mirror of
https://github.com/meilisearch/meilisearch.git
synced 2024-11-26 03:55:07 +08:00
Store the scores for each bucket
Remove optimization where ranking rules are not executed on buckets of a single document when the score needs to be computed
This commit is contained in:
parent
c621a250a7
commit
701d44bd91
@ -3,14 +3,18 @@ use roaring::RoaringBitmap;
|
||||
use super::logger::SearchLogger;
|
||||
use super::ranking_rules::{BoxRankingRule, RankingRuleQueryTrait};
|
||||
use super::SearchContext;
|
||||
use crate::score_details::{ScoreDetails, ScoringStrategy};
|
||||
use crate::search::new::distinct::{apply_distinct_rule, distinct_single_docid, DistinctOutput};
|
||||
use crate::Result;
|
||||
|
||||
pub struct BucketSortOutput {
|
||||
pub docids: Vec<u32>,
|
||||
pub scores: Vec<Vec<ScoreDetails>>,
|
||||
pub all_candidates: RoaringBitmap,
|
||||
}
|
||||
|
||||
// TODO: would probably be good to regroup some of these inside of a struct?
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
pub fn bucket_sort<'ctx, Q: RankingRuleQueryTrait>(
|
||||
ctx: &mut SearchContext<'ctx>,
|
||||
mut ranking_rules: Vec<BoxRankingRule<'ctx, Q>>,
|
||||
@ -18,6 +22,7 @@ pub fn bucket_sort<'ctx, Q: RankingRuleQueryTrait>(
|
||||
universe: &RoaringBitmap,
|
||||
from: usize,
|
||||
length: usize,
|
||||
scoring_strategy: ScoringStrategy,
|
||||
logger: &mut dyn SearchLogger<Q>,
|
||||
) -> Result<BucketSortOutput> {
|
||||
logger.initial_query(query);
|
||||
@ -31,7 +36,11 @@ pub fn bucket_sort<'ctx, Q: RankingRuleQueryTrait>(
|
||||
};
|
||||
|
||||
if universe.len() < from as u64 {
|
||||
return Ok(BucketSortOutput { docids: vec![], all_candidates: universe.clone() });
|
||||
return Ok(BucketSortOutput {
|
||||
docids: vec![],
|
||||
scores: vec![],
|
||||
all_candidates: universe.clone(),
|
||||
});
|
||||
}
|
||||
if ranking_rules.is_empty() {
|
||||
if let Some(distinct_fid) = distinct_fid {
|
||||
@ -49,22 +58,32 @@ pub fn bucket_sort<'ctx, Q: RankingRuleQueryTrait>(
|
||||
}
|
||||
let mut all_candidates = universe - excluded;
|
||||
all_candidates.extend(results.iter().copied());
|
||||
return Ok(BucketSortOutput { docids: results, all_candidates });
|
||||
return Ok(BucketSortOutput {
|
||||
scores: vec![Default::default(); results.len()],
|
||||
docids: results,
|
||||
all_candidates,
|
||||
});
|
||||
} else {
|
||||
let docids = universe.iter().skip(from).take(length).collect();
|
||||
return Ok(BucketSortOutput { docids, all_candidates: universe.clone() });
|
||||
let docids: Vec<u32> = universe.iter().skip(from).take(length).collect();
|
||||
return Ok(BucketSortOutput {
|
||||
scores: vec![Default::default(); docids.len()],
|
||||
docids,
|
||||
all_candidates: universe.clone(),
|
||||
});
|
||||
};
|
||||
}
|
||||
|
||||
let ranking_rules_len = ranking_rules.len();
|
||||
|
||||
logger.start_iteration_ranking_rule(0, ranking_rules[0].as_ref(), query, universe);
|
||||
|
||||
ranking_rules[0].start_iteration(ctx, logger, universe, query)?;
|
||||
|
||||
let mut ranking_rule_scores: Vec<ScoreDetails> = vec![];
|
||||
|
||||
let mut ranking_rule_universes: Vec<RoaringBitmap> =
|
||||
vec![RoaringBitmap::default(); ranking_rules_len];
|
||||
ranking_rule_universes[0] = universe.clone();
|
||||
|
||||
let mut cur_ranking_rule_index = 0;
|
||||
|
||||
/// Finish iterating over the current ranking rule, yielding
|
||||
@ -89,11 +108,15 @@ pub fn bucket_sort<'ctx, Q: RankingRuleQueryTrait>(
|
||||
} else {
|
||||
cur_ranking_rule_index -= 1;
|
||||
}
|
||||
if ranking_rule_scores.len() > cur_ranking_rule_index {
|
||||
ranking_rule_scores.pop();
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
let mut all_candidates = universe.clone();
|
||||
let mut valid_docids = vec![];
|
||||
let mut valid_scores = vec![];
|
||||
let mut cur_offset = 0usize;
|
||||
|
||||
macro_rules! maybe_add_to_results {
|
||||
@ -104,21 +127,26 @@ pub fn bucket_sort<'ctx, Q: RankingRuleQueryTrait>(
|
||||
length,
|
||||
logger,
|
||||
&mut valid_docids,
|
||||
&mut valid_scores,
|
||||
&mut all_candidates,
|
||||
&mut ranking_rule_universes,
|
||||
&mut ranking_rules,
|
||||
cur_ranking_rule_index,
|
||||
&mut cur_offset,
|
||||
distinct_fid,
|
||||
&ranking_rule_scores,
|
||||
$candidates,
|
||||
)?;
|
||||
};
|
||||
}
|
||||
|
||||
while valid_docids.len() < length {
|
||||
// The universe for this bucket is zero or one element, so we don't need to sort
|
||||
// anything, just extend the results and go back to the parent ranking rule.
|
||||
if ranking_rule_universes[cur_ranking_rule_index].len() <= 1 {
|
||||
// The universe for this bucket is zero, so we don't need to sort
|
||||
// anything, just go back to the parent ranking rule.
|
||||
if ranking_rule_universes[cur_ranking_rule_index].is_empty()
|
||||
|| (scoring_strategy == ScoringStrategy::Skip
|
||||
&& ranking_rule_universes[cur_ranking_rule_index].len() == 1)
|
||||
{
|
||||
let bucket = std::mem::take(&mut ranking_rule_universes[cur_ranking_rule_index]);
|
||||
maybe_add_to_results!(bucket);
|
||||
back!();
|
||||
@ -130,6 +158,8 @@ pub fn bucket_sort<'ctx, Q: RankingRuleQueryTrait>(
|
||||
continue;
|
||||
};
|
||||
|
||||
ranking_rule_scores.push(next_bucket.score);
|
||||
|
||||
logger.next_bucket_ranking_rule(
|
||||
cur_ranking_rule_index,
|
||||
ranking_rules[cur_ranking_rule_index].as_ref(),
|
||||
@ -143,10 +173,11 @@ pub fn bucket_sort<'ctx, Q: RankingRuleQueryTrait>(
|
||||
ranking_rule_universes[cur_ranking_rule_index] -= &next_bucket.candidates;
|
||||
|
||||
if cur_ranking_rule_index == ranking_rules_len - 1
|
||||
|| next_bucket.candidates.len() <= 1
|
||||
|| (scoring_strategy == ScoringStrategy::Skip && next_bucket.candidates.len() <= 1)
|
||||
|| cur_offset + (next_bucket.candidates.len() as usize) < from
|
||||
{
|
||||
maybe_add_to_results!(next_bucket.candidates);
|
||||
ranking_rule_scores.pop();
|
||||
continue;
|
||||
}
|
||||
|
||||
@ -166,7 +197,7 @@ pub fn bucket_sort<'ctx, Q: RankingRuleQueryTrait>(
|
||||
)?;
|
||||
}
|
||||
|
||||
Ok(BucketSortOutput { docids: valid_docids, all_candidates })
|
||||
Ok(BucketSortOutput { docids: valid_docids, scores: valid_scores, all_candidates })
|
||||
}
|
||||
|
||||
/// Add the candidates to the results. Take `distinct`, `from`, `length`, and `cur_offset`
|
||||
@ -179,14 +210,18 @@ fn maybe_add_to_results<'ctx, Q: RankingRuleQueryTrait>(
|
||||
logger: &mut dyn SearchLogger<Q>,
|
||||
|
||||
valid_docids: &mut Vec<u32>,
|
||||
valid_scores: &mut Vec<Vec<ScoreDetails>>,
|
||||
all_candidates: &mut RoaringBitmap,
|
||||
|
||||
ranking_rule_universes: &mut [RoaringBitmap],
|
||||
ranking_rules: &mut [BoxRankingRule<'ctx, Q>],
|
||||
|
||||
cur_ranking_rule_index: usize,
|
||||
|
||||
cur_offset: &mut usize,
|
||||
|
||||
distinct_fid: Option<u16>,
|
||||
ranking_rule_scores: &[ScoreDetails],
|
||||
candidates: RoaringBitmap,
|
||||
) -> Result<()> {
|
||||
// First apply the distinct rule on the candidates, reducing the universes if necessary
|
||||
@ -231,13 +266,17 @@ fn maybe_add_to_results<'ctx, Q: RankingRuleQueryTrait>(
|
||||
let candidates =
|
||||
candidates.iter().take(length - valid_docids.len()).copied().collect::<Vec<_>>();
|
||||
logger.add_to_results(&candidates);
|
||||
valid_docids.extend(&candidates);
|
||||
valid_docids.extend_from_slice(&candidates);
|
||||
valid_scores
|
||||
.extend(std::iter::repeat(ranking_rule_scores.to_owned()).take(candidates.len()));
|
||||
}
|
||||
} else {
|
||||
// if we have passed the offset already, add some of the documents (up to the limit)
|
||||
let candidates = candidates.iter().take(length - valid_docids.len()).collect::<Vec<u32>>();
|
||||
logger.add_to_results(&candidates);
|
||||
valid_docids.extend(&candidates);
|
||||
valid_docids.extend_from_slice(&candidates);
|
||||
valid_scores
|
||||
.extend(std::iter::repeat(ranking_rule_scores.to_owned()).take(candidates.len()));
|
||||
}
|
||||
|
||||
*cur_offset += candidates.len() as usize;
|
||||
|
@ -44,6 +44,7 @@ use self::geo_sort::GeoSort;
|
||||
pub use self::geo_sort::Strategy as GeoSortStrategy;
|
||||
use self::graph_based_ranking_rule::Words;
|
||||
use self::interner::Interned;
|
||||
use crate::score_details::{ScoreDetails, ScoringStrategy};
|
||||
use crate::search::new::distinct::apply_distinct_rule;
|
||||
use crate::{AscDesc, DocumentId, Filter, Index, Member, Result, TermsMatchingStrategy, UserError};
|
||||
|
||||
@ -411,7 +412,16 @@ pub fn execute_search(
|
||||
universe =
|
||||
resolve_universe(ctx, &universe, &graph, terms_matching_strategy, query_graph_logger)?;
|
||||
|
||||
bucket_sort(ctx, ranking_rules, &graph, &universe, from, length, query_graph_logger)?
|
||||
bucket_sort(
|
||||
ctx,
|
||||
ranking_rules,
|
||||
&graph,
|
||||
&universe,
|
||||
from,
|
||||
length,
|
||||
ScoringStrategy::Skip,
|
||||
query_graph_logger,
|
||||
)?
|
||||
} else {
|
||||
let ranking_rules =
|
||||
get_ranking_rules_for_placeholder_search(ctx, sort_criteria, geo_strategy)?;
|
||||
@ -422,17 +432,20 @@ pub fn execute_search(
|
||||
&universe,
|
||||
from,
|
||||
length,
|
||||
ScoringStrategy::Skip,
|
||||
placeholder_search_logger,
|
||||
)?
|
||||
};
|
||||
|
||||
let BucketSortOutput { docids, mut all_candidates } = bucket_sort_output;
|
||||
let BucketSortOutput { docids, scores, mut all_candidates } = bucket_sort_output;
|
||||
|
||||
let fields_ids_map = ctx.index.fields_ids_map(ctx.txn)?;
|
||||
|
||||
// The candidates is the universe unless the exhaustive number of hits
|
||||
// is requested and a distinct attribute is set.
|
||||
if exhaustive_number_hits {
|
||||
if let Some(f) = ctx.index.distinct_field(ctx.txn)? {
|
||||
if let Some(distinct_fid) = ctx.index.fields_ids_map(ctx.txn)?.id(f) {
|
||||
if let Some(distinct_fid) = fields_ids_map.id(f) {
|
||||
all_candidates = apply_distinct_rule(ctx, distinct_fid, &all_candidates)?.remaining;
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user