mirror of
https://github.com/meilisearch/meilisearch.git
synced 2024-11-30 09:04:59 +08:00
Compute score for the ranking rules
This commit is contained in:
parent
63ddea8ae4
commit
4a2a6dc529
@ -2,6 +2,7 @@ use roaring::{MultiOps, RoaringBitmap};
|
||||
|
||||
use super::query_graph::QueryGraph;
|
||||
use super::ranking_rules::{RankingRule, RankingRuleOutput};
|
||||
use crate::score_details::{self, ScoreDetails};
|
||||
use crate::search::new::query_graph::QueryNodeData;
|
||||
use crate::search::new::query_term::ExactTerm;
|
||||
use crate::{Result, SearchContext, SearchLogger};
|
||||
@ -244,7 +245,13 @@ impl State {
|
||||
candidates &= universe;
|
||||
(
|
||||
State::AttributeStarts(query_graph.clone(), candidates_per_attribute),
|
||||
Some(RankingRuleOutput { query: query_graph, candidates }),
|
||||
Some(RankingRuleOutput {
|
||||
query: query_graph,
|
||||
candidates,
|
||||
score: ScoreDetails::ExactAttribute(
|
||||
score_details::ExactAttribute::MatchesFull,
|
||||
),
|
||||
}),
|
||||
)
|
||||
}
|
||||
State::AttributeStarts(query_graph, candidates_per_attribute) => {
|
||||
@ -257,12 +264,24 @@ impl State {
|
||||
candidates &= universe;
|
||||
(
|
||||
State::Empty(query_graph.clone()),
|
||||
Some(RankingRuleOutput { query: query_graph, candidates }),
|
||||
Some(RankingRuleOutput {
|
||||
query: query_graph,
|
||||
candidates,
|
||||
score: ScoreDetails::ExactAttribute(
|
||||
score_details::ExactAttribute::MatchesStart,
|
||||
),
|
||||
}),
|
||||
)
|
||||
}
|
||||
State::Empty(query_graph) => (
|
||||
State::Empty(query_graph.clone()),
|
||||
Some(RankingRuleOutput { query: query_graph, candidates: universe.clone() }),
|
||||
Some(RankingRuleOutput {
|
||||
query: query_graph,
|
||||
candidates: universe.clone(),
|
||||
score: ScoreDetails::ExactAttribute(
|
||||
score_details::ExactAttribute::NoExactMatch,
|
||||
),
|
||||
}),
|
||||
),
|
||||
};
|
||||
(state, output)
|
||||
|
@ -8,6 +8,7 @@ use rstar::RTree;
|
||||
|
||||
use super::ranking_rules::{RankingRule, RankingRuleOutput, RankingRuleQueryTrait};
|
||||
use crate::heed_codec::facet::{FieldDocIdFacetCodec, OrderedF64Codec};
|
||||
use crate::score_details::{self, ScoreDetails};
|
||||
use crate::{
|
||||
distance_between_two_points, lat_lng_to_xyz, GeoPoint, Index, Result, SearchContext,
|
||||
SearchLogger,
|
||||
@ -80,7 +81,7 @@ pub struct GeoSort<Q: RankingRuleQueryTrait> {
|
||||
field_ids: Option<[u16; 2]>,
|
||||
rtree: Option<RTree<GeoPoint>>,
|
||||
|
||||
cached_sorted_docids: VecDeque<u32>,
|
||||
cached_sorted_docids: VecDeque<(u32, [f64; 2])>,
|
||||
geo_candidates: RoaringBitmap,
|
||||
}
|
||||
|
||||
@ -130,7 +131,7 @@ impl<Q: RankingRuleQueryTrait> GeoSort<Q> {
|
||||
let point = lat_lng_to_xyz(&self.point);
|
||||
for point in rtree.nearest_neighbor_iter(&point) {
|
||||
if self.geo_candidates.contains(point.data.0) {
|
||||
self.cached_sorted_docids.push_back(point.data.0);
|
||||
self.cached_sorted_docids.push_back(point.data);
|
||||
if self.cached_sorted_docids.len() >= cache_size {
|
||||
break;
|
||||
}
|
||||
@ -142,7 +143,7 @@ impl<Q: RankingRuleQueryTrait> GeoSort<Q> {
|
||||
let point = lat_lng_to_xyz(&opposite_of(self.point));
|
||||
for point in rtree.nearest_neighbor_iter(&point) {
|
||||
if self.geo_candidates.contains(point.data.0) {
|
||||
self.cached_sorted_docids.push_front(point.data.0);
|
||||
self.cached_sorted_docids.push_front(point.data);
|
||||
if self.cached_sorted_docids.len() >= cache_size {
|
||||
break;
|
||||
}
|
||||
@ -177,7 +178,7 @@ impl<Q: RankingRuleQueryTrait> GeoSort<Q> {
|
||||
// computing the distance between two points is expensive thus we cache the result
|
||||
documents
|
||||
.sort_by_cached_key(|(_, p)| distance_between_two_points(&self.point, p) as usize);
|
||||
self.cached_sorted_docids.extend(documents.into_iter().map(|(doc_id, _)| doc_id));
|
||||
self.cached_sorted_docids.extend(documents.into_iter());
|
||||
};
|
||||
|
||||
Ok(())
|
||||
@ -220,12 +221,19 @@ impl<'ctx, Q: RankingRuleQueryTrait> RankingRule<'ctx, Q> for GeoSort<Q> {
|
||||
logger: &mut dyn SearchLogger<Q>,
|
||||
universe: &RoaringBitmap,
|
||||
) -> Result<Option<RankingRuleOutput<Q>>> {
|
||||
assert!(universe.len() > 1);
|
||||
let query = self.query.as_ref().unwrap().clone();
|
||||
self.geo_candidates &= universe;
|
||||
|
||||
if self.geo_candidates.is_empty() {
|
||||
return Ok(Some(RankingRuleOutput { query, candidates: universe.clone() }));
|
||||
return Ok(Some(RankingRuleOutput {
|
||||
query,
|
||||
candidates: universe.clone(),
|
||||
score: ScoreDetails::GeoSort(score_details::GeoSort {
|
||||
target_point: self.point,
|
||||
ascending: self.ascending,
|
||||
value: None,
|
||||
}),
|
||||
}));
|
||||
}
|
||||
|
||||
let ascending = self.ascending;
|
||||
@ -236,11 +244,16 @@ impl<'ctx, Q: RankingRuleQueryTrait> RankingRule<'ctx, Q> for GeoSort<Q> {
|
||||
cache.pop_back()
|
||||
}
|
||||
};
|
||||
while let Some(id) = next(&mut self.cached_sorted_docids) {
|
||||
while let Some((id, point)) = next(&mut self.cached_sorted_docids) {
|
||||
if self.geo_candidates.contains(id) {
|
||||
return Ok(Some(RankingRuleOutput {
|
||||
query,
|
||||
candidates: RoaringBitmap::from_iter([id]),
|
||||
score: ScoreDetails::GeoSort(score_details::GeoSort {
|
||||
target_point: self.point,
|
||||
ascending: self.ascending,
|
||||
value: Some(point),
|
||||
}),
|
||||
}));
|
||||
}
|
||||
}
|
||||
|
@ -50,6 +50,7 @@ use super::ranking_rule_graph::{
|
||||
};
|
||||
use super::small_bitmap::SmallBitmap;
|
||||
use super::{QueryGraph, RankingRule, RankingRuleOutput, SearchContext};
|
||||
use crate::score_details::Rank;
|
||||
use crate::search::new::query_term::LocatedQueryTermSubset;
|
||||
use crate::search::new::ranking_rule_graph::PathVisitor;
|
||||
use crate::{Result, TermsMatchingStrategy};
|
||||
@ -118,6 +119,8 @@ pub struct GraphBasedRankingRuleState<G: RankingRuleGraphTrait> {
|
||||
all_costs: MappedInterner<QueryNode, Vec<u64>>,
|
||||
/// An index in the first element of `all_distances`, giving the cost of the next bucket
|
||||
cur_cost: u64,
|
||||
/// One above the highest possible cost for this rule
|
||||
next_max_cost: u64,
|
||||
}
|
||||
|
||||
impl<'ctx, G: RankingRuleGraphTrait> RankingRule<'ctx, QueryGraph> for GraphBasedRankingRule<G> {
|
||||
@ -161,12 +164,16 @@ impl<'ctx, G: RankingRuleGraphTrait> RankingRule<'ctx, QueryGraph> for GraphBase
|
||||
// Then pre-compute the cost of all paths from each node to the end node
|
||||
let all_costs = graph.find_all_costs_to_end();
|
||||
|
||||
let next_max_cost =
|
||||
all_costs.get(graph.query_graph.root_node).iter().copied().max().unwrap_or(0) + 1;
|
||||
|
||||
let state = GraphBasedRankingRuleState {
|
||||
graph,
|
||||
conditions_cache: condition_docids_cache,
|
||||
dead_ends_cache,
|
||||
all_costs,
|
||||
cur_cost: 0,
|
||||
next_max_cost,
|
||||
};
|
||||
|
||||
self.state = Some(state);
|
||||
@ -180,17 +187,13 @@ impl<'ctx, G: RankingRuleGraphTrait> RankingRule<'ctx, QueryGraph> for GraphBase
|
||||
logger: &mut dyn SearchLogger<QueryGraph>,
|
||||
universe: &RoaringBitmap,
|
||||
) -> Result<Option<RankingRuleOutput<QueryGraph>>> {
|
||||
// If universe.len() <= 1, the bucket sort algorithm
|
||||
// should not have called this function.
|
||||
assert!(universe.len() > 1);
|
||||
// Will crash if `next_bucket` is called before `start_iteration` or after `end_iteration`,
|
||||
// should never happen
|
||||
let mut state = self.state.take().unwrap();
|
||||
|
||||
let all_costs = state.all_costs.get(state.graph.query_graph.root_node);
|
||||
// Retrieve the cost of the paths to compute
|
||||
let Some(&cost) = state
|
||||
.all_costs
|
||||
.get(state.graph.query_graph.root_node)
|
||||
let Some(&cost) = all_costs
|
||||
.iter()
|
||||
.find(|c| **c >= state.cur_cost) else {
|
||||
self.state = None;
|
||||
@ -206,8 +209,12 @@ impl<'ctx, G: RankingRuleGraphTrait> RankingRule<'ctx, QueryGraph> for GraphBase
|
||||
dead_ends_cache,
|
||||
all_costs,
|
||||
cur_cost: _,
|
||||
next_max_cost,
|
||||
} = &mut state;
|
||||
|
||||
let rank = *next_max_cost - cost;
|
||||
let score = G::rank_to_score(Rank { rank: rank as u32, max_rank: *next_max_cost as u32 });
|
||||
|
||||
let mut universe = universe.clone();
|
||||
|
||||
let mut used_conditions = SmallBitmap::for_interned_values_in(&graph.conditions_interner);
|
||||
@ -324,7 +331,7 @@ impl<'ctx, G: RankingRuleGraphTrait> RankingRule<'ctx, QueryGraph> for GraphBase
|
||||
|
||||
self.state = Some(state);
|
||||
|
||||
Ok(Some(RankingRuleOutput { query: next_query_graph, candidates: bucket }))
|
||||
Ok(Some(RankingRuleOutput { query: next_query_graph, candidates: bucket, score }))
|
||||
}
|
||||
|
||||
fn end_iteration(
|
||||
|
@ -44,6 +44,7 @@ use self::geo_sort::GeoSort;
|
||||
pub use self::geo_sort::Strategy as GeoSortStrategy;
|
||||
use self::graph_based_ranking_rule::Words;
|
||||
use self::interner::Interned;
|
||||
use crate::score_details::ScoreDetails;
|
||||
use crate::search::new::distinct::apply_distinct_rule;
|
||||
use crate::{AscDesc, DocumentId, Filter, Index, Member, Result, TermsMatchingStrategy, UserError};
|
||||
|
||||
|
@ -1,6 +1,7 @@
|
||||
use roaring::RoaringBitmap;
|
||||
|
||||
use super::{ComputedCondition, RankingRuleGraphTrait};
|
||||
use crate::score_details::{Rank, ScoreDetails};
|
||||
use crate::search::new::interner::{DedupInterner, Interned};
|
||||
use crate::search::new::query_term::{ExactTerm, LocatedQueryTermSubset};
|
||||
use crate::search::new::resolve_query_graph::compute_query_term_subset_docids;
|
||||
@ -84,4 +85,8 @@ impl RankingRuleGraphTrait for ExactnessGraph {
|
||||
|
||||
Ok(vec![(0, exact_condition), (dest_node.term_ids.len() as u32, skip_condition)])
|
||||
}
|
||||
|
||||
fn rank_to_score(rank: Rank) -> ScoreDetails {
|
||||
ScoreDetails::Exactness(rank)
|
||||
}
|
||||
}
|
||||
|
@ -2,6 +2,7 @@ use fxhash::FxHashSet;
|
||||
use roaring::RoaringBitmap;
|
||||
|
||||
use super::{ComputedCondition, RankingRuleGraphTrait};
|
||||
use crate::score_details::{Rank, ScoreDetails};
|
||||
use crate::search::new::interner::{DedupInterner, Interned};
|
||||
use crate::search::new::query_term::LocatedQueryTermSubset;
|
||||
use crate::search::new::resolve_query_graph::compute_query_term_subset_docids_within_field_id;
|
||||
@ -107,4 +108,8 @@ impl RankingRuleGraphTrait for FidGraph {
|
||||
|
||||
Ok(edges)
|
||||
}
|
||||
|
||||
fn rank_to_score(rank: Rank) -> ScoreDetails {
|
||||
ScoreDetails::Fid(rank)
|
||||
}
|
||||
}
|
||||
|
@ -41,6 +41,7 @@ use super::interner::{DedupInterner, FixedSizeInterner, Interned, MappedInterner
|
||||
use super::query_term::LocatedQueryTermSubset;
|
||||
use super::small_bitmap::SmallBitmap;
|
||||
use super::{QueryGraph, QueryNode, SearchContext};
|
||||
use crate::score_details::{Rank, ScoreDetails};
|
||||
use crate::Result;
|
||||
|
||||
pub struct ComputedCondition {
|
||||
@ -110,6 +111,9 @@ pub trait RankingRuleGraphTrait: Sized + 'static {
|
||||
source_node: Option<&LocatedQueryTermSubset>,
|
||||
dest_node: &LocatedQueryTermSubset,
|
||||
) -> Result<Vec<(u32, Interned<Self::Condition>)>>;
|
||||
|
||||
/// Convert the rank of a path to its corresponding score for the ranking rule
|
||||
fn rank_to_score(rank: Rank) -> ScoreDetails;
|
||||
}
|
||||
|
||||
/// The graph used by graph-based ranking rules.
|
||||
|
@ -2,6 +2,7 @@ use fxhash::{FxHashMap, FxHashSet};
|
||||
use roaring::RoaringBitmap;
|
||||
|
||||
use super::{ComputedCondition, RankingRuleGraphTrait};
|
||||
use crate::score_details::{Rank, ScoreDetails};
|
||||
use crate::search::new::interner::{DedupInterner, Interned};
|
||||
use crate::search::new::query_term::LocatedQueryTermSubset;
|
||||
use crate::search::new::resolve_query_graph::compute_query_term_subset_docids_within_position;
|
||||
@ -115,6 +116,10 @@ impl RankingRuleGraphTrait for PositionGraph {
|
||||
|
||||
Ok(edges)
|
||||
}
|
||||
|
||||
fn rank_to_score(rank: Rank) -> ScoreDetails {
|
||||
ScoreDetails::Position(rank)
|
||||
}
|
||||
}
|
||||
|
||||
fn cost_from_position(sum_positions: u32) -> u32 {
|
||||
|
@ -4,6 +4,7 @@ pub mod compute_docids;
|
||||
use roaring::RoaringBitmap;
|
||||
|
||||
use super::{ComputedCondition, RankingRuleGraphTrait};
|
||||
use crate::score_details::{Rank, ScoreDetails};
|
||||
use crate::search::new::interner::{DedupInterner, Interned};
|
||||
use crate::search::new::query_term::LocatedQueryTermSubset;
|
||||
use crate::search::new::SearchContext;
|
||||
@ -36,4 +37,8 @@ impl RankingRuleGraphTrait for ProximityGraph {
|
||||
) -> Result<Vec<(u32, Interned<Self::Condition>)>> {
|
||||
build::build_edges(ctx, conditions_interner, source_term, dest_term)
|
||||
}
|
||||
|
||||
fn rank_to_score(rank: Rank) -> ScoreDetails {
|
||||
ScoreDetails::Proximity(rank)
|
||||
}
|
||||
}
|
||||
|
@ -1,6 +1,7 @@
|
||||
use roaring::RoaringBitmap;
|
||||
|
||||
use super::{ComputedCondition, RankingRuleGraphTrait};
|
||||
use crate::score_details::{self, Rank, ScoreDetails};
|
||||
use crate::search::new::interner::{DedupInterner, Interned};
|
||||
use crate::search::new::query_term::LocatedQueryTermSubset;
|
||||
use crate::search::new::resolve_query_graph::compute_query_term_subset_docids;
|
||||
@ -75,4 +76,8 @@ impl RankingRuleGraphTrait for TypoGraph {
|
||||
}
|
||||
Ok(edges)
|
||||
}
|
||||
|
||||
fn rank_to_score(rank: Rank) -> ScoreDetails {
|
||||
ScoreDetails::Typo(score_details::Typo::from_rank(rank))
|
||||
}
|
||||
}
|
||||
|
@ -1,6 +1,7 @@
|
||||
use roaring::RoaringBitmap;
|
||||
|
||||
use super::{ComputedCondition, RankingRuleGraphTrait};
|
||||
use crate::score_details::{self, Rank, ScoreDetails};
|
||||
use crate::search::new::interner::{DedupInterner, Interned};
|
||||
use crate::search::new::query_term::LocatedQueryTermSubset;
|
||||
use crate::search::new::resolve_query_graph::compute_query_term_subset_docids;
|
||||
@ -43,4 +44,8 @@ impl RankingRuleGraphTrait for WordsGraph {
|
||||
) -> Result<Vec<(u32, Interned<Self::Condition>)>> {
|
||||
Ok(vec![(0, conditions_interner.insert(WordsCondition { term: to_term.clone() }))])
|
||||
}
|
||||
|
||||
fn rank_to_score(rank: Rank) -> ScoreDetails {
|
||||
ScoreDetails::Words(score_details::Words::from_rank(rank))
|
||||
}
|
||||
}
|
||||
|
@ -2,6 +2,7 @@ use roaring::RoaringBitmap;
|
||||
|
||||
use super::logger::SearchLogger;
|
||||
use super::{QueryGraph, SearchContext};
|
||||
use crate::score_details::ScoreDetails;
|
||||
use crate::Result;
|
||||
|
||||
/// An internal trait implemented by only [`PlaceholderQuery`] and [`QueryGraph`]
|
||||
@ -66,4 +67,6 @@ pub struct RankingRuleOutput<Q> {
|
||||
pub query: Q,
|
||||
/// The allowed candidates for the child ranking rule
|
||||
pub candidates: RoaringBitmap,
|
||||
/// The score for the candidates of the current bucket
|
||||
pub score: ScoreDetails,
|
||||
}
|
||||
|
@ -1,9 +1,11 @@
|
||||
use heed::BytesDecode;
|
||||
use roaring::RoaringBitmap;
|
||||
|
||||
use super::logger::SearchLogger;
|
||||
use super::{RankingRule, RankingRuleOutput, RankingRuleQueryTrait, SearchContext};
|
||||
use crate::heed_codec::facet::FacetGroupKeyCodec;
|
||||
use crate::heed_codec::ByteSliceRefCodec;
|
||||
use crate::heed_codec::facet::{FacetGroupKeyCodec, OrderedF64Codec};
|
||||
use crate::heed_codec::{ByteSliceRefCodec, StrRefCodec};
|
||||
use crate::score_details::{self, ScoreDetails};
|
||||
use crate::search::facet::{ascending_facet_sort, descending_facet_sort};
|
||||
use crate::{FieldId, Index, Result};
|
||||
|
||||
@ -118,12 +120,43 @@ impl<'ctx, Query: RankingRuleQueryTrait> RankingRule<'ctx, Query> for Sort<'ctx,
|
||||
|
||||
(itertools::Either::Right(number_iter), itertools::Either::Right(string_iter))
|
||||
};
|
||||
let number_iter = number_iter.map(|r| -> Result<_> {
|
||||
let (docids, bytes) = r?;
|
||||
Ok((
|
||||
docids,
|
||||
serde_json::Value::Number(
|
||||
serde_json::Number::from_f64(
|
||||
OrderedF64Codec::bytes_decode(bytes).expect("some number"),
|
||||
)
|
||||
.expect("too big float"),
|
||||
),
|
||||
))
|
||||
});
|
||||
let string_iter = string_iter.map(|r| -> Result<_> {
|
||||
let (docids, bytes) = r?;
|
||||
Ok((
|
||||
docids,
|
||||
serde_json::Value::String(
|
||||
StrRefCodec::bytes_decode(bytes).expect("some string").to_owned(),
|
||||
),
|
||||
))
|
||||
});
|
||||
|
||||
let query_graph = parent_query.clone();
|
||||
let ascending = self.is_ascending;
|
||||
let field_name = self.field_name.clone();
|
||||
RankingRuleOutputIterWrapper::new(Box::new(number_iter.chain(string_iter).map(
|
||||
move |r| {
|
||||
let (docids, _) = r?;
|
||||
Ok(RankingRuleOutput { query: query_graph.clone(), candidates: docids })
|
||||
let (docids, value) = r?;
|
||||
Ok(RankingRuleOutput {
|
||||
query: query_graph.clone(),
|
||||
candidates: docids,
|
||||
score: ScoreDetails::Sort(score_details::Sort {
|
||||
field_name: field_name.clone(),
|
||||
ascending,
|
||||
value,
|
||||
}),
|
||||
})
|
||||
},
|
||||
)))
|
||||
}
|
||||
@ -150,7 +183,15 @@ impl<'ctx, Query: RankingRuleQueryTrait> RankingRule<'ctx, Query> for Sort<'ctx,
|
||||
Ok(Some(bucket))
|
||||
} else {
|
||||
let query = self.original_query.as_ref().unwrap().clone();
|
||||
Ok(Some(RankingRuleOutput { query, candidates: universe.clone() }))
|
||||
Ok(Some(RankingRuleOutput {
|
||||
query,
|
||||
candidates: universe.clone(),
|
||||
score: ScoreDetails::Sort(score_details::Sort {
|
||||
field_name: self.field_name.clone(),
|
||||
ascending: self.is_ascending,
|
||||
value: serde_json::Value::Null,
|
||||
}),
|
||||
}))
|
||||
}
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user