diff --git a/crates/meilisearch/tests/vector/openai.rs b/crates/meilisearch/tests/vector/openai.rs index 04c068c40..94291ebea 100644 --- a/crates/meilisearch/tests/vector/openai.rs +++ b/crates/meilisearch/tests/vector/openai.rs @@ -137,13 +137,14 @@ fn long_text() -> &'static str { } async fn create_mock_tokenized() -> (MockServer, Value) { - create_mock_with_template("{{doc.text}}", ModelDimensions::Large, false).await + create_mock_with_template("{{doc.text}}", ModelDimensions::Large, false, false).await } async fn create_mock_with_template( document_template: &str, model_dimensions: ModelDimensions, fallible: bool, + slow: bool, ) -> (MockServer, Value) { let mock_server = MockServer::start().await; const API_KEY: &str = "my-api-key"; @@ -154,7 +155,11 @@ async fn create_mock_with_template( Mock::given(method("POST")) .and(path("/")) .respond_with(move |req: &Request| { - // 0. maybe return 500 + // 0. wait for a long time + if slow { + std::thread::sleep(std::time::Duration::from_secs(1)); + } + // 1. maybe return 500 if fallible { let attempt = attempt.fetch_add(1, Ordering::Relaxed); let failed = matches!(attempt % 4, 0 | 1 | 3); @@ -167,7 +172,7 @@ async fn create_mock_with_template( })) } } - // 1. check API key + // 3. check API key match req.headers.get("Authorization") { Some(api_key) if api_key == API_KEY_BEARER => { {} @@ -202,7 +207,7 @@ async fn create_mock_with_template( ) } } - // 2. parse text inputs + // 3. parse text inputs let query: serde_json::Value = match req.body_json() { Ok(query) => query, Err(_error) => return ResponseTemplate::new(400).set_body_json( @@ -223,7 +228,7 @@ async fn create_mock_with_template( panic!("Expected {model_dimensions:?}, got {query_model_dimensions:?}") } - // 3. for each text, find embedding in responses + // 4. for each text, find embedding in responses let serde_json::Value::Array(inputs) = &query["input"] else { panic!("Unexpected `input` value") }; @@ -283,7 +288,7 @@ async fn create_mock_with_template( "embedding": embedding, })).collect(); - // 4. produce output from embeddings + // 5. produce output from embeddings ResponseTemplate::new(200).set_body_json(json!({ "object": "list", "data": data, @@ -317,23 +322,27 @@ const DOGGO_TEMPLATE: &str = r#"{%- if doc.gender == "F" -%}Une chienne nommée {%- endif %}, de race {{doc.breed}}."#; async fn create_mock() -> (MockServer, Value) { - create_mock_with_template(DOGGO_TEMPLATE, ModelDimensions::Large, false).await + create_mock_with_template(DOGGO_TEMPLATE, ModelDimensions::Large, false, false).await } async fn create_mock_dimensions() -> (MockServer, Value) { - create_mock_with_template(DOGGO_TEMPLATE, ModelDimensions::Large512, false).await + create_mock_with_template(DOGGO_TEMPLATE, ModelDimensions::Large512, false, false).await } async fn create_mock_small_embedding_model() -> (MockServer, Value) { - create_mock_with_template(DOGGO_TEMPLATE, ModelDimensions::Small, false).await + create_mock_with_template(DOGGO_TEMPLATE, ModelDimensions::Small, false, false).await } async fn create_mock_legacy_embedding_model() -> (MockServer, Value) { - create_mock_with_template(DOGGO_TEMPLATE, ModelDimensions::Ada, false).await + create_mock_with_template(DOGGO_TEMPLATE, ModelDimensions::Ada, false, false).await } async fn create_fallible_mock() -> (MockServer, Value) { - create_mock_with_template(DOGGO_TEMPLATE, ModelDimensions::Large, true).await + create_mock_with_template(DOGGO_TEMPLATE, ModelDimensions::Large, true, false).await +} + +async fn create_slow_mock() -> (MockServer, Value) { + create_mock_with_template(DOGGO_TEMPLATE, ModelDimensions::Large, true, true).await } // basic test "it works" @@ -1873,4 +1882,114 @@ async fn it_still_works() { ] "###); } + +// test with a server that responds 500 on 3 out of 4 calls +#[actix_rt::test] +async fn timeout() { + let (_mock, setting) = create_slow_mock().await; + let server = get_server_vector().await; + let index = server.index("doggo"); + + let (response, code) = index + .update_settings(json!({ + "embedders": { + "default": setting, + }, + })) + .await; + snapshot!(code, @"202 Accepted"); + let task = server.wait_task(response.uid()).await; + snapshot!(task["status"], @r###""succeeded""###); + let documents = json!([ + {"id": 0, "name": "kefir", "gender": "M", "birthyear": 2023, "breed": "Patou"}, + ]); + let (value, code) = index.add_documents(documents, None).await; + snapshot!(code, @"202 Accepted"); + let task = index.wait_task(value.uid()).await; + snapshot!(task, @r###" + { + "uid": "[uid]", + "indexUid": "doggo", + "status": "succeeded", + "type": "documentAdditionOrUpdate", + "canceledBy": null, + "details": { + "receivedDocuments": 1, + "indexedDocuments": 1 + }, + "error": null, + "duration": "[duration]", + "enqueuedAt": "[date]", + "startedAt": "[date]", + "finishedAt": "[date]" + } + "###); + + let (documents, _code) = index + .get_all_documents(GetAllDocumentsOptions { retrieve_vectors: true, ..Default::default() }) + .await; + snapshot!(json_string!(documents, {".results.*._vectors.default.embeddings" => "[vector]"}), @r###" + { + "results": [ + { + "id": 0, + "name": "kefir", + "gender": "M", + "birthyear": 2023, + "breed": "Patou", + "_vectors": { + "default": { + "embeddings": "[vector]", + "regenerate": true + } + } + } + ], + "offset": 0, + "limit": 20, + "total": 1 + } + "###); + + let (response, code) = index + .search_post(json!({ + "q": "grand chien de berger des montagnes", + "hybrid": {"semanticRatio": 0.99, "embedder": "default"} + })) + .await; + snapshot!(code, @"200 OK"); + snapshot!(json_string!(response["semanticHitCount"]), @"0"); + snapshot!(json_string!(response["hits"]), @"[]"); + + let (response, code) = index + .search_post(json!({ + "q": "grand chien de berger des montagnes", + "hybrid": {"semanticRatio": 0.99, "embedder": "default"} + })) + .await; + snapshot!(code, @"200 OK"); + snapshot!(json_string!(response["semanticHitCount"]), @"1"); + snapshot!(json_string!(response["hits"]), @r###" + [ + { + "id": 0, + "name": "kefir", + "gender": "M", + "birthyear": 2023, + "breed": "Patou" + } + ] + "###); + + let (response, code) = index + .search_post(json!({ + "q": "grand chien de berger des montagnes", + "hybrid": {"semanticRatio": 0.99, "embedder": "default"} + })) + .await; + snapshot!(code, @"200 OK"); + snapshot!(json_string!(response["semanticHitCount"]), @"0"); + snapshot!(json_string!(response["hits"]), @"[]"); +} + // test with a server that wrongly responds 400