mirror of
https://github.com/meilisearch/meilisearch.git
synced 2025-01-19 01:18:31 +08:00
Merge #3768
3768: Fix bugs in graph-based ranking rules + make `words` a graph-based ranking rule r=dureuill a=loiclec This PR contains three changes: ## 1. Don't call the `words` ranking rule if the term matching strategy is `All` This is because the purpose of `words` is only to remove nodes from the query graph. It would never do any useful work when the matching strategy was `All`. Remember that the universe was already computed before by computing all the docids corresponding to the "maximally reduced" query graph, which, in the case of `All`, is equal to the original graph. ## 2. The `words` ranking rule is replaced by a graph-based ranking rule. This is for three reasons: 1. **performance**: graph-based ranking rules benefit from a lot of optimisations by default, which ensures that they are never too slow. The previous implementation of `words` could call `compute_query_graph_docids` many times if some words had to be removed from the query, which would be quite expensive. I was especially worried about its performance in cases where it is placed right after the `sort` ranking rule. Furthermore, `compute_query_graph_docids` would clone a lot of bitmaps many times unnecessarily. 2. **consistency**: every other ranking rule (except `sort`) is graph-based. It makes sense to implement `words` like that as well. It will automatically benefit from all the features, optimisations, and bug fixes that all the other ranking rules get. 3. **surfacing bugs**: as the first ranking rule to be called (most of the time), I'd like `words` to behave the same as the other ranking rules so that we can quickly detect bugs in our graph algorithms. This actually already happened, which is why this PR also contains a bug fix. ## 3. Fix the `update_all_costs_before_nodes` function It is a bit difficult to explain what was wrong, but I'll try. The bug happened when we had graphs like: <img width="730" alt="Screenshot 2023-05-16 at 10 58 57" src="https://github.com/meilisearch/meilisearch/assets/6040237/40db1a68-d852-4e89-99d5-0d65757242a7"> and we gave the node `is` as argument. Then, we'd walk backwards from the node breadth-first. We'd update the costs of: 1. `sun` 2. `thesun` 3. `start` 4. `the` which is an incorrect order. The correct order is: 1. `sun` 2. `thesun` 3. `the` 4. `start` That is, we can only update the cost of a node when all of its successors have either already been visited or were not affected by the update to the node passed as argument. To solve this bug, I factored out the graph-traversal logic into a `traverse_breadth_first_backward` function. Co-authored-by: Loïc Lecrenier <loic.lecrenier@me.com> Co-authored-by: Louis Dureuil <louis@meilisearch.com>
This commit is contained in:
commit
2e49d6aec1
@ -46,7 +46,7 @@ use super::logger::SearchLogger;
|
||||
use super::query_graph::QueryNode;
|
||||
use super::ranking_rule_graph::{
|
||||
ConditionDocIdsCache, DeadEndsCache, ExactnessGraph, FidGraph, PositionGraph, ProximityGraph,
|
||||
RankingRuleGraph, RankingRuleGraphTrait, TypoGraph,
|
||||
RankingRuleGraph, RankingRuleGraphTrait, TypoGraph, WordsGraph,
|
||||
};
|
||||
use super::small_bitmap::SmallBitmap;
|
||||
use super::{QueryGraph, RankingRule, RankingRuleOutput, SearchContext};
|
||||
@ -54,6 +54,12 @@ use crate::search::new::query_term::LocatedQueryTermSubset;
|
||||
use crate::search::new::ranking_rule_graph::PathVisitor;
|
||||
use crate::{Result, TermsMatchingStrategy};
|
||||
|
||||
pub type Words = GraphBasedRankingRule<WordsGraph>;
|
||||
impl GraphBasedRankingRule<WordsGraph> {
|
||||
pub fn new(terms_matching_strategy: TermsMatchingStrategy) -> Self {
|
||||
Self::new_with_id("words".to_owned(), Some(terms_matching_strategy))
|
||||
}
|
||||
}
|
||||
pub type Proximity = GraphBasedRankingRule<ProximityGraph>;
|
||||
impl GraphBasedRankingRule<ProximityGraph> {
|
||||
pub fn new(terms_matching_strategy: Option<TermsMatchingStrategy>) -> Self {
|
||||
|
@ -4,7 +4,6 @@ use std::io::{BufWriter, Write};
|
||||
use std::path::{Path, PathBuf};
|
||||
use std::time::Instant;
|
||||
|
||||
// use rand::random;
|
||||
use roaring::RoaringBitmap;
|
||||
|
||||
use crate::search::new::interner::Interned;
|
||||
@ -13,6 +12,7 @@ use crate::search::new::query_term::LocatedQueryTermSubset;
|
||||
use crate::search::new::ranking_rule_graph::{
|
||||
Edge, FidCondition, FidGraph, PositionCondition, PositionGraph, ProximityCondition,
|
||||
ProximityGraph, RankingRuleGraph, RankingRuleGraphTrait, TypoCondition, TypoGraph,
|
||||
WordsCondition, WordsGraph,
|
||||
};
|
||||
use crate::search::new::ranking_rules::BoxRankingRule;
|
||||
use crate::search::new::{QueryGraph, QueryNode, RankingRule, SearchContext, SearchLogger};
|
||||
@ -24,11 +24,12 @@ pub enum SearchEvents {
|
||||
RankingRuleSkipBucket { ranking_rule_idx: usize, bucket_len: u64 },
|
||||
RankingRuleEndIteration { ranking_rule_idx: usize, universe_len: u64 },
|
||||
ExtendResults { new: Vec<u32> },
|
||||
WordsGraph { query_graph: QueryGraph },
|
||||
ProximityGraph { graph: RankingRuleGraph<ProximityGraph> },
|
||||
ProximityPaths { paths: Vec<Vec<Interned<ProximityCondition>>> },
|
||||
TypoGraph { graph: RankingRuleGraph<TypoGraph> },
|
||||
TypoPaths { paths: Vec<Vec<Interned<TypoCondition>>> },
|
||||
WordsGraph { graph: RankingRuleGraph<WordsGraph> },
|
||||
WordsPaths { paths: Vec<Vec<Interned<WordsCondition>>> },
|
||||
FidGraph { graph: RankingRuleGraph<FidGraph> },
|
||||
FidPaths { paths: Vec<Vec<Interned<FidCondition>>> },
|
||||
PositionGraph { graph: RankingRuleGraph<PositionGraph> },
|
||||
@ -139,8 +140,11 @@ impl SearchLogger<QueryGraph> for VisualSearchLogger {
|
||||
let Some(location) = self.location.last() else { return };
|
||||
match location {
|
||||
Location::Words => {
|
||||
if let Some(query_graph) = state.downcast_ref::<QueryGraph>() {
|
||||
self.events.push(SearchEvents::WordsGraph { query_graph: query_graph.clone() });
|
||||
if let Some(graph) = state.downcast_ref::<RankingRuleGraph<WordsGraph>>() {
|
||||
self.events.push(SearchEvents::WordsGraph { graph: graph.clone() });
|
||||
}
|
||||
if let Some(paths) = state.downcast_ref::<Vec<Vec<Interned<WordsCondition>>>>() {
|
||||
self.events.push(SearchEvents::WordsPaths { paths: paths.clone() });
|
||||
}
|
||||
}
|
||||
Location::Typo => {
|
||||
@ -329,7 +333,6 @@ impl<'ctx> DetailedLoggerFinish<'ctx> {
|
||||
SearchEvents::ExtendResults { new } => {
|
||||
self.write_extend_results(new)?;
|
||||
}
|
||||
SearchEvents::WordsGraph { query_graph } => self.write_words_graph(query_graph)?,
|
||||
SearchEvents::ProximityGraph { graph } => self.write_rr_graph(&graph)?,
|
||||
SearchEvents::ProximityPaths { paths } => {
|
||||
self.write_rr_graph_paths::<ProximityGraph>(paths)?;
|
||||
@ -338,6 +341,10 @@ impl<'ctx> DetailedLoggerFinish<'ctx> {
|
||||
SearchEvents::TypoPaths { paths } => {
|
||||
self.write_rr_graph_paths::<TypoGraph>(paths)?;
|
||||
}
|
||||
SearchEvents::WordsGraph { graph } => self.write_rr_graph(&graph)?,
|
||||
SearchEvents::WordsPaths { paths } => {
|
||||
self.write_rr_graph_paths::<WordsGraph>(paths)?;
|
||||
}
|
||||
SearchEvents::FidGraph { graph } => self.write_rr_graph(&graph)?,
|
||||
SearchEvents::FidPaths { paths } => {
|
||||
self.write_rr_graph_paths::<FidGraph>(paths)?;
|
||||
@ -455,7 +462,7 @@ fill: \"#B6E2D3\"
|
||||
shape: class
|
||||
max_nbr_typo: {}",
|
||||
term_subset.description(ctx),
|
||||
term_subset.max_nbr_typos(ctx)
|
||||
term_subset.max_typo_cost(ctx)
|
||||
)?;
|
||||
|
||||
for w in term_subset.all_single_words_except_prefix_db(ctx)? {
|
||||
@ -482,13 +489,6 @@ fill: \"#B6E2D3\"
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
fn write_words_graph(&mut self, qg: QueryGraph) -> Result<()> {
|
||||
self.make_new_file_for_internal_state_if_needed()?;
|
||||
|
||||
self.write_query_graph(&qg)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
fn write_rr_graph<R: RankingRuleGraphTrait>(
|
||||
&mut self,
|
||||
graph: &RankingRuleGraph<R>,
|
||||
|
@ -15,11 +15,7 @@ mod resolve_query_graph;
|
||||
mod small_bitmap;
|
||||
|
||||
mod exact_attribute;
|
||||
// TODO: documentation + comments
|
||||
// implementation is currently an adaptation of the previous implementation to fit with the new model
|
||||
mod sort;
|
||||
// TODO: documentation + comments
|
||||
mod words;
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests;
|
||||
@ -43,10 +39,10 @@ use ranking_rules::{
|
||||
use resolve_query_graph::{compute_query_graph_docids, PhraseDocIdsCache};
|
||||
use roaring::RoaringBitmap;
|
||||
use sort::Sort;
|
||||
use words::Words;
|
||||
|
||||
use self::geo_sort::GeoSort;
|
||||
pub use self::geo_sort::Strategy as GeoSortStrategy;
|
||||
use self::graph_based_ranking_rule::Words;
|
||||
use self::interner::Interned;
|
||||
use crate::search::new::distinct::apply_distinct_rule;
|
||||
use crate::{AscDesc, DocumentId, Filter, Index, Member, Result, TermsMatchingStrategy, UserError};
|
||||
@ -202,6 +198,11 @@ fn get_ranking_rules_for_query_graph_search<'ctx>(
|
||||
let mut sorted_fields = HashSet::new();
|
||||
let mut geo_sorted = false;
|
||||
|
||||
// Don't add the `words` ranking rule if the term matching strategy is `All`
|
||||
if matches!(terms_matching_strategy, TermsMatchingStrategy::All) {
|
||||
words = true;
|
||||
}
|
||||
|
||||
let mut ranking_rules: Vec<BoxRankingRule<QueryGraph>> = vec![];
|
||||
let settings_ranking_rules = ctx.index.criteria(ctx.txn)?;
|
||||
for rr in settings_ranking_rules {
|
||||
|
@ -28,14 +28,14 @@ pub enum ZeroOrOneTypo {
|
||||
impl Interned<QueryTerm> {
|
||||
pub fn compute_fully_if_needed(self, ctx: &mut SearchContext) -> Result<()> {
|
||||
let s = ctx.term_interner.get_mut(self);
|
||||
if s.max_nbr_typos <= 1 && s.one_typo.is_uninit() {
|
||||
if s.max_levenshtein_distance <= 1 && s.one_typo.is_uninit() {
|
||||
assert!(s.two_typo.is_uninit());
|
||||
// Initialize one_typo subterm even if max_nbr_typo is 0 because of split words
|
||||
self.initialize_one_typo_subterm(ctx)?;
|
||||
let s = ctx.term_interner.get_mut(self);
|
||||
assert!(s.one_typo.is_init());
|
||||
s.two_typo = Lazy::Init(TwoTypoTerm::default());
|
||||
} else if s.max_nbr_typos > 1 && s.two_typo.is_uninit() {
|
||||
} else if s.max_levenshtein_distance > 1 && s.two_typo.is_uninit() {
|
||||
assert!(s.two_typo.is_uninit());
|
||||
self.initialize_one_and_two_typo_subterm(ctx)?;
|
||||
let s = ctx.term_interner.get_mut(self);
|
||||
@ -185,7 +185,7 @@ pub fn partially_initialized_term_from_word(
|
||||
original: ctx.word_interner.insert(word.to_owned()),
|
||||
ngram_words: None,
|
||||
is_prefix: false,
|
||||
max_nbr_typos: 0,
|
||||
max_levenshtein_distance: 0,
|
||||
zero_typo: <_>::default(),
|
||||
one_typo: Lazy::Init(<_>::default()),
|
||||
two_typo: Lazy::Init(<_>::default()),
|
||||
@ -256,7 +256,7 @@ pub fn partially_initialized_term_from_word(
|
||||
Ok(QueryTerm {
|
||||
original: word_interned,
|
||||
ngram_words: None,
|
||||
max_nbr_typos: max_typo,
|
||||
max_levenshtein_distance: max_typo,
|
||||
is_prefix,
|
||||
zero_typo,
|
||||
one_typo: Lazy::Uninit,
|
||||
@ -275,7 +275,16 @@ fn find_split_words(ctx: &mut SearchContext, word: &str) -> Result<Option<Intern
|
||||
impl Interned<QueryTerm> {
|
||||
fn initialize_one_typo_subterm(self, ctx: &mut SearchContext) -> Result<()> {
|
||||
let self_mut = ctx.term_interner.get_mut(self);
|
||||
let QueryTerm { original, is_prefix, one_typo, max_nbr_typos, .. } = self_mut;
|
||||
|
||||
let allows_split_words = self_mut.allows_split_words();
|
||||
let QueryTerm {
|
||||
original,
|
||||
is_prefix,
|
||||
one_typo,
|
||||
max_levenshtein_distance: max_nbr_typos,
|
||||
..
|
||||
} = self_mut;
|
||||
|
||||
let original = *original;
|
||||
let is_prefix = *is_prefix;
|
||||
// let original_str = ctx.word_interner.get(*original).to_owned();
|
||||
@ -300,13 +309,17 @@ impl Interned<QueryTerm> {
|
||||
})?;
|
||||
}
|
||||
|
||||
let original_str = ctx.word_interner.get(original).to_owned();
|
||||
let split_words = find_split_words(ctx, original_str.as_str())?;
|
||||
let split_words = if allows_split_words {
|
||||
let original_str = ctx.word_interner.get(original).to_owned();
|
||||
find_split_words(ctx, original_str.as_str())?
|
||||
} else {
|
||||
None
|
||||
};
|
||||
|
||||
let self_mut = ctx.term_interner.get_mut(self);
|
||||
|
||||
// Only add the split words to the derivations if:
|
||||
// 1. the term is not an ngram; OR
|
||||
// 1. the term is neither an ngram nor a phrase; OR
|
||||
// 2. the term is an ngram, but the split words are different from the ngram's component words
|
||||
let split_words = if let Some((ngram_words, split_words)) =
|
||||
self_mut.ngram_words.as_ref().zip(split_words.as_ref())
|
||||
@ -328,7 +341,13 @@ impl Interned<QueryTerm> {
|
||||
}
|
||||
fn initialize_one_and_two_typo_subterm(self, ctx: &mut SearchContext) -> Result<()> {
|
||||
let self_mut = ctx.term_interner.get_mut(self);
|
||||
let QueryTerm { original, is_prefix, two_typo, max_nbr_typos, .. } = self_mut;
|
||||
let QueryTerm {
|
||||
original,
|
||||
is_prefix,
|
||||
two_typo,
|
||||
max_levenshtein_distance: max_nbr_typos,
|
||||
..
|
||||
} = self_mut;
|
||||
let original_str = ctx.word_interner.get(*original).to_owned();
|
||||
if two_typo.is_init() {
|
||||
return Ok(());
|
||||
|
@ -43,7 +43,7 @@ pub struct QueryTermSubset {
|
||||
pub struct QueryTerm {
|
||||
original: Interned<String>,
|
||||
ngram_words: Option<Vec<Interned<String>>>,
|
||||
max_nbr_typos: u8,
|
||||
max_levenshtein_distance: u8,
|
||||
is_prefix: bool,
|
||||
zero_typo: ZeroTypoTerm,
|
||||
// May not be computed yet
|
||||
@ -342,10 +342,16 @@ impl QueryTermSubset {
|
||||
}
|
||||
None
|
||||
}
|
||||
pub fn max_nbr_typos(&self, ctx: &SearchContext) -> u8 {
|
||||
pub fn max_typo_cost(&self, ctx: &SearchContext) -> u8 {
|
||||
let t = ctx.term_interner.get(self.original);
|
||||
match t.max_nbr_typos {
|
||||
0 => 0,
|
||||
match t.max_levenshtein_distance {
|
||||
0 => {
|
||||
if t.allows_split_words() {
|
||||
1
|
||||
} else {
|
||||
0
|
||||
}
|
||||
}
|
||||
1 => {
|
||||
if self.one_typo_subset.is_empty() {
|
||||
0
|
||||
@ -438,6 +444,9 @@ impl QueryTerm {
|
||||
|
||||
self.zero_typo.is_empty() && one_typo.is_empty() && two_typo.is_empty()
|
||||
}
|
||||
fn allows_split_words(&self) -> bool {
|
||||
self.zero_typo.phrase.is_none()
|
||||
}
|
||||
}
|
||||
|
||||
impl Interned<QueryTerm> {
|
||||
|
@ -217,7 +217,7 @@ pub fn make_ngram(
|
||||
original: ngram_str_interned,
|
||||
ngram_words: Some(words_interned),
|
||||
is_prefix,
|
||||
max_nbr_typos,
|
||||
max_levenshtein_distance: max_nbr_typos,
|
||||
zero_typo: term.zero_typo,
|
||||
one_typo: Lazy::Uninit,
|
||||
two_typo: Lazy::Uninit,
|
||||
@ -271,7 +271,7 @@ impl PhraseBuilder {
|
||||
QueryTerm {
|
||||
original: ctx.word_interner.insert(phrase_desc),
|
||||
ngram_words: None,
|
||||
max_nbr_typos: 0,
|
||||
max_levenshtein_distance: 0,
|
||||
is_prefix: false,
|
||||
zero_typo: ZeroTypoTerm {
|
||||
phrase: Some(phrase),
|
||||
|
@ -205,18 +205,12 @@ impl<G: RankingRuleGraphTrait> VisitorState<G> {
|
||||
impl<G: RankingRuleGraphTrait> RankingRuleGraph<G> {
|
||||
pub fn find_all_costs_to_end(&self) -> MappedInterner<QueryNode, Vec<u64>> {
|
||||
let mut costs_to_end = self.query_graph.nodes.map(|_| vec![]);
|
||||
let mut enqueued = SmallBitmap::new(self.query_graph.nodes.len());
|
||||
|
||||
let mut node_stack = VecDeque::new();
|
||||
|
||||
*costs_to_end.get_mut(self.query_graph.end_node) = vec![0];
|
||||
|
||||
for prev_node in self.query_graph.nodes.get(self.query_graph.end_node).predecessors.iter() {
|
||||
node_stack.push_back(prev_node);
|
||||
enqueued.insert(prev_node);
|
||||
}
|
||||
|
||||
while let Some(cur_node) = node_stack.pop_front() {
|
||||
self.traverse_breadth_first_backward(self.query_graph.end_node, |cur_node| {
|
||||
if cur_node == self.query_graph.end_node {
|
||||
*costs_to_end.get_mut(self.query_graph.end_node) = vec![0];
|
||||
return;
|
||||
}
|
||||
let mut self_costs = Vec::<u64>::new();
|
||||
|
||||
let cur_node_edges = &self.edges_of_node.get(cur_node);
|
||||
@ -232,13 +226,7 @@ impl<G: RankingRuleGraphTrait> RankingRuleGraph<G> {
|
||||
self_costs.dedup();
|
||||
|
||||
*costs_to_end.get_mut(cur_node) = self_costs;
|
||||
for prev_node in self.query_graph.nodes.get(cur_node).predecessors.iter() {
|
||||
if !enqueued.contains(prev_node) {
|
||||
node_stack.push_back(prev_node);
|
||||
enqueued.insert(prev_node);
|
||||
}
|
||||
}
|
||||
}
|
||||
});
|
||||
costs_to_end
|
||||
}
|
||||
|
||||
@ -247,17 +235,12 @@ impl<G: RankingRuleGraphTrait> RankingRuleGraph<G> {
|
||||
node_with_removed_outgoing_conditions: Interned<QueryNode>,
|
||||
costs: &mut MappedInterner<QueryNode, Vec<u64>>,
|
||||
) {
|
||||
let mut enqueued = SmallBitmap::new(self.query_graph.nodes.len());
|
||||
let mut node_stack = VecDeque::new();
|
||||
|
||||
enqueued.insert(node_with_removed_outgoing_conditions);
|
||||
node_stack.push_back(node_with_removed_outgoing_conditions);
|
||||
|
||||
'main_loop: while let Some(cur_node) = node_stack.pop_front() {
|
||||
// Traverse the graph backward from the target node, recomputing the cost for each of its predecessors.
|
||||
// We first check that no other node is contributing the same total cost to a predecessor before removing
|
||||
// the cost from the predecessor.
|
||||
self.traverse_breadth_first_backward(node_with_removed_outgoing_conditions, |cur_node| {
|
||||
let mut costs_to_remove = FxHashSet::default();
|
||||
for c in costs.get(cur_node) {
|
||||
costs_to_remove.insert(*c);
|
||||
}
|
||||
costs_to_remove.extend(costs.get(cur_node).iter().copied());
|
||||
|
||||
let cur_node_edges = &self.edges_of_node.get(cur_node);
|
||||
for edge_idx in cur_node_edges.iter() {
|
||||
@ -265,22 +248,75 @@ impl<G: RankingRuleGraphTrait> RankingRuleGraph<G> {
|
||||
for cost in costs.get(edge.dest_node).iter() {
|
||||
costs_to_remove.remove(&(*cost + edge.cost as u64));
|
||||
if costs_to_remove.is_empty() {
|
||||
continue 'main_loop;
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
if costs_to_remove.is_empty() {
|
||||
continue 'main_loop;
|
||||
return;
|
||||
}
|
||||
let mut new_costs = BTreeSet::from_iter(costs.get(cur_node).iter().copied());
|
||||
for c in costs_to_remove {
|
||||
new_costs.remove(&c);
|
||||
}
|
||||
*costs.get_mut(cur_node) = new_costs.into_iter().collect();
|
||||
});
|
||||
}
|
||||
|
||||
/// Traverse the graph backwards from the given node such that every time
|
||||
/// a node is visited, we are guaranteed that all its successors either:
|
||||
/// 1. have already been visited; OR
|
||||
/// 2. were not reachable from the given node
|
||||
pub fn traverse_breadth_first_backward(
|
||||
&self,
|
||||
from: Interned<QueryNode>,
|
||||
mut visit: impl FnMut(Interned<QueryNode>),
|
||||
) {
|
||||
let mut reachable = SmallBitmap::for_interned_values_in(&self.query_graph.nodes);
|
||||
{
|
||||
// go backward to get the set of all reachable nodes from the given node
|
||||
// the nodes that are not reachable will be set as `visited`
|
||||
let mut stack = VecDeque::new();
|
||||
let mut enqueued = SmallBitmap::for_interned_values_in(&self.query_graph.nodes);
|
||||
enqueued.insert(from);
|
||||
stack.push_back(from);
|
||||
while let Some(n) = stack.pop_front() {
|
||||
if reachable.contains(n) {
|
||||
continue;
|
||||
}
|
||||
reachable.insert(n);
|
||||
for prev_node in self.query_graph.nodes.get(n).predecessors.iter() {
|
||||
if !enqueued.contains(prev_node) && !reachable.contains(prev_node) {
|
||||
stack.push_back(prev_node);
|
||||
enqueued.insert(prev_node);
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
let mut unreachable_or_visited =
|
||||
SmallBitmap::for_interned_values_in(&self.query_graph.nodes);
|
||||
for (n, _) in self.query_graph.nodes.iter() {
|
||||
if !reachable.contains(n) {
|
||||
unreachable_or_visited.insert(n);
|
||||
}
|
||||
}
|
||||
|
||||
let mut enqueued = SmallBitmap::for_interned_values_in(&self.query_graph.nodes);
|
||||
let mut stack = VecDeque::new();
|
||||
|
||||
enqueued.insert(from);
|
||||
stack.push_back(from);
|
||||
|
||||
while let Some(cur_node) = stack.pop_front() {
|
||||
if !self.query_graph.nodes.get(cur_node).successors.is_subset(&unreachable_or_visited) {
|
||||
stack.push_back(cur_node);
|
||||
continue;
|
||||
}
|
||||
unreachable_or_visited.insert(cur_node);
|
||||
visit(cur_node);
|
||||
for prev_node in self.query_graph.nodes.get(cur_node).predecessors.iter() {
|
||||
if !enqueued.contains(prev_node) {
|
||||
node_stack.push_back(prev_node);
|
||||
if !enqueued.contains(prev_node) && !unreachable_or_visited.contains(prev_node) {
|
||||
stack.push_back(prev_node);
|
||||
enqueued.insert(prev_node);
|
||||
}
|
||||
}
|
||||
|
@ -20,6 +20,8 @@ mod position;
|
||||
mod proximity;
|
||||
/// Implementation of the `typo` ranking rule
|
||||
mod typo;
|
||||
/// Implementation of the `words` ranking rule
|
||||
mod words;
|
||||
|
||||
use std::collections::BTreeSet;
|
||||
use std::hash::Hash;
|
||||
@ -33,6 +35,7 @@ pub use position::{PositionCondition, PositionGraph};
|
||||
pub use proximity::{ProximityCondition, ProximityGraph};
|
||||
use roaring::RoaringBitmap;
|
||||
pub use typo::{TypoCondition, TypoGraph};
|
||||
pub use words::{WordsCondition, WordsGraph};
|
||||
|
||||
use super::interner::{DedupInterner, FixedSizeInterner, Interned, MappedInterner};
|
||||
use super::query_term::LocatedQueryTermSubset;
|
||||
|
@ -50,7 +50,7 @@ impl RankingRuleGraphTrait for TypoGraph {
|
||||
// 3-gram -> equivalent to 2 typos
|
||||
let base_cost = if term.term_ids.len() == 1 { 0 } else { term.term_ids.len() as u32 };
|
||||
|
||||
for nbr_typos in 0..=term.term_subset.max_nbr_typos(ctx) {
|
||||
for nbr_typos in 0..=term.term_subset.max_typo_cost(ctx) {
|
||||
let mut term = term.clone();
|
||||
match nbr_typos {
|
||||
0 => {
|
||||
|
49
milli/src/search/new/ranking_rule_graph/words/mod.rs
Normal file
49
milli/src/search/new/ranking_rule_graph/words/mod.rs
Normal file
@ -0,0 +1,49 @@
|
||||
use roaring::RoaringBitmap;
|
||||
|
||||
use super::{ComputedCondition, RankingRuleGraphTrait};
|
||||
use crate::search::new::interner::{DedupInterner, Interned};
|
||||
use crate::search::new::query_term::LocatedQueryTermSubset;
|
||||
use crate::search::new::resolve_query_graph::compute_query_term_subset_docids;
|
||||
use crate::search::new::SearchContext;
|
||||
use crate::Result;
|
||||
|
||||
#[derive(Clone, PartialEq, Eq, Hash)]
|
||||
pub struct WordsCondition {
|
||||
term: LocatedQueryTermSubset,
|
||||
}
|
||||
|
||||
pub enum WordsGraph {}
|
||||
|
||||
impl RankingRuleGraphTrait for WordsGraph {
|
||||
type Condition = WordsCondition;
|
||||
|
||||
fn resolve_condition(
|
||||
ctx: &mut SearchContext,
|
||||
condition: &Self::Condition,
|
||||
universe: &RoaringBitmap,
|
||||
) -> Result<ComputedCondition> {
|
||||
let WordsCondition { term, .. } = condition;
|
||||
// maybe compute_query_term_subset_docids should accept a universe as argument
|
||||
let mut docids = compute_query_term_subset_docids(ctx, &term.term_subset)?;
|
||||
docids &= universe;
|
||||
|
||||
Ok(ComputedCondition {
|
||||
docids,
|
||||
universe_len: universe.len(),
|
||||
start_term_subset: None,
|
||||
end_term_subset: term.clone(),
|
||||
})
|
||||
}
|
||||
|
||||
fn build_edges(
|
||||
_ctx: &mut SearchContext,
|
||||
conditions_interner: &mut DedupInterner<Self::Condition>,
|
||||
_from: Option<&LocatedQueryTermSubset>,
|
||||
to_term: &LocatedQueryTermSubset,
|
||||
) -> Result<Vec<(u32, Interned<Self::Condition>)>> {
|
||||
Ok(vec![(
|
||||
to_term.term_ids.len() as u32,
|
||||
conditions_interner.insert(WordsCondition { term: to_term.clone() }),
|
||||
)])
|
||||
}
|
||||
}
|
@ -1,87 +0,0 @@
|
||||
use roaring::RoaringBitmap;
|
||||
|
||||
use super::logger::SearchLogger;
|
||||
use super::query_graph::QueryNode;
|
||||
use super::resolve_query_graph::compute_query_graph_docids;
|
||||
use super::small_bitmap::SmallBitmap;
|
||||
use super::{QueryGraph, RankingRule, RankingRuleOutput, SearchContext};
|
||||
use crate::{Result, TermsMatchingStrategy};
|
||||
|
||||
pub struct Words {
|
||||
exhausted: bool, // TODO: remove
|
||||
query_graph: Option<QueryGraph>,
|
||||
nodes_to_remove: Vec<SmallBitmap<QueryNode>>,
|
||||
terms_matching_strategy: TermsMatchingStrategy,
|
||||
}
|
||||
impl Words {
|
||||
pub fn new(terms_matching_strategy: TermsMatchingStrategy) -> Self {
|
||||
Self {
|
||||
exhausted: true,
|
||||
query_graph: None,
|
||||
nodes_to_remove: vec![],
|
||||
terms_matching_strategy,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> RankingRule<'ctx, QueryGraph> for Words {
|
||||
fn id(&self) -> String {
|
||||
"words".to_owned()
|
||||
}
|
||||
fn start_iteration(
|
||||
&mut self,
|
||||
ctx: &mut SearchContext<'ctx>,
|
||||
_logger: &mut dyn SearchLogger<QueryGraph>,
|
||||
_universe: &RoaringBitmap,
|
||||
parent_query_graph: &QueryGraph,
|
||||
) -> Result<()> {
|
||||
self.exhausted = false;
|
||||
self.query_graph = Some(parent_query_graph.clone());
|
||||
self.nodes_to_remove = match self.terms_matching_strategy {
|
||||
TermsMatchingStrategy::Last => {
|
||||
let mut ns = parent_query_graph.removal_order_for_terms_matching_strategy_last(ctx);
|
||||
ns.reverse();
|
||||
ns
|
||||
}
|
||||
TermsMatchingStrategy::All => {
|
||||
vec![]
|
||||
}
|
||||
};
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn next_bucket(
|
||||
&mut self,
|
||||
ctx: &mut SearchContext<'ctx>,
|
||||
logger: &mut dyn SearchLogger<QueryGraph>,
|
||||
universe: &RoaringBitmap,
|
||||
) -> Result<Option<RankingRuleOutput<QueryGraph>>> {
|
||||
if self.exhausted {
|
||||
return Ok(None);
|
||||
}
|
||||
let Some(query_graph) = &mut self.query_graph else { panic!() };
|
||||
logger.log_internal_state(query_graph);
|
||||
|
||||
let this_bucket = compute_query_graph_docids(ctx, query_graph, universe)?;
|
||||
|
||||
let child_query_graph = query_graph.clone();
|
||||
|
||||
if self.nodes_to_remove.is_empty() {
|
||||
self.exhausted = true;
|
||||
} else {
|
||||
let nodes_to_remove = self.nodes_to_remove.pop().unwrap();
|
||||
query_graph.remove_nodes_keep_edges(&nodes_to_remove.iter().collect::<Vec<_>>());
|
||||
}
|
||||
Ok(Some(RankingRuleOutput { query: child_query_graph, candidates: this_bucket }))
|
||||
}
|
||||
|
||||
fn end_iteration(
|
||||
&mut self,
|
||||
_ctx: &mut SearchContext<'ctx>,
|
||||
_logger: &mut dyn SearchLogger<QueryGraph>,
|
||||
) {
|
||||
self.exhausted = true;
|
||||
self.nodes_to_remove = vec![];
|
||||
self.query_graph = None;
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue
Block a user