mirror of
https://github.com/meilisearch/meilisearch.git
synced 2025-01-18 17:11:15 +08:00
Introduce the database-stats infos subcommand
This commit is contained in:
parent
079742b4d3
commit
891e0188dd
127
src/bin/infos.rs
127
src/bin/infos.rs
@ -18,7 +18,7 @@ const DOCID_WORD_POSITIONS_DB_NAME: &str = "docid-word-positions";
|
||||
const WORD_PAIR_PROXIMITY_DOCIDS_DB_NAME: &str = "word-pair-proximity-docids";
|
||||
const DOCUMENTS_DB_NAME: &str = "documents";
|
||||
|
||||
const DATABASE_NAMES: &[&str] = &[
|
||||
const ALL_DATABASE_NAMES: &[&str] = &[
|
||||
MAIN_DB_NAME,
|
||||
WORD_DOCIDS_DB_NAME,
|
||||
DOCID_WORD_POSITIONS_DB_NAME,
|
||||
@ -26,6 +26,12 @@ const DATABASE_NAMES: &[&str] = &[
|
||||
DOCUMENTS_DB_NAME,
|
||||
];
|
||||
|
||||
const POSTINGS_DATABASE_NAMES: &[&str] = &[
|
||||
WORD_DOCIDS_DB_NAME,
|
||||
DOCID_WORD_POSITIONS_DB_NAME,
|
||||
WORD_PAIR_PROXIMITY_DOCIDS_DB_NAME,
|
||||
];
|
||||
|
||||
#[derive(Debug, StructOpt)]
|
||||
#[structopt(name = "milli-info", about = "A stats crawler for milli.")]
|
||||
struct Opt {
|
||||
@ -85,13 +91,16 @@ enum Command {
|
||||
/// Outputs the average number of positions for each document words.
|
||||
AverageNumberOfPositionsByWord,
|
||||
|
||||
/// Outputs some statistics about the words pairs proximities
|
||||
/// (median, quartiles, percentiles, minimum, maximum, averge).
|
||||
WordPairProximityStats,
|
||||
/// Outputs some statistics about the given database (e.g. median, quartiles,
|
||||
/// percentiles, minimum, maximum, averge, key size, value size).
|
||||
DatabaseStats {
|
||||
#[structopt(possible_values = POSTINGS_DATABASE_NAMES)]
|
||||
database: String,
|
||||
},
|
||||
|
||||
/// Outputs the size in bytes of the specified database.
|
||||
SizeOfDatabase {
|
||||
#[structopt(possible_values = DATABASE_NAMES)]
|
||||
#[structopt(possible_values = ALL_DATABASE_NAMES)]
|
||||
database: String,
|
||||
},
|
||||
|
||||
@ -152,7 +161,7 @@ fn main() -> anyhow::Result<()> {
|
||||
average_number_of_positions_by_word(&index, &rtxn)
|
||||
},
|
||||
SizeOfDatabase { database } => size_of_database(&index, &rtxn, &database),
|
||||
WordPairProximityStats => word_pair_proximity_stats(&index, &rtxn),
|
||||
DatabaseStats { database } => database_stats(&index, &rtxn, &database),
|
||||
WordPairProximitiesDocids { full_display, word1, word2 } => {
|
||||
word_pair_proximities_docids(&index, &rtxn, !full_display, word1, word2)
|
||||
},
|
||||
@ -384,54 +393,76 @@ fn size_of_database(index: &Index, rtxn: &heed::RoTxn, name: &str) -> anyhow::Re
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn word_pair_proximity_stats(index: &Index, rtxn: &heed::RoTxn) -> anyhow::Result<()> {
|
||||
fn database_stats(index: &Index, rtxn: &heed::RoTxn, name: &str) -> anyhow::Result<()> {
|
||||
use heed::types::ByteSlice;
|
||||
use heed::{Error, BytesDecode};
|
||||
use milli::CboRoaringBitmapCodec;
|
||||
use roaring::RoaringBitmap;
|
||||
use milli::{BoRoaringBitmapCodec, CboRoaringBitmapCodec, RoaringBitmapCodec};
|
||||
|
||||
let mut key_size = 0u64;
|
||||
let mut val_size = 0u64;
|
||||
let mut values_length = Vec::new();
|
||||
fn compute_stats<'a, DC: BytesDecode<'a, DItem = RoaringBitmap>>(
|
||||
db: heed::PolyDatabase,
|
||||
rtxn: &'a heed::RoTxn,
|
||||
name: &str,
|
||||
) -> anyhow::Result<()>
|
||||
{
|
||||
let mut key_size = 0u64;
|
||||
let mut val_size = 0u64;
|
||||
let mut values_length = Vec::new();
|
||||
|
||||
let db = index.word_pair_proximity_docids.as_polymorph();
|
||||
for result in db.iter::<_, ByteSlice, ByteSlice>(rtxn)? {
|
||||
let (key, val) = result?;
|
||||
key_size += key.len() as u64;
|
||||
val_size += val.len() as u64;
|
||||
let val = CboRoaringBitmapCodec::bytes_decode(val).ok_or(Error::Decoding)?;
|
||||
values_length.push(val.len() as u32);
|
||||
for result in db.iter::<_, ByteSlice, ByteSlice>(rtxn)? {
|
||||
let (key, val) = result?;
|
||||
key_size += key.len() as u64;
|
||||
val_size += val.len() as u64;
|
||||
let val = DC::bytes_decode(val).ok_or(Error::Decoding)?;
|
||||
values_length.push(val.len() as u32);
|
||||
}
|
||||
|
||||
values_length.sort_unstable();
|
||||
|
||||
let median = values_length.get(values_length.len() / 2).unwrap_or(&0);
|
||||
let first_quartile = values_length.get(values_length.len() / 4).unwrap_or(&0);
|
||||
let third_quartile = values_length.get(values_length.len() / 4 * 3).unwrap_or(&0);
|
||||
let ninety_percentile = values_length.get(values_length.len() / 100 * 90).unwrap_or(&0);
|
||||
let ninety_five_percentile = values_length.get(values_length.len() / 100 * 95).unwrap_or(&0);
|
||||
let ninety_nine_percentile = values_length.get(values_length.len() / 100 * 99).unwrap_or(&0);
|
||||
let minimum = values_length.first().unwrap_or(&0);
|
||||
let maximum = values_length.last().unwrap_or(&0);
|
||||
let count = values_length.len();
|
||||
let sum = values_length.iter().map(|l| *l as u64).sum::<u64>();
|
||||
|
||||
println!("The {} database stats on the lengths", name);
|
||||
println!("\tnumber of proximity pairs: {}", count);
|
||||
println!("\tfirst quartile: {}", first_quartile);
|
||||
println!("\tmedian: {}", median);
|
||||
println!("\tthird quartile: {}", third_quartile);
|
||||
println!("\t90th percentile: {}", ninety_percentile);
|
||||
println!("\t95th percentile: {}", ninety_five_percentile);
|
||||
println!("\t99th percentile: {}", ninety_nine_percentile);
|
||||
println!("\tminimum: {}", minimum);
|
||||
println!("\tmaximum: {}", maximum);
|
||||
println!("\taverage: {}", sum as f64 / count as f64);
|
||||
println!("\ttotal key size: {} bytes", key_size);
|
||||
println!("\ttotal val size: {} bytes", val_size);
|
||||
println!("\ttotal size: {} bytes", key_size + val_size);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
values_length.sort_unstable();
|
||||
|
||||
let median = values_length.get(values_length.len() / 2).unwrap_or(&0);
|
||||
let first_quartile = values_length.get(values_length.len() / 4).unwrap_or(&0);
|
||||
let third_quartile = values_length.get(values_length.len() / 4 * 3).unwrap_or(&0);
|
||||
let ninety_percentile = values_length.get(values_length.len() / 100 * 90).unwrap_or(&0);
|
||||
let ninety_five_percentile = values_length.get(values_length.len() / 100 * 95).unwrap_or(&0);
|
||||
let ninety_nine_percentile = values_length.get(values_length.len() / 100 * 99).unwrap_or(&0);
|
||||
let minimum = values_length.first().unwrap_or(&0);
|
||||
let maximum = values_length.last().unwrap_or(&0);
|
||||
let count = values_length.len();
|
||||
let sum = values_length.iter().map(|l| *l as u64).sum::<u64>();
|
||||
|
||||
println!("word-pair-proximity-docids stats on the lengths");
|
||||
println!("\tnumber of proximity pairs: {}", count);
|
||||
println!("\tfirst quartile: {}", first_quartile);
|
||||
println!("\tmedian: {}", median);
|
||||
println!("\tthird quartile: {}", third_quartile);
|
||||
println!("\t90th percentile: {}", ninety_percentile);
|
||||
println!("\t95th percentile: {}", ninety_five_percentile);
|
||||
println!("\t99th percentile: {}", ninety_nine_percentile);
|
||||
println!("\tminimum: {}", minimum);
|
||||
println!("\tmaximum: {}", maximum);
|
||||
println!("\taverage: {}", sum as f64 / count as f64);
|
||||
println!();
|
||||
println!("\ttotal key size: {} bytes", key_size);
|
||||
println!("\ttotal val size: {} bytes", val_size);
|
||||
println!("\ttotal size: {} bytes", key_size + val_size);
|
||||
|
||||
Ok(())
|
||||
match name {
|
||||
WORD_DOCIDS_DB_NAME => {
|
||||
let db = index.word_docids.as_polymorph();
|
||||
compute_stats::<RoaringBitmapCodec>(*db, rtxn, name)
|
||||
},
|
||||
DOCID_WORD_POSITIONS_DB_NAME => {
|
||||
let db = index.docid_word_positions.as_polymorph();
|
||||
compute_stats::<BoRoaringBitmapCodec>(*db, rtxn, name)
|
||||
},
|
||||
WORD_PAIR_PROXIMITY_DOCIDS_DB_NAME => {
|
||||
let db = index.word_pair_proximity_docids.as_polymorph();
|
||||
compute_stats::<CboRoaringBitmapCodec>(*db, rtxn, name)
|
||||
},
|
||||
unknown => anyhow::bail!("unknown database {:?}", unknown),
|
||||
}
|
||||
}
|
||||
|
||||
fn word_pair_proximities_docids(
|
||||
|
Loading…
Reference in New Issue
Block a user