feat: Introduce the QueryBuilder struct

This commit is contained in:
Clément Renault 2018-11-27 19:11:33 +01:00
parent b636e5fe57
commit 9b58ffe2d9
No known key found for this signature in database
GPG Key ID: 0151CDAB43460DAE
6 changed files with 159 additions and 75 deletions

View File

@ -1,5 +1,5 @@
mod merge;
mod ops;
pub mod ops;
mod ops_indexed_value;
mod positive_blob;
mod negative_blob;

42
src/database.rs Normal file
View File

@ -0,0 +1,42 @@
use std::error::Error;
use std::ops::Deref;
use ::rocksdb::rocksdb::{DB, Snapshot};
use crate::index::schema::Schema;
use crate::blob::PositiveBlob;
use crate::DocumentId;
pub trait Retrieve {
fn schema(&self) -> Result<Option<Schema>, Box<Error>>;
fn data_index(&self) -> Result<PositiveBlob, Box<Error>>;
fn get_documents<D>(&self, ids: &[DocumentId]) -> Result<Vec<D>, Box<Error>>;
}
impl<T> Retrieve for Snapshot<T>
where T: Deref<Target=DB>,
{
fn schema(&self) -> Result<Option<Schema>, Box<Error>> {
match self.deref().get(b"data-schema")? {
Some(value) => Ok(Some(Schema::read_from(&*value)?)),
None => Ok(None),
}
}
fn data_index(&self) -> Result<PositiveBlob, Box<Error>> {
match self.deref().get(b"data-index")? {
Some(value) => Ok(bincode::deserialize(&value)?),
None => Ok(PositiveBlob::default()),
}
}
fn get_documents<D>(&self, ids: &[DocumentId]) -> Result<Vec<D>, Box<Error>> {
if ids.is_empty() { return Ok(Vec::new()) }
let schema = match self.schema()? {
Some(schema) => schema,
None => return Err(String::from("BUG: could not find schema").into()),
};
unimplemented!()
}
}

View File

@ -238,9 +238,9 @@ impl Index {
let snapshot = self.database.snapshot();
let index_key = Identifier::data().index().build();
let map = match snapshot.get(&index_key)? {
let blob = match snapshot.get(&index_key)? {
Some(value) => bincode::deserialize(&value)?,
None => Vec::new(),
None => PositiveBlob::default(),
};
let mut automatons = Vec::new();
@ -250,7 +250,7 @@ impl Index {
}
let config = Config {
map: map,
blob: blob,
automatons: automatons,
criteria: criterion::default(),
distinct: ((), 1),

View File

@ -8,7 +8,7 @@ use crate::index::update::Update;
use crate::index::identifier::Identifier;
use crate::index::schema::{SchemaProps, Schema, SchemaAttr};
use crate::tokenizer::TokenizerBuilder;
use crate::blob::{BlobInfo, PositiveBlobBuilder};
use crate::blob::PositiveBlobBuilder;
use crate::{DocIndex, DocumentId};
pub enum NewState {

View File

@ -3,13 +3,14 @@
#[macro_use] extern crate lazy_static;
#[macro_use] extern crate serde_derive;
pub mod index;
pub mod automaton;
pub mod blob;
pub mod data;
pub mod database;
pub mod index;
pub mod rank;
pub mod vec_read_only;
pub mod automaton;
pub mod tokenizer;
pub mod vec_read_only;
mod common_words;
pub use self::tokenizer::Tokenizer;

View File

@ -1,19 +1,24 @@
use std::ops::{Deref, Range, RangeBounds};
use std::collections::HashMap;
use std::{mem, vec, str};
use std::ops::Bound::*;
use std::error::Error;
use std::hash::Hash;
use std::ops::Range;
use std::rc::Rc;
use std::{mem, vec};
use fnv::FnvHashMap;
use fst::Streamer;
use group_by::GroupByMut;
use ::rocksdb::rocksdb::{DB, Snapshot};
use crate::automaton::{DfaExt, AutomatonExt};
use crate::index::Index;
use crate::blob::{Blob, Merge};
use crate::rank::criterion::Criterion;
use crate::rank::Document;
use crate::automaton::{self, DfaExt, AutomatonExt};
use crate::rank::criterion::{self, Criterion};
use crate::blob::{PositiveBlob, Merge};
use crate::blob::ops::Union;
use crate::{Match, DocumentId};
use crate::database::Retrieve;
use crate::rank::Document;
use crate::index::Index;
fn clamp_range<T: Copy + Ord>(range: Range<T>, big: Range<T>) -> Range<T> {
Range {
@ -22,40 +27,58 @@ fn clamp_range<T: Copy + Ord>(range: Range<T>, big: Range<T>) -> Range<T> {
}
}
pub struct Config<'a, C, F> {
pub blobs: &'a [Blob],
pub automatons: Vec<DfaExt>,
pub criteria: Vec<C>,
pub distinct: (F, usize),
fn split_whitespace_automatons(query: &str) -> Vec<DfaExt> {
let mut automatons = Vec::new();
for query in query.split_whitespace().map(str::to_lowercase) {
let lev = automaton::build_prefix_dfa(&query);
automatons.push(lev);
}
automatons
}
pub struct RankedStream<'m, C, F> {
stream: crate::blob::Merge<'m>,
automatons: Vec<Rc<DfaExt>>,
pub struct QueryBuilder<T: Deref<Target=DB>, C> {
snapshot: Snapshot<T>,
blob: PositiveBlob,
criteria: Vec<C>,
distinct: (F, usize),
}
impl<'m, C, F> RankedStream<'m, C, F> {
pub fn new(config: Config<'m, C, F>) -> Self {
let automatons: Vec<_> = config.automatons.into_iter().map(Rc::new).collect();
RankedStream {
stream: Merge::with_automatons(automatons.clone(), config.blobs),
automatons: automatons,
criteria: config.criteria,
distinct: config.distinct,
}
impl<T: Deref<Target=DB>> QueryBuilder<T, Box<dyn Criterion>> {
pub fn new(snapshot: Snapshot<T>) -> Result<Self, Box<Error>> {
QueryBuilder::with_criteria(snapshot, criterion::default())
}
}
impl<'m, C, F> RankedStream<'m, C, F> {
fn retrieve_all_documents(&mut self) -> Vec<Document> {
impl<T, C> QueryBuilder<T, C>
where T: Deref<Target=DB>,
{
pub fn with_criteria(snapshot: Snapshot<T>, criteria: Vec<C>) -> Result<Self, Box<Error>> {
let blob = snapshot.data_index()?;
Ok(QueryBuilder { snapshot, blob, criteria })
}
pub fn criteria(&mut self, criteria: Vec<C>) -> &mut Self {
self.criteria = criteria;
self
}
pub fn with_distinct<F>(self, function: F, size: usize) -> DistinctQueryBuilder<T, F, C> {
DistinctQueryBuilder {
snapshot: self.snapshot,
blob: self.blob,
criteria: self.criteria,
function: function,
size: size
}
}
fn query_all(&self, query: &str) -> Vec<Document> {
let automatons = split_whitespace_automatons(query);
let mut stream: Union = unimplemented!();
let mut matches = FnvHashMap::default();
while let Some((string, indexed_values)) = self.stream.next() {
while let Some((string, indexed_values)) = stream.next() {
for iv in indexed_values {
let automaton = &self.automatons[iv.index];
let automaton = &automatons[iv.index];
let distance = automaton.eval(string).to_u8();
let is_exact = distance == 0 && string.len() == automaton.query_len();
@ -76,12 +99,12 @@ impl<'m, C, F> RankedStream<'m, C, F> {
}
}
impl<'a, C, F> RankedStream<'a, C, F>
where C: Criterion
impl<T, C> QueryBuilder<T, C>
where T: Deref<Target=DB>,
C: Criterion,
{
// TODO don't sort to much documents, we can skip useless sorts
pub fn retrieve_documents(mut self, range: Range<usize>) -> Vec<Document> {
let mut documents = self.retrieve_all_documents();
pub fn query(&self, query: &str, range: impl RangeBounds<usize>) -> Vec<Document> {
let mut documents = self.query_all(query);
let mut groups = vec![documents.as_mut_slice()];
for criterion in self.criteria {
@ -95,47 +118,65 @@ where C: Criterion
}
}
let range = clamp_range(range, 0..documents.len());
// let range = clamp_range(range, 0..documents.len());
let range: Range<usize> = unimplemented!();
documents[range].to_vec()
}
}
pub fn retrieve_distinct_documents<K>(mut self, range: Range<usize>) -> Vec<Document>
where F: Fn(&DocumentId) -> Option<K>,
K: Hash + Eq,
pub struct DistinctQueryBuilder<T: Deref<Target=DB>, F, C> {
snapshot: Snapshot<T>,
blob: PositiveBlob,
criteria: Vec<C>,
function: F,
size: usize,
}
// pub struct Schema;
// pub struct DocDatabase;
// where F: Fn(&Schema, &DocDatabase) -> Option<K>,
// K: Hash + Eq,
impl<T: Deref<Target=DB>, F, C> DistinctQueryBuilder<T, F, C>
where T: Deref<Target=DB>,
C: Criterion,
{
let mut documents = self.retrieve_all_documents();
let mut groups = vec![documents.as_mut_slice()];
pub fn query(&self, query: &str, range: impl RangeBounds<usize>) -> Vec<Document> {
// let mut documents = self.retrieve_all_documents();
// let mut groups = vec![documents.as_mut_slice()];
for criterion in self.criteria {
let tmp_groups = mem::replace(&mut groups, Vec::new());
// for criterion in self.criteria {
// let tmp_groups = mem::replace(&mut groups, Vec::new());
for group in tmp_groups {
group.sort_unstable_by(|a, b| criterion.evaluate(a, b));
for group in GroupByMut::new(group, |a, b| criterion.eq(a, b)) {
groups.push(group);
}
}
}
// for group in tmp_groups {
// group.sort_unstable_by(|a, b| criterion.evaluate(a, b));
// for group in GroupByMut::new(group, |a, b| criterion.eq(a, b)) {
// groups.push(group);
// }
// }
// }
let mut out_documents = Vec::with_capacity(range.len());
let (distinct, limit) = self.distinct;
let mut seen = DistinctMap::new(limit);
// let mut out_documents = Vec::with_capacity(range.len());
// let (distinct, limit) = self.distinct;
// let mut seen = DistinctMap::new(limit);
for document in documents {
let accepted = match distinct(&document.id) {
Some(key) => seen.digest(key),
None => seen.accept_without_key(),
};
// for document in documents {
// let accepted = match distinct(&document.id) {
// Some(key) => seen.digest(key),
// None => seen.accept_without_key(),
// };
if accepted {
if seen.len() == range.end { break }
if seen.len() >= range.start {
out_documents.push(document);
}
}
}
// if accepted {
// if seen.len() == range.end { break }
// if seen.len() >= range.start {
// out_documents.push(document);
// }
// }
// }
out_documents
// out_documents
unimplemented!()
}
}