter,
|
||||
self.words_pairs_proximities_docids,
|
||||
)?;
|
||||
|
||||
let mut word_docids_wtr = tempfile().and_then(|f| create_writer(comp_type, comp_level, f))?;
|
||||
let mut builder = fst::SetBuilder::memory();
|
||||
|
||||
let mut iter = self.word_docids_sorter.into_iter()?;
|
||||
while let Some((word, val)) = iter.next()? {
|
||||
// This is a lexicographically ordered word position
|
||||
// we use the key to construct the words fst.
|
||||
builder.insert(word)?;
|
||||
word_docids_wtr.insert(word, val)?;
|
||||
}
|
||||
|
||||
let fst = builder.into_set();
|
||||
self.main_sorter.insert(WORDS_FST_KEY, fst.as_fst().as_bytes())?;
|
||||
|
||||
let mut main_wtr = tempfile().and_then(|f| create_writer(comp_type, comp_level, f))?;
|
||||
self.main_sorter.write_into(&mut main_wtr)?;
|
||||
|
||||
let mut words_pairs_proximities_docids_wtr = tempfile().and_then(|f| create_writer(comp_type, comp_level, f))?;
|
||||
self.words_pairs_proximities_docids_sorter.write_into(&mut words_pairs_proximities_docids_wtr)?;
|
||||
|
||||
let main = writer_into_reader(main_wtr, shrink_size)?;
|
||||
let word_docids = writer_into_reader(word_docids_wtr, shrink_size)?;
|
||||
let words_pairs_proximities_docids = writer_into_reader(words_pairs_proximities_docids_wtr, shrink_size)?;
|
||||
let docid_word_positions = writer_into_reader(self.docid_word_positions_writer, shrink_size)?;
|
||||
let documents = writer_into_reader(self.documents_writer, shrink_size)?;
|
||||
|
||||
Ok(Readers {
|
||||
main,
|
||||
word_docids,
|
||||
docid_word_positions,
|
||||
words_pairs_proximities_docids,
|
||||
documents,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
fn main_merge(key: &[u8], values: &[Vec<u8>]) -> Result<Vec<u8>, ()> {
|
||||
match key {
|
||||
WORDS_FST_KEY => {
|
||||
let fsts: Vec<_> = values.iter().map(|v| fst::Set::new(v).unwrap()).collect();
|
||||
|
||||
// Union of the FSTs
|
||||
let mut op = fst::set::OpBuilder::new();
|
||||
fsts.iter().for_each(|fst| op.push(fst.into_stream()));
|
||||
let op = op.r#union();
|
||||
|
||||
let mut build = fst::SetBuilder::memory();
|
||||
build.extend_stream(op.into_stream()).unwrap();
|
||||
Ok(build.into_inner().unwrap())
|
||||
},
|
||||
HEADERS_KEY => {
|
||||
assert!(values.windows(2).all(|vs| vs[0] == vs[1]));
|
||||
Ok(values[0].to_vec())
|
||||
},
|
||||
DOCUMENTS_IDS_KEY => word_docids_merge(&[], values),
|
||||
otherwise => panic!("wut {:?}", otherwise),
|
||||
}
|
||||
}
|
||||
|
||||
fn word_docids_merge(_key: &[u8], values: &[Vec<u8>]) -> Result<Vec<u8>, ()> {
|
||||
let (head, tail) = values.split_first().unwrap();
|
||||
let mut head = RoaringBitmap::deserialize_from(head.as_slice()).unwrap();
|
||||
|
||||
for value in tail {
|
||||
let bitmap = RoaringBitmap::deserialize_from(value.as_slice()).unwrap();
|
||||
head.union_with(&bitmap);
|
||||
}
|
||||
|
||||
let mut vec = Vec::with_capacity(head.serialized_size());
|
||||
head.serialize_into(&mut vec).unwrap();
|
||||
Ok(vec)
|
||||
}
|
||||
|
||||
fn docid_word_positions_merge(key: &[u8], _values: &[Vec<u8>]) -> Result<Vec<u8>, ()> {
|
||||
panic!("merging docid word positions is an error ({:?})", key.as_bstr())
|
||||
}
|
||||
|
||||
fn words_pairs_proximities_docids_merge(_key: &[u8], values: &[Vec<u8>]) -> Result<Vec<u8>, ()> {
|
||||
let (head, tail) = values.split_first().unwrap();
|
||||
let mut head = CboRoaringBitmapCodec::deserialize_from(head.as_slice()).unwrap();
|
||||
|
||||
for value in tail {
|
||||
let bitmap = CboRoaringBitmapCodec::deserialize_from(value.as_slice()).unwrap();
|
||||
head.union_with(&bitmap);
|
||||
}
|
||||
|
||||
let mut vec = Vec::new();
|
||||
CboRoaringBitmapCodec::serialize_into(&head, &mut vec).unwrap();
|
||||
Ok(vec)
|
||||
}
|
||||
|
||||
fn documents_merge(key: &[u8], _values: &[Vec<u8>]) -> Result<Vec<u8>, ()> {
|
||||
panic!("merging documents is an error ({:?})", key.as_bstr())
|
||||
}
|
||||
|
||||
fn merge_readers(sources: Vec<Reader<FileFuse>>, merge: MergeFn) -> Merger<FileFuse, MergeFn> {
|
||||
let mut builder = Merger::builder(merge);
|
||||
builder.extend(sources);
|
||||
builder.build()
|
||||
}
|
||||
|
||||
fn merge_into_lmdb_database(
|
||||
wtxn: &mut heed::RwTxn,
|
||||
database: heed::PolyDatabase,
|
||||
sources: Vec<Reader<FileFuse>>,
|
||||
merge: MergeFn,
|
||||
) -> anyhow::Result<()> {
|
||||
debug!("Merging {} MTBL stores...", sources.len());
|
||||
let before = Instant::now();
|
||||
|
||||
let merger = merge_readers(sources, merge);
|
||||
let mut in_iter = merger.into_merge_iter()?;
|
||||
|
||||
let mut out_iter = database.iter_mut::<_, ByteSlice, ByteSlice>(wtxn)?;
|
||||
while let Some((k, v)) = in_iter.next()? {
|
||||
out_iter.append(k, v).with_context(|| format!("writing {:?} into LMDB", k.as_bstr()))?;
|
||||
}
|
||||
|
||||
debug!("MTBL stores merged in {:.02?}!", before.elapsed());
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn write_into_lmdb_database(
|
||||
wtxn: &mut heed::RwTxn,
|
||||
database: heed::PolyDatabase,
|
||||
mut reader: Reader<FileFuse>,
|
||||
) -> anyhow::Result<()> {
|
||||
debug!("Writing MTBL stores...");
|
||||
let before = Instant::now();
|
||||
|
||||
let mut out_iter = database.iter_mut::<_, ByteSlice, ByteSlice>(wtxn)?;
|
||||
while let Some((k, v)) = reader.next()? {
|
||||
out_iter.append(k, v).with_context(|| format!("writing {:?} into LMDB", k.as_bstr()))?;
|
||||
}
|
||||
|
||||
debug!("MTBL stores merged in {:.02?}!", before.elapsed());
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Returns the list of CSV sources that the indexer must read.
|
||||
///
|
||||
/// There is `num_threads` sources. If the file is not specified, the standard input is used.
|
||||
fn csv_readers(
|
||||
csv_file_path: Option<PathBuf>,
|
||||
num_threads: usize,
|
||||
) -> anyhow::Result<Vec<csv::Reader<Box<dyn Read + Send>>>>
|
||||
{
|
||||
match csv_file_path {
|
||||
Some(file_path) => {
|
||||
// We open the file # jobs times.
|
||||
iter::repeat_with(|| {
|
||||
let file = File::open(&file_path)
|
||||
.with_context(|| format!("Failed to read CSV file {}", file_path.display()))?;
|
||||
// if the file extension is "gz" or "gzip" we can decode and read it.
|
||||
let r = if file_path.extension().map_or(false, |e| e == "gz" || e == "gzip") {
|
||||
Box::new(GzDecoder::new(file)) as Box<dyn Read + Send>
|
||||
} else {
|
||||
Box::new(file) as Box<dyn Read + Send>
|
||||
};
|
||||
Ok(csv::Reader::from_reader(r)) as anyhow::Result<_>
|
||||
})
|
||||
.take(num_threads)
|
||||
.collect()
|
||||
},
|
||||
None => {
|
||||
let mut csv_readers = Vec::new();
|
||||
let mut writers = Vec::new();
|
||||
for (r, w) in iter::repeat_with(ringtail::io::pipe).take(num_threads) {
|
||||
let r = Box::new(r) as Box<dyn Read + Send>;
|
||||
csv_readers.push(csv::Reader::from_reader(r));
|
||||
writers.push(w);
|
||||
}
|
||||
|
||||
thread::spawn(move || {
|
||||
let stdin = std::io::stdin();
|
||||
let mut stdin = stdin.lock();
|
||||
let mut buffer = [0u8; 4096];
|
||||
loop {
|
||||
match stdin.read(&mut buffer)? {
|
||||
0 => return Ok(()) as io::Result<()>,
|
||||
size => for w in &mut writers {
|
||||
w.write_all(&buffer[..size])?;
|
||||
}
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
Ok(csv_readers)
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
pub fn run(opt: Opt) -> anyhow::Result<()> {
|
||||
stderrlog::new()
|
||||
.verbosity(opt.verbose)
|
||||
@ -739,10 +46,6 @@ pub fn run(opt: Opt) -> anyhow::Result<()> {
|
||||
.timestamp(stderrlog::Timestamp::Off)
|
||||
.init()?;
|
||||
|
||||
if let Some(jobs) = opt.jobs {
|
||||
rayon::ThreadPoolBuilder::new().num_threads(jobs).build_global()?;
|
||||
}
|
||||
|
||||
if opt.database.exists() {
|
||||
bail!("Database ({}) already exists, delete it to continue.", opt.database.display());
|
||||
}
|
||||
@ -753,130 +56,12 @@ pub fn run(opt: Opt) -> anyhow::Result<()> {
|
||||
.max_dbs(10)
|
||||
.open(&opt.database)?;
|
||||
|
||||
let before_indexing = Instant::now();
|
||||
let index = Index::new(&env)?;
|
||||
|
||||
let num_threads = rayon::current_num_threads();
|
||||
let linked_hash_map_size = opt.indexer.linked_hash_map_size;
|
||||
let max_nb_chunks = opt.indexer.max_nb_chunks;
|
||||
let max_memory_by_job = opt.indexer.max_memory / num_threads;
|
||||
let chunk_compression_type = opt.indexer.chunk_compression_type;
|
||||
let chunk_compression_level = opt.indexer.chunk_compression_level;
|
||||
let log_every_n = opt.indexer.log_every_n;
|
||||
let file_path = opt.csv_file.unwrap();
|
||||
let gzipped = file_path.extension().map_or(false, |e| e == "gz" || e == "gzip");
|
||||
let file = File::open(file_path)?;
|
||||
let content = unsafe { memmap::Mmap::map(&file)? };
|
||||
|
||||
let chunk_fusing_shrink_size = if opt.indexer.enable_chunk_fusing {
|
||||
Some(opt.indexer.chunk_fusing_shrink_size)
|
||||
} else {
|
||||
None
|
||||
};
|
||||
|
||||
let readers = csv_readers(opt.csv_file, num_threads)?
|
||||
.into_par_iter()
|
||||
.enumerate()
|
||||
.map(|(i, rdr)| {
|
||||
let store = Store::new(
|
||||
linked_hash_map_size,
|
||||
max_nb_chunks,
|
||||
Some(max_memory_by_job),
|
||||
chunk_compression_type,
|
||||
chunk_compression_level,
|
||||
chunk_fusing_shrink_size,
|
||||
)?;
|
||||
store.index_csv(rdr, i, num_threads, log_every_n)
|
||||
})
|
||||
.collect::<Result<Vec<_>, _>>()?;
|
||||
|
||||
let mut main_readers = Vec::with_capacity(readers.len());
|
||||
let mut word_docids_readers = Vec::with_capacity(readers.len());
|
||||
let mut docid_word_positions_readers = Vec::with_capacity(readers.len());
|
||||
let mut words_pairs_proximities_docids_readers = Vec::with_capacity(readers.len());
|
||||
let mut documents_readers = Vec::with_capacity(readers.len());
|
||||
readers.into_iter().for_each(|readers| {
|
||||
main_readers.push(readers.main);
|
||||
word_docids_readers.push(readers.word_docids);
|
||||
docid_word_positions_readers.push(readers.docid_word_positions);
|
||||
words_pairs_proximities_docids_readers.push(readers.words_pairs_proximities_docids);
|
||||
documents_readers.push(readers.documents);
|
||||
});
|
||||
|
||||
// This is the function that merge the readers
|
||||
// by using the given merge function.
|
||||
let merge_readers = move |readers, merge| {
|
||||
let mut writer = tempfile().and_then(|f| {
|
||||
create_writer(chunk_compression_type, chunk_compression_level, f)
|
||||
})?;
|
||||
let merger = merge_readers(readers, merge);
|
||||
merger.write_into(&mut writer)?;
|
||||
writer_into_reader(writer, chunk_fusing_shrink_size)
|
||||
};
|
||||
|
||||
// The enum and the channel which is used to transfert
|
||||
// the readers merges potentially done on another thread.
|
||||
enum DatabaseType { Main, WordDocids, WordsPairsProximitiesDocids };
|
||||
let (sender, receiver) = sync_channel(3);
|
||||
|
||||
debug!("Merging the main, word docids and words pairs proximity docids in parallel...");
|
||||
rayon::spawn(move || {
|
||||
vec![
|
||||
(DatabaseType::Main, main_readers, main_merge as MergeFn),
|
||||
(DatabaseType::WordDocids, word_docids_readers, word_docids_merge),
|
||||
(
|
||||
DatabaseType::WordsPairsProximitiesDocids,
|
||||
words_pairs_proximities_docids_readers,
|
||||
words_pairs_proximities_docids_merge,
|
||||
),
|
||||
]
|
||||
.into_par_iter()
|
||||
.for_each(|(dbtype, readers, merge)| {
|
||||
let result = merge_readers(readers, merge);
|
||||
sender.send((dbtype, result)).unwrap();
|
||||
});
|
||||
});
|
||||
|
||||
let mut wtxn = env.write_txn()?;
|
||||
|
||||
debug!("Writing the docid word positions into LMDB on disk...");
|
||||
merge_into_lmdb_database(
|
||||
&mut wtxn,
|
||||
*index.docid_word_positions.as_polymorph(),
|
||||
docid_word_positions_readers,
|
||||
docid_word_positions_merge,
|
||||
)?;
|
||||
|
||||
debug!("Writing the documents into LMDB on disk...");
|
||||
merge_into_lmdb_database(
|
||||
&mut wtxn,
|
||||
*index.documents.as_polymorph(),
|
||||
documents_readers,
|
||||
documents_merge,
|
||||
)?;
|
||||
|
||||
for (db_type, result) in receiver {
|
||||
let content = result?;
|
||||
match db_type {
|
||||
DatabaseType::Main => {
|
||||
debug!("Writing the main elements into LMDB on disk...");
|
||||
write_into_lmdb_database(&mut wtxn, index.main, content)?;
|
||||
},
|
||||
DatabaseType::WordDocids => {
|
||||
debug!("Writing the words docids into LMDB on disk...");
|
||||
let db = *index.word_docids.as_polymorph();
|
||||
write_into_lmdb_database(&mut wtxn, db, content)?;
|
||||
},
|
||||
DatabaseType::WordsPairsProximitiesDocids => {
|
||||
debug!("Writing the words pairs proximities docids into LMDB on disk...");
|
||||
let db = *index.word_pair_proximity_docids.as_polymorph();
|
||||
write_into_lmdb_database(&mut wtxn, db, content)?;
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
debug!("Retrieving the number of documents...");
|
||||
let count = index.number_of_documents(&wtxn)?;
|
||||
|
||||
wtxn.commit()?;
|
||||
|
||||
info!("Wrote {} documents in {:.02?}", count, before_indexing.elapsed());
|
||||
|
||||
Ok(())
|
||||
indexing::run(&env, &index, opt.indexer, &content, gzipped)
|
||||
}
|
||||
|
@ -19,6 +19,7 @@ use tokio::sync::broadcast;
|
||||
use warp::filters::ws::Message;
|
||||
use warp::{Filter, http::Response};
|
||||
|
||||
use crate::indexing::IndexerOpt;
|
||||
use crate::tokenizer::{simple_tokenizer, TokenType};
|
||||
use crate::{Index, UpdateStore, SearchResult};
|
||||
|
||||
@ -51,6 +52,9 @@ pub struct Opt {
|
||||
/// The ip and port on which the database will listen for HTTP requests.
|
||||
#[structopt(short = "l", long, default_value = "127.0.0.1:9700")]
|
||||
http_listen_addr: String,
|
||||
|
||||
#[structopt(flatten)]
|
||||
indexer: IndexerOpt,
|
||||
}
|
||||
|
||||
fn highlight_record(record: &csv::StringRecord, words: &HashSet<String>) -> csv::StringRecord {
|
||||
|
Loading…
Reference in New Issue
Block a user