diff --git a/src/best_proximity.rs b/src/best_proximity.rs index 667e7a3a9..11fd4c0ba 100644 --- a/src/best_proximity.rs +++ b/src/best_proximity.rs @@ -4,6 +4,21 @@ const ONE_ATTRIBUTE: u32 = 1000; const MAX_INDEX: u32 = ONE_ATTRIBUTE - 1; const MAX_DISTANCE: u32 = 8; +fn index_proximity(lhs: u32, rhs: u32) -> u32 { + if lhs < rhs { + cmp::min(rhs - lhs, MAX_DISTANCE) + } else { + cmp::min(lhs - rhs, MAX_DISTANCE) + 1 + } +} + +fn positions_proximity(lhs: u32, rhs: u32) -> u32 { + let (lhs_attr, lhs_index) = extract_position(lhs); + let (rhs_attr, rhs_index) = extract_position(rhs); + if lhs_attr != rhs_attr { MAX_DISTANCE } + else { index_proximity(lhs_index, rhs_index) } +} + // Returns the attribute and index parts. fn extract_position(position: u32) -> (u32, u32) { (position / ONE_ATTRIBUTE, position % ONE_ATTRIBUTE) @@ -15,6 +30,7 @@ fn construct_position(attr: u32, index: u32) -> u32 { } // TODO we should use an sdset::Set for `next_positions`. +// TODO We must not recursively search for the best proximity but return None if proximity is not found. // Returns the positions to focus that will give the best possible proximity. fn best_proximity_for(current_position: u32, proximity: u32, next_positions: &[u32]) -> Option<(u32, Vec)> { let (current_attr, _) = extract_position(current_position); @@ -108,42 +124,72 @@ fn best_proximity_for(current_position: u32, proximity: u32, next_positions: &[u pub struct BestProximity { positions: Vec>, - current_proximity: Option<(u32, Vec<(u32, usize)>)>, // where we are + best_proximities: Option>, } impl BestProximity { pub fn new(positions: Vec>) -> BestProximity { - BestProximity { positions, current_proximity: None } + BestProximity { positions, best_proximities: None } } } impl Iterator for BestProximity { - type Item = (u32, Vec); + type Item = (u32, Vec>); fn next(&mut self) -> Option { - let output = Vec::new(); - let best_proximity = 0; + match &mut self.best_proximities { + Some(best_proximities) => { + let expected_proximity = best_proximities.iter().sum::() + 1; + dbg!(expected_proximity); - for (i, positions) in self.positions.iter().enumerate() { - if let Some(next_positions) = self.positions.get(i + 1) { - for x in positions { - let p = next_positions.binary_search(&x); - let y = next_positions.get(p.unwrap_or_else(|p| p)); - eprintln!("{:?} gives {:?} ({:?})", x, p, y); + for (i, (win, proximity)) in self.positions.windows(2).zip(best_proximities.iter()).enumerate() { + let (posa, posb) = (&win[0], &win[1]); + dbg!(proximity, posa, posb); + let expected_proximity = proximity + 1; + let best_proximity = posa.iter().filter_map(|pa| { + best_proximity_for(*pa, expected_proximity, posb).map(|res| (*pa, res)) + }).min(); + dbg!(best_proximity); + } + + None + }, + None => { + let expected_proximity = 0; + let mut best_results = Vec::new(); + + for win in self.positions.windows(2) { + let (posa, posb) = (&win[0], &win[1]); + match best_results.last() { + Some((start, _)) => { + // We know from where we must continue searching for the best path. + let (best_proximity, positions) = dbg!(best_proximity_for(*start, expected_proximity, posb).unwrap()); + best_results.push((positions[0], best_proximity)); + }, + None => { + // This is the first loop, we need to find the best start of the path. + let best_proximity = posa.iter().filter_map(|pa| { + best_proximity_for(*pa, expected_proximity, posb).map(|res| (*pa, res)) + }).min(); + let (pa, (best_proximity, positions)) = best_proximity.unwrap(); + // We must save the best start of path we found. + best_results.push((pa, 0)); + // And the next associated position along with the proximity between those. + best_results.push((positions[0], best_proximity)); + } + } + } + + if best_results.is_empty() { + None + } else { + let proximity = best_results.windows(2).map(|ps| positions_proximity(ps[0].0, ps[1].0)).sum::(); + self.best_proximities = Some(best_results.iter().skip(1).map(|(_, p)| *p).collect()); + let best_positions = best_results.into_iter().map(|(x, _)| vec![x]).collect(); + Some((proximity, best_positions)) } } } - - // match &mut self.current_proximity { - // Some((_prox, _pos)) => { - // // ... - // }, - // None => { - // // ... - // }, - // } - - Some((best_proximity, output)) } } @@ -160,15 +206,16 @@ mod tests { ]; let mut iter = BestProximity::new(positions); - assert_eq!(iter.next(), Some((1+2, vec![0, 1, 3]))); // 3 - assert_eq!(iter.next(), Some((2+2, vec![2, 1, 3]))); // 4 - assert_eq!(iter.next(), Some((3+2, vec![3, 1, 3]))); // 5 - assert_eq!(iter.next(), Some((1+5, vec![0, 1, 6]))); // 6 - assert_eq!(iter.next(), Some((4+2, vec![4, 1, 3]))); // 6 - assert_eq!(iter.next(), Some((2+5, vec![2, 1, 6]))); // 7 - assert_eq!(iter.next(), Some((3+5, vec![3, 1, 6]))); // 8 - assert_eq!(iter.next(), Some((4+5, vec![4, 1, 6]))); // 9 - assert_eq!(iter.next(), None); + assert_eq!(iter.next(), Some((1+2, vec![vec![0], vec![1], vec![3]]))); // 3 + eprintln!("------------------"); + assert_eq!(iter.next(), Some((2+2, vec![vec![2], vec![1], vec![3]]))); // 4 + // assert_eq!(iter.next(), Some((3+2, vec![3, 1, 3]))); // 5 + // assert_eq!(iter.next(), Some((1+5, vec![0, 1, 6]))); // 6 + // assert_eq!(iter.next(), Some((4+2, vec![4, 1, 3]))); // 6 + // assert_eq!(iter.next(), Some((2+5, vec![2, 1, 6]))); // 7 + // assert_eq!(iter.next(), Some((3+5, vec![3, 1, 6]))); // 8 + // assert_eq!(iter.next(), Some((4+5, vec![4, 1, 6]))); // 9 + // assert_eq!(iter.next(), None); } #[test]