Re-implement set based algorithm for attribute criterion

This commit is contained in:
many 2021-10-04 16:36:11 +02:00
parent 31c18f0953
commit 75d341d928
No known key found for this signature in database
GPG Key ID: 2CEF23B75189EACA

View File

@ -1,7 +1,7 @@
use std::borrow::Cow;
use std::cmp::{self, Ordering}; use std::cmp::{self, Ordering};
use std::collections::binary_heap::PeekMut; use std::collections::binary_heap::PeekMut;
use std::collections::{btree_map, BTreeMap, BinaryHeap, HashMap}; use std::collections::{btree_map, BTreeMap, BinaryHeap, HashMap};
use std::iter::Peekable;
use std::mem::take; use std::mem::take;
use roaring::RoaringBitmap; use roaring::RoaringBitmap;
@ -17,10 +17,6 @@ use crate::{Result, TreeLevel};
/// We chose the LCM of all numbers between 1 and 10 as the multiplier (https://en.wikipedia.org/wiki/Least_common_multiple). /// We chose the LCM of all numbers between 1 and 10 as the multiplier (https://en.wikipedia.org/wiki/Least_common_multiple).
const LCM_10_FIRST_NUMBERS: u32 = 2520; const LCM_10_FIRST_NUMBERS: u32 = 2520;
/// To compute the interval size of a level,
/// we use 4 as the exponentiation base and the level as the exponent.
const LEVEL_EXPONENTIATION_BASE: u32 = 4;
/// Threshold on the number of candidates that will make /// Threshold on the number of candidates that will make
/// the system to choose between one algorithm or another. /// the system to choose between one algorithm or another.
const CANDIDATES_THRESHOLD: u64 = 1000; const CANDIDATES_THRESHOLD: u64 = 1000;
@ -32,7 +28,8 @@ pub struct Attribute<'t> {
state: Option<(Operation, FlattenedQueryTree, RoaringBitmap)>, state: Option<(Operation, FlattenedQueryTree, RoaringBitmap)>,
bucket_candidates: RoaringBitmap, bucket_candidates: RoaringBitmap,
parent: Box<dyn Criterion + 't>, parent: Box<dyn Criterion + 't>,
current_buckets: Option<btree_map::IntoIter<u64, RoaringBitmap>>, linear_buckets: Option<btree_map::IntoIter<u64, RoaringBitmap>>,
set_buckets: Option<BinaryHeap<Branch<'t>>>,
} }
impl<'t> Attribute<'t> { impl<'t> Attribute<'t> {
@ -42,7 +39,8 @@ impl<'t> Attribute<'t> {
state: None, state: None,
bucket_candidates: RoaringBitmap::new(), bucket_candidates: RoaringBitmap::new(),
parent, parent,
current_buckets: None, linear_buckets: None,
set_buckets: None,
} }
} }
} }
@ -67,19 +65,19 @@ impl<'t> Criterion for Attribute<'t> {
} }
Some((query_tree, flattened_query_tree, mut allowed_candidates)) => { Some((query_tree, flattened_query_tree, mut allowed_candidates)) => {
let found_candidates = if allowed_candidates.len() < CANDIDATES_THRESHOLD { let found_candidates = if allowed_candidates.len() < CANDIDATES_THRESHOLD {
let current_buckets = match self.current_buckets.as_mut() { let linear_buckets = match self.linear_buckets.as_mut() {
Some(current_buckets) => current_buckets, Some(linear_buckets) => linear_buckets,
None => { None => {
let new_buckets = linear_compute_candidates( let new_buckets = initialize_linear_buckets(
self.ctx, self.ctx,
&flattened_query_tree, &flattened_query_tree,
&allowed_candidates, &allowed_candidates,
)?; )?;
self.current_buckets.get_or_insert(new_buckets.into_iter()) self.linear_buckets.get_or_insert(new_buckets.into_iter())
} }
}; };
match current_buckets.next() { match linear_buckets.next() {
Some((_score, candidates)) => candidates, Some((_score, candidates)) => candidates,
None => { None => {
return Ok(Some(CriterionResult { return Ok(Some(CriterionResult {
@ -91,13 +89,21 @@ impl<'t> Criterion for Attribute<'t> {
} }
} }
} else { } else {
match set_compute_candidates( let mut set_buckets = match self.set_buckets.as_mut() {
Some(set_buckets) => set_buckets,
None => {
let new_buckets = initialize_set_buckets(
self.ctx, self.ctx,
&flattened_query_tree, &flattened_query_tree,
&allowed_candidates, &allowed_candidates,
params.wdcache, params.wdcache,
)? { )?;
Some(candidates) => candidates, self.set_buckets.get_or_insert(new_buckets)
}
};
match set_compute_candidates(&mut set_buckets, &allowed_candidates)? {
Some((_score, candidates)) => candidates,
None => { None => {
return Ok(Some(CriterionResult { return Ok(Some(CriterionResult {
query_tree: Some(query_tree), query_tree: Some(query_tree),
@ -148,7 +154,7 @@ impl<'t> Criterion for Attribute<'t> {
} }
self.state = Some((query_tree, flattened_query_tree, candidates)); self.state = Some((query_tree, flattened_query_tree, candidates));
self.current_buckets = None; self.linear_buckets = None;
} }
Some(CriterionResult { Some(CriterionResult {
query_tree: None, query_tree: None,
@ -170,142 +176,52 @@ impl<'t> Criterion for Attribute<'t> {
} }
} }
/// WordLevelIterator is an pseudo-Iterator over intervals of word-position for one word,
/// it will begin at the first non-empty interval and will return every interval without
/// jumping over empty intervals.
struct WordLevelIterator<'t, 'q> {
inner: Box<
dyn Iterator<Item = heed::Result<((&'t str, TreeLevel, u32, u32), RoaringBitmap)>> + 't,
>,
level: TreeLevel,
interval_size: u32,
word: Cow<'q, str>,
in_prefix_cache: bool,
inner_next: Option<(u32, u32, RoaringBitmap)>,
current_interval: Option<(u32, u32)>,
}
impl<'t, 'q> WordLevelIterator<'t, 'q> {
fn new(
ctx: &'t dyn Context<'t>,
word: Cow<'q, str>,
in_prefix_cache: bool,
) -> heed::Result<Option<Self>> {
match ctx.word_position_last_level(&word, in_prefix_cache)? {
Some(_) => {
// HOTFIX Meilisearch#1707: it is better to only iterate over level 0 for performances reasons.
let level = TreeLevel::min_value();
let interval_size = LEVEL_EXPONENTIATION_BASE.pow(Into::<u8>::into(level) as u32);
let inner =
ctx.word_position_iterator(&word, level, in_prefix_cache, None, None)?;
Ok(Some(Self {
inner,
level,
interval_size,
word,
in_prefix_cache,
inner_next: None,
current_interval: None,
}))
}
None => Ok(None),
}
}
fn dig(
&self,
ctx: &'t dyn Context<'t>,
level: &TreeLevel,
left_interval: Option<u32>,
) -> heed::Result<Self> {
let level = *level.min(&self.level);
let interval_size = LEVEL_EXPONENTIATION_BASE.pow(Into::<u8>::into(level) as u32);
let word = self.word.clone();
let in_prefix_cache = self.in_prefix_cache;
let inner =
ctx.word_position_iterator(&word, level, in_prefix_cache, left_interval, None)?;
Ok(Self {
inner,
level,
interval_size,
word,
in_prefix_cache,
inner_next: None,
current_interval: None,
})
}
fn next(&mut self) -> heed::Result<Option<(u32, u32, RoaringBitmap)>> {
fn is_next_interval(last_right: u32, next_left: u32) -> bool {
last_right + 1 == next_left
}
let inner_next = match self.inner_next.take() {
Some(inner_next) => Some(inner_next),
None => self
.inner
.next()
.transpose()?
.map(|((_, _, left, right), docids)| (left, right, docids)),
};
match inner_next {
Some((left, right, docids)) => match self.current_interval {
Some((last_left, last_right)) if !is_next_interval(last_right, left) => {
let blank_left = last_left + self.interval_size;
let blank_right = last_right + self.interval_size;
self.current_interval = Some((blank_left, blank_right));
self.inner_next = Some((left, right, docids));
Ok(Some((blank_left, blank_right, RoaringBitmap::new())))
}
_ => {
self.current_interval = Some((left, right));
Ok(Some((left, right, docids)))
}
},
None => Ok(None),
}
}
}
/// QueryLevelIterator is an pseudo-Iterator for a Query, /// QueryLevelIterator is an pseudo-Iterator for a Query,
/// It contains WordLevelIterators and is chainned with other QueryLevelIterator. /// It contains WordLevelIterators and is chainned with other QueryLevelIterator.
struct QueryLevelIterator<'t, 'q> { struct QueryLevelIterator<'t> {
parent: Option<Box<QueryLevelIterator<'t, 'q>>>, inner: Vec<
inner: Vec<WordLevelIterator<'t, 'q>>, Peekable<
level: TreeLevel, Box<
accumulator: Vec<Option<(u32, u32, RoaringBitmap)>>, dyn Iterator<Item = heed::Result<((&'t str, TreeLevel, u32, u32), RoaringBitmap)>>
parent_accumulator: Vec<Option<(u32, u32, RoaringBitmap)>>, + 't,
interval_to_skip: usize, >,
>,
>,
} }
impl<'t, 'q> QueryLevelIterator<'t, 'q> { impl<'t> QueryLevelIterator<'t> {
fn new( fn new(
ctx: &'t dyn Context<'t>, ctx: &'t dyn Context<'t>,
queries: &'q [Query], queries: &[Query],
wdcache: &mut WordDerivationsCache, wdcache: &mut WordDerivationsCache,
) -> Result<Option<Self>> { ) -> Result<Self> {
let mut inner = Vec::with_capacity(queries.len()); let mut inner = Vec::with_capacity(queries.len());
for query in queries { for query in queries {
let in_prefix_cache = query.prefix && ctx.in_prefix_cache(query.kind.word());
match &query.kind { match &query.kind {
QueryKind::Exact { word, .. } => { QueryKind::Exact { word, .. } => {
if !query.prefix || ctx.in_prefix_cache(&word) { if !query.prefix || in_prefix_cache {
let word = Cow::Borrowed(query.kind.word()); let iter = ctx.word_position_iterator(
if let Some(word_level_iterator) = query.kind.word(),
WordLevelIterator::new(ctx, word, query.prefix)? TreeLevel::min_value(),
{ in_prefix_cache,
inner.push(word_level_iterator); None,
} None,
)?;
inner.push(iter.peekable());
} else { } else {
for (word, _) in word_derivations(&word, true, 0, ctx.words_fst(), wdcache)? for (word, _) in word_derivations(&word, true, 0, ctx.words_fst(), wdcache)?
{ {
let word = Cow::Owned(word.to_owned()); let iter = ctx.word_position_iterator(
if let Some(word_level_iterator) = &word,
WordLevelIterator::new(ctx, word, false)? TreeLevel::min_value(),
{ in_prefix_cache,
inner.push(word_level_iterator); None,
} None,
)?;
inner.push(iter.peekable());
} }
} }
} }
@ -313,360 +229,255 @@ impl<'t, 'q> QueryLevelIterator<'t, 'q> {
for (word, _) in for (word, _) in
word_derivations(&word, query.prefix, *typo, ctx.words_fst(), wdcache)? word_derivations(&word, query.prefix, *typo, ctx.words_fst(), wdcache)?
{ {
let word = Cow::Owned(word.to_owned()); let iter = ctx.word_position_iterator(
if let Some(word_level_iterator) = WordLevelIterator::new(ctx, word, false)? &word,
{ TreeLevel::min_value(),
inner.push(word_level_iterator); in_prefix_cache,
} None,
} None,
} )?;
}
}
let highest = inner.iter().max_by_key(|wli| wli.level).map(|wli| wli.level); inner.push(iter.peekable());
match highest {
Some(level) => Ok(Some(Self {
parent: None,
inner,
level,
accumulator: vec![],
parent_accumulator: vec![],
interval_to_skip: 0,
})),
None => Ok(None),
} }
} }
fn parent(&mut self, parent: QueryLevelIterator<'t, 'q>) -> &Self {
self.parent = Some(Box::new(parent));
self
}
/// create a new QueryLevelIterator with a lower level than the current one.
fn dig(&self, ctx: &'t dyn Context<'t>) -> heed::Result<Self> {
let (level, parent) = match &self.parent {
Some(parent) => {
let parent = parent.dig(ctx)?;
(parent.level.min(self.level), Some(Box::new(parent)))
}
None => (self.level.saturating_sub(1), None),
};
let left_interval = self
.accumulator
.get(self.interval_to_skip)
.map(|opt| opt.as_ref().map(|(left, _, _)| *left))
.flatten();
let mut inner = Vec::with_capacity(self.inner.len());
for word_level_iterator in self.inner.iter() {
inner.push(word_level_iterator.dig(ctx, &level, left_interval)?);
}
Ok(Self {
parent,
inner,
level,
accumulator: vec![],
parent_accumulator: vec![],
interval_to_skip: 0,
})
}
fn inner_next(&mut self, level: TreeLevel) -> heed::Result<Option<(u32, u32, RoaringBitmap)>> {
let mut accumulated: Option<(u32, u32, RoaringBitmap)> = None;
let u8_level = Into::<u8>::into(level);
let interval_size = LEVEL_EXPONENTIATION_BASE.pow(u8_level as u32);
for wli in self.inner.iter_mut() {
let wli_u8_level = Into::<u8>::into(wli.level);
let accumulated_count = LEVEL_EXPONENTIATION_BASE.pow((u8_level - wli_u8_level) as u32);
for _ in 0..accumulated_count {
if let Some((next_left, _, next_docids)) = wli.next()? {
accumulated = match accumulated.take() {
Some((acc_left, acc_right, mut acc_docids)) => {
acc_docids |= next_docids;
Some((acc_left, acc_right, acc_docids))
}
None => Some((next_left, next_left + interval_size, next_docids)),
}; };
} }
}
}
Ok(accumulated) Ok(Self { inner })
}
/// return the next meta-interval created from inner WordLevelIterators,
/// and from eventual chainned QueryLevelIterator.
fn next(
&mut self,
allowed_candidates: &RoaringBitmap,
tree_level: TreeLevel,
) -> heed::Result<Option<(u32, u32, RoaringBitmap)>> {
let parent_result = match self.parent.as_mut() {
Some(parent) => Some(parent.next(allowed_candidates, tree_level)?),
None => None,
};
match parent_result {
Some(parent_next) => {
let inner_next = self.inner_next(tree_level)?;
self.interval_to_skip += interval_to_skip(
&self.parent_accumulator,
&self.accumulator,
self.interval_to_skip,
allowed_candidates,
);
self.accumulator.push(inner_next);
self.parent_accumulator.push(parent_next);
let mut merged_interval: Option<(u32, u32, RoaringBitmap)> = None;
for current in self
.accumulator
.iter()
.rev()
.zip(self.parent_accumulator.iter())
.skip(self.interval_to_skip)
{
if let (Some((left_a, right_a, a)), Some((left_b, right_b, b))) = current {
match merged_interval.as_mut() {
Some((_, _, merged_docids)) => *merged_docids |= a & b,
None => {
merged_interval = Some((left_a + left_b, right_a + right_b, a & b))
}
}
}
}
Ok(merged_interval)
}
None => {
let level = self.level;
match self.inner_next(level)? {
Some((left, right, mut candidates)) => {
self.accumulator = vec![Some((left, right, RoaringBitmap::new()))];
candidates &= allowed_candidates;
Ok(Some((left, right, candidates)))
}
None => {
self.accumulator = vec![None];
Ok(None)
}
}
}
}
} }
} }
/// Count the number of interval that can be skiped when we make the cross-intersections impl<'t> Iterator for QueryLevelIterator<'t> {
/// in order to compute the next meta-interval. type Item = heed::Result<(u32, RoaringBitmap)>;
/// A pair of intervals is skiped when both intervals doesn't contain any allowed docids.
fn interval_to_skip( fn next(&mut self) -> Option<Self::Item> {
parent_accumulator: &[Option<(u32, u32, RoaringBitmap)>], // sort inner words from the closest next position to the more far next position.
current_accumulator: &[Option<(u32, u32, RoaringBitmap)>], let expected_pos = self
already_skiped: usize, .inner
allowed_candidates: &RoaringBitmap, .iter_mut()
) -> usize { .filter_map(|wli| match wli.peek() {
parent_accumulator Some(Ok(((_, _, pos, _), _))) => Some(*pos),
.iter() _ => None,
.zip(current_accumulator.iter())
.skip(already_skiped)
.take_while(|(parent, current)| {
let skip_parent = parent.as_ref().map_or(true, |(_, _, docids)| docids.is_empty());
let skip_current = current
.as_ref()
.map_or(true, |(_, _, docids)| docids.is_disjoint(allowed_candidates));
skip_parent && skip_current
}) })
.count() .min()?;
let mut candidates = None;
for wli in self.inner.iter_mut() {
if let Some(Ok(((_, _, pos, _), _))) = wli.peek() {
if *pos > expected_pos {
continue;
}
}
match wli.next() {
Some(Ok((_, docids))) => {
candidates = match candidates.take() {
Some(candidates) => Some(candidates | docids),
None => Some(docids),
}
}
Some(Err(e)) => return Some(Err(e)),
None => continue,
}
}
candidates.map(|candidates| Ok((expected_pos, candidates)))
}
} }
/// A Branch is represent a possible alternative of the original query and is build with the Query Tree, /// A Branch is represent a possible alternative of the original query and is build with the Query Tree,
/// This branch allows us to iterate over meta-interval of position and to dig in it if it contains interesting candidates. /// This branch allows us to iterate over meta-interval of position and to dig in it if it contains interesting candidates.
struct Branch<'t, 'q> { struct Branch<'t> {
query_level_iterator: QueryLevelIterator<'t, 'q>, query_level_iterator: Vec<(u32, RoaringBitmap, Peekable<QueryLevelIterator<'t>>)>,
last_result: (u32, u32, RoaringBitmap), last_result: (u32, RoaringBitmap),
tree_level: TreeLevel,
branch_size: u32, branch_size: u32,
} }
impl<'t, 'q> Branch<'t, 'q> { impl<'t> Branch<'t> {
fn new(
ctx: &'t dyn Context<'t>,
flatten_branch: &[Vec<Query>],
wdcache: &mut WordDerivationsCache,
allowed_candidates: &RoaringBitmap,
) -> Result<Self> {
let mut query_level_iterator = Vec::new();
for queries in flatten_branch {
let mut qli = QueryLevelIterator::new(ctx, queries, wdcache)?.peekable();
let (pos, docids) = qli.next().transpose()?.unwrap_or((0, RoaringBitmap::new()));
query_level_iterator.push((pos, docids & allowed_candidates, qli));
}
let mut branch = Self {
query_level_iterator,
last_result: (0, RoaringBitmap::new()),
branch_size: flatten_branch.len() as u32,
};
branch.update_last_result();
Ok(branch)
}
/// return the next meta-interval of the branch, /// return the next meta-interval of the branch,
/// and update inner interval in order to be ranked by the BinaryHeap. /// and update inner interval in order to be ranked by the BinaryHeap.
fn next(&mut self, allowed_candidates: &RoaringBitmap) -> heed::Result<bool> { fn next(&mut self, allowed_candidates: &RoaringBitmap) -> heed::Result<bool> {
let tree_level = self.query_level_iterator.level; // update the first query.
match self.query_level_iterator.next(allowed_candidates, tree_level)? { let index = self.lowest_iterator_index();
Some(last_result) => { match self.query_level_iterator.get_mut(index) {
self.last_result = last_result; Some((cur_pos, cur_docids, qli)) => match qli.next().transpose()? {
self.tree_level = tree_level; Some((next_pos, next_docids)) => {
*cur_pos = next_pos;
*cur_docids |= next_docids & allowed_candidates;
}
None => return Ok(false),
},
None => return Ok(false),
}
self.update_last_result();
Ok(true) Ok(true)
} }
None => Ok(false),
fn lowest_iterator_index(&mut self) -> usize {
let (index, _) = self
.query_level_iterator
.iter_mut()
.map(|(pos, docids, qli)| {
if docids.is_empty() {
0
} else {
qli.peek()
.map(|result| {
result.as_ref().map(|(next_pos, _)| *next_pos - *pos).unwrap_or(0)
})
.unwrap_or(u32::MAX)
}
})
.enumerate()
.min_by_key(|(_, diff)| *diff)
.unwrap_or((0, 0));
index
}
fn update_last_result(&mut self) {
let mut result_pos = 0;
let mut result_docids = None;
for (pos, docids, _qli) in self.query_level_iterator.iter() {
result_pos += pos;
result_docids = result_docids
.take()
.map_or_else(|| Some(docids.clone()), |candidates| Some(candidates & docids));
}
// remove last result docids from inner iterators
if let Some(docids) = result_docids.as_ref() {
for (_, query_docids, _) in self.query_level_iterator.iter_mut() {
*query_docids -= docids;
} }
} }
/// make the current Branch iterate over smaller intervals. self.last_result = (result_pos, result_docids.unwrap_or_default());
fn dig(&mut self, ctx: &'t dyn Context<'t>) -> heed::Result<()> {
self.query_level_iterator = self.query_level_iterator.dig(ctx)?;
Ok(())
}
/// because next() method could be time consuming,
/// update inner interval in order to be ranked by the binary_heap without computing it,
/// the next() method should be called when the real interval is needed.
fn lazy_next(&mut self) {
let u8_level = Into::<u8>::into(self.tree_level);
let interval_size = LEVEL_EXPONENTIATION_BASE.pow(u8_level as u32);
let (left, right, _) = self.last_result;
self.last_result = (left + interval_size, right + interval_size, RoaringBitmap::new());
} }
/// return the score of the current inner interval. /// return the score of the current inner interval.
fn compute_rank(&self) -> u32 { fn compute_rank(&self) -> u32 {
// we compute a rank from the left interval. // we compute a rank from the position.
let (left, _, _) = self.last_result; let (pos, _) = self.last_result;
left.saturating_sub((0..self.branch_size).sum()) * LCM_10_FIRST_NUMBERS / self.branch_size pos.saturating_sub((0..self.branch_size).sum()) * LCM_10_FIRST_NUMBERS / self.branch_size
} }
fn cmp(&self, other: &Self) -> Ordering { fn cmp(&self, other: &Self) -> Ordering {
let self_rank = self.compute_rank(); let self_rank = self.compute_rank();
let other_rank = other.compute_rank(); let other_rank = other.compute_rank();
let left_cmp = self_rank.cmp(&other_rank);
// on level: lower is better,
// we want to dig faster into levels on interesting branches.
let level_cmp = self.tree_level.cmp(&other.tree_level);
left_cmp.then(level_cmp).then(self.last_result.2.len().cmp(&other.last_result.2.len())) // lower rank is better, and because BinaryHeap give the higher ranked branch, we reverse it.
self_rank.cmp(&other_rank).reverse()
} }
} }
impl<'t, 'q> Ord for Branch<'t, 'q> { impl<'t> Ord for Branch<'t> {
fn cmp(&self, other: &Self) -> Ordering { fn cmp(&self, other: &Self) -> Ordering {
self.cmp(other) self.cmp(other)
} }
} }
impl<'t, 'q> PartialOrd for Branch<'t, 'q> { impl<'t> PartialOrd for Branch<'t> {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> { fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other)) Some(self.cmp(other))
} }
} }
impl<'t, 'q> PartialEq for Branch<'t, 'q> { impl<'t> PartialEq for Branch<'t> {
fn eq(&self, other: &Self) -> bool { fn eq(&self, other: &Self) -> bool {
self.cmp(other) == Ordering::Equal self.cmp(other) == Ordering::Equal
} }
} }
impl<'t, 'q> Eq for Branch<'t, 'q> {} impl<'t> Eq for Branch<'t> {}
fn initialize_query_level_iterators<'t, 'q>( fn initialize_set_buckets<'t>(
ctx: &'t dyn Context<'t>,
branches: &'q FlattenedQueryTree,
allowed_candidates: &RoaringBitmap,
wdcache: &mut WordDerivationsCache,
) -> Result<BinaryHeap<Branch<'t, 'q>>> {
let mut positions = BinaryHeap::with_capacity(branches.len());
for branch in branches {
let mut branch_positions = Vec::with_capacity(branch.len());
for queries in branch {
match QueryLevelIterator::new(ctx, queries, wdcache)? {
Some(qli) => branch_positions.push(qli),
None => {
// the branch seems to be invalid, so we skip it.
branch_positions.clear();
break;
}
}
}
// QueryLevelIterator need to be sorted by level and folded in descending order.
branch_positions.sort_unstable_by_key(|qli| qli.level);
let folded_query_level_iterators =
branch_positions.into_iter().fold(None, |fold: Option<QueryLevelIterator>, mut qli| {
match fold {
Some(fold) => {
qli.parent(fold);
Some(qli)
}
None => Some(qli),
}
});
if let Some(mut folded_query_level_iterators) = folded_query_level_iterators {
let tree_level = folded_query_level_iterators.level;
let last_result = folded_query_level_iterators.next(allowed_candidates, tree_level)?;
if let Some(last_result) = last_result {
let branch = Branch {
last_result,
tree_level,
query_level_iterator: folded_query_level_iterators,
branch_size: branch.len() as u32,
};
positions.push(branch);
}
}
}
Ok(positions)
}
fn set_compute_candidates<'t>(
ctx: &'t dyn Context<'t>, ctx: &'t dyn Context<'t>,
branches: &FlattenedQueryTree, branches: &FlattenedQueryTree,
allowed_candidates: &RoaringBitmap, allowed_candidates: &RoaringBitmap,
wdcache: &mut WordDerivationsCache, wdcache: &mut WordDerivationsCache,
) -> Result<Option<RoaringBitmap>> { ) -> Result<BinaryHeap<Branch<'t>>> {
let mut branches_heap = let mut heap = BinaryHeap::new();
initialize_query_level_iterators(ctx, branches, allowed_candidates, wdcache)?; for flatten_branch in branches {
let lowest_level = TreeLevel::min_value(); let branch = Branch::new(ctx, flatten_branch, wdcache, allowed_candidates)?;
heap.push(branch);
}
Ok(heap)
}
fn set_compute_candidates(
branches_heap: &mut BinaryHeap<Branch>,
allowed_candidates: &RoaringBitmap,
) -> Result<Option<(u32, RoaringBitmap)>> {
let mut final_candidates: Option<(u32, RoaringBitmap)> = None; let mut final_candidates: Option<(u32, RoaringBitmap)> = None;
let mut allowed_candidates = allowed_candidates.clone(); let mut allowed_candidates = allowed_candidates.clone();
while let Some(mut branch) = branches_heap.peek_mut() { while let Some(mut branch) = branches_heap.peek_mut() {
let is_lowest_level = branch.tree_level == lowest_level;
let branch_rank = branch.compute_rank();
// if current is worst than best we break to return // if current is worst than best we break to return
// candidates that correspond to the best rank // candidates that correspond to the best rank
let branch_rank = branch.compute_rank();
if let Some((best_rank, _)) = final_candidates { if let Some((best_rank, _)) = final_candidates {
if branch_rank > best_rank { if branch_rank > best_rank {
break; break;
} }
} }
let _left = branch.last_result.0;
let candidates = take(&mut branch.last_result.2); let candidates = take(&mut branch.last_result.1);
if candidates.is_empty() { if candidates.is_empty() {
// we don't have candidates, get next interval. // we don't have candidates, get next interval.
if !branch.next(&allowed_candidates)? { if !branch.next(&allowed_candidates)? {
PeekMut::pop(branch); PeekMut::pop(branch);
} }
} else if is_lowest_level { } else {
// we have candidates, but we can't dig deeper.
allowed_candidates -= &candidates; allowed_candidates -= &candidates;
final_candidates = match final_candidates.take() { final_candidates = match final_candidates.take() {
// we add current candidates to best candidates // we add current candidates to best candidates
Some((best_rank, mut best_candidates)) => { Some((best_rank, mut best_candidates)) => {
best_candidates |= candidates; best_candidates |= candidates;
branch.lazy_next(); branch.next(&allowed_candidates)?;
Some((best_rank, best_candidates)) Some((best_rank, best_candidates))
} }
// we take current candidates as best candidates // we take current candidates as best candidates
None => { None => {
branch.lazy_next(); branch.next(&allowed_candidates)?;
Some((branch_rank, candidates)) Some((branch_rank, candidates))
} }
}; };
} else {
// we have candidates, lets dig deeper in levels.
branch.dig(ctx)?;
if !branch.next(&allowed_candidates)? {
PeekMut::pop(branch);
}
} }
} }
Ok(final_candidates.map(|(_rank, candidates)| candidates)) Ok(final_candidates)
} }
fn linear_compute_candidates( fn initialize_linear_buckets(
ctx: &dyn Context, ctx: &dyn Context,
branches: &FlattenedQueryTree, branches: &FlattenedQueryTree,
allowed_candidates: &RoaringBitmap, allowed_candidates: &RoaringBitmap,