Introduce the Search builder struct

This commit is contained in:
Clément Renault 2020-08-13 14:15:05 +02:00
parent bfb46cbfbe
commit 7dc594ba4d
No known key found for this signature in database
GPG Key ID: 92ADA4E935E71FA4
5 changed files with 406 additions and 300 deletions

View File

@ -1,8 +1,9 @@
use std::cmp;
use std::time::Instant;
use log::debug;
use crate::iter_shortest_paths::astar_bag;
use log::debug;
use roaring::RoaringBitmap;
const ONE_ATTRIBUTE: u32 = 1000;
const MAX_DISTANCE: u32 = 8;
@ -47,21 +48,21 @@ impl Node {
// TODO we must skip the successors that have already been seen
// TODO we must skip the successors that doesn't return any documents
// this way we are able to skip entire paths
fn successors(&self, positions: &[Vec<u32>], best_proximity: u32) -> Vec<(Node, u32)> {
fn successors(&self, positions: &[RoaringBitmap], best_proximity: u32) -> Vec<(Node, u32)> {
match self {
Node::Uninit => {
positions[0].iter().map(|p| {
(Node::Init { layer: 0, position: *p, acc_proximity: 0, parent_position: 0 }, 0)
positions[0].iter().map(|position| {
(Node::Init { layer: 0, position, acc_proximity: 0, parent_position: 0 }, 0)
}).collect()
},
// We reached the highest layer
n @ Node::Init { .. } if n.is_complete(positions) => vec![],
Node::Init { layer, position, acc_proximity, .. } => {
positions[layer + 1].iter().filter_map(|p| {
let proximity = positions_proximity(*position, *p);
let proximity = positions_proximity(*position, p);
let node = Node::Init {
layer: layer + 1,
position: *p,
position: p,
acc_proximity: acc_proximity + proximity,
parent_position: *position,
};
@ -76,7 +77,7 @@ impl Node {
}
}
fn is_complete(&self, positions: &[Vec<u32>]) -> bool {
fn is_complete(&self, positions: &[RoaringBitmap]) -> bool {
match self {
Node::Uninit => false,
Node::Init { layer, .. } => *layer == positions.len() - 1,
@ -121,19 +122,19 @@ impl Node {
}
pub struct BestProximity {
positions: Vec<Vec<u32>>,
positions: Vec<RoaringBitmap>,
best_proximity: u32,
}
impl BestProximity {
pub fn new(positions: Vec<Vec<u32>>) -> BestProximity {
pub fn new(positions: Vec<RoaringBitmap>) -> BestProximity {
let best_proximity = (positions.len() as u32).saturating_sub(1);
BestProximity { positions, best_proximity }
}
}
impl BestProximity {
pub fn next<F>(&mut self, mut contains_documents: F) -> Option<(u32, Vec<Vec<u32>>)>
pub fn next<F>(&mut self, mut contains_documents: F) -> Option<(u32, Vec<RoaringBitmap>)>
where F: FnMut((usize, u32), (usize, u32)) -> bool,
{
let before = Instant::now();
@ -176,6 +177,7 @@ impl BestProximity {
#[cfg(test)]
mod tests {
use super::*;
use std::iter::FromIterator;
fn sort<T: Ord>(mut val: (u32, Vec<T>)) -> (u32, Vec<T>) {
val.1.sort_unstable();
@ -185,37 +187,37 @@ mod tests {
#[test]
fn same_attribute() {
let positions = vec![
vec![0, 2, 3, 4 ],
vec![ 1, ],
vec![ 3, 6],
RoaringBitmap::from_iter(vec![0, 2, 3, 4 ]),
RoaringBitmap::from_iter(vec![ 1, ]),
RoaringBitmap::from_iter(vec![ 3, 6]),
];
let mut iter = BestProximity::new(positions);
let f = |_, _| true;
assert_eq!(iter.next(f), Some((1+2, vec![vec![0, 1, 3]]))); // 3
assert_eq!(iter.next(f), Some((2+2, vec![vec![2, 1, 3]]))); // 4
assert_eq!(iter.next(f), Some((3+2, vec![vec![3, 1, 3]]))); // 5
assert_eq!(iter.next(f).map(sort), Some((1+5, vec![vec![0, 1, 6], vec![4, 1, 3]]))); // 6
assert_eq!(iter.next(f), Some((2+5, vec![vec![2, 1, 6]]))); // 7
assert_eq!(iter.next(f), Some((3+5, vec![vec![3, 1, 6]]))); // 8
assert_eq!(iter.next(f), Some((4+5, vec![vec![4, 1, 6]]))); // 9
assert_eq!(iter.next(f), Some((1+2, vec![RoaringBitmap::from_iter(vec![0, 1, 3])]))); // 3
assert_eq!(iter.next(f), Some((2+2, vec![RoaringBitmap::from_iter(vec![2, 1, 3])]))); // 4
assert_eq!(iter.next(f), Some((3+2, vec![RoaringBitmap::from_iter(vec![3, 1, 3])]))); // 5
assert_eq!(iter.next(f), Some((1+5, vec![RoaringBitmap::from_iter(vec![0, 1, 6]), RoaringBitmap::from_iter(vec![4, 1, 3])]))); // 6
assert_eq!(iter.next(f), Some((2+5, vec![RoaringBitmap::from_iter(vec![2, 1, 6])]))); // 7
assert_eq!(iter.next(f), Some((3+5, vec![RoaringBitmap::from_iter(vec![3, 1, 6])]))); // 8
assert_eq!(iter.next(f), Some((4+5, vec![RoaringBitmap::from_iter(vec![4, 1, 6])]))); // 9
assert_eq!(iter.next(f), None);
}
#[test]
fn different_attributes() {
let positions = vec![
vec![0, 2, 1000, 1001, 2000 ],
vec![ 1, 1000, 2001 ],
vec![ 3, 6, 2002, 3000],
RoaringBitmap::from_iter(vec![0, 2, 1000, 1001, 2000 ]),
RoaringBitmap::from_iter(vec![ 1, 1000, 2001 ]),
RoaringBitmap::from_iter(vec![ 3, 6, 2002, 3000]),
];
let mut iter = BestProximity::new(positions);
let f = |_, _| true;
assert_eq!(iter.next(f), Some((1+1, vec![vec![2000, 2001, 2002]]))); // 2
assert_eq!(iter.next(f), Some((1+2, vec![vec![0, 1, 3]]))); // 3
assert_eq!(iter.next(f), Some((2+2, vec![vec![2, 1, 3]]))); // 4
assert_eq!(iter.next(f), Some((1+5, vec![vec![0, 1, 6]]))); // 6
assert_eq!(iter.next(f), Some((1+1, vec![RoaringBitmap::from_iter(vec![2000, 2001, 2002])]))); // 2
assert_eq!(iter.next(f), Some((1+2, vec![RoaringBitmap::from_iter(vec![0, 1, 3])]))); // 3
assert_eq!(iter.next(f), Some((2+2, vec![RoaringBitmap::from_iter(vec![2, 1, 3])]))); // 4
assert_eq!(iter.next(f), Some((1+5, vec![RoaringBitmap::from_iter(vec![0, 1, 6])]))); // 6
// We ignore others here...
}

View File

@ -62,12 +62,13 @@ fn main() -> anyhow::Result<()> {
let before = Instant::now();
let query = result?;
let (_, documents_ids) = index.search(&rtxn, &query)?;
let result = index.search(&rtxn).query(query).execute().unwrap();
let headers = match index.headers(&rtxn)? {
Some(headers) => headers,
None => return Ok(()),
};
let documents = index.documents(documents_ids.iter().cloned())?;
let documents = index.documents(result.documents_ids.iter().cloned())?;
let mut stdout = io::stdout();
stdout.write_all(&headers)?;
@ -76,7 +77,7 @@ fn main() -> anyhow::Result<()> {
stdout.write_all(&content)?;
}
debug!("Took {:.02?} to find {} documents", before.elapsed(), documents_ids.len());
debug!("Took {:.02?} to find {} documents", before.elapsed(), result.documents_ids.len());
}
Ok(())

View File

@ -13,7 +13,7 @@ use slice_group_by::StrGroupBy;
use structopt::StructOpt;
use warp::{Filter, http::Response};
use milli::Index;
use milli::{Index, SearchResult};
#[cfg(target_os = "linux")]
#[global_allocator]
@ -183,7 +183,10 @@ async fn main() -> anyhow::Result<()> {
let before_search = Instant::now();
let rtxn = env_cloned.read_txn().unwrap();
let (words, documents_ids) = index.search(&rtxn, &query.query).unwrap();
let SearchResult { found_words, documents_ids } = index.search(&rtxn)
.query(query.query)
.execute()
.unwrap();
let mut body = Vec::new();
if let Some(headers) = index.headers(&rtxn).unwrap() {
@ -196,7 +199,7 @@ async fn main() -> anyhow::Result<()> {
let content = if disable_highlighting {
Cow::from(content)
} else {
Cow::from(highlight_string(content, &words))
Cow::from(highlight_string(content, &found_words))
};
body.extend_from_slice(content.as_bytes());

View File

@ -3,38 +3,27 @@ mod criterion;
mod heed_codec;
mod iter_shortest_paths;
mod query_tokens;
mod search;
mod transitive_arc;
use std::collections::{HashSet, HashMap};
use std::collections::HashMap;
use std::fs::{File, OpenOptions};
use std::hash::BuildHasherDefault;
use std::path::{Path, PathBuf};
use std::sync::Arc;
use std::time::Instant;
use anyhow::Context;
use cow_utils::CowUtils;
use fst::{IntoStreamer, Streamer};
use fxhash::{FxHasher32, FxHasher64};
use heed::types::*;
use heed::{PolyDatabase, Database};
use levenshtein_automata::LevenshteinAutomatonBuilder as LevBuilder;
use log::debug;
use memmap::Mmap;
use once_cell::sync::Lazy;
use oxidized_mtbl as omtbl;
use roaring::RoaringBitmap;
use self::best_proximity::BestProximity;
pub use self::search::{Search, SearchResult};
pub use self::criterion::{Criterion, default_criteria};
use self::heed_codec::RoaringBitmapCodec;
use self::query_tokens::{QueryTokens, QueryToken};
use self::transitive_arc::TransitiveArc;
// Building these factories is not free.
static LEVDIST0: Lazy<LevBuilder> = Lazy::new(|| LevBuilder::new(0, true));
static LEVDIST1: Lazy<LevBuilder> = Lazy::new(|| LevBuilder::new(1, true));
static LEVDIST2: Lazy<LevBuilder> = Lazy::new(|| LevBuilder::new(2, true));
pub type FastMap4<K, V> = HashMap<K, V, BuildHasherDefault<FxHasher32>>;
pub type FastMap8<K, V> = HashMap<K, V, BuildHasherDefault<FxHasher64>>;
pub type SmallString32 = smallstr::SmallString<[u8; 32]>;
@ -138,257 +127,7 @@ impl Index {
self.documents.metadata().count_entries as usize
}
pub fn search(&self, rtxn: &heed::RoTxn, query: &str) -> anyhow::Result<(HashSet<String>, Vec<DocumentId>)> {
let fst = match self.fst(rtxn)? {
Some(fst) => fst,
None => return Ok(Default::default()),
};
let (lev0, lev1, lev2) = (&LEVDIST0, &LEVDIST1, &LEVDIST2);
let words: Vec<_> = QueryTokens::new(query).collect();
let ends_with_whitespace = query.chars().last().map_or(false, char::is_whitespace);
let number_of_words = words.len();
let dfas = words.into_iter().enumerate().map(|(i, word)| {
let (word, quoted) = match word {
QueryToken::Free(word) => (word.cow_to_lowercase(), word.len() <= 3),
QueryToken::Quoted(word) => (word.cow_to_lowercase(), true),
};
let is_last = i + 1 == number_of_words;
let is_prefix = is_last && !ends_with_whitespace && !quoted;
let lev = match word.len() {
0..=4 => if quoted { lev0 } else { lev0 },
5..=8 => if quoted { lev0 } else { lev1 },
_ => if quoted { lev0 } else { lev2 },
};
let dfa = if is_prefix {
lev.build_prefix_dfa(&word)
} else {
lev.build_dfa(&word)
};
(word, is_prefix, dfa)
});
let mut words = Vec::new();
let mut positions = Vec::new();
let before = Instant::now();
for (word, _is_prefix, dfa) in dfas {
let before = Instant::now();
let mut count = 0;
let mut union_positions = RoaringBitmap::default();
let mut derived_words = Vec::new();
let mut stream = fst.search_with_state(&dfa).into_stream();
while let Some((word, state)) = stream.next() {
let word = std::str::from_utf8(word)?;
let distance = dfa.distance(state);
debug!("found {:?} at distance of {}", word, distance.to_u8());
if let Some(positions) = self.word_positions.get(rtxn, word)? {
union_positions.union_with(&positions);
derived_words.push((word.as_bytes().to_vec(), distance.to_u8(), positions));
count += 1;
}
}
debug!("{} words for {:?} we have found positions {:?} in {:.02?}",
count, word, union_positions, before.elapsed());
words.push(derived_words);
positions.push(union_positions.iter().collect());
}
// We compute the docids candidates for these words (and derived words).
// We do a union between all the docids of each of the words and derived words,
// we got N unions (where N is the number of query words), we then intersect them.
// TODO we must store the words documents ids to avoid these unions.
let mut candidates = RoaringBitmap::new();
let number_of_attributes = self.number_of_attributes(rtxn)?.map_or(0, |n| n as u32);
for (i, derived_words) in words.iter().enumerate() {
let mut union_docids = RoaringBitmap::new();
for (word, _distance, _positions) in derived_words {
for attr in 0..number_of_attributes {
let mut key = word.to_vec();
key.extend_from_slice(&attr.to_be_bytes());
if let Some(right) = self.word_attribute_docids.get(rtxn, &key)? {
union_docids.union_with(&right);
}
}
}
if i == 0 {
candidates = union_docids;
} else {
candidates.intersect_with(&union_docids);
}
}
debug!("The candidates are {:?}", candidates);
debug!("Retrieving words positions took {:.02?}", before.elapsed());
// Returns the union of the same position for all the derived words.
let unions_word_pos = |word: usize, pos: u32| {
let mut union_docids = RoaringBitmap::new();
for (word, _distance, attrs) in &words[word] {
if attrs.contains(pos) {
let mut key = word.clone();
key.extend_from_slice(&pos.to_be_bytes());
if let Some(right) = self.word_position_docids.get(rtxn, &key).unwrap() {
union_docids.union_with(&right);
}
}
}
union_docids
};
// Returns the union of the same attribute for all the derived words.
let unions_word_attr = |word: usize, attr: u32| {
let mut union_docids = RoaringBitmap::new();
for (word, _distance, _) in &words[word] {
let mut key = word.clone();
key.extend_from_slice(&attr.to_be_bytes());
if let Some(right) = self.word_attribute_docids.get(rtxn, &key).unwrap() {
union_docids.union_with(&right);
}
}
union_docids
};
let mut union_cache = HashMap::new();
let mut intersect_cache = HashMap::new();
let mut attribute_union_cache = HashMap::new();
let mut attribute_intersect_cache = HashMap::new();
// Returns `true` if there is documents in common between the two words and positions given.
let mut contains_documents = |(lword, lpos), (rword, rpos), union_cache: &mut HashMap<_, _>, candidates: &RoaringBitmap| {
if lpos == rpos { return false }
let (lattr, _) = best_proximity::extract_position(lpos);
let (rattr, _) = best_proximity::extract_position(rpos);
if lattr == rattr {
// We retrieve or compute the intersection between the two given words and positions.
*intersect_cache.entry(((lword, lpos), (rword, rpos))).or_insert_with(|| {
// We retrieve or compute the unions for the two words and positions.
union_cache.entry((lword, lpos)).or_insert_with(|| unions_word_pos(lword, lpos));
union_cache.entry((rword, rpos)).or_insert_with(|| unions_word_pos(rword, rpos));
// TODO is there a way to avoid this double gets?
let lunion_docids = union_cache.get(&(lword, lpos)).unwrap();
let runion_docids = union_cache.get(&(rword, rpos)).unwrap();
// We first check that the docids of these unions are part of the candidates.
if lunion_docids.is_disjoint(candidates) { return false }
if runion_docids.is_disjoint(candidates) { return false }
!lunion_docids.is_disjoint(&runion_docids)
})
} else {
*attribute_intersect_cache.entry(((lword, lattr), (rword, rattr))).or_insert_with(|| {
// We retrieve or compute the unions for the two words and positions.
attribute_union_cache.entry((lword, lattr)).or_insert_with(|| unions_word_attr(lword, lattr));
attribute_union_cache.entry((rword, rattr)).or_insert_with(|| unions_word_attr(rword, rattr));
// TODO is there a way to avoid this double gets?
let lunion_docids = attribute_union_cache.get(&(lword, lattr)).unwrap();
let runion_docids = attribute_union_cache.get(&(rword, rattr)).unwrap();
// We first check that the docids of these unions are part of the candidates.
if lunion_docids.is_disjoint(candidates) { return false }
if runion_docids.is_disjoint(candidates) { return false }
!lunion_docids.is_disjoint(&runion_docids)
})
}
};
let mut documents = Vec::new();
let mut iter = BestProximity::new(positions);
while let Some((proximity, mut positions)) = iter.next(|l, r| contains_documents(l, r, &mut union_cache, &candidates)) {
positions.sort_unstable();
let same_prox_before = Instant::now();
let mut same_proximity_union = RoaringBitmap::default();
for positions in positions {
let before = Instant::now();
// Precompute the potentially missing unions
positions.iter().enumerate().for_each(|(word, pos)| {
union_cache.entry((word, *pos)).or_insert_with(|| unions_word_pos(word, *pos));
});
// Retrieve the unions along with the popularity of it.
let mut to_intersect: Vec<_> = positions.iter()
.enumerate()
.map(|(word, pos)| {
let docids = union_cache.get(&(word, *pos)).unwrap();
(docids.len(), docids)
})
.collect();
// Sort the unions by popuarity to help reduce
// the number of documents as soon as possible.
to_intersect.sort_unstable_by_key(|(l, _)| *l);
let elapsed_retrieving = before.elapsed();
let before_intersect = Instant::now();
let intersect_docids: Option<RoaringBitmap> = to_intersect.into_iter()
.fold(None, |acc, (_, union_docids)| {
match acc {
Some(mut left) => {
left.intersect_with(&union_docids);
Some(left)
},
None => Some(union_docids.clone()),
}
});
debug!("retrieving words took {:.02?} and took {:.02?} to intersect",
elapsed_retrieving, before_intersect.elapsed());
debug!("for proximity {:?} {:?} we took {:.02?} to find {} documents",
proximity, positions, before.elapsed(),
intersect_docids.as_ref().map_or(0, |rb| rb.len()));
if let Some(intersect_docids) = intersect_docids {
same_proximity_union.union_with(&intersect_docids);
}
// We found enough documents we can stop here
if documents.iter().map(RoaringBitmap::len).sum::<u64>() + same_proximity_union.len() >= 20 {
debug!("proximity {} took a total of {:.02?}", proximity, same_prox_before.elapsed());
break;
}
}
// We achieve to find valid documents ids so we remove them from the candidates list.
candidates.difference_with(&same_proximity_union);
documents.push(same_proximity_union);
// We remove the double occurences of documents.
for i in 0..documents.len() {
if let Some((docs, others)) = documents[..=i].split_last_mut() {
others.iter().for_each(|other| docs.difference_with(other));
}
}
documents.retain(|rb| !rb.is_empty());
debug!("documents: {:?}", documents);
debug!("proximity {} took a total of {:.02?}", proximity, same_prox_before.elapsed());
// We found enough documents we can stop here.
if documents.iter().map(RoaringBitmap::len).sum::<u64>() >= 20 {
break;
}
}
debug!("{} final candidates", documents.iter().map(RoaringBitmap::len).sum::<u64>());
let words = words.into_iter().flatten().map(|(w, _distance, _)| String::from_utf8(w).unwrap()).collect();
let documents = documents.iter().flatten().take(20).collect();
Ok((words, documents))
pub fn search<'a>(&'a self, rtxn: &'a heed::RoTxn) -> Search<'a> {
Search::new(rtxn, self)
}
}

361
src/search.rs Normal file
View File

@ -0,0 +1,361 @@
use std::collections::{HashMap, HashSet};
use fst::{IntoStreamer, Streamer};
use levenshtein_automata::DFA;
use levenshtein_automata::LevenshteinAutomatonBuilder as LevBuilder;
use once_cell::sync::Lazy;
use roaring::RoaringBitmap;
use crate::query_tokens::{QueryTokens, QueryToken};
use crate::{Index, DocumentId, Position, Attribute};
use crate::best_proximity::{self, BestProximity};
// Building these factories is not free.
static LEVDIST0: Lazy<LevBuilder> = Lazy::new(|| LevBuilder::new(0, true));
static LEVDIST1: Lazy<LevBuilder> = Lazy::new(|| LevBuilder::new(1, true));
static LEVDIST2: Lazy<LevBuilder> = Lazy::new(|| LevBuilder::new(2, true));
pub struct Search<'a> {
query: Option<String>,
offset: usize,
limit: usize,
rtxn: &'a heed::RoTxn,
index: &'a Index,
}
impl<'a> Search<'a> {
pub fn new(rtxn: &'a heed::RoTxn, index: &'a Index) -> Search<'a> {
Search {
query: None,
offset: 0,
limit: 20,
rtxn,
index,
}
}
pub fn query(&mut self, query: impl Into<String>) -> &mut Search<'a> {
self.query = Some(query.into());
self
}
pub fn offset(&mut self, offset: usize) -> &mut Search<'a> {
self.offset = offset;
self
}
pub fn limit(&mut self, limit: usize) -> &mut Search<'a> {
self.limit = limit;
self
}
/// Extracts the query words from the query string and returns the DFAs accordingly.
/// TODO introduce settings for the number of typos regarding the words lengths.
fn generate_query_dfas(query: &str) -> Vec<(String, bool, DFA)> {
let (lev0, lev1, lev2) = (&LEVDIST0, &LEVDIST1, &LEVDIST2);
let words: Vec<_> = QueryTokens::new(query).collect();
let ends_with_whitespace = query.chars().last().map_or(false, char::is_whitespace);
let number_of_words = words.len();
words.into_iter().enumerate().map(|(i, word)| {
let (word, quoted) = match word {
QueryToken::Free(word) => (word.to_lowercase(), word.len() <= 3),
QueryToken::Quoted(word) => (word.to_lowercase(), true),
};
let is_last = i + 1 == number_of_words;
let is_prefix = is_last && !ends_with_whitespace && !quoted;
let lev = match word.len() {
0..=4 => if quoted { lev0 } else { lev0 },
5..=8 => if quoted { lev0 } else { lev1 },
_ => if quoted { lev0 } else { lev2 },
};
let dfa = if is_prefix {
lev.build_prefix_dfa(&word)
} else {
lev.build_dfa(&word)
};
(word, is_prefix, dfa)
})
.collect()
}
/// Fetch the words from the given FST related to the given DFAs along with the associated
/// positions and the unions of those positions where the words found appears in the documents.
fn fetch_words_positions(
rtxn: &heed::RoTxn,
index: &Index,
fst: &fst::Set<&[u8]>,
dfas: Vec<(String, bool, DFA)>,
) -> anyhow::Result<(Vec<Vec<(String, u8, RoaringBitmap)>>, Vec<RoaringBitmap>)>
{
// A Vec storing all the derived words from the original query words, associated
// with the distance from the original word and the positions it appears at.
// The index the derived words appears in the Vec corresponds to the original query
// word position.
let mut derived_words = Vec::<Vec::<(String, u8, RoaringBitmap)>>::with_capacity(dfas.len());
// A Vec storing the unions of all of each of the derived words positions. The index
// the union appears in the Vec corresponds to the original query word position.
let mut union_positions = Vec::<RoaringBitmap>::with_capacity(dfas.len());
for (_word, _is_prefix, dfa) in dfas {
let mut acc_derived_words = Vec::new();
let mut acc_union_positions = RoaringBitmap::new();
let mut stream = fst.search_with_state(&dfa).into_stream();
while let Some((word, state)) = stream.next() {
let word = std::str::from_utf8(word)?;
let positions = index.word_positions.get(rtxn, word)?.unwrap();
let distance = dfa.distance(state);
acc_union_positions.union_with(&positions);
acc_derived_words.push((word.to_string(), distance.to_u8(), positions));
}
derived_words.push(acc_derived_words);
union_positions.push(acc_union_positions);
}
Ok((derived_words, union_positions))
}
/// Returns the set of docids that contains all of the query words.
fn compute_candidates(
rtxn: &heed::RoTxn,
index: &Index,
derived_words: &[Vec<(String, u8, RoaringBitmap)>],
) -> anyhow::Result<RoaringBitmap>
{
// we do a union between all the docids of each of the derived words,
// we got N unions (the number of original query words), we then intersect them.
// TODO we must store the words documents ids to avoid these unions.
let mut candidates = RoaringBitmap::new();
let number_of_attributes = index.number_of_attributes(rtxn)?.map_or(0, |n| n as u32);
for (i, derived_words) in derived_words.iter().enumerate() {
let mut union_docids = RoaringBitmap::new();
for (word, _distance, _positions) in derived_words {
for attr in 0..number_of_attributes {
let mut key = word.clone().into_bytes();
key.extend_from_slice(&attr.to_be_bytes());
if let Some(docids) = index.word_attribute_docids.get(rtxn, &key)? {
union_docids.union_with(&docids);
}
}
}
if i == 0 {
candidates = union_docids;
} else {
candidates.intersect_with(&union_docids);
}
}
Ok(candidates)
}
/// Returns the union of the same position for all the given words.
fn union_word_position(
rtxn: &heed::RoTxn,
index: &Index,
words: &[(String, u8, RoaringBitmap)],
position: Position,
) -> anyhow::Result<RoaringBitmap>
{
let mut union_docids = RoaringBitmap::new();
for (word, _distance, positions) in words {
if positions.contains(position) {
let mut key = word.clone().into_bytes();
key.extend_from_slice(&position.to_be_bytes());
if let Some(docids) = index.word_position_docids.get(rtxn, &key)? {
union_docids.union_with(&docids);
}
}
}
Ok(union_docids)
}
/// Returns the union of the same attribute for all the given words.
fn union_word_attribute(
rtxn: &heed::RoTxn,
index: &Index,
words: &[(String, u8, RoaringBitmap)],
attribute: Attribute,
) -> anyhow::Result<RoaringBitmap>
{
let mut union_docids = RoaringBitmap::new();
for (word, _distance, _positions) in words {
let mut key = word.clone().into_bytes();
key.extend_from_slice(&attribute.to_be_bytes());
if let Some(docids) = index.word_attribute_docids.get(rtxn, &key)? {
union_docids.union_with(&docids);
}
}
Ok(union_docids)
}
pub fn execute(&self) -> anyhow::Result<SearchResult> {
let rtxn = self.rtxn;
let index = self.index;
let fst = match index.fst(rtxn)? {
Some(fst) => fst,
None => return Ok(Default::default()),
};
// Construct the DFAs related to the query words.
// TODO do a placeholder search when query string isn't present.
let dfas = match &self.query {
Some(q) => Self::generate_query_dfas(q),
None => return Ok(Default::default()),
};
let (derived_words, union_positions) = Self::fetch_words_positions(rtxn, index, &fst, dfas)?;
let mut candidates = Self::compute_candidates(rtxn, index, &derived_words)?;
let mut union_cache = HashMap::new();
let mut intersect_cache = HashMap::new();
let mut attribute_union_cache = HashMap::new();
let mut attribute_intersect_cache = HashMap::new();
// Returns `true` if there is documents in common between the two words and positions given.
let mut contains_documents = |(lword, lpos), (rword, rpos), union_cache: &mut HashMap<_, _>, candidates: &RoaringBitmap| {
if lpos == rpos { return false }
let (lattr, _) = best_proximity::extract_position(lpos);
let (rattr, _) = best_proximity::extract_position(rpos);
if lattr == rattr {
// We retrieve or compute the intersection between the two given words and positions.
*intersect_cache.entry(((lword, lpos), (rword, rpos))).or_insert_with(|| {
// We retrieve or compute the unions for the two words and positions.
union_cache.entry((lword, lpos)).or_insert_with(|| {
let words: &Vec<_> = &derived_words[lword];
Self::union_word_position(rtxn, index, words, lpos).unwrap()
});
union_cache.entry((rword, rpos)).or_insert_with(|| {
let words: &Vec<_> = &derived_words[rword];
Self::union_word_position(rtxn, index, words, rpos).unwrap()
});
// TODO is there a way to avoid this double gets?
let lunion_docids = union_cache.get(&(lword, lpos)).unwrap();
let runion_docids = union_cache.get(&(rword, rpos)).unwrap();
// We first check that the docids of these unions are part of the candidates.
if lunion_docids.is_disjoint(candidates) { return false }
if runion_docids.is_disjoint(candidates) { return false }
!lunion_docids.is_disjoint(&runion_docids)
})
} else {
*attribute_intersect_cache.entry(((lword, lattr), (rword, rattr))).or_insert_with(|| {
// We retrieve or compute the unions for the two words and positions.
attribute_union_cache.entry((lword, lattr)).or_insert_with(|| {
let words: &Vec<_> = &derived_words[lword];
Self::union_word_attribute(rtxn, index, words, lattr).unwrap()
});
attribute_union_cache.entry((rword, rattr)).or_insert_with(|| {
let words: &Vec<_> = &derived_words[rword];
Self::union_word_attribute(rtxn, index, words, rattr).unwrap()
});
// TODO is there a way to avoid this double gets?
let lunion_docids = attribute_union_cache.get(&(lword, lattr)).unwrap();
let runion_docids = attribute_union_cache.get(&(rword, rattr)).unwrap();
// We first check that the docids of these unions are part of the candidates.
if lunion_docids.is_disjoint(candidates) { return false }
if runion_docids.is_disjoint(candidates) { return false }
!lunion_docids.is_disjoint(&runion_docids)
})
}
};
let mut documents = Vec::new();
let mut iter = BestProximity::new(union_positions);
while let Some((_proximity, mut positions)) = iter.next(|l, r| contains_documents(l, r, &mut union_cache, &candidates)) {
positions.sort_unstable_by(|a, b| a.iter().cmp(b.iter()));
let mut same_proximity_union = RoaringBitmap::default();
for positions in positions {
// Precompute the potentially missing unions
positions.iter().enumerate().for_each(|(word, pos)| {
union_cache.entry((word, pos)).or_insert_with(|| {
let words = &derived_words[word];
Self::union_word_position(rtxn, index, words, pos).unwrap()
});
});
// Retrieve the unions along with the popularity of it.
let mut to_intersect: Vec<_> = positions.iter()
.enumerate()
.map(|(word, pos)| {
let docids = union_cache.get(&(word, pos)).unwrap();
(docids.len(), docids)
})
.collect();
// Sort the unions by popularity to help reduce
// the number of documents as soon as possible.
to_intersect.sort_unstable_by_key(|(l, _)| *l);
let intersect_docids: Option<RoaringBitmap> = to_intersect.into_iter()
.fold(None, |acc, (_, union_docids)| {
match acc {
Some(mut left) => {
left.intersect_with(&union_docids);
Some(left)
},
None => Some(union_docids.clone()),
}
});
if let Some(intersect_docids) = intersect_docids {
same_proximity_union.union_with(&intersect_docids);
}
// We found enough documents we can stop here
if documents.iter().map(RoaringBitmap::len).sum::<u64>() + same_proximity_union.len() >= 20 {
break;
}
}
// We achieve to find valid documents ids so we remove them from the candidates list.
candidates.difference_with(&same_proximity_union);
documents.push(same_proximity_union);
// We remove the double occurences of documents.
for i in 0..documents.len() {
if let Some((docs, others)) = documents[..=i].split_last_mut() {
others.iter().for_each(|other| docs.difference_with(other));
}
}
documents.retain(|rb| !rb.is_empty());
// We found enough documents we can stop here.
if documents.iter().map(RoaringBitmap::len).sum::<u64>() >= 20 {
break;
}
}
let found_words = derived_words.into_iter().flatten().map(|(w, _, _)| w).collect();
let documents_ids = documents.iter().flatten().take(20).collect();
Ok(SearchResult { found_words, documents_ids })
}
}
#[derive(Default)]
pub struct SearchResult {
pub found_words: HashSet<String>,
// TODO those documents ids should be associated with their criteria scores.
pub documents_ids: Vec<DocumentId>,
}