mirror of
https://github.com/meilisearch/meilisearch.git
synced 2025-01-19 01:18:31 +08:00
Merge #4509
4509: Rest embedder r=ManyTheFish a=dureuill Fixes #4531 See [Usage page](https://meilisearch.notion.site/v1-8-AI-search-API-usage-135552d6e85a4a52bc7109be82aeca42?pvs=25#e6f58c3b742c4effb4ddc625ce12ee16) ### Implementation changes - Remove tokio, futures, reqwests - Add a new `milli::vector::rest::Embedder` embedder - Update OpenAI and Ollama embedders to use the REST embedder internally - Make Embedder::embed a sync method - Add the new embedder source as described in the usage Co-authored-by: Louis Dureuil <louis@meilisearch.com>
This commit is contained in:
commit
34dfea72cc
5
Cargo.lock
generated
5
Cargo.lock
generated
@ -3338,7 +3338,6 @@ dependencies = [
|
||||
"filter-parser",
|
||||
"flatten-serde-json",
|
||||
"fst",
|
||||
"futures",
|
||||
"fxhash",
|
||||
"geoutils",
|
||||
"grenad",
|
||||
@ -3362,7 +3361,6 @@ dependencies = [
|
||||
"rand",
|
||||
"rand_pcg",
|
||||
"rayon",
|
||||
"reqwest",
|
||||
"roaring",
|
||||
"rstar",
|
||||
"serde",
|
||||
@ -3376,8 +3374,9 @@ dependencies = [
|
||||
"tiktoken-rs",
|
||||
"time",
|
||||
"tokenizers",
|
||||
"tokio",
|
||||
"tracing",
|
||||
"ureq",
|
||||
"url",
|
||||
"uuid",
|
||||
]
|
||||
|
||||
|
@ -353,6 +353,7 @@ impl ErrorCode for milli::Error {
|
||||
| UserError::InvalidOpenAiModelDimensions { .. }
|
||||
| UserError::InvalidOpenAiModelDimensionsMax { .. }
|
||||
| UserError::InvalidSettingsDimensions { .. }
|
||||
| UserError::InvalidUrl { .. }
|
||||
| UserError::InvalidPrompt(_) => Code::InvalidSettingsEmbedders,
|
||||
UserError::TooManyEmbedders(_) => Code::InvalidSettingsEmbedders,
|
||||
UserError::InvalidPromptForEmbeddings(..) => Code::InvalidSettingsEmbedders,
|
||||
|
@ -202,7 +202,7 @@ pub async fn search_with_url_query(
|
||||
let index = index_scheduler.index(&index_uid)?;
|
||||
let features = index_scheduler.features();
|
||||
|
||||
let distribution = embed(&mut query, index_scheduler.get_ref(), &index).await?;
|
||||
let distribution = embed(&mut query, index_scheduler.get_ref(), &index)?;
|
||||
|
||||
let search_result =
|
||||
tokio::task::spawn_blocking(move || perform_search(&index, query, features, distribution))
|
||||
@ -241,7 +241,7 @@ pub async fn search_with_post(
|
||||
|
||||
let features = index_scheduler.features();
|
||||
|
||||
let distribution = embed(&mut query, index_scheduler.get_ref(), &index).await?;
|
||||
let distribution = embed(&mut query, index_scheduler.get_ref(), &index)?;
|
||||
|
||||
let search_result =
|
||||
tokio::task::spawn_blocking(move || perform_search(&index, query, features, distribution))
|
||||
@ -260,7 +260,7 @@ pub async fn search_with_post(
|
||||
Ok(HttpResponse::Ok().json(search_result))
|
||||
}
|
||||
|
||||
pub async fn embed(
|
||||
pub fn embed(
|
||||
query: &mut SearchQuery,
|
||||
index_scheduler: &IndexScheduler,
|
||||
index: &milli::Index,
|
||||
@ -287,7 +287,6 @@ pub async fn embed(
|
||||
|
||||
let embeddings = embedder
|
||||
.embed(vec![q.to_owned()])
|
||||
.await
|
||||
.map_err(milli::vector::Error::from)
|
||||
.map_err(milli::Error::from)?
|
||||
.pop()
|
||||
|
@ -605,6 +605,7 @@ fn embedder_analytics(
|
||||
EmbedderSource::HuggingFace => sources.insert("huggingFace"),
|
||||
EmbedderSource::UserProvided => sources.insert("userProvided"),
|
||||
EmbedderSource::Ollama => sources.insert("ollama"),
|
||||
EmbedderSource::Rest => sources.insert("rest"),
|
||||
};
|
||||
}
|
||||
};
|
||||
|
@ -75,9 +75,8 @@ pub async fn multi_search_with_post(
|
||||
})
|
||||
.with_index(query_index)?;
|
||||
|
||||
let distribution = embed(&mut query, index_scheduler.get_ref(), &index)
|
||||
.await
|
||||
.with_index(query_index)?;
|
||||
let distribution =
|
||||
embed(&mut query, index_scheduler.get_ref(), &index).with_index(query_index)?;
|
||||
|
||||
let search_result = tokio::task::spawn_blocking(move || {
|
||||
perform_search(&index, query, features, distribution)
|
||||
|
@ -80,17 +80,13 @@ tokenizers = { git = "https://github.com/huggingface/tokenizers.git", tag = "v0.
|
||||
hf-hub = { git = "https://github.com/dureuill/hf-hub.git", branch = "rust_tls", default_features = false, features = [
|
||||
"online",
|
||||
] }
|
||||
tokio = { version = "1.35.1", features = ["rt"] }
|
||||
futures = "0.3.30"
|
||||
reqwest = { version = "0.11.23", features = [
|
||||
"rustls-tls",
|
||||
"json",
|
||||
], default-features = false }
|
||||
tiktoken-rs = "0.5.8"
|
||||
liquid = "0.26.4"
|
||||
arroy = "0.2.0"
|
||||
rand = "0.8.5"
|
||||
tracing = "0.1.40"
|
||||
ureq = { version = "2.9.6", features = ["json"] }
|
||||
url = "2.5.0"
|
||||
|
||||
[dev-dependencies]
|
||||
mimalloc = { version = "0.1.39", default-features = false }
|
||||
|
@ -243,6 +243,8 @@ only composed of alphanumeric characters (a-z A-Z 0-9), hyphens (-) and undersco
|
||||
},
|
||||
#[error("`.embedders.{embedder_name}.dimensions`: `dimensions` cannot be zero")]
|
||||
InvalidSettingsDimensions { embedder_name: String },
|
||||
#[error("`.embedders.{embedder_name}.url`: could not parse `{url}`: {inner_error}")]
|
||||
InvalidUrl { embedder_name: String, inner_error: url::ParseError, url: String },
|
||||
}
|
||||
|
||||
impl From<crate::vector::Error> for Error {
|
||||
|
@ -339,6 +339,7 @@ pub fn extract_embeddings<R: io::Read + io::Seek>(
|
||||
prompt_reader: grenad::Reader<R>,
|
||||
indexer: GrenadParameters,
|
||||
embedder: Arc<Embedder>,
|
||||
request_threads: &rayon::ThreadPool,
|
||||
) -> Result<grenad::Reader<BufReader<File>>> {
|
||||
puffin::profile_function!();
|
||||
let n_chunks = embedder.chunk_count_hint(); // chunk level parallelism
|
||||
@ -376,7 +377,10 @@ pub fn extract_embeddings<R: io::Read + io::Seek>(
|
||||
|
||||
if chunks.len() == chunks.capacity() {
|
||||
let chunked_embeds = embedder
|
||||
.embed_chunks(std::mem::replace(&mut chunks, Vec::with_capacity(n_chunks)))
|
||||
.embed_chunks(
|
||||
std::mem::replace(&mut chunks, Vec::with_capacity(n_chunks)),
|
||||
request_threads,
|
||||
)
|
||||
.map_err(crate::vector::Error::from)
|
||||
.map_err(crate::Error::from)?;
|
||||
|
||||
@ -394,7 +398,7 @@ pub fn extract_embeddings<R: io::Read + io::Seek>(
|
||||
// send last chunk
|
||||
if !chunks.is_empty() {
|
||||
let chunked_embeds = embedder
|
||||
.embed_chunks(std::mem::take(&mut chunks))
|
||||
.embed_chunks(std::mem::take(&mut chunks), request_threads)
|
||||
.map_err(crate::vector::Error::from)
|
||||
.map_err(crate::Error::from)?;
|
||||
for (docid, embeddings) in chunks_ids
|
||||
@ -408,7 +412,7 @@ pub fn extract_embeddings<R: io::Read + io::Seek>(
|
||||
|
||||
if !current_chunk.is_empty() {
|
||||
let embeds = embedder
|
||||
.embed_chunks(vec![std::mem::take(&mut current_chunk)])
|
||||
.embed_chunks(vec![std::mem::take(&mut current_chunk)], request_threads)
|
||||
.map_err(crate::vector::Error::from)
|
||||
.map_err(crate::Error::from)?;
|
||||
|
||||
|
@ -238,6 +238,12 @@ fn send_original_documents_data(
|
||||
|
||||
let documents_chunk_cloned = original_documents_chunk.clone();
|
||||
let lmdb_writer_sx_cloned = lmdb_writer_sx.clone();
|
||||
|
||||
let request_threads = rayon::ThreadPoolBuilder::new()
|
||||
.num_threads(crate::vector::REQUEST_PARALLELISM)
|
||||
.thread_name(|index| format!("embedding-request-{index}"))
|
||||
.build()?;
|
||||
|
||||
rayon::spawn(move || {
|
||||
for (name, (embedder, prompt)) in embedders {
|
||||
let result = extract_vector_points(
|
||||
@ -249,7 +255,12 @@ fn send_original_documents_data(
|
||||
);
|
||||
match result {
|
||||
Ok(ExtractedVectorPoints { manual_vectors, remove_vectors, prompts }) => {
|
||||
let embeddings = match extract_embeddings(prompts, indexer, embedder.clone()) {
|
||||
let embeddings = match extract_embeddings(
|
||||
prompts,
|
||||
indexer,
|
||||
embedder.clone(),
|
||||
&request_threads,
|
||||
) {
|
||||
Ok(results) => Some(results),
|
||||
Err(error) => {
|
||||
let _ = lmdb_writer_sx_cloned.send(Err(error));
|
||||
|
@ -2646,6 +2646,12 @@ mod tests {
|
||||
api_key: Setting::NotSet,
|
||||
dimensions: Setting::Set(3),
|
||||
document_template: Setting::NotSet,
|
||||
url: Setting::NotSet,
|
||||
query: Setting::NotSet,
|
||||
input_field: Setting::NotSet,
|
||||
path_to_embeddings: Setting::NotSet,
|
||||
embedding_object: Setting::NotSet,
|
||||
input_type: Setting::NotSet,
|
||||
}),
|
||||
);
|
||||
settings.set_embedder_settings(embedders);
|
||||
|
@ -1140,6 +1140,12 @@ fn validate_prompt(
|
||||
api_key,
|
||||
dimensions,
|
||||
document_template: Setting::Set(template),
|
||||
url,
|
||||
query,
|
||||
input_field,
|
||||
path_to_embeddings,
|
||||
embedding_object,
|
||||
input_type,
|
||||
}) => {
|
||||
// validate
|
||||
let template = crate::prompt::Prompt::new(template)
|
||||
@ -1153,6 +1159,12 @@ fn validate_prompt(
|
||||
api_key,
|
||||
dimensions,
|
||||
document_template: Setting::Set(template),
|
||||
url,
|
||||
query,
|
||||
input_field,
|
||||
path_to_embeddings,
|
||||
embedding_object,
|
||||
input_type,
|
||||
}))
|
||||
}
|
||||
new => Ok(new),
|
||||
@ -1165,8 +1177,20 @@ pub fn validate_embedding_settings(
|
||||
) -> Result<Setting<EmbeddingSettings>> {
|
||||
let settings = validate_prompt(name, settings)?;
|
||||
let Setting::Set(settings) = settings else { return Ok(settings) };
|
||||
let EmbeddingSettings { source, model, revision, api_key, dimensions, document_template } =
|
||||
settings;
|
||||
let EmbeddingSettings {
|
||||
source,
|
||||
model,
|
||||
revision,
|
||||
api_key,
|
||||
dimensions,
|
||||
document_template,
|
||||
url,
|
||||
query,
|
||||
input_field,
|
||||
path_to_embeddings,
|
||||
embedding_object,
|
||||
input_type,
|
||||
} = settings;
|
||||
|
||||
if let Some(0) = dimensions.set() {
|
||||
return Err(crate::error::UserError::InvalidSettingsDimensions {
|
||||
@ -1175,6 +1199,14 @@ pub fn validate_embedding_settings(
|
||||
.into());
|
||||
}
|
||||
|
||||
if let Some(url) = url.as_ref().set() {
|
||||
url::Url::parse(url).map_err(|error| crate::error::UserError::InvalidUrl {
|
||||
embedder_name: name.to_owned(),
|
||||
inner_error: error,
|
||||
url: url.to_owned(),
|
||||
})?;
|
||||
}
|
||||
|
||||
let Some(inferred_source) = source.set() else {
|
||||
return Ok(Setting::Set(EmbeddingSettings {
|
||||
source,
|
||||
@ -1183,11 +1215,25 @@ pub fn validate_embedding_settings(
|
||||
api_key,
|
||||
dimensions,
|
||||
document_template,
|
||||
url,
|
||||
query,
|
||||
input_field,
|
||||
path_to_embeddings,
|
||||
embedding_object,
|
||||
input_type,
|
||||
}));
|
||||
};
|
||||
match inferred_source {
|
||||
EmbedderSource::OpenAi => {
|
||||
check_unset(&revision, "revision", inferred_source, name)?;
|
||||
|
||||
check_unset(&url, "url", inferred_source, name)?;
|
||||
check_unset(&query, "query", inferred_source, name)?;
|
||||
check_unset(&input_field, "inputField", inferred_source, name)?;
|
||||
check_unset(&path_to_embeddings, "pathToEmbeddings", inferred_source, name)?;
|
||||
check_unset(&embedding_object, "embeddingObject", inferred_source, name)?;
|
||||
check_unset(&input_type, "inputType", inferred_source, name)?;
|
||||
|
||||
if let Setting::Set(model) = &model {
|
||||
let model = crate::vector::openai::EmbeddingModel::from_name(model.as_str())
|
||||
.ok_or(crate::error::UserError::InvalidOpenAiModel {
|
||||
@ -1224,10 +1270,24 @@ pub fn validate_embedding_settings(
|
||||
check_set(&model, "model", inferred_source, name)?;
|
||||
check_unset(&api_key, "apiKey", inferred_source, name)?;
|
||||
check_unset(&revision, "revision", inferred_source, name)?;
|
||||
|
||||
check_unset(&url, "url", inferred_source, name)?;
|
||||
check_unset(&query, "query", inferred_source, name)?;
|
||||
check_unset(&input_field, "inputField", inferred_source, name)?;
|
||||
check_unset(&path_to_embeddings, "pathToEmbeddings", inferred_source, name)?;
|
||||
check_unset(&embedding_object, "embeddingObject", inferred_source, name)?;
|
||||
check_unset(&input_type, "inputType", inferred_source, name)?;
|
||||
}
|
||||
EmbedderSource::HuggingFace => {
|
||||
check_unset(&api_key, "apiKey", inferred_source, name)?;
|
||||
check_unset(&dimensions, "dimensions", inferred_source, name)?;
|
||||
|
||||
check_unset(&url, "url", inferred_source, name)?;
|
||||
check_unset(&query, "query", inferred_source, name)?;
|
||||
check_unset(&input_field, "inputField", inferred_source, name)?;
|
||||
check_unset(&path_to_embeddings, "pathToEmbeddings", inferred_source, name)?;
|
||||
check_unset(&embedding_object, "embeddingObject", inferred_source, name)?;
|
||||
check_unset(&input_type, "inputType", inferred_source, name)?;
|
||||
}
|
||||
EmbedderSource::UserProvided => {
|
||||
check_unset(&model, "model", inferred_source, name)?;
|
||||
@ -1235,6 +1295,18 @@ pub fn validate_embedding_settings(
|
||||
check_unset(&api_key, "apiKey", inferred_source, name)?;
|
||||
check_unset(&document_template, "documentTemplate", inferred_source, name)?;
|
||||
check_set(&dimensions, "dimensions", inferred_source, name)?;
|
||||
|
||||
check_unset(&url, "url", inferred_source, name)?;
|
||||
check_unset(&query, "query", inferred_source, name)?;
|
||||
check_unset(&input_field, "inputField", inferred_source, name)?;
|
||||
check_unset(&path_to_embeddings, "pathToEmbeddings", inferred_source, name)?;
|
||||
check_unset(&embedding_object, "embeddingObject", inferred_source, name)?;
|
||||
check_unset(&input_type, "inputType", inferred_source, name)?;
|
||||
}
|
||||
EmbedderSource::Rest => {
|
||||
check_unset(&model, "model", inferred_source, name)?;
|
||||
check_unset(&revision, "revision", inferred_source, name)?;
|
||||
check_set(&url, "url", inferred_source, name)?;
|
||||
}
|
||||
}
|
||||
Ok(Setting::Set(EmbeddingSettings {
|
||||
@ -1244,6 +1316,12 @@ pub fn validate_embedding_settings(
|
||||
api_key,
|
||||
dimensions,
|
||||
document_template,
|
||||
url,
|
||||
query,
|
||||
input_field,
|
||||
path_to_embeddings,
|
||||
embedding_object,
|
||||
input_type,
|
||||
}))
|
||||
}
|
||||
|
||||
|
@ -2,9 +2,7 @@ use std::path::PathBuf;
|
||||
|
||||
use hf_hub::api::sync::ApiError;
|
||||
|
||||
use super::ollama::OllamaError;
|
||||
use crate::error::FaultSource;
|
||||
use crate::vector::openai::OpenAiError;
|
||||
|
||||
#[derive(Debug, thiserror::Error)]
|
||||
#[error("Error while generating embeddings: {inner}")]
|
||||
@ -52,37 +50,34 @@ pub enum EmbedErrorKind {
|
||||
TensorValue(candle_core::Error),
|
||||
#[error("could not run model: {0}")]
|
||||
ModelForward(candle_core::Error),
|
||||
#[error("could not reach OpenAI: {0}")]
|
||||
OpenAiNetwork(reqwest::Error),
|
||||
#[error("unexpected response from OpenAI: {0}")]
|
||||
OpenAiUnexpected(reqwest::Error),
|
||||
#[error("could not authenticate against OpenAI: {0}")]
|
||||
OpenAiAuth(OpenAiError),
|
||||
#[error("sent too many requests to OpenAI: {0}")]
|
||||
OpenAiTooManyRequests(OpenAiError),
|
||||
#[error("received internal error from OpenAI: {0:?}")]
|
||||
OpenAiInternalServerError(Option<OpenAiError>),
|
||||
#[error("sent too many tokens in a request to OpenAI: {0}")]
|
||||
OpenAiTooManyTokens(OpenAiError),
|
||||
#[error("received unhandled HTTP status code {0} from OpenAI")]
|
||||
OpenAiUnhandledStatusCode(u16),
|
||||
#[error("attempt to embed the following text in a configuration where embeddings must be user provided: {0:?}")]
|
||||
ManualEmbed(String),
|
||||
#[error("could not initialize asynchronous runtime: {0}")]
|
||||
OpenAiRuntimeInit(std::io::Error),
|
||||
#[error("initializing web client for sending embedding requests failed: {0}")]
|
||||
InitWebClient(reqwest::Error),
|
||||
// Dedicated Ollama error kinds, might have to merge them into one cohesive error type for all backends.
|
||||
#[error("unexpected response from Ollama: {0}")]
|
||||
OllamaUnexpected(reqwest::Error),
|
||||
#[error("sent too many requests to Ollama: {0}")]
|
||||
OllamaTooManyRequests(OllamaError),
|
||||
#[error("received internal error from Ollama: {0}")]
|
||||
OllamaInternalServerError(OllamaError),
|
||||
#[error("model not found. Meilisearch will not automatically download models from the Ollama library, please pull the model manually: {0}")]
|
||||
OllamaModelNotFoundError(OllamaError),
|
||||
#[error("received unhandled HTTP status code {0} from Ollama")]
|
||||
OllamaUnhandledStatusCode(u16),
|
||||
#[error("model not found. Meilisearch will not automatically download models from the Ollama library, please pull the model manually: {0:?}")]
|
||||
OllamaModelNotFoundError(Option<String>),
|
||||
#[error("error deserialization the response body as JSON: {0}")]
|
||||
RestResponseDeserialization(std::io::Error),
|
||||
#[error("component `{0}` not found in path `{1}` in response: `{2}`")]
|
||||
RestResponseMissingEmbeddings(String, String, String),
|
||||
#[error("expected a response parseable as a vector or an array of vectors: {0}")]
|
||||
RestResponseFormat(serde_json::Error),
|
||||
#[error("expected a response containing {0} embeddings, got only {1}")]
|
||||
RestResponseEmbeddingCount(usize, usize),
|
||||
#[error("could not authenticate against embedding server: {0:?}")]
|
||||
RestUnauthorized(Option<String>),
|
||||
#[error("sent too many requests to embedding server: {0:?}")]
|
||||
RestTooManyRequests(Option<String>),
|
||||
#[error("sent a bad request to embedding server: {0:?}")]
|
||||
RestBadRequest(Option<String>),
|
||||
#[error("received internal error from embedding server: {0:?}")]
|
||||
RestInternalServerError(u16, Option<String>),
|
||||
#[error("received HTTP {0} from embedding server: {0:?}")]
|
||||
RestOtherStatusCode(u16, Option<String>),
|
||||
#[error("could not reach embedding server: {0}")]
|
||||
RestNetwork(ureq::Transport),
|
||||
#[error("was expected '{}' to be an object in query '{0}'", .1.join("."))]
|
||||
RestNotAnObject(serde_json::Value, Vec<String>),
|
||||
#[error("while embedding tokenized, was expecting embeddings of dimension `{0}`, got embeddings of dimensions `{1}`")]
|
||||
OpenAiUnexpectedDimension(usize, usize),
|
||||
}
|
||||
|
||||
impl EmbedError {
|
||||
@ -102,64 +97,98 @@ impl EmbedError {
|
||||
Self { kind: EmbedErrorKind::ModelForward(inner), fault: FaultSource::Runtime }
|
||||
}
|
||||
|
||||
pub fn openai_network(inner: reqwest::Error) -> Self {
|
||||
Self { kind: EmbedErrorKind::OpenAiNetwork(inner), fault: FaultSource::Runtime }
|
||||
}
|
||||
|
||||
pub fn openai_unexpected(inner: reqwest::Error) -> EmbedError {
|
||||
Self { kind: EmbedErrorKind::OpenAiUnexpected(inner), fault: FaultSource::Bug }
|
||||
}
|
||||
|
||||
pub(crate) fn openai_auth_error(inner: OpenAiError) -> EmbedError {
|
||||
Self { kind: EmbedErrorKind::OpenAiAuth(inner), fault: FaultSource::User }
|
||||
}
|
||||
|
||||
pub(crate) fn openai_too_many_requests(inner: OpenAiError) -> EmbedError {
|
||||
Self { kind: EmbedErrorKind::OpenAiTooManyRequests(inner), fault: FaultSource::Runtime }
|
||||
}
|
||||
|
||||
pub(crate) fn openai_internal_server_error(inner: Option<OpenAiError>) -> EmbedError {
|
||||
Self { kind: EmbedErrorKind::OpenAiInternalServerError(inner), fault: FaultSource::Runtime }
|
||||
}
|
||||
|
||||
pub(crate) fn openai_too_many_tokens(inner: OpenAiError) -> EmbedError {
|
||||
Self { kind: EmbedErrorKind::OpenAiTooManyTokens(inner), fault: FaultSource::Bug }
|
||||
}
|
||||
|
||||
pub(crate) fn openai_unhandled_status_code(code: u16) -> EmbedError {
|
||||
Self { kind: EmbedErrorKind::OpenAiUnhandledStatusCode(code), fault: FaultSource::Bug }
|
||||
}
|
||||
|
||||
pub(crate) fn embed_on_manual_embedder(texts: String) -> EmbedError {
|
||||
Self { kind: EmbedErrorKind::ManualEmbed(texts), fault: FaultSource::User }
|
||||
}
|
||||
|
||||
pub(crate) fn openai_runtime_init(inner: std::io::Error) -> EmbedError {
|
||||
Self { kind: EmbedErrorKind::OpenAiRuntimeInit(inner), fault: FaultSource::Runtime }
|
||||
}
|
||||
|
||||
pub fn openai_initialize_web_client(inner: reqwest::Error) -> Self {
|
||||
Self { kind: EmbedErrorKind::InitWebClient(inner), fault: FaultSource::Runtime }
|
||||
}
|
||||
|
||||
pub(crate) fn ollama_unexpected(inner: reqwest::Error) -> EmbedError {
|
||||
Self { kind: EmbedErrorKind::OllamaUnexpected(inner), fault: FaultSource::Bug }
|
||||
}
|
||||
|
||||
pub(crate) fn ollama_model_not_found(inner: OllamaError) -> EmbedError {
|
||||
pub(crate) fn ollama_model_not_found(inner: Option<String>) -> EmbedError {
|
||||
Self { kind: EmbedErrorKind::OllamaModelNotFoundError(inner), fault: FaultSource::User }
|
||||
}
|
||||
|
||||
pub(crate) fn ollama_too_many_requests(inner: OllamaError) -> EmbedError {
|
||||
Self { kind: EmbedErrorKind::OllamaTooManyRequests(inner), fault: FaultSource::Runtime }
|
||||
pub(crate) fn rest_response_deserialization(error: std::io::Error) -> EmbedError {
|
||||
Self {
|
||||
kind: EmbedErrorKind::RestResponseDeserialization(error),
|
||||
fault: FaultSource::Runtime,
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn ollama_internal_server_error(inner: OllamaError) -> EmbedError {
|
||||
Self { kind: EmbedErrorKind::OllamaInternalServerError(inner), fault: FaultSource::Runtime }
|
||||
pub(crate) fn rest_response_missing_embeddings<S: AsRef<str>>(
|
||||
response: serde_json::Value,
|
||||
component: &str,
|
||||
response_field: &[S],
|
||||
) -> EmbedError {
|
||||
let response_field: Vec<&str> = response_field.iter().map(AsRef::as_ref).collect();
|
||||
let response_field = response_field.join(".");
|
||||
|
||||
Self {
|
||||
kind: EmbedErrorKind::RestResponseMissingEmbeddings(
|
||||
component.to_owned(),
|
||||
response_field,
|
||||
serde_json::to_string_pretty(&response).unwrap_or_default(),
|
||||
),
|
||||
fault: FaultSource::Undecided,
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn ollama_unhandled_status_code(code: u16) -> EmbedError {
|
||||
Self { kind: EmbedErrorKind::OllamaUnhandledStatusCode(code), fault: FaultSource::Bug }
|
||||
pub(crate) fn rest_response_format(error: serde_json::Error) -> EmbedError {
|
||||
Self { kind: EmbedErrorKind::RestResponseFormat(error), fault: FaultSource::Undecided }
|
||||
}
|
||||
|
||||
pub(crate) fn rest_response_embedding_count(expected: usize, got: usize) -> EmbedError {
|
||||
Self {
|
||||
kind: EmbedErrorKind::RestResponseEmbeddingCount(expected, got),
|
||||
fault: FaultSource::Runtime,
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn rest_unauthorized(error_response: Option<String>) -> EmbedError {
|
||||
Self { kind: EmbedErrorKind::RestUnauthorized(error_response), fault: FaultSource::User }
|
||||
}
|
||||
|
||||
pub(crate) fn rest_too_many_requests(error_response: Option<String>) -> EmbedError {
|
||||
Self {
|
||||
kind: EmbedErrorKind::RestTooManyRequests(error_response),
|
||||
fault: FaultSource::Runtime,
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn rest_bad_request(error_response: Option<String>) -> EmbedError {
|
||||
Self { kind: EmbedErrorKind::RestBadRequest(error_response), fault: FaultSource::User }
|
||||
}
|
||||
|
||||
pub(crate) fn rest_internal_server_error(
|
||||
code: u16,
|
||||
error_response: Option<String>,
|
||||
) -> EmbedError {
|
||||
Self {
|
||||
kind: EmbedErrorKind::RestInternalServerError(code, error_response),
|
||||
fault: FaultSource::Runtime,
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn rest_other_status_code(code: u16, error_response: Option<String>) -> EmbedError {
|
||||
Self {
|
||||
kind: EmbedErrorKind::RestOtherStatusCode(code, error_response),
|
||||
fault: FaultSource::Undecided,
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn rest_network(transport: ureq::Transport) -> EmbedError {
|
||||
Self { kind: EmbedErrorKind::RestNetwork(transport), fault: FaultSource::Runtime }
|
||||
}
|
||||
|
||||
pub(crate) fn rest_not_an_object(
|
||||
query: serde_json::Value,
|
||||
input_path: Vec<String>,
|
||||
) -> EmbedError {
|
||||
Self { kind: EmbedErrorKind::RestNotAnObject(query, input_path), fault: FaultSource::User }
|
||||
}
|
||||
|
||||
pub(crate) fn openai_unexpected_dimension(expected: usize, got: usize) -> EmbedError {
|
||||
Self {
|
||||
kind: EmbedErrorKind::OpenAiUnexpectedDimension(expected, got),
|
||||
fault: FaultSource::Runtime,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -220,23 +249,12 @@ impl NewEmbedderError {
|
||||
Self { kind: NewEmbedderErrorKind::LoadModel(inner), fault: FaultSource::Runtime }
|
||||
}
|
||||
|
||||
pub fn hf_could_not_determine_dimension(inner: EmbedError) -> NewEmbedderError {
|
||||
pub fn could_not_determine_dimension(inner: EmbedError) -> NewEmbedderError {
|
||||
Self {
|
||||
kind: NewEmbedderErrorKind::CouldNotDetermineDimension(inner),
|
||||
fault: FaultSource::Runtime,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn ollama_could_not_determine_dimension(inner: EmbedError) -> NewEmbedderError {
|
||||
Self {
|
||||
kind: NewEmbedderErrorKind::CouldNotDetermineDimension(inner),
|
||||
fault: FaultSource::User,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn openai_invalid_api_key_format(inner: reqwest::header::InvalidHeaderValue) -> Self {
|
||||
Self { kind: NewEmbedderErrorKind::InvalidApiKeyFormat(inner), fault: FaultSource::User }
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, thiserror::Error)]
|
||||
@ -283,7 +301,4 @@ pub enum NewEmbedderErrorKind {
|
||||
CouldNotDetermineDimension(EmbedError),
|
||||
#[error("loading model failed: {0}")]
|
||||
LoadModel(candle_core::Error),
|
||||
// openai
|
||||
#[error("The API key passed to Authorization error was in an invalid format: {0}")]
|
||||
InvalidApiKeyFormat(reqwest::header::InvalidHeaderValue),
|
||||
}
|
||||
|
@ -131,7 +131,7 @@ impl Embedder {
|
||||
|
||||
let embeddings = this
|
||||
.embed(vec!["test".into()])
|
||||
.map_err(NewEmbedderError::hf_could_not_determine_dimension)?;
|
||||
.map_err(NewEmbedderError::could_not_determine_dimension)?;
|
||||
this.dimensions = embeddings.first().unwrap().dimension();
|
||||
|
||||
Ok(this)
|
||||
@ -194,7 +194,10 @@ impl Embedder {
|
||||
|
||||
pub fn distribution(&self) -> Option<DistributionShift> {
|
||||
if self.options.model == "BAAI/bge-base-en-v1.5" {
|
||||
Some(DistributionShift { current_mean: 0.85, current_sigma: 0.1 })
|
||||
Some(DistributionShift {
|
||||
current_mean: ordered_float::OrderedFloat(0.85),
|
||||
current_sigma: ordered_float::OrderedFloat(0.1),
|
||||
})
|
||||
} else {
|
||||
None
|
||||
}
|
||||
|
@ -1,6 +1,9 @@
|
||||
use std::collections::HashMap;
|
||||
use std::sync::Arc;
|
||||
|
||||
use ordered_float::OrderedFloat;
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use self::error::{EmbedError, NewEmbedderError};
|
||||
use crate::prompt::{Prompt, PromptData};
|
||||
|
||||
@ -11,51 +14,70 @@ pub mod openai;
|
||||
pub mod settings;
|
||||
|
||||
pub mod ollama;
|
||||
pub mod rest;
|
||||
|
||||
pub use self::error::Error;
|
||||
|
||||
pub type Embedding = Vec<f32>;
|
||||
|
||||
pub const REQUEST_PARALLELISM: usize = 40;
|
||||
|
||||
/// One or multiple embeddings stored consecutively in a flat vector.
|
||||
pub struct Embeddings<F> {
|
||||
data: Vec<F>,
|
||||
dimension: usize,
|
||||
}
|
||||
|
||||
impl<F> Embeddings<F> {
|
||||
/// Declares an empty vector of embeddings of the specified dimensions.
|
||||
pub fn new(dimension: usize) -> Self {
|
||||
Self { data: Default::default(), dimension }
|
||||
}
|
||||
|
||||
/// Declares a vector of embeddings containing a single element.
|
||||
///
|
||||
/// The dimension is inferred from the length of the passed embedding.
|
||||
pub fn from_single_embedding(embedding: Vec<F>) -> Self {
|
||||
Self { dimension: embedding.len(), data: embedding }
|
||||
}
|
||||
|
||||
/// Declares a vector of embeddings from its components.
|
||||
///
|
||||
/// `data.len()` must be a multiple of `dimension`, otherwise an error is returned.
|
||||
pub fn from_inner(data: Vec<F>, dimension: usize) -> Result<Self, Vec<F>> {
|
||||
let mut this = Self::new(dimension);
|
||||
this.append(data)?;
|
||||
Ok(this)
|
||||
}
|
||||
|
||||
/// Returns the number of embeddings in this vector of embeddings.
|
||||
pub fn embedding_count(&self) -> usize {
|
||||
self.data.len() / self.dimension
|
||||
}
|
||||
|
||||
/// Dimension of a single embedding.
|
||||
pub fn dimension(&self) -> usize {
|
||||
self.dimension
|
||||
}
|
||||
|
||||
/// Deconstructs self into the inner flat vector.
|
||||
pub fn into_inner(self) -> Vec<F> {
|
||||
self.data
|
||||
}
|
||||
|
||||
/// A reference to the inner flat vector.
|
||||
pub fn as_inner(&self) -> &[F] {
|
||||
&self.data
|
||||
}
|
||||
|
||||
/// Iterates over the embeddings contained in the flat vector.
|
||||
pub fn iter(&self) -> impl Iterator<Item = &'_ [F]> + '_ {
|
||||
self.data.as_slice().chunks_exact(self.dimension)
|
||||
}
|
||||
|
||||
/// Push an embedding at the end of the embeddings.
|
||||
///
|
||||
/// If `embedding.len() != self.dimension`, then the push operation fails.
|
||||
pub fn push(&mut self, mut embedding: Vec<F>) -> Result<(), Vec<F>> {
|
||||
if embedding.len() != self.dimension {
|
||||
return Err(embedding);
|
||||
@ -64,6 +86,9 @@ impl<F> Embeddings<F> {
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Append a flat vector of embeddings a the end of the embeddings.
|
||||
///
|
||||
/// If `embeddings.len() % self.dimension != 0`, then the append operation fails.
|
||||
pub fn append(&mut self, mut embeddings: Vec<F>) -> Result<(), Vec<F>> {
|
||||
if embeddings.len() % self.dimension != 0 {
|
||||
return Err(embeddings);
|
||||
@ -73,37 +98,60 @@ impl<F> Embeddings<F> {
|
||||
}
|
||||
}
|
||||
|
||||
/// An embedder can be used to transform text into embeddings.
|
||||
#[derive(Debug)]
|
||||
pub enum Embedder {
|
||||
/// An embedder based on running local models, fetched from the Hugging Face Hub.
|
||||
HuggingFace(hf::Embedder),
|
||||
/// An embedder based on making embedding queries against the OpenAI API.
|
||||
OpenAi(openai::Embedder),
|
||||
/// An embedder based on the user providing the embeddings in the documents and queries.
|
||||
UserProvided(manual::Embedder),
|
||||
/// An embedder based on making embedding queries against an <https://ollama.com> embedding server.
|
||||
Ollama(ollama::Embedder),
|
||||
/// An embedder based on making embedding queries against a generic JSON/REST embedding server.
|
||||
Rest(rest::Embedder),
|
||||
}
|
||||
|
||||
/// Configuration for an embedder.
|
||||
#[derive(Debug, Clone, Default, serde::Deserialize, serde::Serialize)]
|
||||
pub struct EmbeddingConfig {
|
||||
/// Options of the embedder, specific to each kind of embedder
|
||||
pub embedder_options: EmbedderOptions,
|
||||
/// Document template
|
||||
pub prompt: PromptData,
|
||||
// TODO: add metrics and anything needed
|
||||
}
|
||||
|
||||
/// Map of embedder configurations.
|
||||
///
|
||||
/// Each configuration is mapped to a name.
|
||||
#[derive(Clone, Default)]
|
||||
pub struct EmbeddingConfigs(HashMap<String, (Arc<Embedder>, Arc<Prompt>)>);
|
||||
|
||||
impl EmbeddingConfigs {
|
||||
/// Create the map from its internal component.s
|
||||
pub fn new(data: HashMap<String, (Arc<Embedder>, Arc<Prompt>)>) -> Self {
|
||||
Self(data)
|
||||
}
|
||||
|
||||
/// Get an embedder configuration and template from its name.
|
||||
pub fn get(&self, name: &str) -> Option<(Arc<Embedder>, Arc<Prompt>)> {
|
||||
self.0.get(name).cloned()
|
||||
}
|
||||
|
||||
/// Get the default embedder configuration, if any.
|
||||
pub fn get_default(&self) -> Option<(Arc<Embedder>, Arc<Prompt>)> {
|
||||
self.get_default_embedder_name().and_then(|default| self.get(&default))
|
||||
}
|
||||
|
||||
/// Get the name of the default embedder configuration.
|
||||
///
|
||||
/// The default embedder is determined as follows:
|
||||
///
|
||||
/// - If there is only one embedder, it is always the default.
|
||||
/// - If there are multiple embedders and one of them is called `default`, then that one is the default embedder.
|
||||
/// - In all other cases, there is no default embedder.
|
||||
pub fn get_default_embedder_name(&self) -> Option<String> {
|
||||
let mut it = self.0.keys();
|
||||
let first_name = it.next();
|
||||
@ -126,12 +174,14 @@ impl IntoIterator for EmbeddingConfigs {
|
||||
}
|
||||
}
|
||||
|
||||
/// Options of an embedder, specific to each kind of embedder.
|
||||
#[derive(Debug, Clone, Hash, PartialEq, Eq, serde::Deserialize, serde::Serialize)]
|
||||
pub enum EmbedderOptions {
|
||||
HuggingFace(hf::EmbedderOptions),
|
||||
OpenAi(openai::EmbedderOptions),
|
||||
Ollama(ollama::EmbedderOptions),
|
||||
UserProvided(manual::EmbedderOptions),
|
||||
Rest(rest::EmbedderOptions),
|
||||
}
|
||||
|
||||
impl Default for EmbedderOptions {
|
||||
@ -141,10 +191,12 @@ impl Default for EmbedderOptions {
|
||||
}
|
||||
|
||||
impl EmbedderOptions {
|
||||
/// Default options for the Hugging Face embedder
|
||||
pub fn huggingface() -> Self {
|
||||
Self::HuggingFace(hf::EmbedderOptions::new())
|
||||
}
|
||||
|
||||
/// Default options for the OpenAI embedder
|
||||
pub fn openai(api_key: Option<String>) -> Self {
|
||||
Self::OpenAi(openai::EmbedderOptions::with_default_model(api_key))
|
||||
}
|
||||
@ -155,6 +207,7 @@ impl EmbedderOptions {
|
||||
}
|
||||
|
||||
impl Embedder {
|
||||
/// Spawns a new embedder built from its options.
|
||||
pub fn new(options: EmbedderOptions) -> std::result::Result<Self, NewEmbedderError> {
|
||||
Ok(match options {
|
||||
EmbedderOptions::HuggingFace(options) => Self::HuggingFace(hf::Embedder::new(options)?),
|
||||
@ -163,83 +216,133 @@ impl Embedder {
|
||||
EmbedderOptions::UserProvided(options) => {
|
||||
Self::UserProvided(manual::Embedder::new(options))
|
||||
}
|
||||
EmbedderOptions::Rest(options) => Self::Rest(rest::Embedder::new(options)?),
|
||||
})
|
||||
}
|
||||
|
||||
pub async fn embed(
|
||||
/// Embed one or multiple texts.
|
||||
///
|
||||
/// Each text can be embedded as one or multiple embeddings.
|
||||
pub fn embed(
|
||||
&self,
|
||||
texts: Vec<String>,
|
||||
) -> std::result::Result<Vec<Embeddings<f32>>, EmbedError> {
|
||||
match self {
|
||||
Embedder::HuggingFace(embedder) => embedder.embed(texts),
|
||||
Embedder::OpenAi(embedder) => {
|
||||
let client = embedder.new_client()?;
|
||||
embedder.embed(texts, &client).await
|
||||
}
|
||||
Embedder::Ollama(embedder) => {
|
||||
let client = embedder.new_client()?;
|
||||
embedder.embed(texts, &client).await
|
||||
}
|
||||
Embedder::OpenAi(embedder) => embedder.embed(texts),
|
||||
Embedder::Ollama(embedder) => embedder.embed(texts),
|
||||
Embedder::UserProvided(embedder) => embedder.embed(texts),
|
||||
Embedder::Rest(embedder) => embedder.embed(texts),
|
||||
}
|
||||
}
|
||||
|
||||
/// # Panics
|
||||
/// Embed multiple chunks of texts.
|
||||
///
|
||||
/// - if called from an asynchronous context
|
||||
/// Each chunk is composed of one or multiple texts.
|
||||
pub fn embed_chunks(
|
||||
&self,
|
||||
text_chunks: Vec<Vec<String>>,
|
||||
threads: &rayon::ThreadPool,
|
||||
) -> std::result::Result<Vec<Vec<Embeddings<f32>>>, EmbedError> {
|
||||
match self {
|
||||
Embedder::HuggingFace(embedder) => embedder.embed_chunks(text_chunks),
|
||||
Embedder::OpenAi(embedder) => embedder.embed_chunks(text_chunks),
|
||||
Embedder::Ollama(embedder) => embedder.embed_chunks(text_chunks),
|
||||
Embedder::OpenAi(embedder) => embedder.embed_chunks(text_chunks, threads),
|
||||
Embedder::Ollama(embedder) => embedder.embed_chunks(text_chunks, threads),
|
||||
Embedder::UserProvided(embedder) => embedder.embed_chunks(text_chunks),
|
||||
Embedder::Rest(embedder) => embedder.embed_chunks(text_chunks, threads),
|
||||
}
|
||||
}
|
||||
|
||||
/// Indicates the preferred number of chunks to pass to [`Self::embed_chunks`]
|
||||
pub fn chunk_count_hint(&self) -> usize {
|
||||
match self {
|
||||
Embedder::HuggingFace(embedder) => embedder.chunk_count_hint(),
|
||||
Embedder::OpenAi(embedder) => embedder.chunk_count_hint(),
|
||||
Embedder::Ollama(embedder) => embedder.chunk_count_hint(),
|
||||
Embedder::UserProvided(_) => 1,
|
||||
Embedder::Rest(embedder) => embedder.chunk_count_hint(),
|
||||
}
|
||||
}
|
||||
|
||||
/// Indicates the preferred number of texts in a single chunk passed to [`Self::embed`]
|
||||
pub fn prompt_count_in_chunk_hint(&self) -> usize {
|
||||
match self {
|
||||
Embedder::HuggingFace(embedder) => embedder.prompt_count_in_chunk_hint(),
|
||||
Embedder::OpenAi(embedder) => embedder.prompt_count_in_chunk_hint(),
|
||||
Embedder::Ollama(embedder) => embedder.prompt_count_in_chunk_hint(),
|
||||
Embedder::UserProvided(_) => 1,
|
||||
Embedder::Rest(embedder) => embedder.prompt_count_in_chunk_hint(),
|
||||
}
|
||||
}
|
||||
|
||||
/// Indicates the dimensions of a single embedding produced by the embedder.
|
||||
pub fn dimensions(&self) -> usize {
|
||||
match self {
|
||||
Embedder::HuggingFace(embedder) => embedder.dimensions(),
|
||||
Embedder::OpenAi(embedder) => embedder.dimensions(),
|
||||
Embedder::Ollama(embedder) => embedder.dimensions(),
|
||||
Embedder::UserProvided(embedder) => embedder.dimensions(),
|
||||
Embedder::Rest(embedder) => embedder.dimensions(),
|
||||
}
|
||||
}
|
||||
|
||||
/// An optional distribution used to apply an affine transformation to the similarity score of a document.
|
||||
pub fn distribution(&self) -> Option<DistributionShift> {
|
||||
match self {
|
||||
Embedder::HuggingFace(embedder) => embedder.distribution(),
|
||||
Embedder::OpenAi(embedder) => embedder.distribution(),
|
||||
Embedder::Ollama(embedder) => embedder.distribution(),
|
||||
Embedder::UserProvided(_embedder) => None,
|
||||
Embedder::Rest(embedder) => embedder.distribution(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
/// Describes the mean and sigma of distribution of embedding similarity in the embedding space.
|
||||
///
|
||||
/// The intended use is to make the similarity score more comparable to the regular ranking score.
|
||||
/// This allows to correct effects where results are too "packed" around a certain value.
|
||||
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Deserialize, Serialize)]
|
||||
#[serde(from = "DistributionShiftSerializable")]
|
||||
#[serde(into = "DistributionShiftSerializable")]
|
||||
pub struct DistributionShift {
|
||||
pub current_mean: f32,
|
||||
pub current_sigma: f32,
|
||||
/// Value where the results are "packed".
|
||||
///
|
||||
/// Similarity scores are translated so that they are packed around 0.5 instead
|
||||
pub current_mean: OrderedFloat<f32>,
|
||||
|
||||
/// standard deviation of a similarity score.
|
||||
///
|
||||
/// Set below 0.4 to make the results less packed around the mean, and above 0.4 to make them more packed.
|
||||
pub current_sigma: OrderedFloat<f32>,
|
||||
}
|
||||
|
||||
#[derive(Serialize, Deserialize)]
|
||||
struct DistributionShiftSerializable {
|
||||
current_mean: f32,
|
||||
current_sigma: f32,
|
||||
}
|
||||
|
||||
impl From<DistributionShift> for DistributionShiftSerializable {
|
||||
fn from(
|
||||
DistributionShift {
|
||||
current_mean: OrderedFloat(current_mean),
|
||||
current_sigma: OrderedFloat(current_sigma),
|
||||
}: DistributionShift,
|
||||
) -> Self {
|
||||
Self { current_mean, current_sigma }
|
||||
}
|
||||
}
|
||||
|
||||
impl From<DistributionShiftSerializable> for DistributionShift {
|
||||
fn from(
|
||||
DistributionShiftSerializable { current_mean, current_sigma }: DistributionShiftSerializable,
|
||||
) -> Self {
|
||||
Self {
|
||||
current_mean: OrderedFloat(current_mean),
|
||||
current_sigma: OrderedFloat(current_sigma),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl DistributionShift {
|
||||
@ -248,11 +351,13 @@ impl DistributionShift {
|
||||
if sigma <= 0.0 {
|
||||
None
|
||||
} else {
|
||||
Some(Self { current_mean: mean, current_sigma: sigma })
|
||||
Some(Self { current_mean: OrderedFloat(mean), current_sigma: OrderedFloat(sigma) })
|
||||
}
|
||||
}
|
||||
|
||||
pub fn shift(&self, score: f32) -> f32 {
|
||||
let current_mean = self.current_mean.0;
|
||||
let current_sigma = self.current_sigma.0;
|
||||
// <https://math.stackexchange.com/a/2894689>
|
||||
// We're somewhat abusively mapping the distribution of distances to a gaussian.
|
||||
// The parameters we're given is the mean and sigma of the native result distribution.
|
||||
@ -262,9 +367,9 @@ impl DistributionShift {
|
||||
let target_sigma = 0.4;
|
||||
|
||||
// a^2 sig1^2 = sig2^2 => a^2 = sig2^2 / sig1^2 => a = sig2 / sig1, assuming a, sig1, and sig2 positive.
|
||||
let factor = target_sigma / self.current_sigma;
|
||||
let factor = target_sigma / current_sigma;
|
||||
// a*mu1 + b = mu2 => b = mu2 - a*mu1
|
||||
let offset = target_mean - (factor * self.current_mean);
|
||||
let offset = target_mean - (factor * current_mean);
|
||||
|
||||
let mut score = factor * score + offset;
|
||||
|
||||
@ -280,6 +385,7 @@ impl DistributionShift {
|
||||
}
|
||||
}
|
||||
|
||||
/// Whether CUDA is supported in this version of Meilisearch.
|
||||
pub const fn is_cuda_enabled() -> bool {
|
||||
cfg!(feature = "cuda")
|
||||
}
|
||||
|
@ -1,293 +1,94 @@
|
||||
// Copied from "openai.rs" with the sections I actually understand changed for Ollama.
|
||||
// The common components of the Ollama and OpenAI interfaces might need to be extracted.
|
||||
use rayon::iter::{IntoParallelIterator as _, ParallelIterator as _};
|
||||
|
||||
use std::fmt::Display;
|
||||
|
||||
use reqwest::StatusCode;
|
||||
|
||||
use super::error::{EmbedError, NewEmbedderError};
|
||||
use super::openai::Retry;
|
||||
use super::{DistributionShift, Embedding, Embeddings};
|
||||
use super::error::{EmbedError, EmbedErrorKind, NewEmbedderError, NewEmbedderErrorKind};
|
||||
use super::rest::{Embedder as RestEmbedder, EmbedderOptions as RestEmbedderOptions};
|
||||
use super::{DistributionShift, Embeddings};
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct Embedder {
|
||||
headers: reqwest::header::HeaderMap,
|
||||
options: EmbedderOptions,
|
||||
rest_embedder: RestEmbedder,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Hash, PartialEq, Eq, serde::Deserialize, serde::Serialize)]
|
||||
pub struct EmbedderOptions {
|
||||
pub embedding_model: EmbeddingModel,
|
||||
}
|
||||
|
||||
#[derive(
|
||||
Debug, Clone, Hash, PartialEq, Eq, serde::Serialize, serde::Deserialize, deserr::Deserr,
|
||||
)]
|
||||
#[deserr(deny_unknown_fields)]
|
||||
pub struct EmbeddingModel {
|
||||
name: String,
|
||||
dimensions: usize,
|
||||
}
|
||||
|
||||
#[derive(Debug, serde::Serialize)]
|
||||
struct OllamaRequest<'a> {
|
||||
model: &'a str,
|
||||
prompt: &'a str,
|
||||
}
|
||||
|
||||
#[derive(Debug, serde::Deserialize)]
|
||||
struct OllamaResponse {
|
||||
embedding: Embedding,
|
||||
}
|
||||
|
||||
#[derive(Debug, serde::Deserialize)]
|
||||
pub struct OllamaError {
|
||||
error: String,
|
||||
}
|
||||
|
||||
impl EmbeddingModel {
|
||||
pub fn max_token(&self) -> usize {
|
||||
// this might not be the same for all models
|
||||
8192
|
||||
}
|
||||
|
||||
pub fn default_dimensions(&self) -> usize {
|
||||
// Dimensions for nomic-embed-text
|
||||
768
|
||||
}
|
||||
|
||||
pub fn name(&self) -> String {
|
||||
self.name.clone()
|
||||
}
|
||||
|
||||
pub fn from_name(name: &str) -> Self {
|
||||
Self { name: name.to_string(), dimensions: 0 }
|
||||
}
|
||||
|
||||
pub fn supports_overriding_dimensions(&self) -> bool {
|
||||
false
|
||||
}
|
||||
}
|
||||
|
||||
impl Default for EmbeddingModel {
|
||||
fn default() -> Self {
|
||||
Self { name: "nomic-embed-text".to_string(), dimensions: 0 }
|
||||
}
|
||||
pub embedding_model: String,
|
||||
}
|
||||
|
||||
impl EmbedderOptions {
|
||||
pub fn with_default_model() -> Self {
|
||||
Self { embedding_model: Default::default() }
|
||||
Self { embedding_model: "nomic-embed-text".into() }
|
||||
}
|
||||
|
||||
pub fn with_embedding_model(embedding_model: EmbeddingModel) -> Self {
|
||||
pub fn with_embedding_model(embedding_model: String) -> Self {
|
||||
Self { embedding_model }
|
||||
}
|
||||
}
|
||||
|
||||
impl Embedder {
|
||||
pub fn new_client(&self) -> Result<reqwest::Client, EmbedError> {
|
||||
reqwest::ClientBuilder::new()
|
||||
.default_headers(self.headers.clone())
|
||||
.build()
|
||||
.map_err(EmbedError::openai_initialize_web_client)
|
||||
}
|
||||
|
||||
pub fn new(options: EmbedderOptions) -> Result<Self, NewEmbedderError> {
|
||||
let mut headers = reqwest::header::HeaderMap::new();
|
||||
headers.insert(
|
||||
reqwest::header::CONTENT_TYPE,
|
||||
reqwest::header::HeaderValue::from_static("application/json"),
|
||||
);
|
||||
|
||||
let mut embedder = Self { options, headers };
|
||||
|
||||
let rt = tokio::runtime::Builder::new_current_thread()
|
||||
.enable_io()
|
||||
.enable_time()
|
||||
.build()
|
||||
.map_err(EmbedError::openai_runtime_init)
|
||||
.map_err(NewEmbedderError::ollama_could_not_determine_dimension)?;
|
||||
|
||||
// Get dimensions from Ollama
|
||||
let request =
|
||||
OllamaRequest { model: &embedder.options.embedding_model.name(), prompt: "test" };
|
||||
// TODO: Refactor into shared error type
|
||||
let client = embedder
|
||||
.new_client()
|
||||
.map_err(NewEmbedderError::ollama_could_not_determine_dimension)?;
|
||||
|
||||
rt.block_on(async move {
|
||||
let response = client
|
||||
.post(get_ollama_path())
|
||||
.json(&request)
|
||||
.send()
|
||||
.await
|
||||
.map_err(EmbedError::ollama_unexpected)
|
||||
.map_err(NewEmbedderError::ollama_could_not_determine_dimension)?;
|
||||
|
||||
// Process error in case model not found
|
||||
let response = Self::check_response(response).await.map_err(|_err| {
|
||||
let e = EmbedError::ollama_model_not_found(OllamaError {
|
||||
error: format!("model: {}", embedder.options.embedding_model.name()),
|
||||
});
|
||||
NewEmbedderError::ollama_could_not_determine_dimension(e)
|
||||
})?;
|
||||
|
||||
let response: OllamaResponse = response
|
||||
.json()
|
||||
.await
|
||||
.map_err(EmbedError::ollama_unexpected)
|
||||
.map_err(NewEmbedderError::ollama_could_not_determine_dimension)?;
|
||||
|
||||
let embedding = Embeddings::from_single_embedding(response.embedding);
|
||||
|
||||
embedder.options.embedding_model.dimensions = embedding.dimension();
|
||||
|
||||
tracing::info!(
|
||||
"ollama model {} with dimensionality {} added",
|
||||
embedder.options.embedding_model.name(),
|
||||
embedding.dimension()
|
||||
);
|
||||
|
||||
Ok(embedder)
|
||||
})
|
||||
}
|
||||
|
||||
async fn check_response(response: reqwest::Response) -> Result<reqwest::Response, Retry> {
|
||||
if !response.status().is_success() {
|
||||
// Not the same number of possible error cases covered as with OpenAI.
|
||||
match response.status() {
|
||||
StatusCode::TOO_MANY_REQUESTS => {
|
||||
let error_response: OllamaError = response
|
||||
.json()
|
||||
.await
|
||||
.map_err(EmbedError::ollama_unexpected)
|
||||
.map_err(Retry::retry_later)?;
|
||||
|
||||
return Err(Retry::rate_limited(EmbedError::ollama_too_many_requests(
|
||||
OllamaError { error: error_response.error },
|
||||
)));
|
||||
}
|
||||
StatusCode::SERVICE_UNAVAILABLE => {
|
||||
let error_response: OllamaError = response
|
||||
.json()
|
||||
.await
|
||||
.map_err(EmbedError::ollama_unexpected)
|
||||
.map_err(Retry::retry_later)?;
|
||||
return Err(Retry::retry_later(EmbedError::ollama_internal_server_error(
|
||||
OllamaError { error: error_response.error },
|
||||
)));
|
||||
}
|
||||
StatusCode::NOT_FOUND => {
|
||||
let error_response: OllamaError = response
|
||||
.json()
|
||||
.await
|
||||
.map_err(EmbedError::ollama_unexpected)
|
||||
.map_err(Retry::give_up)?;
|
||||
|
||||
return Err(Retry::give_up(EmbedError::ollama_model_not_found(OllamaError {
|
||||
error: error_response.error,
|
||||
})));
|
||||
}
|
||||
code => {
|
||||
return Err(Retry::give_up(EmbedError::ollama_unhandled_status_code(
|
||||
code.as_u16(),
|
||||
)));
|
||||
}
|
||||
let model = options.embedding_model.as_str();
|
||||
let rest_embedder = match RestEmbedder::new(RestEmbedderOptions {
|
||||
api_key: None,
|
||||
distribution: None,
|
||||
dimensions: None,
|
||||
url: get_ollama_path(),
|
||||
query: serde_json::json!({
|
||||
"model": model,
|
||||
}),
|
||||
input_field: vec!["prompt".to_owned()],
|
||||
path_to_embeddings: Default::default(),
|
||||
embedding_object: vec!["embedding".to_owned()],
|
||||
input_type: super::rest::InputType::Text,
|
||||
}) {
|
||||
Ok(embedder) => embedder,
|
||||
Err(NewEmbedderError {
|
||||
kind:
|
||||
NewEmbedderErrorKind::CouldNotDetermineDimension(EmbedError {
|
||||
kind: super::error::EmbedErrorKind::RestOtherStatusCode(404, error),
|
||||
fault: _,
|
||||
}),
|
||||
fault: _,
|
||||
}) => {
|
||||
return Err(NewEmbedderError::could_not_determine_dimension(
|
||||
EmbedError::ollama_model_not_found(error),
|
||||
))
|
||||
}
|
||||
}
|
||||
Ok(response)
|
||||
Err(error) => return Err(error),
|
||||
};
|
||||
|
||||
Ok(Self { rest_embedder })
|
||||
}
|
||||
|
||||
pub async fn embed(
|
||||
&self,
|
||||
texts: Vec<String>,
|
||||
client: &reqwest::Client,
|
||||
) -> Result<Vec<Embeddings<f32>>, EmbedError> {
|
||||
// Ollama only embedds one document at a time.
|
||||
let mut results = Vec::with_capacity(texts.len());
|
||||
|
||||
// The retry loop is inside the texts loop, might have to switch that around
|
||||
for text in texts {
|
||||
// Retries copied from openai.rs
|
||||
for attempt in 0..7 {
|
||||
let retry_duration = match self.try_embed(&text, client).await {
|
||||
Ok(result) => {
|
||||
results.push(result);
|
||||
break;
|
||||
}
|
||||
Err(retry) => {
|
||||
tracing::warn!("Failed: {}", retry.error);
|
||||
retry.into_duration(attempt)
|
||||
}
|
||||
}?;
|
||||
tracing::warn!(
|
||||
"Attempt #{}, retrying after {}ms.",
|
||||
attempt,
|
||||
retry_duration.as_millis()
|
||||
);
|
||||
tokio::time::sleep(retry_duration).await;
|
||||
pub fn embed(&self, texts: Vec<String>) -> Result<Vec<Embeddings<f32>>, EmbedError> {
|
||||
match self.rest_embedder.embed(texts) {
|
||||
Ok(embeddings) => Ok(embeddings),
|
||||
Err(EmbedError { kind: EmbedErrorKind::RestOtherStatusCode(404, error), fault: _ }) => {
|
||||
Err(EmbedError::ollama_model_not_found(error))
|
||||
}
|
||||
Err(error) => Err(error),
|
||||
}
|
||||
|
||||
Ok(results)
|
||||
}
|
||||
|
||||
async fn try_embed(
|
||||
&self,
|
||||
text: &str,
|
||||
client: &reqwest::Client,
|
||||
) -> Result<Embeddings<f32>, Retry> {
|
||||
let request = OllamaRequest { model: &self.options.embedding_model.name(), prompt: text };
|
||||
let response = client
|
||||
.post(get_ollama_path())
|
||||
.json(&request)
|
||||
.send()
|
||||
.await
|
||||
.map_err(EmbedError::openai_network)
|
||||
.map_err(Retry::retry_later)?;
|
||||
|
||||
let response = Self::check_response(response).await?;
|
||||
|
||||
let response: OllamaResponse = response
|
||||
.json()
|
||||
.await
|
||||
.map_err(EmbedError::openai_unexpected)
|
||||
.map_err(Retry::retry_later)?;
|
||||
|
||||
tracing::trace!("response: {:?}", response.embedding);
|
||||
|
||||
let embedding = Embeddings::from_single_embedding(response.embedding);
|
||||
Ok(embedding)
|
||||
}
|
||||
|
||||
pub fn embed_chunks(
|
||||
&self,
|
||||
text_chunks: Vec<Vec<String>>,
|
||||
threads: &rayon::ThreadPool,
|
||||
) -> Result<Vec<Vec<Embeddings<f32>>>, EmbedError> {
|
||||
let rt = tokio::runtime::Builder::new_current_thread()
|
||||
.enable_io()
|
||||
.enable_time()
|
||||
.build()
|
||||
.map_err(EmbedError::openai_runtime_init)?;
|
||||
let client = self.new_client()?;
|
||||
rt.block_on(futures::future::try_join_all(
|
||||
text_chunks.into_iter().map(|prompts| self.embed(prompts, &client)),
|
||||
))
|
||||
threads.install(move || {
|
||||
text_chunks.into_par_iter().map(move |chunk| self.embed(chunk)).collect()
|
||||
})
|
||||
}
|
||||
|
||||
// Defaults copied from openai.rs
|
||||
pub fn chunk_count_hint(&self) -> usize {
|
||||
10
|
||||
self.rest_embedder.chunk_count_hint()
|
||||
}
|
||||
|
||||
pub fn prompt_count_in_chunk_hint(&self) -> usize {
|
||||
10
|
||||
self.rest_embedder.prompt_count_in_chunk_hint()
|
||||
}
|
||||
|
||||
pub fn dimensions(&self) -> usize {
|
||||
self.options.embedding_model.dimensions
|
||||
self.rest_embedder.dimensions()
|
||||
}
|
||||
|
||||
pub fn distribution(&self) -> Option<DistributionShift> {
|
||||
@ -295,12 +96,6 @@ impl Embedder {
|
||||
}
|
||||
}
|
||||
|
||||
impl Display for OllamaError {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
write!(f, "{}", self.error)
|
||||
}
|
||||
}
|
||||
|
||||
fn get_ollama_path() -> String {
|
||||
// Important: Hostname not enough, has to be entire path to embeddings endpoint
|
||||
std::env::var("MEILI_OLLAMA_URL").unwrap_or("http://localhost:11434/api/embeddings".to_string())
|
||||
|
@ -1,17 +1,10 @@
|
||||
use std::fmt::Display;
|
||||
|
||||
use reqwest::StatusCode;
|
||||
use serde::{Deserialize, Serialize};
|
||||
use ordered_float::OrderedFloat;
|
||||
use rayon::iter::{IntoParallelIterator, ParallelIterator as _};
|
||||
|
||||
use super::error::{EmbedError, NewEmbedderError};
|
||||
use super::{DistributionShift, Embedding, Embeddings};
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct Embedder {
|
||||
headers: reqwest::header::HeaderMap,
|
||||
tokenizer: tiktoken_rs::CoreBPE,
|
||||
options: EmbedderOptions,
|
||||
}
|
||||
use super::rest::{Embedder as RestEmbedder, EmbedderOptions as RestEmbedderOptions};
|
||||
use super::{DistributionShift, Embeddings};
|
||||
use crate::vector::error::EmbedErrorKind;
|
||||
|
||||
#[derive(Debug, Clone, Hash, PartialEq, Eq, serde::Deserialize, serde::Serialize)]
|
||||
pub struct EmbedderOptions {
|
||||
@ -20,6 +13,32 @@ pub struct EmbedderOptions {
|
||||
pub dimensions: Option<usize>,
|
||||
}
|
||||
|
||||
impl EmbedderOptions {
|
||||
pub fn dimensions(&self) -> usize {
|
||||
if self.embedding_model.supports_overriding_dimensions() {
|
||||
self.dimensions.unwrap_or(self.embedding_model.default_dimensions())
|
||||
} else {
|
||||
self.embedding_model.default_dimensions()
|
||||
}
|
||||
}
|
||||
|
||||
pub fn query(&self) -> serde_json::Value {
|
||||
let model = self.embedding_model.name();
|
||||
|
||||
let mut query = serde_json::json!({
|
||||
"model": model,
|
||||
});
|
||||
|
||||
if self.embedding_model.supports_overriding_dimensions() {
|
||||
if let Some(dimensions) = self.dimensions {
|
||||
query["dimensions"] = dimensions.into();
|
||||
}
|
||||
}
|
||||
|
||||
query
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(
|
||||
Debug,
|
||||
Clone,
|
||||
@ -92,15 +111,18 @@ impl EmbeddingModel {
|
||||
|
||||
fn distribution(&self) -> Option<DistributionShift> {
|
||||
match self {
|
||||
EmbeddingModel::TextEmbeddingAda002 => {
|
||||
Some(DistributionShift { current_mean: 0.90, current_sigma: 0.08 })
|
||||
}
|
||||
EmbeddingModel::TextEmbedding3Large => {
|
||||
Some(DistributionShift { current_mean: 0.70, current_sigma: 0.1 })
|
||||
}
|
||||
EmbeddingModel::TextEmbedding3Small => {
|
||||
Some(DistributionShift { current_mean: 0.75, current_sigma: 0.1 })
|
||||
}
|
||||
EmbeddingModel::TextEmbeddingAda002 => Some(DistributionShift {
|
||||
current_mean: OrderedFloat(0.90),
|
||||
current_sigma: OrderedFloat(0.08),
|
||||
}),
|
||||
EmbeddingModel::TextEmbedding3Large => Some(DistributionShift {
|
||||
current_mean: OrderedFloat(0.70),
|
||||
current_sigma: OrderedFloat(0.1),
|
||||
}),
|
||||
EmbeddingModel::TextEmbedding3Small => Some(DistributionShift {
|
||||
current_mean: OrderedFloat(0.75),
|
||||
current_sigma: OrderedFloat(0.1),
|
||||
}),
|
||||
}
|
||||
}
|
||||
|
||||
@ -125,178 +147,57 @@ impl EmbedderOptions {
|
||||
}
|
||||
}
|
||||
|
||||
impl Embedder {
|
||||
pub fn new_client(&self) -> Result<reqwest::Client, EmbedError> {
|
||||
reqwest::ClientBuilder::new()
|
||||
.default_headers(self.headers.clone())
|
||||
.build()
|
||||
.map_err(EmbedError::openai_initialize_web_client)
|
||||
}
|
||||
fn infer_api_key() -> String {
|
||||
std::env::var("MEILI_OPENAI_API_KEY")
|
||||
.or_else(|_| std::env::var("OPENAI_API_KEY"))
|
||||
.unwrap_or_default()
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct Embedder {
|
||||
tokenizer: tiktoken_rs::CoreBPE,
|
||||
rest_embedder: RestEmbedder,
|
||||
options: EmbedderOptions,
|
||||
}
|
||||
|
||||
impl Embedder {
|
||||
pub fn new(options: EmbedderOptions) -> Result<Self, NewEmbedderError> {
|
||||
let mut headers = reqwest::header::HeaderMap::new();
|
||||
let mut inferred_api_key = Default::default();
|
||||
let api_key = options.api_key.as_ref().unwrap_or_else(|| {
|
||||
inferred_api_key = infer_api_key();
|
||||
&inferred_api_key
|
||||
});
|
||||
headers.insert(
|
||||
reqwest::header::AUTHORIZATION,
|
||||
reqwest::header::HeaderValue::from_str(&format!("Bearer {}", api_key))
|
||||
.map_err(NewEmbedderError::openai_invalid_api_key_format)?,
|
||||
);
|
||||
headers.insert(
|
||||
reqwest::header::CONTENT_TYPE,
|
||||
reqwest::header::HeaderValue::from_static("application/json"),
|
||||
);
|
||||
|
||||
let rest_embedder = RestEmbedder::new(RestEmbedderOptions {
|
||||
api_key: Some(api_key.clone()),
|
||||
distribution: options.embedding_model.distribution(),
|
||||
dimensions: Some(options.dimensions()),
|
||||
url: OPENAI_EMBEDDINGS_URL.to_owned(),
|
||||
query: options.query(),
|
||||
input_field: vec!["input".to_owned()],
|
||||
input_type: crate::vector::rest::InputType::TextArray,
|
||||
path_to_embeddings: vec!["data".to_owned()],
|
||||
embedding_object: vec!["embedding".to_owned()],
|
||||
})?;
|
||||
|
||||
// looking at the code it is very unclear that this can actually fail.
|
||||
let tokenizer = tiktoken_rs::cl100k_base().unwrap();
|
||||
|
||||
Ok(Self { options, headers, tokenizer })
|
||||
Ok(Self { options, rest_embedder, tokenizer })
|
||||
}
|
||||
|
||||
pub async fn embed(
|
||||
&self,
|
||||
texts: Vec<String>,
|
||||
client: &reqwest::Client,
|
||||
) -> Result<Vec<Embeddings<f32>>, EmbedError> {
|
||||
let mut tokenized = false;
|
||||
|
||||
for attempt in 0..7 {
|
||||
let result = if tokenized {
|
||||
self.try_embed_tokenized(&texts, client).await
|
||||
} else {
|
||||
self.try_embed(&texts, client).await
|
||||
};
|
||||
|
||||
let retry_duration = match result {
|
||||
Ok(embeddings) => return Ok(embeddings),
|
||||
Err(retry) => {
|
||||
tracing::warn!("Failed: {}", retry.error);
|
||||
tokenized |= retry.must_tokenize();
|
||||
retry.into_duration(attempt)
|
||||
}
|
||||
}?;
|
||||
|
||||
let retry_duration = retry_duration.min(std::time::Duration::from_secs(60)); // don't wait more than a minute
|
||||
tracing::warn!(
|
||||
"Attempt #{}, retrying after {}ms.",
|
||||
attempt,
|
||||
retry_duration.as_millis()
|
||||
);
|
||||
tokio::time::sleep(retry_duration).await;
|
||||
}
|
||||
|
||||
let result = if tokenized {
|
||||
self.try_embed_tokenized(&texts, client).await
|
||||
} else {
|
||||
self.try_embed(&texts, client).await
|
||||
};
|
||||
|
||||
result.map_err(Retry::into_error)
|
||||
}
|
||||
|
||||
async fn check_response(response: reqwest::Response) -> Result<reqwest::Response, Retry> {
|
||||
if !response.status().is_success() {
|
||||
match response.status() {
|
||||
StatusCode::UNAUTHORIZED => {
|
||||
let error_response: OpenAiErrorResponse = response
|
||||
.json()
|
||||
.await
|
||||
.map_err(EmbedError::openai_unexpected)
|
||||
.map_err(Retry::retry_later)?;
|
||||
|
||||
return Err(Retry::give_up(EmbedError::openai_auth_error(
|
||||
error_response.error,
|
||||
)));
|
||||
}
|
||||
StatusCode::TOO_MANY_REQUESTS => {
|
||||
let error_response: OpenAiErrorResponse = response
|
||||
.json()
|
||||
.await
|
||||
.map_err(EmbedError::openai_unexpected)
|
||||
.map_err(Retry::retry_later)?;
|
||||
|
||||
return Err(Retry::rate_limited(EmbedError::openai_too_many_requests(
|
||||
error_response.error,
|
||||
)));
|
||||
}
|
||||
StatusCode::INTERNAL_SERVER_ERROR
|
||||
| StatusCode::BAD_GATEWAY
|
||||
| StatusCode::SERVICE_UNAVAILABLE => {
|
||||
let error_response: Result<OpenAiErrorResponse, _> = response.json().await;
|
||||
return Err(Retry::retry_later(EmbedError::openai_internal_server_error(
|
||||
error_response.ok().map(|error_response| error_response.error),
|
||||
)));
|
||||
}
|
||||
StatusCode::BAD_REQUEST => {
|
||||
// Most probably, one text contained too many tokens
|
||||
let error_response: OpenAiErrorResponse = response
|
||||
.json()
|
||||
.await
|
||||
.map_err(EmbedError::openai_unexpected)
|
||||
.map_err(Retry::retry_later)?;
|
||||
|
||||
tracing::warn!("OpenAI: received `BAD_REQUEST`. Input was maybe too long, retrying on tokenized version. For best performance, limit the size of your prompt.");
|
||||
|
||||
return Err(Retry::retry_tokenized(EmbedError::openai_too_many_tokens(
|
||||
error_response.error,
|
||||
)));
|
||||
}
|
||||
code => {
|
||||
return Err(Retry::retry_later(EmbedError::openai_unhandled_status_code(
|
||||
code.as_u16(),
|
||||
)));
|
||||
}
|
||||
pub fn embed(&self, texts: Vec<String>) -> Result<Vec<Embeddings<f32>>, EmbedError> {
|
||||
match self.rest_embedder.embed_ref(&texts) {
|
||||
Ok(embeddings) => Ok(embeddings),
|
||||
Err(EmbedError { kind: EmbedErrorKind::RestBadRequest(error), fault: _ }) => {
|
||||
tracing::warn!(error=?error, "OpenAI: received `BAD_REQUEST`. Input was maybe too long, retrying on tokenized version. For best performance, limit the size of your document template.");
|
||||
self.try_embed_tokenized(&texts)
|
||||
}
|
||||
Err(error) => Err(error),
|
||||
}
|
||||
Ok(response)
|
||||
}
|
||||
|
||||
async fn try_embed<S: AsRef<str> + serde::Serialize>(
|
||||
&self,
|
||||
texts: &[S],
|
||||
client: &reqwest::Client,
|
||||
) -> Result<Vec<Embeddings<f32>>, Retry> {
|
||||
for text in texts {
|
||||
tracing::trace!("Received prompt: {}", text.as_ref())
|
||||
}
|
||||
let request = OpenAiRequest {
|
||||
model: self.options.embedding_model.name(),
|
||||
input: texts,
|
||||
dimensions: self.overriden_dimensions(),
|
||||
};
|
||||
let response = client
|
||||
.post(OPENAI_EMBEDDINGS_URL)
|
||||
.json(&request)
|
||||
.send()
|
||||
.await
|
||||
.map_err(EmbedError::openai_network)
|
||||
.map_err(Retry::retry_later)?;
|
||||
|
||||
let response = Self::check_response(response).await?;
|
||||
|
||||
let response: OpenAiResponse = response
|
||||
.json()
|
||||
.await
|
||||
.map_err(EmbedError::openai_unexpected)
|
||||
.map_err(Retry::retry_later)?;
|
||||
|
||||
tracing::trace!("response: {:?}", response.data);
|
||||
|
||||
Ok(response
|
||||
.data
|
||||
.into_iter()
|
||||
.map(|data| Embeddings::from_single_embedding(data.embedding))
|
||||
.collect())
|
||||
}
|
||||
|
||||
async fn try_embed_tokenized(
|
||||
&self,
|
||||
text: &[String],
|
||||
client: &reqwest::Client,
|
||||
) -> Result<Vec<Embeddings<f32>>, Retry> {
|
||||
fn try_embed_tokenized(&self, text: &[String]) -> Result<Vec<Embeddings<f32>>, EmbedError> {
|
||||
pub const OVERLAP_SIZE: usize = 200;
|
||||
let mut all_embeddings = Vec::with_capacity(text.len());
|
||||
for text in text {
|
||||
@ -304,7 +205,7 @@ impl Embedder {
|
||||
let encoded = self.tokenizer.encode_ordinary(text.as_str());
|
||||
let len = encoded.len();
|
||||
if len < max_token_count {
|
||||
all_embeddings.append(&mut self.try_embed(&[text], client).await?);
|
||||
all_embeddings.append(&mut self.rest_embedder.embed_ref(&[text])?);
|
||||
continue;
|
||||
}
|
||||
|
||||
@ -312,215 +213,49 @@ impl Embedder {
|
||||
let mut embeddings_for_prompt = Embeddings::new(self.dimensions());
|
||||
while tokens.len() > max_token_count {
|
||||
let window = &tokens[..max_token_count];
|
||||
embeddings_for_prompt.push(self.embed_tokens(window, client).await?).unwrap();
|
||||
let embedding = self.rest_embedder.embed_tokens(window)?;
|
||||
embeddings_for_prompt.append(embedding.into_inner()).map_err(|got| {
|
||||
EmbedError::openai_unexpected_dimension(self.dimensions(), got.len())
|
||||
})?;
|
||||
|
||||
tokens = &tokens[max_token_count - OVERLAP_SIZE..];
|
||||
}
|
||||
|
||||
// end of text
|
||||
embeddings_for_prompt.push(self.embed_tokens(tokens, client).await?).unwrap();
|
||||
let embedding = self.rest_embedder.embed_tokens(tokens)?;
|
||||
|
||||
embeddings_for_prompt.append(embedding.into_inner()).map_err(|got| {
|
||||
EmbedError::openai_unexpected_dimension(self.dimensions(), got.len())
|
||||
})?;
|
||||
|
||||
all_embeddings.push(embeddings_for_prompt);
|
||||
}
|
||||
Ok(all_embeddings)
|
||||
}
|
||||
|
||||
async fn embed_tokens(
|
||||
&self,
|
||||
tokens: &[usize],
|
||||
client: &reqwest::Client,
|
||||
) -> Result<Embedding, Retry> {
|
||||
for attempt in 0..9 {
|
||||
let duration = match self.try_embed_tokens(tokens, client).await {
|
||||
Ok(embedding) => return Ok(embedding),
|
||||
Err(retry) => retry.into_duration(attempt),
|
||||
}
|
||||
.map_err(Retry::retry_later)?;
|
||||
|
||||
tokio::time::sleep(duration).await;
|
||||
}
|
||||
|
||||
self.try_embed_tokens(tokens, client)
|
||||
.await
|
||||
.map_err(|retry| Retry::give_up(retry.into_error()))
|
||||
}
|
||||
|
||||
async fn try_embed_tokens(
|
||||
&self,
|
||||
tokens: &[usize],
|
||||
client: &reqwest::Client,
|
||||
) -> Result<Embedding, Retry> {
|
||||
let request = OpenAiTokensRequest {
|
||||
model: self.options.embedding_model.name(),
|
||||
input: tokens,
|
||||
dimensions: self.overriden_dimensions(),
|
||||
};
|
||||
let response = client
|
||||
.post(OPENAI_EMBEDDINGS_URL)
|
||||
.json(&request)
|
||||
.send()
|
||||
.await
|
||||
.map_err(EmbedError::openai_network)
|
||||
.map_err(Retry::retry_later)?;
|
||||
|
||||
let response = Self::check_response(response).await?;
|
||||
|
||||
let mut response: OpenAiResponse = response
|
||||
.json()
|
||||
.await
|
||||
.map_err(EmbedError::openai_unexpected)
|
||||
.map_err(Retry::retry_later)?;
|
||||
Ok(response.data.pop().map(|data| data.embedding).unwrap_or_default())
|
||||
}
|
||||
|
||||
pub fn embed_chunks(
|
||||
&self,
|
||||
text_chunks: Vec<Vec<String>>,
|
||||
threads: &rayon::ThreadPool,
|
||||
) -> Result<Vec<Vec<Embeddings<f32>>>, EmbedError> {
|
||||
let rt = tokio::runtime::Builder::new_current_thread()
|
||||
.enable_io()
|
||||
.enable_time()
|
||||
.build()
|
||||
.map_err(EmbedError::openai_runtime_init)?;
|
||||
let client = self.new_client()?;
|
||||
rt.block_on(futures::future::try_join_all(
|
||||
text_chunks.into_iter().map(|prompts| self.embed(prompts, &client)),
|
||||
))
|
||||
threads.install(move || {
|
||||
text_chunks.into_par_iter().map(move |chunk| self.embed(chunk)).collect()
|
||||
})
|
||||
}
|
||||
|
||||
pub fn chunk_count_hint(&self) -> usize {
|
||||
10
|
||||
self.rest_embedder.chunk_count_hint()
|
||||
}
|
||||
|
||||
pub fn prompt_count_in_chunk_hint(&self) -> usize {
|
||||
10
|
||||
self.rest_embedder.prompt_count_in_chunk_hint()
|
||||
}
|
||||
|
||||
pub fn dimensions(&self) -> usize {
|
||||
if self.options.embedding_model.supports_overriding_dimensions() {
|
||||
self.options.dimensions.unwrap_or(self.options.embedding_model.default_dimensions())
|
||||
} else {
|
||||
self.options.embedding_model.default_dimensions()
|
||||
}
|
||||
self.options.dimensions()
|
||||
}
|
||||
|
||||
pub fn distribution(&self) -> Option<DistributionShift> {
|
||||
self.options.embedding_model.distribution()
|
||||
}
|
||||
|
||||
fn overriden_dimensions(&self) -> Option<usize> {
|
||||
if self.options.embedding_model.supports_overriding_dimensions() {
|
||||
self.options.dimensions
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// retrying in case of failure
|
||||
|
||||
pub struct Retry {
|
||||
pub error: EmbedError,
|
||||
strategy: RetryStrategy,
|
||||
}
|
||||
|
||||
pub enum RetryStrategy {
|
||||
GiveUp,
|
||||
Retry,
|
||||
RetryTokenized,
|
||||
RetryAfterRateLimit,
|
||||
}
|
||||
|
||||
impl Retry {
|
||||
pub fn give_up(error: EmbedError) -> Self {
|
||||
Self { error, strategy: RetryStrategy::GiveUp }
|
||||
}
|
||||
|
||||
pub fn retry_later(error: EmbedError) -> Self {
|
||||
Self { error, strategy: RetryStrategy::Retry }
|
||||
}
|
||||
|
||||
pub fn retry_tokenized(error: EmbedError) -> Self {
|
||||
Self { error, strategy: RetryStrategy::RetryTokenized }
|
||||
}
|
||||
|
||||
pub fn rate_limited(error: EmbedError) -> Self {
|
||||
Self { error, strategy: RetryStrategy::RetryAfterRateLimit }
|
||||
}
|
||||
|
||||
pub fn into_duration(self, attempt: u32) -> Result<tokio::time::Duration, EmbedError> {
|
||||
match self.strategy {
|
||||
RetryStrategy::GiveUp => Err(self.error),
|
||||
RetryStrategy::Retry => Ok(tokio::time::Duration::from_millis((10u64).pow(attempt))),
|
||||
RetryStrategy::RetryTokenized => Ok(tokio::time::Duration::from_millis(1)),
|
||||
RetryStrategy::RetryAfterRateLimit => {
|
||||
Ok(tokio::time::Duration::from_millis(100 + 10u64.pow(attempt)))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn must_tokenize(&self) -> bool {
|
||||
matches!(self.strategy, RetryStrategy::RetryTokenized)
|
||||
}
|
||||
|
||||
pub fn into_error(self) -> EmbedError {
|
||||
self.error
|
||||
}
|
||||
}
|
||||
|
||||
// openai api structs
|
||||
|
||||
#[derive(Debug, Serialize)]
|
||||
struct OpenAiRequest<'a, S: AsRef<str> + serde::Serialize> {
|
||||
model: &'a str,
|
||||
input: &'a [S],
|
||||
#[serde(skip_serializing_if = "Option::is_none")]
|
||||
dimensions: Option<usize>,
|
||||
}
|
||||
|
||||
#[derive(Debug, Serialize)]
|
||||
struct OpenAiTokensRequest<'a> {
|
||||
model: &'a str,
|
||||
input: &'a [usize],
|
||||
#[serde(skip_serializing_if = "Option::is_none")]
|
||||
dimensions: Option<usize>,
|
||||
}
|
||||
|
||||
#[derive(Debug, Deserialize)]
|
||||
struct OpenAiResponse {
|
||||
data: Vec<OpenAiEmbedding>,
|
||||
}
|
||||
|
||||
#[derive(Debug, Deserialize)]
|
||||
struct OpenAiErrorResponse {
|
||||
error: OpenAiError,
|
||||
}
|
||||
|
||||
#[derive(Debug, Deserialize)]
|
||||
pub struct OpenAiError {
|
||||
message: String,
|
||||
// type: String,
|
||||
code: Option<String>,
|
||||
}
|
||||
|
||||
impl Display for OpenAiError {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
match &self.code {
|
||||
Some(code) => write!(f, "{} ({})", self.message, code),
|
||||
None => write!(f, "{}", self.message),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Deserialize)]
|
||||
struct OpenAiEmbedding {
|
||||
embedding: Embedding,
|
||||
// object: String,
|
||||
// index: usize,
|
||||
}
|
||||
|
||||
fn infer_api_key() -> String {
|
||||
std::env::var("MEILI_OPENAI_API_KEY")
|
||||
.or_else(|_| std::env::var("OPENAI_API_KEY"))
|
||||
.unwrap_or_default()
|
||||
}
|
||||
|
373
milli/src/vector/rest.rs
Normal file
373
milli/src/vector/rest.rs
Normal file
@ -0,0 +1,373 @@
|
||||
use deserr::Deserr;
|
||||
use rayon::iter::{IntoParallelIterator as _, ParallelIterator as _};
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use super::{
|
||||
DistributionShift, EmbedError, Embedding, Embeddings, NewEmbedderError, REQUEST_PARALLELISM,
|
||||
};
|
||||
|
||||
// retrying in case of failure
|
||||
|
||||
pub struct Retry {
|
||||
pub error: EmbedError,
|
||||
strategy: RetryStrategy,
|
||||
}
|
||||
|
||||
pub enum RetryStrategy {
|
||||
GiveUp,
|
||||
Retry,
|
||||
RetryTokenized,
|
||||
RetryAfterRateLimit,
|
||||
}
|
||||
|
||||
impl Retry {
|
||||
pub fn give_up(error: EmbedError) -> Self {
|
||||
Self { error, strategy: RetryStrategy::GiveUp }
|
||||
}
|
||||
|
||||
pub fn retry_later(error: EmbedError) -> Self {
|
||||
Self { error, strategy: RetryStrategy::Retry }
|
||||
}
|
||||
|
||||
pub fn retry_tokenized(error: EmbedError) -> Self {
|
||||
Self { error, strategy: RetryStrategy::RetryTokenized }
|
||||
}
|
||||
|
||||
pub fn rate_limited(error: EmbedError) -> Self {
|
||||
Self { error, strategy: RetryStrategy::RetryAfterRateLimit }
|
||||
}
|
||||
|
||||
pub fn into_duration(self, attempt: u32) -> Result<std::time::Duration, EmbedError> {
|
||||
match self.strategy {
|
||||
RetryStrategy::GiveUp => Err(self.error),
|
||||
RetryStrategy::Retry => Ok(std::time::Duration::from_millis((10u64).pow(attempt))),
|
||||
RetryStrategy::RetryTokenized => Ok(std::time::Duration::from_millis(1)),
|
||||
RetryStrategy::RetryAfterRateLimit => {
|
||||
Ok(std::time::Duration::from_millis(100 + 10u64.pow(attempt)))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn must_tokenize(&self) -> bool {
|
||||
matches!(self.strategy, RetryStrategy::RetryTokenized)
|
||||
}
|
||||
|
||||
pub fn into_error(self) -> EmbedError {
|
||||
self.error
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct Embedder {
|
||||
client: ureq::Agent,
|
||||
options: EmbedderOptions,
|
||||
bearer: Option<String>,
|
||||
dimensions: usize,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, PartialEq, Eq, Deserialize, Serialize)]
|
||||
pub struct EmbedderOptions {
|
||||
pub api_key: Option<String>,
|
||||
pub distribution: Option<DistributionShift>,
|
||||
pub dimensions: Option<usize>,
|
||||
pub url: String,
|
||||
pub query: serde_json::Value,
|
||||
pub input_field: Vec<String>,
|
||||
// path to the array of embeddings
|
||||
pub path_to_embeddings: Vec<String>,
|
||||
// shape of a single embedding
|
||||
pub embedding_object: Vec<String>,
|
||||
pub input_type: InputType,
|
||||
}
|
||||
|
||||
impl Default for EmbedderOptions {
|
||||
fn default() -> Self {
|
||||
Self {
|
||||
url: Default::default(),
|
||||
query: Default::default(),
|
||||
input_field: vec!["input".into()],
|
||||
path_to_embeddings: vec!["data".into()],
|
||||
embedding_object: vec!["embedding".into()],
|
||||
input_type: InputType::Text,
|
||||
api_key: None,
|
||||
distribution: None,
|
||||
dimensions: None,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl std::hash::Hash for EmbedderOptions {
|
||||
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
|
||||
self.api_key.hash(state);
|
||||
self.distribution.hash(state);
|
||||
self.dimensions.hash(state);
|
||||
self.url.hash(state);
|
||||
// skip hashing the query
|
||||
// collisions in regular usage should be minimal,
|
||||
// and the list is limited to 256 values anyway
|
||||
self.input_field.hash(state);
|
||||
self.path_to_embeddings.hash(state);
|
||||
self.embedding_object.hash(state);
|
||||
self.input_type.hash(state);
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy, Deserialize, Serialize, PartialEq, Eq, Hash, Deserr)]
|
||||
#[serde(rename_all = "camelCase")]
|
||||
#[deserr(rename_all = camelCase, deny_unknown_fields)]
|
||||
pub enum InputType {
|
||||
Text,
|
||||
TextArray,
|
||||
}
|
||||
|
||||
impl Embedder {
|
||||
pub fn new(options: EmbedderOptions) -> Result<Self, NewEmbedderError> {
|
||||
let bearer = options.api_key.as_deref().map(|api_key| format!("Bearer {api_key}"));
|
||||
|
||||
let client = ureq::AgentBuilder::new()
|
||||
.max_idle_connections(REQUEST_PARALLELISM * 2)
|
||||
.max_idle_connections_per_host(REQUEST_PARALLELISM * 2)
|
||||
.build();
|
||||
|
||||
let dimensions = if let Some(dimensions) = options.dimensions {
|
||||
dimensions
|
||||
} else {
|
||||
infer_dimensions(&client, &options, bearer.as_deref())?
|
||||
};
|
||||
|
||||
Ok(Self { client, dimensions, options, bearer })
|
||||
}
|
||||
|
||||
pub fn embed(&self, texts: Vec<String>) -> Result<Vec<Embeddings<f32>>, EmbedError> {
|
||||
embed(&self.client, &self.options, self.bearer.as_deref(), texts.as_slice(), texts.len())
|
||||
}
|
||||
|
||||
pub fn embed_ref<S>(&self, texts: &[S]) -> Result<Vec<Embeddings<f32>>, EmbedError>
|
||||
where
|
||||
S: AsRef<str> + Serialize,
|
||||
{
|
||||
embed(&self.client, &self.options, self.bearer.as_deref(), texts, texts.len())
|
||||
}
|
||||
|
||||
pub fn embed_tokens(&self, tokens: &[usize]) -> Result<Embeddings<f32>, EmbedError> {
|
||||
let mut embeddings = embed(&self.client, &self.options, self.bearer.as_deref(), tokens, 1)?;
|
||||
// unwrap: guaranteed that embeddings.len() == 1, otherwise the previous line terminated in error
|
||||
Ok(embeddings.pop().unwrap())
|
||||
}
|
||||
|
||||
pub fn embed_chunks(
|
||||
&self,
|
||||
text_chunks: Vec<Vec<String>>,
|
||||
threads: &rayon::ThreadPool,
|
||||
) -> Result<Vec<Vec<Embeddings<f32>>>, EmbedError> {
|
||||
threads.install(move || {
|
||||
text_chunks.into_par_iter().map(move |chunk| self.embed(chunk)).collect()
|
||||
})
|
||||
}
|
||||
|
||||
pub fn chunk_count_hint(&self) -> usize {
|
||||
super::REQUEST_PARALLELISM
|
||||
}
|
||||
|
||||
pub fn prompt_count_in_chunk_hint(&self) -> usize {
|
||||
match self.options.input_type {
|
||||
InputType::Text => 1,
|
||||
InputType::TextArray => 10,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn dimensions(&self) -> usize {
|
||||
self.dimensions
|
||||
}
|
||||
|
||||
pub fn distribution(&self) -> Option<DistributionShift> {
|
||||
self.options.distribution
|
||||
}
|
||||
}
|
||||
|
||||
fn infer_dimensions(
|
||||
client: &ureq::Agent,
|
||||
options: &EmbedderOptions,
|
||||
bearer: Option<&str>,
|
||||
) -> Result<usize, NewEmbedderError> {
|
||||
let v = embed(client, options, bearer, ["test"].as_slice(), 1)
|
||||
.map_err(NewEmbedderError::could_not_determine_dimension)?;
|
||||
// unwrap: guaranteed that v.len() == 1, otherwise the previous line terminated in error
|
||||
Ok(v.first().unwrap().dimension())
|
||||
}
|
||||
|
||||
fn embed<S>(
|
||||
client: &ureq::Agent,
|
||||
options: &EmbedderOptions,
|
||||
bearer: Option<&str>,
|
||||
inputs: &[S],
|
||||
expected_count: usize,
|
||||
) -> Result<Vec<Embeddings<f32>>, EmbedError>
|
||||
where
|
||||
S: Serialize,
|
||||
{
|
||||
let request = client.post(&options.url);
|
||||
let request =
|
||||
if let Some(bearer) = bearer { request.set("Authorization", bearer) } else { request };
|
||||
let request = request.set("Content-Type", "application/json");
|
||||
|
||||
let input_value = match options.input_type {
|
||||
InputType::Text => serde_json::json!(inputs.first()),
|
||||
InputType::TextArray => serde_json::json!(inputs),
|
||||
};
|
||||
|
||||
let body = match options.input_field.as_slice() {
|
||||
[] => {
|
||||
// inject input in body
|
||||
input_value
|
||||
}
|
||||
[input] => {
|
||||
let mut body = options.query.clone();
|
||||
|
||||
body.as_object_mut()
|
||||
.ok_or_else(|| {
|
||||
EmbedError::rest_not_an_object(
|
||||
options.query.clone(),
|
||||
options.input_field.clone(),
|
||||
)
|
||||
})?
|
||||
.insert(input.clone(), input_value);
|
||||
body
|
||||
}
|
||||
[path @ .., input] => {
|
||||
let mut body = options.query.clone();
|
||||
|
||||
let mut current_value = &mut body;
|
||||
for component in path {
|
||||
current_value = current_value
|
||||
.as_object_mut()
|
||||
.ok_or_else(|| {
|
||||
EmbedError::rest_not_an_object(
|
||||
options.query.clone(),
|
||||
options.input_field.clone(),
|
||||
)
|
||||
})?
|
||||
.entry(component.clone())
|
||||
.or_insert(serde_json::json!({}));
|
||||
}
|
||||
|
||||
current_value.as_object_mut().unwrap().insert(input.clone(), input_value);
|
||||
body
|
||||
}
|
||||
};
|
||||
|
||||
for attempt in 0..7 {
|
||||
let response = request.clone().send_json(&body);
|
||||
let result = check_response(response);
|
||||
|
||||
let retry_duration = match result {
|
||||
Ok(response) => return response_to_embedding(response, options, expected_count),
|
||||
Err(retry) => {
|
||||
tracing::warn!("Failed: {}", retry.error);
|
||||
retry.into_duration(attempt)
|
||||
}
|
||||
}?;
|
||||
|
||||
let retry_duration = retry_duration.min(std::time::Duration::from_secs(60)); // don't wait more than a minute
|
||||
tracing::warn!("Attempt #{}, retrying after {}ms.", attempt, retry_duration.as_millis());
|
||||
std::thread::sleep(retry_duration);
|
||||
}
|
||||
|
||||
let response = request.send_json(&body);
|
||||
let result = check_response(response);
|
||||
result
|
||||
.map_err(Retry::into_error)
|
||||
.and_then(|response| response_to_embedding(response, options, expected_count))
|
||||
}
|
||||
|
||||
fn check_response(response: Result<ureq::Response, ureq::Error>) -> Result<ureq::Response, Retry> {
|
||||
match response {
|
||||
Ok(response) => Ok(response),
|
||||
Err(ureq::Error::Status(code, response)) => {
|
||||
let error_response: Option<String> = response.into_string().ok();
|
||||
Err(match code {
|
||||
401 => Retry::give_up(EmbedError::rest_unauthorized(error_response)),
|
||||
429 => Retry::rate_limited(EmbedError::rest_too_many_requests(error_response)),
|
||||
400 => Retry::give_up(EmbedError::rest_bad_request(error_response)),
|
||||
500..=599 => {
|
||||
Retry::retry_later(EmbedError::rest_internal_server_error(code, error_response))
|
||||
}
|
||||
402..=499 => {
|
||||
Retry::give_up(EmbedError::rest_other_status_code(code, error_response))
|
||||
}
|
||||
_ => Retry::retry_later(EmbedError::rest_other_status_code(code, error_response)),
|
||||
})
|
||||
}
|
||||
Err(ureq::Error::Transport(transport)) => {
|
||||
Err(Retry::retry_later(EmbedError::rest_network(transport)))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn response_to_embedding(
|
||||
response: ureq::Response,
|
||||
options: &EmbedderOptions,
|
||||
expected_count: usize,
|
||||
) -> Result<Vec<Embeddings<f32>>, EmbedError> {
|
||||
let response: serde_json::Value =
|
||||
response.into_json().map_err(EmbedError::rest_response_deserialization)?;
|
||||
|
||||
let mut current_value = &response;
|
||||
for component in &options.path_to_embeddings {
|
||||
let component = component.as_ref();
|
||||
current_value = current_value.get(component).ok_or_else(|| {
|
||||
EmbedError::rest_response_missing_embeddings(
|
||||
response.clone(),
|
||||
component,
|
||||
&options.path_to_embeddings,
|
||||
)
|
||||
})?;
|
||||
}
|
||||
|
||||
let embeddings = match options.input_type {
|
||||
InputType::Text => {
|
||||
for component in &options.embedding_object {
|
||||
current_value = current_value.get(component).ok_or_else(|| {
|
||||
EmbedError::rest_response_missing_embeddings(
|
||||
response.clone(),
|
||||
component,
|
||||
&options.embedding_object,
|
||||
)
|
||||
})?;
|
||||
}
|
||||
let embeddings = current_value.to_owned();
|
||||
let embeddings: Embedding =
|
||||
serde_json::from_value(embeddings).map_err(EmbedError::rest_response_format)?;
|
||||
|
||||
vec![Embeddings::from_single_embedding(embeddings)]
|
||||
}
|
||||
InputType::TextArray => {
|
||||
let empty = vec![];
|
||||
let values = current_value.as_array().unwrap_or(&empty);
|
||||
let mut embeddings: Vec<Embeddings<f32>> = Vec::with_capacity(expected_count);
|
||||
for value in values {
|
||||
let mut current_value = value;
|
||||
for component in &options.embedding_object {
|
||||
current_value = current_value.get(component).ok_or_else(|| {
|
||||
EmbedError::rest_response_missing_embeddings(
|
||||
response.clone(),
|
||||
component,
|
||||
&options.embedding_object,
|
||||
)
|
||||
})?;
|
||||
}
|
||||
let embedding = current_value.to_owned();
|
||||
let embedding: Embedding =
|
||||
serde_json::from_value(embedding).map_err(EmbedError::rest_response_format)?;
|
||||
embeddings.push(Embeddings::from_single_embedding(embedding));
|
||||
}
|
||||
embeddings
|
||||
}
|
||||
};
|
||||
|
||||
if embeddings.len() != expected_count {
|
||||
return Err(EmbedError::rest_response_embedding_count(expected_count, embeddings.len()));
|
||||
}
|
||||
|
||||
Ok(embeddings)
|
||||
}
|
@ -1,6 +1,7 @@
|
||||
use deserr::Deserr;
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use super::rest::InputType;
|
||||
use super::{ollama, openai};
|
||||
use crate::prompt::PromptData;
|
||||
use crate::update::Setting;
|
||||
@ -29,6 +30,24 @@ pub struct EmbeddingSettings {
|
||||
#[serde(default, skip_serializing_if = "Setting::is_not_set")]
|
||||
#[deserr(default)]
|
||||
pub document_template: Setting<String>,
|
||||
#[serde(default, skip_serializing_if = "Setting::is_not_set")]
|
||||
#[deserr(default)]
|
||||
pub url: Setting<String>,
|
||||
#[serde(default, skip_serializing_if = "Setting::is_not_set")]
|
||||
#[deserr(default)]
|
||||
pub query: Setting<serde_json::Value>,
|
||||
#[serde(default, skip_serializing_if = "Setting::is_not_set")]
|
||||
#[deserr(default)]
|
||||
pub input_field: Setting<Vec<String>>,
|
||||
#[serde(default, skip_serializing_if = "Setting::is_not_set")]
|
||||
#[deserr(default)]
|
||||
pub path_to_embeddings: Setting<Vec<String>>,
|
||||
#[serde(default, skip_serializing_if = "Setting::is_not_set")]
|
||||
#[deserr(default)]
|
||||
pub embedding_object: Setting<Vec<String>>,
|
||||
#[serde(default, skip_serializing_if = "Setting::is_not_set")]
|
||||
#[deserr(default)]
|
||||
pub input_type: Setting<InputType>,
|
||||
}
|
||||
|
||||
pub fn check_unset<T>(
|
||||
@ -75,20 +94,42 @@ impl EmbeddingSettings {
|
||||
pub const DIMENSIONS: &'static str = "dimensions";
|
||||
pub const DOCUMENT_TEMPLATE: &'static str = "documentTemplate";
|
||||
|
||||
pub const URL: &'static str = "url";
|
||||
pub const QUERY: &'static str = "query";
|
||||
pub const INPUT_FIELD: &'static str = "inputField";
|
||||
pub const PATH_TO_EMBEDDINGS: &'static str = "pathToEmbeddings";
|
||||
pub const EMBEDDING_OBJECT: &'static str = "embeddingObject";
|
||||
pub const INPUT_TYPE: &'static str = "inputType";
|
||||
|
||||
pub fn allowed_sources_for_field(field: &'static str) -> &'static [EmbedderSource] {
|
||||
match field {
|
||||
Self::SOURCE => {
|
||||
&[EmbedderSource::HuggingFace, EmbedderSource::OpenAi, EmbedderSource::UserProvided]
|
||||
}
|
||||
Self::SOURCE => &[
|
||||
EmbedderSource::HuggingFace,
|
||||
EmbedderSource::OpenAi,
|
||||
EmbedderSource::UserProvided,
|
||||
EmbedderSource::Rest,
|
||||
EmbedderSource::Ollama,
|
||||
],
|
||||
Self::MODEL => {
|
||||
&[EmbedderSource::HuggingFace, EmbedderSource::OpenAi, EmbedderSource::Ollama]
|
||||
}
|
||||
Self::REVISION => &[EmbedderSource::HuggingFace],
|
||||
Self::API_KEY => &[EmbedderSource::OpenAi],
|
||||
Self::DIMENSIONS => &[EmbedderSource::OpenAi, EmbedderSource::UserProvided],
|
||||
Self::DOCUMENT_TEMPLATE => {
|
||||
&[EmbedderSource::HuggingFace, EmbedderSource::OpenAi, EmbedderSource::Ollama]
|
||||
Self::API_KEY => &[EmbedderSource::OpenAi, EmbedderSource::Rest],
|
||||
Self::DIMENSIONS => {
|
||||
&[EmbedderSource::OpenAi, EmbedderSource::UserProvided, EmbedderSource::Rest]
|
||||
}
|
||||
Self::DOCUMENT_TEMPLATE => &[
|
||||
EmbedderSource::HuggingFace,
|
||||
EmbedderSource::OpenAi,
|
||||
EmbedderSource::Ollama,
|
||||
EmbedderSource::Rest,
|
||||
],
|
||||
Self::URL => &[EmbedderSource::Rest],
|
||||
Self::QUERY => &[EmbedderSource::Rest],
|
||||
Self::INPUT_FIELD => &[EmbedderSource::Rest],
|
||||
Self::PATH_TO_EMBEDDINGS => &[EmbedderSource::Rest],
|
||||
Self::EMBEDDING_OBJECT => &[EmbedderSource::Rest],
|
||||
Self::INPUT_TYPE => &[EmbedderSource::Rest],
|
||||
_other => unreachable!("unknown field"),
|
||||
}
|
||||
}
|
||||
@ -107,6 +148,18 @@ impl EmbeddingSettings {
|
||||
}
|
||||
EmbedderSource::Ollama => &[Self::SOURCE, Self::MODEL, Self::DOCUMENT_TEMPLATE],
|
||||
EmbedderSource::UserProvided => &[Self::SOURCE, Self::DIMENSIONS],
|
||||
EmbedderSource::Rest => &[
|
||||
Self::SOURCE,
|
||||
Self::API_KEY,
|
||||
Self::DIMENSIONS,
|
||||
Self::DOCUMENT_TEMPLATE,
|
||||
Self::URL,
|
||||
Self::QUERY,
|
||||
Self::INPUT_FIELD,
|
||||
Self::PATH_TO_EMBEDDINGS,
|
||||
Self::EMBEDDING_OBJECT,
|
||||
Self::INPUT_TYPE,
|
||||
],
|
||||
}
|
||||
}
|
||||
|
||||
@ -141,6 +194,7 @@ pub enum EmbedderSource {
|
||||
HuggingFace,
|
||||
Ollama,
|
||||
UserProvided,
|
||||
Rest,
|
||||
}
|
||||
|
||||
impl std::fmt::Display for EmbedderSource {
|
||||
@ -150,6 +204,7 @@ impl std::fmt::Display for EmbedderSource {
|
||||
EmbedderSource::HuggingFace => "huggingFace",
|
||||
EmbedderSource::UserProvided => "userProvided",
|
||||
EmbedderSource::Ollama => "ollama",
|
||||
EmbedderSource::Rest => "rest",
|
||||
};
|
||||
f.write_str(s)
|
||||
}
|
||||
@ -157,8 +212,20 @@ impl std::fmt::Display for EmbedderSource {
|
||||
|
||||
impl EmbeddingSettings {
|
||||
pub fn apply(&mut self, new: Self) {
|
||||
let EmbeddingSettings { source, model, revision, api_key, dimensions, document_template } =
|
||||
new;
|
||||
let EmbeddingSettings {
|
||||
source,
|
||||
model,
|
||||
revision,
|
||||
api_key,
|
||||
dimensions,
|
||||
document_template,
|
||||
url,
|
||||
query,
|
||||
input_field,
|
||||
path_to_embeddings,
|
||||
embedding_object,
|
||||
input_type,
|
||||
} = new;
|
||||
let old_source = self.source;
|
||||
self.source.apply(source);
|
||||
// Reinitialize the whole setting object on a source change
|
||||
@ -170,6 +237,12 @@ impl EmbeddingSettings {
|
||||
api_key,
|
||||
dimensions,
|
||||
document_template,
|
||||
url,
|
||||
query,
|
||||
input_field,
|
||||
path_to_embeddings,
|
||||
embedding_object,
|
||||
input_type,
|
||||
};
|
||||
return;
|
||||
}
|
||||
@ -179,6 +252,13 @@ impl EmbeddingSettings {
|
||||
self.api_key.apply(api_key);
|
||||
self.dimensions.apply(dimensions);
|
||||
self.document_template.apply(document_template);
|
||||
|
||||
self.url.apply(url);
|
||||
self.query.apply(query);
|
||||
self.input_field.apply(input_field);
|
||||
self.path_to_embeddings.apply(path_to_embeddings);
|
||||
self.embedding_object.apply(embedding_object);
|
||||
self.input_type.apply(input_type);
|
||||
}
|
||||
}
|
||||
|
||||
@ -193,6 +273,12 @@ impl From<EmbeddingConfig> for EmbeddingSettings {
|
||||
api_key: Setting::NotSet,
|
||||
dimensions: Setting::NotSet,
|
||||
document_template: Setting::Set(prompt.template),
|
||||
url: Setting::NotSet,
|
||||
query: Setting::NotSet,
|
||||
input_field: Setting::NotSet,
|
||||
path_to_embeddings: Setting::NotSet,
|
||||
embedding_object: Setting::NotSet,
|
||||
input_type: Setting::NotSet,
|
||||
},
|
||||
super::EmbedderOptions::OpenAi(options) => Self {
|
||||
source: Setting::Set(EmbedderSource::OpenAi),
|
||||
@ -201,14 +287,26 @@ impl From<EmbeddingConfig> for EmbeddingSettings {
|
||||
api_key: options.api_key.map(Setting::Set).unwrap_or_default(),
|
||||
dimensions: options.dimensions.map(Setting::Set).unwrap_or_default(),
|
||||
document_template: Setting::Set(prompt.template),
|
||||
url: Setting::NotSet,
|
||||
query: Setting::NotSet,
|
||||
input_field: Setting::NotSet,
|
||||
path_to_embeddings: Setting::NotSet,
|
||||
embedding_object: Setting::NotSet,
|
||||
input_type: Setting::NotSet,
|
||||
},
|
||||
super::EmbedderOptions::Ollama(options) => Self {
|
||||
source: Setting::Set(EmbedderSource::Ollama),
|
||||
model: Setting::Set(options.embedding_model.name().to_owned()),
|
||||
model: Setting::Set(options.embedding_model.to_owned()),
|
||||
revision: Setting::NotSet,
|
||||
api_key: Setting::NotSet,
|
||||
dimensions: Setting::NotSet,
|
||||
document_template: Setting::Set(prompt.template),
|
||||
url: Setting::NotSet,
|
||||
query: Setting::NotSet,
|
||||
input_field: Setting::NotSet,
|
||||
path_to_embeddings: Setting::NotSet,
|
||||
embedding_object: Setting::NotSet,
|
||||
input_type: Setting::NotSet,
|
||||
},
|
||||
super::EmbedderOptions::UserProvided(options) => Self {
|
||||
source: Setting::Set(EmbedderSource::UserProvided),
|
||||
@ -217,6 +315,37 @@ impl From<EmbeddingConfig> for EmbeddingSettings {
|
||||
api_key: Setting::NotSet,
|
||||
dimensions: Setting::Set(options.dimensions),
|
||||
document_template: Setting::NotSet,
|
||||
url: Setting::NotSet,
|
||||
query: Setting::NotSet,
|
||||
input_field: Setting::NotSet,
|
||||
path_to_embeddings: Setting::NotSet,
|
||||
embedding_object: Setting::NotSet,
|
||||
input_type: Setting::NotSet,
|
||||
},
|
||||
super::EmbedderOptions::Rest(super::rest::EmbedderOptions {
|
||||
api_key,
|
||||
// TODO: support distribution
|
||||
distribution: _,
|
||||
dimensions,
|
||||
url,
|
||||
query,
|
||||
input_field,
|
||||
path_to_embeddings,
|
||||
embedding_object,
|
||||
input_type,
|
||||
}) => Self {
|
||||
source: Setting::Set(EmbedderSource::Rest),
|
||||
model: Setting::NotSet,
|
||||
revision: Setting::NotSet,
|
||||
api_key: api_key.map(Setting::Set).unwrap_or_default(),
|
||||
dimensions: dimensions.map(Setting::Set).unwrap_or_default(),
|
||||
document_template: Setting::Set(prompt.template),
|
||||
url: Setting::Set(url),
|
||||
query: Setting::Set(query),
|
||||
input_field: Setting::Set(input_field),
|
||||
path_to_embeddings: Setting::Set(path_to_embeddings),
|
||||
embedding_object: Setting::Set(embedding_object),
|
||||
input_type: Setting::Set(input_type),
|
||||
},
|
||||
}
|
||||
}
|
||||
@ -225,8 +354,20 @@ impl From<EmbeddingConfig> for EmbeddingSettings {
|
||||
impl From<EmbeddingSettings> for EmbeddingConfig {
|
||||
fn from(value: EmbeddingSettings) -> Self {
|
||||
let mut this = Self::default();
|
||||
let EmbeddingSettings { source, model, revision, api_key, dimensions, document_template } =
|
||||
value;
|
||||
let EmbeddingSettings {
|
||||
source,
|
||||
model,
|
||||
revision,
|
||||
api_key,
|
||||
dimensions,
|
||||
document_template,
|
||||
url,
|
||||
query,
|
||||
input_field,
|
||||
path_to_embeddings,
|
||||
embedding_object,
|
||||
input_type,
|
||||
} = value;
|
||||
if let Some(source) = source.set() {
|
||||
match source {
|
||||
EmbedderSource::OpenAi => {
|
||||
@ -248,7 +389,7 @@ impl From<EmbeddingSettings> for EmbeddingConfig {
|
||||
let mut options: ollama::EmbedderOptions =
|
||||
super::ollama::EmbedderOptions::with_default_model();
|
||||
if let Some(model) = model.set() {
|
||||
options.embedding_model = super::ollama::EmbeddingModel::from_name(&model);
|
||||
options.embedding_model = model;
|
||||
}
|
||||
this.embedder_options = super::EmbedderOptions::Ollama(options);
|
||||
}
|
||||
@ -274,6 +415,26 @@ impl From<EmbeddingSettings> for EmbeddingConfig {
|
||||
dimensions: dimensions.set().unwrap(),
|
||||
});
|
||||
}
|
||||
EmbedderSource::Rest => {
|
||||
let embedder_options = super::rest::EmbedderOptions::default();
|
||||
|
||||
this.embedder_options =
|
||||
super::EmbedderOptions::Rest(super::rest::EmbedderOptions {
|
||||
api_key: api_key.set(),
|
||||
distribution: None,
|
||||
dimensions: dimensions.set(),
|
||||
url: url.set().unwrap(),
|
||||
query: query.set().unwrap_or(embedder_options.query),
|
||||
input_field: input_field.set().unwrap_or(embedder_options.input_field),
|
||||
path_to_embeddings: path_to_embeddings
|
||||
.set()
|
||||
.unwrap_or(embedder_options.path_to_embeddings),
|
||||
embedding_object: embedding_object
|
||||
.set()
|
||||
.unwrap_or(embedder_options.embedding_object),
|
||||
input_type: input_type.set().unwrap_or(embedder_options.input_type),
|
||||
})
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user