Choose implementation strategy of criterion at runtime

This commit is contained in:
Loïc Lecrenier 2022-12-12 16:54:31 +01:00
parent 97fb64e40e
commit 229405aeb9
7 changed files with 156 additions and 50 deletions

View File

@ -13,7 +13,7 @@ use milli::update::UpdateIndexingStep::{
ComputeIdsAndMergeDocuments, IndexDocuments, MergeDataIntoFinalDatabase, RemapDocumentAddition,
};
use milli::update::{self, IndexDocumentsConfig, IndexDocumentsMethod, IndexerConfig};
use milli::{heed, Index, Object};
use milli::{heed, CriterionImplementationStrategy, Index, Object};
use structopt::StructOpt;
#[global_allocator]
@ -441,7 +441,7 @@ impl Search {
if let Some(limit) = limit {
search.limit(*limit);
}
search.criterion_implementation_strategy(CriterionImplementationStrategy::OnlyIterative);
let result = search.execute()?;
let fields_ids_map = index.fields_ids_map(&txn)?;

View File

@ -42,8 +42,9 @@ pub use self::heed_codec::{
};
pub use self::index::Index;
pub use self::search::{
FacetDistribution, Filter, FormatOptions, MatchBounds, MatcherBuilder, MatchingWord,
MatchingWords, Search, SearchResult, TermsMatchingStrategy, DEFAULT_VALUES_PER_FACET,
CriterionImplementationStrategy, FacetDistribution, Filter, FormatOptions, MatchBounds,
MatcherBuilder, MatchingWord, MatchingWords, Search, SearchResult, TermsMatchingStrategy,
DEFAULT_VALUES_PER_FACET,
};
pub type Result<T> = std::result::Result<T, error::Error>;

View File

@ -12,6 +12,7 @@ use crate::heed_codec::ByteSliceRefCodec;
use crate::search::criteria::{resolve_query_tree, CriteriaBuilder, InitialCandidates};
use crate::search::facet::{ascending_facet_sort, descending_facet_sort};
use crate::search::query_tree::Operation;
use crate::search::CriterionImplementationStrategy;
use crate::{FieldId, Index, Result};
/// Threshold on the number of candidates that will make
@ -29,6 +30,7 @@ pub struct AscDesc<'t> {
allowed_candidates: RoaringBitmap,
initial_candidates: InitialCandidates,
faceted_candidates: RoaringBitmap,
implementation_strategy: CriterionImplementationStrategy,
parent: Box<dyn Criterion + 't>,
}
@ -38,8 +40,9 @@ impl<'t> AscDesc<'t> {
rtxn: &'t heed::RoTxn,
parent: Box<dyn Criterion + 't>,
field_name: String,
implementation_strategy: CriterionImplementationStrategy,
) -> Result<Self> {
Self::new(index, rtxn, parent, field_name, true)
Self::new(index, rtxn, parent, field_name, true, implementation_strategy)
}
pub fn desc(
@ -47,8 +50,9 @@ impl<'t> AscDesc<'t> {
rtxn: &'t heed::RoTxn,
parent: Box<dyn Criterion + 't>,
field_name: String,
implementation_strategy: CriterionImplementationStrategy,
) -> Result<Self> {
Self::new(index, rtxn, parent, field_name, false)
Self::new(index, rtxn, parent, field_name, false, implementation_strategy)
}
fn new(
@ -57,6 +61,7 @@ impl<'t> AscDesc<'t> {
parent: Box<dyn Criterion + 't>,
field_name: String,
is_ascending: bool,
implementation_strategy: CriterionImplementationStrategy,
) -> Result<Self> {
let fields_ids_map = index.fields_ids_map(rtxn)?;
let field_id = fields_ids_map.id(&field_name);
@ -82,6 +87,7 @@ impl<'t> AscDesc<'t> {
allowed_candidates: RoaringBitmap::new(),
faceted_candidates,
initial_candidates: InitialCandidates::Estimated(RoaringBitmap::new()),
implementation_strategy,
parent,
})
}
@ -149,6 +155,7 @@ impl<'t> Criterion for AscDesc<'t> {
field_id,
self.is_ascending,
candidates & &self.faceted_candidates,
self.implementation_strategy,
)?,
None => Box::new(std::iter::empty()),
};
@ -170,6 +177,51 @@ impl<'t> Criterion for AscDesc<'t> {
}
}
fn facet_ordered_iterative<'t>(
index: &'t Index,
rtxn: &'t heed::RoTxn,
field_id: FieldId,
is_ascending: bool,
candidates: RoaringBitmap,
) -> Result<Box<dyn Iterator<Item = heed::Result<RoaringBitmap>> + 't>> {
let number_iter = iterative_facet_number_ordered_iter(
index,
rtxn,
field_id,
is_ascending,
candidates.clone(),
)?;
let string_iter =
iterative_facet_string_ordered_iter(index, rtxn, field_id, is_ascending, candidates)?;
Ok(Box::new(number_iter.chain(string_iter).map(Ok)) as Box<dyn Iterator<Item = _>>)
}
fn facet_ordered_set_based<'t>(
index: &'t Index,
rtxn: &'t heed::RoTxn,
field_id: FieldId,
is_ascending: bool,
candidates: RoaringBitmap,
) -> Result<Box<dyn Iterator<Item = heed::Result<RoaringBitmap>> + 't>> {
let make_iter = if is_ascending { ascending_facet_sort } else { descending_facet_sort };
let number_iter = make_iter(
rtxn,
index.facet_id_f64_docids.remap_key_type::<FacetGroupKeyCodec<ByteSliceRefCodec>>(),
field_id,
candidates.clone(),
)?;
let string_iter = make_iter(
rtxn,
index.facet_id_string_docids.remap_key_type::<FacetGroupKeyCodec<ByteSliceRefCodec>>(),
field_id,
candidates,
)?;
Ok(Box::new(number_iter.chain(string_iter)))
}
/// Returns an iterator over groups of the given candidates in ascending or descending order.
///
/// It will either use an iterative or a recursive method on the whole facet database depending
@ -180,36 +232,22 @@ fn facet_ordered<'t>(
field_id: FieldId,
is_ascending: bool,
candidates: RoaringBitmap,
implementation_strategy: CriterionImplementationStrategy,
) -> Result<Box<dyn Iterator<Item = heed::Result<RoaringBitmap>> + 't>> {
if candidates.len() <= CANDIDATES_THRESHOLD {
let number_iter = iterative_facet_number_ordered_iter(
index,
rtxn,
field_id,
is_ascending,
candidates.clone(),
)?;
let string_iter =
iterative_facet_string_ordered_iter(index, rtxn, field_id, is_ascending, candidates)?;
Ok(Box::new(number_iter.chain(string_iter).map(Ok)) as Box<dyn Iterator<Item = _>>)
} else {
let make_iter = if is_ascending { ascending_facet_sort } else { descending_facet_sort };
let number_iter = make_iter(
rtxn,
index.facet_id_f64_docids.remap_key_type::<FacetGroupKeyCodec<ByteSliceRefCodec>>(),
field_id,
candidates.clone(),
)?;
let string_iter = make_iter(
rtxn,
index.facet_id_string_docids.remap_key_type::<FacetGroupKeyCodec<ByteSliceRefCodec>>(),
field_id,
candidates,
)?;
Ok(Box::new(number_iter.chain(string_iter)))
match implementation_strategy {
CriterionImplementationStrategy::OnlyIterative => {
facet_ordered_iterative(index, rtxn, field_id, is_ascending, candidates)
}
CriterionImplementationStrategy::OnlySetBased => {
facet_ordered_set_based(index, rtxn, field_id, is_ascending, candidates)
}
CriterionImplementationStrategy::Dynamic => {
if candidates.len() <= CANDIDATES_THRESHOLD {
facet_ordered_iterative(index, rtxn, field_id, is_ascending, candidates)
} else {
facet_ordered_set_based(index, rtxn, field_id, is_ascending, candidates)
}
}
}
}

View File

@ -9,7 +9,9 @@ use roaring::RoaringBitmap;
use super::{resolve_query_tree, Context, Criterion, CriterionParameters, CriterionResult};
use crate::search::criteria::{InitialCandidates, Query};
use crate::search::query_tree::{Operation, QueryKind};
use crate::search::{build_dfa, word_derivations, WordDerivationsCache};
use crate::search::{
build_dfa, word_derivations, CriterionImplementationStrategy, WordDerivationsCache,
};
use crate::Result;
/// To be able to divide integers by the number of words in the query
@ -30,10 +32,15 @@ pub struct Attribute<'t> {
parent: Box<dyn Criterion + 't>,
linear_buckets: Option<btree_map::IntoIter<u64, RoaringBitmap>>,
set_buckets: Option<BinaryHeap<Branch<'t>>>,
implementation_strategy: CriterionImplementationStrategy,
}
impl<'t> Attribute<'t> {
pub fn new(ctx: &'t dyn Context<'t>, parent: Box<dyn Criterion + 't>) -> Self {
pub fn new(
ctx: &'t dyn Context<'t>,
parent: Box<dyn Criterion + 't>,
implementation_strategy: CriterionImplementationStrategy,
) -> Self {
Attribute {
ctx,
state: None,
@ -41,6 +48,7 @@ impl<'t> Attribute<'t> {
parent,
linear_buckets: None,
set_buckets: None,
implementation_strategy,
}
}
}
@ -64,7 +72,15 @@ impl<'t> Criterion for Attribute<'t> {
}));
}
Some((query_tree, flattened_query_tree, mut allowed_candidates)) => {
let found_candidates = if allowed_candidates.len() < CANDIDATES_THRESHOLD {
let found_candidates = if matches!(
self.implementation_strategy,
CriterionImplementationStrategy::OnlyIterative
) || (matches!(
self.implementation_strategy,
CriterionImplementationStrategy::Dynamic
) && allowed_candidates.len()
< CANDIDATES_THRESHOLD)
{
let linear_buckets = match self.linear_buckets.as_mut() {
Some(linear_buckets) => linear_buckets,
None => {

View File

@ -14,6 +14,7 @@ use self::r#final::Final;
use self::typo::Typo;
use self::words::Words;
use super::query_tree::{Operation, PrimitiveQueryPart, Query, QueryKind};
use super::CriterionImplementationStrategy;
use crate::search::criteria::geo::Geo;
use crate::search::{word_derivations, Distinct, WordDerivationsCache};
use crate::{AscDesc as AscDescName, DocumentId, FieldId, Index, Member, Result};
@ -377,6 +378,7 @@ impl<'t> CriteriaBuilder<'t> {
sort_criteria: Option<Vec<AscDescName>>,
exhaustive_number_hits: bool,
distinct: Option<D>,
implementation_strategy: CriterionImplementationStrategy,
) -> Result<Final<'t>> {
use crate::criterion::Criterion as Name;
@ -402,12 +404,14 @@ impl<'t> CriteriaBuilder<'t> {
self.rtxn,
criterion,
field.to_string(),
implementation_strategy,
)?),
AscDescName::Desc(Member::Field(field)) => Box::new(AscDesc::desc(
self.index,
self.rtxn,
criterion,
field.to_string(),
implementation_strategy,
)?),
AscDescName::Asc(Member::Geo(point)) => {
Box::new(Geo::asc(self.index, self.rtxn, criterion, *point)?)
@ -421,15 +425,27 @@ impl<'t> CriteriaBuilder<'t> {
}
None => criterion,
},
Name::Proximity => Box::new(Proximity::new(self, criterion)),
Name::Attribute => Box::new(Attribute::new(self, criterion)),
Name::Proximity => {
Box::new(Proximity::new(self, criterion, implementation_strategy))
}
Name::Attribute => {
Box::new(Attribute::new(self, criterion, implementation_strategy))
}
Name::Exactness => Box::new(Exactness::new(self, criterion, &primitive_query)?),
Name::Asc(field) => {
Box::new(AscDesc::asc(self.index, self.rtxn, criterion, field)?)
}
Name::Desc(field) => {
Box::new(AscDesc::desc(self.index, self.rtxn, criterion, field)?)
}
Name::Asc(field) => Box::new(AscDesc::asc(
self.index,
self.rtxn,
criterion,
field,
implementation_strategy,
)?),
Name::Desc(field) => Box::new(AscDesc::desc(
self.index,
self.rtxn,
criterion,
field,
implementation_strategy,
)?),
};
}

View File

@ -11,7 +11,7 @@ use super::{
};
use crate::search::criteria::InitialCandidates;
use crate::search::query_tree::{maximum_proximity, Operation, Query, QueryKind};
use crate::search::{build_dfa, WordDerivationsCache};
use crate::search::{build_dfa, CriterionImplementationStrategy, WordDerivationsCache};
use crate::{Position, Result};
type Cache = HashMap<(Operation, u8), Vec<(Query, Query, RoaringBitmap)>>;
@ -33,10 +33,15 @@ pub struct Proximity<'t> {
parent: Box<dyn Criterion + 't>,
candidates_cache: Cache,
plane_sweep_cache: Option<btree_map::IntoIter<u8, RoaringBitmap>>,
implementation_strategy: CriterionImplementationStrategy,
}
impl<'t> Proximity<'t> {
pub fn new(ctx: &'t dyn Context<'t>, parent: Box<dyn Criterion + 't>) -> Self {
pub fn new(
ctx: &'t dyn Context<'t>,
parent: Box<dyn Criterion + 't>,
implementation_strategy: CriterionImplementationStrategy,
) -> Self {
Proximity {
ctx,
state: None,
@ -45,6 +50,7 @@ impl<'t> Proximity<'t> {
parent,
candidates_cache: Cache::new(),
plane_sweep_cache: None,
implementation_strategy,
}
}
}
@ -72,8 +78,15 @@ impl<'t> Criterion for Proximity<'t> {
self.state = None; // reset state
}
Some((_, query_tree, allowed_candidates)) => {
let mut new_candidates = if allowed_candidates.len() <= CANDIDATES_THRESHOLD
&& self.proximity > PROXIMITY_THRESHOLD
let mut new_candidates = if matches!(
self.implementation_strategy,
CriterionImplementationStrategy::OnlyIterative
) || (matches!(
self.implementation_strategy,
CriterionImplementationStrategy::Dynamic
) && allowed_candidates.len()
<= CANDIDATES_THRESHOLD
&& self.proximity > PROXIMITY_THRESHOLD)
{
if let Some(cache) = self.plane_sweep_cache.as_mut() {
match cache.next() {

View File

@ -49,6 +49,7 @@ pub struct Search<'a> {
authorize_typos: bool,
words_limit: usize,
exhaustive_number_hits: bool,
criterion_implementation_strategy: CriterionImplementationStrategy,
rtxn: &'a heed::RoTxn<'a>,
index: &'a Index,
}
@ -65,6 +66,7 @@ impl<'a> Search<'a> {
authorize_typos: true,
exhaustive_number_hits: false,
words_limit: 10,
criterion_implementation_strategy: CriterionImplementationStrategy::default(),
rtxn,
index,
}
@ -117,6 +119,14 @@ impl<'a> Search<'a> {
self
}
pub fn criterion_implementation_strategy(
&mut self,
strategy: CriterionImplementationStrategy,
) -> &mut Search<'a> {
self.criterion_implementation_strategy = strategy;
self
}
fn is_typo_authorized(&self) -> Result<bool> {
let index_authorizes_typos = self.index.authorize_typos(self.rtxn)?;
// only authorize typos if both the index and the query allow it.
@ -204,6 +214,7 @@ impl<'a> Search<'a> {
self.sort_criteria.clone(),
self.exhaustive_number_hits,
None,
self.criterion_implementation_strategy,
)?;
self.perform_sort(NoopDistinct, matching_words.unwrap_or_default(), criteria)
}
@ -220,6 +231,7 @@ impl<'a> Search<'a> {
self.sort_criteria.clone(),
self.exhaustive_number_hits,
Some(distinct.clone()),
self.criterion_implementation_strategy,
)?;
self.perform_sort(distinct, matching_words.unwrap_or_default(), criteria)
}
@ -288,6 +300,7 @@ impl fmt::Debug for Search<'_> {
authorize_typos,
words_limit,
exhaustive_number_hits,
criterion_implementation_strategy,
rtxn: _,
index: _,
} = self;
@ -300,6 +313,7 @@ impl fmt::Debug for Search<'_> {
.field("terms_matching_strategy", terms_matching_strategy)
.field("authorize_typos", authorize_typos)
.field("exhaustive_number_hits", exhaustive_number_hits)
.field("criterion_implementation_strategy", criterion_implementation_strategy)
.field("words_limit", words_limit)
.finish()
}
@ -313,6 +327,14 @@ pub struct SearchResult {
pub documents_ids: Vec<DocumentId>,
}
#[derive(Debug, Default, Clone, Copy)]
pub enum CriterionImplementationStrategy {
OnlyIterative,
OnlySetBased,
#[default]
Dynamic,
}
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum TermsMatchingStrategy {
// remove last word first