Reworked the best proximity algo a little bit

This commit is contained in:
Kerollmops 2020-06-12 12:53:08 +02:00
parent 302866ad73
commit 37a48489da
No known key found for this signature in database
GPG Key ID: 92ADA4E935E71FA4

View File

@ -3,8 +3,6 @@ use std::time::Instant;
use pathfinding::directed::astar::astar_bag;
use crate::SmallVec16;
const ONE_ATTRIBUTE: u32 = 1000;
const MAX_DISTANCE: u32 = 8;
@ -28,47 +26,57 @@ fn extract_position(position: u32) -> (u32, u32) {
(position / ONE_ATTRIBUTE, position % ONE_ATTRIBUTE)
}
#[derive(Debug, Default, Clone, PartialOrd, Ord, PartialEq, Eq, Hash)]
struct Path(SmallVec16<u32>);
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
enum Node {
// Is this node is the first node.
Uninit,
Init {
// The layer where this node located.
layer: usize,
// The position where this node is located.
position: u32,
},
}
impl Path {
// TODO we must skip the successors that have already been sent
impl Node {
// TODO we must skip the successors that have already been seen
// TODO we must skip the successors that doesn't return any documents
// this way we are able to skip entire paths
fn successors(&self, positions: &[Vec<u32>], best_proximity: u32) -> Vec<(Path, u32)> {
let next_positions = match positions.get(self.0.len()) {
Some(positions) => positions,
None => return vec![],
};
next_positions.iter()
.filter_map(|p| {
let mut path = self.clone();
path.0.push(*p);
let proximity = path.proximity();
if path.is_complete(positions) && proximity < best_proximity {
fn successors(&self, positions: &[Vec<u32>], best_proximity: u32) -> Vec<(Node, u32)> {
match self {
Node::Uninit => {
positions[0].iter().map(|p| (Node::Init { layer: 0, position: *p }, 0)).collect()
},
// We reached the highest layer
n @ Node::Init { .. } if n.is_complete(positions) => vec![],
Node::Init { layer, position } => {
let layer = layer + 1;
positions[layer].iter().filter_map(|p| {
let proximity = positions_proximity(*position, *p);
let node = Node::Init { layer, position: *p };
// We do not produce the nodes we have already seen in previous iterations loops.
if node.is_complete(positions) && proximity < best_proximity {
None
} else {
Some((path, proximity))
Some((node, proximity))
}
})
.inspect(|p| eprintln!("{:?}", p))
.collect()
}).collect()
}
fn proximity(&self) -> u32 {
self.0.windows(2).map(|ps| positions_proximity(ps[0], ps[1])).sum::<u32>()
}
fn heuristic(&self, positions: &[Vec<u32>]) -> u32 {
let remaining = (positions.len() - self.0.len()) as u32;
self.proximity() + remaining * MAX_DISTANCE
}
fn is_complete(&self, positions: &[Vec<u32>]) -> bool {
let res = positions.len() == self.0.len();
eprintln!("is_complete: {:?} {}", self, res);
res
match self {
Node::Uninit => false,
Node::Init { layer, .. } => *layer == positions.len() - 1,
}
}
fn position(&self) -> Option<u32> {
match self {
Node::Uninit => None,
Node::Init { position, .. } => Some(*position),
}
}
}
@ -93,13 +101,11 @@ impl Iterator for BestProximity {
return None;
}
// We start with nothing
let start = Path::default();
let result = astar_bag(
&start,
|p| p.successors(&self.positions, self.best_proximity),
|p| p.heuristic(&self.positions),
|p| p.is_complete(&self.positions), // success
&Node::Uninit, // start
|n| n.successors(&self.positions, self.best_proximity),
|_| 0, // heuristic
|n| n.is_complete(&self.positions), // success
);
eprintln!("BestProximity::next() took {:.02?}", before.elapsed());
@ -108,9 +114,7 @@ impl Iterator for BestProximity {
Some((paths, proximity)) => {
self.best_proximity = proximity + 1;
// We retrieve the last path that we convert into a Vec
let paths: Vec<_> = paths.map(|p| {
p.last().unwrap().0.to_vec()
}).collect();
let paths: Vec<_> = paths.map(|p| p.iter().filter_map(Node::position).collect()).collect();
eprintln!("result: {} {:?}", proximity, paths);
Some((proximity, paths))
},