5039: Add 3s timeout to embedding requests made during search r=irevoire a=dureuill

# Pull Request

## Related issue
Fixes #5032 

## What does this PR do?
- Add a 3-second timeout to embedding requests against a remote embedder made in the context of search. The timeout triggers when there are failing requests due to rate-limiting.
- Add a test of that timeout.

Co-authored-by: Louis Dureuil <louis@meilisearch.com>
This commit is contained in:
meili-bors[bot] 2024-11-06 10:56:50 +00:00 committed by GitHub
commit 2c1c33166d
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
8 changed files with 211 additions and 40 deletions

View File

@ -5201,9 +5201,10 @@ mod tests {
let configs = index_scheduler.embedders(configs).unwrap();
let (hf_embedder, _, _) = configs.get(&simple_hf_name).unwrap();
let beagle_embed = hf_embedder.embed_one(S("Intel the beagle best doggo")).unwrap();
let lab_embed = hf_embedder.embed_one(S("Max the lab best doggo")).unwrap();
let patou_embed = hf_embedder.embed_one(S("kefir the patou best doggo")).unwrap();
let beagle_embed =
hf_embedder.embed_one(S("Intel the beagle best doggo"), None).unwrap();
let lab_embed = hf_embedder.embed_one(S("Max the lab best doggo"), None).unwrap();
let patou_embed = hf_embedder.embed_one(S("kefir the patou best doggo"), None).unwrap();
(fakerest_name, simple_hf_name, beagle_embed, lab_embed, patou_embed)
};

View File

@ -796,8 +796,10 @@ fn prepare_search<'t>(
let span = tracing::trace_span!(target: "search::vector", "embed_one");
let _entered = span.enter();
let deadline = std::time::Instant::now() + std::time::Duration::from_secs(10);
embedder
.embed_one(query.q.clone().unwrap())
.embed_one(query.q.clone().unwrap(), Some(deadline))
.map_err(milli::vector::Error::from)
.map_err(milli::Error::from)?
}

View File

@ -137,13 +137,14 @@ fn long_text() -> &'static str {
}
async fn create_mock_tokenized() -> (MockServer, Value) {
create_mock_with_template("{{doc.text}}", ModelDimensions::Large, false).await
create_mock_with_template("{{doc.text}}", ModelDimensions::Large, false, false).await
}
async fn create_mock_with_template(
document_template: &str,
model_dimensions: ModelDimensions,
fallible: bool,
slow: bool,
) -> (MockServer, Value) {
let mock_server = MockServer::start().await;
const API_KEY: &str = "my-api-key";
@ -154,7 +155,11 @@ async fn create_mock_with_template(
Mock::given(method("POST"))
.and(path("/"))
.respond_with(move |req: &Request| {
// 0. maybe return 500
// 0. wait for a long time
if slow {
std::thread::sleep(std::time::Duration::from_secs(1));
}
// 1. maybe return 500
if fallible {
let attempt = attempt.fetch_add(1, Ordering::Relaxed);
let failed = matches!(attempt % 4, 0 | 1 | 3);
@ -167,7 +172,7 @@ async fn create_mock_with_template(
}))
}
}
// 1. check API key
// 3. check API key
match req.headers.get("Authorization") {
Some(api_key) if api_key == API_KEY_BEARER => {
{}
@ -202,7 +207,7 @@ async fn create_mock_with_template(
)
}
}
// 2. parse text inputs
// 3. parse text inputs
let query: serde_json::Value = match req.body_json() {
Ok(query) => query,
Err(_error) => return ResponseTemplate::new(400).set_body_json(
@ -223,7 +228,7 @@ async fn create_mock_with_template(
panic!("Expected {model_dimensions:?}, got {query_model_dimensions:?}")
}
// 3. for each text, find embedding in responses
// 4. for each text, find embedding in responses
let serde_json::Value::Array(inputs) = &query["input"] else {
panic!("Unexpected `input` value")
};
@ -283,7 +288,7 @@ async fn create_mock_with_template(
"embedding": embedding,
})).collect();
// 4. produce output from embeddings
// 5. produce output from embeddings
ResponseTemplate::new(200).set_body_json(json!({
"object": "list",
"data": data,
@ -317,23 +322,27 @@ const DOGGO_TEMPLATE: &str = r#"{%- if doc.gender == "F" -%}Une chienne nommée
{%- endif %}, de race {{doc.breed}}."#;
async fn create_mock() -> (MockServer, Value) {
create_mock_with_template(DOGGO_TEMPLATE, ModelDimensions::Large, false).await
create_mock_with_template(DOGGO_TEMPLATE, ModelDimensions::Large, false, false).await
}
async fn create_mock_dimensions() -> (MockServer, Value) {
create_mock_with_template(DOGGO_TEMPLATE, ModelDimensions::Large512, false).await
create_mock_with_template(DOGGO_TEMPLATE, ModelDimensions::Large512, false, false).await
}
async fn create_mock_small_embedding_model() -> (MockServer, Value) {
create_mock_with_template(DOGGO_TEMPLATE, ModelDimensions::Small, false).await
create_mock_with_template(DOGGO_TEMPLATE, ModelDimensions::Small, false, false).await
}
async fn create_mock_legacy_embedding_model() -> (MockServer, Value) {
create_mock_with_template(DOGGO_TEMPLATE, ModelDimensions::Ada, false).await
create_mock_with_template(DOGGO_TEMPLATE, ModelDimensions::Ada, false, false).await
}
async fn create_fallible_mock() -> (MockServer, Value) {
create_mock_with_template(DOGGO_TEMPLATE, ModelDimensions::Large, true).await
create_mock_with_template(DOGGO_TEMPLATE, ModelDimensions::Large, true, false).await
}
async fn create_slow_mock() -> (MockServer, Value) {
create_mock_with_template(DOGGO_TEMPLATE, ModelDimensions::Large, true, true).await
}
// basic test "it works"
@ -1873,4 +1882,114 @@ async fn it_still_works() {
]
"###);
}
// test with a server that responds 500 on 3 out of 4 calls
#[actix_rt::test]
async fn timeout() {
let (_mock, setting) = create_slow_mock().await;
let server = get_server_vector().await;
let index = server.index("doggo");
let (response, code) = index
.update_settings(json!({
"embedders": {
"default": setting,
},
}))
.await;
snapshot!(code, @"202 Accepted");
let task = server.wait_task(response.uid()).await;
snapshot!(task["status"], @r###""succeeded""###);
let documents = json!([
{"id": 0, "name": "kefir", "gender": "M", "birthyear": 2023, "breed": "Patou"},
]);
let (value, code) = index.add_documents(documents, None).await;
snapshot!(code, @"202 Accepted");
let task = index.wait_task(value.uid()).await;
snapshot!(task, @r###"
{
"uid": "[uid]",
"indexUid": "doggo",
"status": "succeeded",
"type": "documentAdditionOrUpdate",
"canceledBy": null,
"details": {
"receivedDocuments": 1,
"indexedDocuments": 1
},
"error": null,
"duration": "[duration]",
"enqueuedAt": "[date]",
"startedAt": "[date]",
"finishedAt": "[date]"
}
"###);
let (documents, _code) = index
.get_all_documents(GetAllDocumentsOptions { retrieve_vectors: true, ..Default::default() })
.await;
snapshot!(json_string!(documents, {".results.*._vectors.default.embeddings" => "[vector]"}), @r###"
{
"results": [
{
"id": 0,
"name": "kefir",
"gender": "M",
"birthyear": 2023,
"breed": "Patou",
"_vectors": {
"default": {
"embeddings": "[vector]",
"regenerate": true
}
}
}
],
"offset": 0,
"limit": 20,
"total": 1
}
"###);
let (response, code) = index
.search_post(json!({
"q": "grand chien de berger des montagnes",
"hybrid": {"semanticRatio": 0.99, "embedder": "default"}
}))
.await;
snapshot!(code, @"200 OK");
snapshot!(json_string!(response["semanticHitCount"]), @"0");
snapshot!(json_string!(response["hits"]), @"[]");
let (response, code) = index
.search_post(json!({
"q": "grand chien de berger des montagnes",
"hybrid": {"semanticRatio": 0.99, "embedder": "default"}
}))
.await;
snapshot!(code, @"200 OK");
snapshot!(json_string!(response["semanticHitCount"]), @"1");
snapshot!(json_string!(response["hits"]), @r###"
[
{
"id": 0,
"name": "kefir",
"gender": "M",
"birthyear": 2023,
"breed": "Patou"
}
]
"###);
let (response, code) = index
.search_post(json!({
"q": "grand chien de berger des montagnes",
"hybrid": {"semanticRatio": 0.99, "embedder": "default"}
}))
.await;
snapshot!(code, @"200 OK");
snapshot!(json_string!(response["semanticHitCount"]), @"0");
snapshot!(json_string!(response["hits"]), @"[]");
}
// test with a server that wrongly responds 400

View File

@ -201,7 +201,9 @@ impl<'a> Search<'a> {
let span = tracing::trace_span!(target: "search::hybrid", "embed_one");
let _entered = span.enter();
match embedder.embed_one(query) {
let deadline = std::time::Instant::now() + std::time::Duration::from_secs(3);
match embedder.embed_one(query, Some(deadline)) {
Ok(embedding) => embedding,
Err(error) => {
tracing::error!(error=%error, "Embedding failed");

View File

@ -1,5 +1,6 @@
use std::collections::HashMap;
use std::sync::Arc;
use std::time::Instant;
use arroy::distances::{BinaryQuantizedCosine, Cosine};
use arroy::ItemId;
@ -594,18 +595,23 @@ impl Embedder {
pub fn embed(
&self,
texts: Vec<String>,
deadline: Option<Instant>,
) -> std::result::Result<Vec<Embeddings<f32>>, EmbedError> {
match self {
Embedder::HuggingFace(embedder) => embedder.embed(texts),
Embedder::OpenAi(embedder) => embedder.embed(texts),
Embedder::Ollama(embedder) => embedder.embed(texts),
Embedder::OpenAi(embedder) => embedder.embed(texts, deadline),
Embedder::Ollama(embedder) => embedder.embed(texts, deadline),
Embedder::UserProvided(embedder) => embedder.embed(texts),
Embedder::Rest(embedder) => embedder.embed(texts),
Embedder::Rest(embedder) => embedder.embed(texts, deadline),
}
}
pub fn embed_one(&self, text: String) -> std::result::Result<Embedding, EmbedError> {
let mut embeddings = self.embed(vec![text])?;
pub fn embed_one(
&self,
text: String,
deadline: Option<Instant>,
) -> std::result::Result<Embedding, EmbedError> {
let mut embeddings = self.embed(vec![text], deadline)?;
let embeddings = embeddings.pop().ok_or_else(EmbedError::missing_embedding)?;
Ok(if embeddings.iter().nth(1).is_some() {
tracing::warn!("Ignoring embeddings past the first one in long search query");

View File

@ -1,3 +1,5 @@
use std::time::Instant;
use rayon::iter::{IntoParallelIterator as _, ParallelIterator as _};
use super::error::{EmbedError, EmbedErrorKind, NewEmbedderError, NewEmbedderErrorKind};
@ -75,8 +77,12 @@ impl Embedder {
Ok(Self { rest_embedder })
}
pub fn embed(&self, texts: Vec<String>) -> Result<Vec<Embeddings<f32>>, EmbedError> {
match self.rest_embedder.embed(texts) {
pub fn embed(
&self,
texts: Vec<String>,
deadline: Option<Instant>,
) -> Result<Vec<Embeddings<f32>>, EmbedError> {
match self.rest_embedder.embed(texts, deadline) {
Ok(embeddings) => Ok(embeddings),
Err(EmbedError { kind: EmbedErrorKind::RestOtherStatusCode(404, error), fault: _ }) => {
Err(EmbedError::ollama_model_not_found(error))
@ -92,7 +98,7 @@ impl Embedder {
) -> Result<Vec<Vec<Embeddings<f32>>>, EmbedError> {
threads
.install(move || {
text_chunks.into_par_iter().map(move |chunk| self.embed(chunk)).collect()
text_chunks.into_par_iter().map(move |chunk| self.embed(chunk, None)).collect()
})
.map_err(|error| EmbedError {
kind: EmbedErrorKind::PanicInThreadPool(error),

View File

@ -1,3 +1,5 @@
use std::time::Instant;
use ordered_float::OrderedFloat;
use rayon::iter::{IntoParallelIterator, ParallelIterator as _};
@ -206,32 +208,40 @@ impl Embedder {
Ok(Self { options, rest_embedder, tokenizer })
}
pub fn embed(&self, texts: Vec<String>) -> Result<Vec<Embeddings<f32>>, EmbedError> {
match self.rest_embedder.embed_ref(&texts) {
pub fn embed(
&self,
texts: Vec<String>,
deadline: Option<Instant>,
) -> Result<Vec<Embeddings<f32>>, EmbedError> {
match self.rest_embedder.embed_ref(&texts, deadline) {
Ok(embeddings) => Ok(embeddings),
Err(EmbedError { kind: EmbedErrorKind::RestBadRequest(error, _), fault: _ }) => {
tracing::warn!(error=?error, "OpenAI: received `BAD_REQUEST`. Input was maybe too long, retrying on tokenized version. For best performance, limit the size of your document template.");
self.try_embed_tokenized(&texts)
self.try_embed_tokenized(&texts, deadline)
}
Err(error) => Err(error),
}
}
fn try_embed_tokenized(&self, text: &[String]) -> Result<Vec<Embeddings<f32>>, EmbedError> {
fn try_embed_tokenized(
&self,
text: &[String],
deadline: Option<Instant>,
) -> Result<Vec<Embeddings<f32>>, EmbedError> {
let mut all_embeddings = Vec::with_capacity(text.len());
for text in text {
let max_token_count = self.options.embedding_model.max_token();
let encoded = self.tokenizer.encode_ordinary(text.as_str());
let len = encoded.len();
if len < max_token_count {
all_embeddings.append(&mut self.rest_embedder.embed_ref(&[text])?);
all_embeddings.append(&mut self.rest_embedder.embed_ref(&[text], deadline)?);
continue;
}
let tokens = &encoded.as_slice()[0..max_token_count];
let mut embeddings_for_prompt = Embeddings::new(self.dimensions());
let embedding = self.rest_embedder.embed_tokens(tokens)?;
let embedding = self.rest_embedder.embed_tokens(tokens, deadline)?;
embeddings_for_prompt.append(embedding.into_inner()).map_err(|got| {
EmbedError::rest_unexpected_dimension(self.dimensions(), got.len())
})?;
@ -248,7 +258,7 @@ impl Embedder {
) -> Result<Vec<Vec<Embeddings<f32>>>, EmbedError> {
threads
.install(move || {
text_chunks.into_par_iter().map(move |chunk| self.embed(chunk)).collect()
text_chunks.into_par_iter().map(move |chunk| self.embed(chunk, None)).collect()
})
.map_err(|error| EmbedError {
kind: EmbedErrorKind::PanicInThreadPool(error),

View File

@ -1,4 +1,5 @@
use std::collections::BTreeMap;
use std::time::Instant;
use deserr::Deserr;
use rand::Rng;
@ -154,19 +155,31 @@ impl Embedder {
Ok(Self { data, dimensions, distribution: options.distribution })
}
pub fn embed(&self, texts: Vec<String>) -> Result<Vec<Embeddings<f32>>, EmbedError> {
embed(&self.data, texts.as_slice(), texts.len(), Some(self.dimensions))
pub fn embed(
&self,
texts: Vec<String>,
deadline: Option<Instant>,
) -> Result<Vec<Embeddings<f32>>, EmbedError> {
embed(&self.data, texts.as_slice(), texts.len(), Some(self.dimensions), deadline)
}
pub fn embed_ref<S>(&self, texts: &[S]) -> Result<Vec<Embeddings<f32>>, EmbedError>
pub fn embed_ref<S>(
&self,
texts: &[S],
deadline: Option<Instant>,
) -> Result<Vec<Embeddings<f32>>, EmbedError>
where
S: AsRef<str> + Serialize,
{
embed(&self.data, texts, texts.len(), Some(self.dimensions))
embed(&self.data, texts, texts.len(), Some(self.dimensions), deadline)
}
pub fn embed_tokens(&self, tokens: &[usize]) -> Result<Embeddings<f32>, EmbedError> {
let mut embeddings = embed(&self.data, tokens, 1, Some(self.dimensions))?;
pub fn embed_tokens(
&self,
tokens: &[usize],
deadline: Option<Instant>,
) -> Result<Embeddings<f32>, EmbedError> {
let mut embeddings = embed(&self.data, tokens, 1, Some(self.dimensions), deadline)?;
// unwrap: guaranteed that embeddings.len() == 1, otherwise the previous line terminated in error
Ok(embeddings.pop().unwrap())
}
@ -178,7 +191,7 @@ impl Embedder {
) -> Result<Vec<Vec<Embeddings<f32>>>, EmbedError> {
threads
.install(move || {
text_chunks.into_par_iter().map(move |chunk| self.embed(chunk)).collect()
text_chunks.into_par_iter().map(move |chunk| self.embed(chunk, None)).collect()
})
.map_err(|error| EmbedError {
kind: EmbedErrorKind::PanicInThreadPool(error),
@ -207,7 +220,7 @@ impl Embedder {
}
fn infer_dimensions(data: &EmbedderData) -> Result<usize, NewEmbedderError> {
let v = embed(data, ["test"].as_slice(), 1, None)
let v = embed(data, ["test"].as_slice(), 1, None, None)
.map_err(NewEmbedderError::could_not_determine_dimension)?;
// unwrap: guaranteed that v.len() == 1, otherwise the previous line terminated in error
Ok(v.first().unwrap().dimension())
@ -218,6 +231,7 @@ fn embed<S>(
inputs: &[S],
expected_count: usize,
expected_dimension: Option<usize>,
deadline: Option<Instant>,
) -> Result<Vec<Embeddings<f32>>, EmbedError>
where
S: Serialize,
@ -245,8 +259,19 @@ where
}
Err(retry) => {
tracing::warn!("Failed: {}", retry.error);
if let Some(deadline) = deadline {
let now = std::time::Instant::now();
if now > deadline {
tracing::warn!("Could not embed due to deadline");
return Err(retry.into_error());
}
let duration_to_deadline = deadline - now;
retry.into_duration(attempt).map(|duration| duration.min(duration_to_deadline))
} else {
retry.into_duration(attempt)
}
}
}?;
let retry_duration = retry_duration.min(std::time::Duration::from_secs(60)); // don't wait more than a minute