Display the _semanticSimilarity even if the _vectors field is not displayed

This commit is contained in:
Kerollmops 2023-06-20 15:54:28 +02:00 committed by Clément Renault
parent 737aec1705
commit 7aa1275337
No known key found for this signature in database
GPG Key ID: 92ADA4E935E71FA4
3 changed files with 53 additions and 20 deletions

View File

@ -17,7 +17,7 @@ use meilisearch_types::{milli, Document};
use milli::tokenizer::TokenizerBuilder;
use milli::{
AscDesc, FieldId, FieldsIdsMap, Filter, FormatOptions, Index, MatchBounds, MatcherBuilder,
SortError, TermsMatchingStrategy, DEFAULT_VALUES_PER_FACET,
SortError, TermsMatchingStrategy, VectorOrArrayOfVectors, DEFAULT_VALUES_PER_FACET,
};
use ordered_float::OrderedFloat;
use regex::Regex;
@ -432,7 +432,6 @@ pub fn perform_search(
formatter_builder.highlight_suffix(query.highlight_post_tag);
let mut documents = Vec::new();
let documents_iter = index.documents(&rtxn, documents_ids)?;
for ((_id, obkv), score) in documents_iter.into_iter().zip(document_scores.into_iter()) {
@ -460,7 +459,9 @@ pub fn perform_search(
}
if let Some(vector) = query.vector.as_ref() {
insert_semantic_similarity(&vector, &mut document);
if let Some(vectors) = extract_field("_vectors", &fields_ids_map, obkv)? {
insert_semantic_similarity(vector, vectors, &mut document);
}
}
let ranking_score =
@ -548,20 +549,18 @@ fn insert_geo_distance(sorts: &[String], document: &mut Document) {
}
}
fn insert_semantic_similarity(query: &[f32], document: &mut Document) {
if let Some(value) = document.get("_vectors") {
let vectors: Vec<Vec<f32>> = match serde_json::from_value(value.clone()) {
Ok(Either::Left(vector)) => vec![vector],
Ok(Either::Right(vectors)) => vectors,
fn insert_semantic_similarity(query: &[f32], vectors: Value, document: &mut Document) {
let vectors =
match serde_json::from_value(vectors).map(VectorOrArrayOfVectors::into_array_of_vectors) {
Ok(vectors) => vectors,
Err(_) => return,
};
let similarity = vectors
.into_iter()
.map(|v| OrderedFloat(dot_product_similarity(query, &v)))
.max()
.map(OrderedFloat::into_inner);
document.insert("_semanticSimilarity".to_string(), json!(similarity));
}
let similarity = vectors
.into_iter()
.map(|v| OrderedFloat(dot_product_similarity(query, &v)))
.max()
.map(OrderedFloat::into_inner);
document.insert("_semanticSimilarity".to_string(), json!(similarity));
}
fn compute_formatted_options(
@ -691,6 +690,22 @@ fn make_document(
Ok(document)
}
/// Extract the JSON value under the field name specified
/// but doesn't support nested objects.
fn extract_field(
field_name: &str,
field_ids_map: &FieldsIdsMap,
obkv: obkv::KvReaderU16,
) -> Result<Option<serde_json::Value>, MeilisearchHttpError> {
match field_ids_map.id(field_name) {
Some(fid) => match obkv.get(fid) {
Some(value) => Ok(serde_json::from_slice(value).map(Some)?),
None => Ok(None),
},
None => Ok(None),
}
}
fn format_fields<A: AsRef<[u8]>>(
document: &Document,
field_ids_map: &FieldsIdsMap,

View File

@ -286,6 +286,23 @@ pub fn normalize_facet(original: &str) -> String {
CompatibilityDecompositionNormalizer.normalize_str(original.trim()).to_lowercase()
}
/// Represents either a vector or an array of multiple vectors.
#[derive(serde::Serialize, serde::Deserialize, Debug)]
#[serde(transparent)]
pub struct VectorOrArrayOfVectors {
#[serde(with = "either::serde_untagged")]
inner: either::Either<Vec<f32>, Vec<Vec<f32>>>,
}
impl VectorOrArrayOfVectors {
pub fn into_array_of_vectors(self) -> Vec<Vec<f32>> {
match self.inner {
either::Either::Left(vector) => vec![vector],
either::Either::Right(vectors) => vectors,
}
}
}
/// Normalize a vector by dividing the dimensions by the lenght of it.
pub fn normalize_vector(mut vector: Vec<f32>) -> Vec<f32> {
let squared: f32 = vector.iter().map(|x| x * x).sum();

View File

@ -3,11 +3,10 @@ use std::fs::File;
use std::io;
use bytemuck::cast_slice;
use either::Either;
use serde_json::from_slice;
use super::helpers::{create_writer, writer_into_reader, GrenadParameters};
use crate::{FieldId, InternalError, Result};
use crate::{FieldId, InternalError, Result, VectorOrArrayOfVectors};
/// Extracts the embedding vector contained in each document under the `_vectors` field.
///
@ -31,9 +30,11 @@ pub fn extract_vector_points<R: io::Read + io::Seek>(
// first we retrieve the _vectors field
if let Some(vectors) = obkv.get(vectors_fid) {
// extract the vectors
let vectors: Either<Vec<Vec<f32>>, Vec<f32>> =
from_slice(vectors).map_err(InternalError::SerdeJson).unwrap();
let vectors = vectors.map_right(|v| vec![v]).into_inner();
// TODO return a user error before unwrapping
let vectors = from_slice(vectors)
.map_err(InternalError::SerdeJson)
.map(VectorOrArrayOfVectors::into_array_of_vectors)
.unwrap();
for (i, vector) in vectors.into_iter().enumerate() {
match u16::try_from(i) {