squash-me

This commit is contained in:
Kerollmops 2020-06-09 23:06:59 +02:00
parent 5d5b827f1a
commit 13977d9338
No known key found for this signature in database
GPG Key ID: 92ADA4E935E71FA4
3 changed files with 95 additions and 158 deletions

41
Cargo.lock generated
View File

@ -292,6 +292,12 @@ version = "0.1.2"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e88a8acf291dafb59c2d96e8f59828f3838bb1a70398823ade51a84de6a6deed" checksum = "e88a8acf291dafb59c2d96e8f59828f3838bb1a70398823ade51a84de6a6deed"
[[package]]
name = "fixedbitset"
version = "0.2.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "37ab347416e802de484e4d03c7316c48f1ecb56574dfd4a46a80f173ce1de04d"
[[package]] [[package]]
name = "flate2" name = "flate2"
version = "1.0.14" version = "1.0.14"
@ -661,6 +667,15 @@ dependencies = [
"libc", "libc",
] ]
[[package]]
name = "itertools"
version = "0.8.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f56a2d0bc861f9165be4eb3442afd3c236d8a98afd426f65d92324ae1091a484"
dependencies = [
"either",
]
[[package]] [[package]]
name = "itertools" name = "itertools"
version = "0.9.0" version = "0.9.0"
@ -790,12 +805,13 @@ dependencies = [
"fst", "fst",
"fxhash", "fxhash",
"heed", "heed",
"itertools", "itertools 0.9.0",
"jemallocator", "jemallocator",
"levenshtein_automata", "levenshtein_automata",
"memmap", "memmap",
"once_cell", "once_cell",
"oxidized-mtbl", "oxidized-mtbl",
"pathfinding",
"rayon", "rayon",
"roaring", "roaring",
"serde", "serde",
@ -972,6 +988,15 @@ dependencies = [
"winapi 0.3.8", "winapi 0.3.8",
] ]
[[package]]
name = "num-traits"
version = "0.2.11"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c62be47e61d1842b9170f0fdeec8eba98e60e90e5446449a0545e5152acd7096"
dependencies = [
"autocfg 1.0.0",
]
[[package]] [[package]]
name = "num_cpus" name = "num_cpus"
version = "1.13.0" version = "1.13.0"
@ -1016,6 +1041,18 @@ dependencies = [
"winapi 0.3.8", "winapi 0.3.8",
] ]
[[package]]
name = "pathfinding"
version = "2.0.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "86f4d8cc85ca67860ef4324faf86973a39e4e1c78338987eda29a8e6b6ec0c0e"
dependencies = [
"fixedbitset",
"indexmap",
"itertools 0.8.2",
"num-traits",
]
[[package]] [[package]]
name = "percent-encoding" name = "percent-encoding"
version = "2.1.0" version = "2.1.0"
@ -1942,6 +1979,6 @@ checksum = "c442965efc45353be5a9b9969c9b0872fff6828c7e06d118dda2cb2d0bb11d5a"
dependencies = [ dependencies = [
"cc", "cc",
"glob", "glob",
"itertools", "itertools 0.9.0",
"libc", "libc",
] ]

View File

@ -27,6 +27,9 @@ smallvec = "1.4.0"
structopt = { version = "0.3.14", default-features = false } structopt = { version = "0.3.14", default-features = false }
tempfile = "3.1.0" tempfile = "3.1.0"
# best proximity
pathfinding = "2.0.4"
# to implement internally # to implement internally
itertools = "0.9.0" itertools = "0.9.0"

View File

@ -1,4 +1,5 @@
use std::cmp; use std::cmp;
use pathfinding::directed::dijkstra::dijkstra;
const ONE_ATTRIBUTE: u32 = 1000; const ONE_ATTRIBUTE: u32 = 1000;
const MAX_INDEX: u32 = ONE_ATTRIBUTE - 1; const MAX_INDEX: u32 = ONE_ATTRIBUTE - 1;
@ -29,107 +30,40 @@ fn construct_position(attr: u32, index: u32) -> u32 {
attr * ONE_ATTRIBUTE + index attr * ONE_ATTRIBUTE + index
} }
// TODO we should use an sdset::Set for `next_positions`. #[derive(Debug, Clone, PartialOrd, Ord, PartialEq, Eq, Hash)]
// TODO We must not recursively search for the best proximity but return None if proximity is not found. struct Path(Vec<u32>);
// Returns the positions to focus that will give the best possible proximity.
fn best_proximity_for(current_position: u32, proximity: u32, next_positions: &[u32]) -> Option<(u32, Vec<u32>)> {
let (current_attr, _) = extract_position(current_position);
match proximity { impl Path {
// look at i+0 fn new(positions: &[Vec<u32>]) -> Option<Path> {
0 => { let position = positions.first()?.first()?;
match next_positions.binary_search(&current_position) { Some(Path(vec![*position]))
Ok(_) => Some((0, vec![current_position])),
Err(_) => best_proximity_for(current_position, proximity + 1, next_positions),
}
},
// look at i+1
1 => {
let position = current_position + 1;
let (attr, _) = extract_position(position);
// We must check that we do not overflowed the current attribute. If so,
// we must check for a bigger proximity that we will be able to find behind.
if current_attr == attr {
match next_positions.binary_search(&position) {
Ok(_) => Some((1, vec![position])),
Err(_) => best_proximity_for(current_position, proximity + 1, next_positions),
}
} else {
best_proximity_for(current_position, proximity + 1, next_positions)
}
},
// look at i-(p-1), i+p
2..=7 => {
let mut output = Vec::new();
// Behind the current_position
if let Some(position) = current_position.checked_sub(proximity - 1) {
let (attr, _) = extract_position(position);
// We must make sure we are not looking at a word at the end of another attribute.
if current_attr == attr && next_positions.binary_search(&position).is_ok() {
output.push(position);
}
} }
// In front of the current_position fn successors(&self, _positions: &[Vec<u32>]) -> Vec<(Path, u32)> {
let position = current_position + proximity; vec![]
let (attr, _) = extract_position(position);
// We must make sure we are not looking at a word at the end of another attribute.
if current_attr == attr && next_positions.binary_search(&position).is_ok() {
output.push(position);
} }
if output.is_empty() { fn proximity(&self) -> u32 {
best_proximity_for(current_position, proximity + 1, next_positions) self.0.windows(2).map(|ps| positions_proximity(ps[0], ps[1])).sum::<u32>()
} else {
Some((proximity, output))
}
},
// look at i+8 and all above and i-(8-1) and all below
8 => {
let mut output = Vec::new();
// Make sure we look at the latest index of the previous attr.
if let Some(previous_position) = construct_position(current_attr, 0).checked_sub(1) {
let position = current_position.saturating_sub(7).max(previous_position);
match dbg!(next_positions.binary_search(&position)) {
Ok(i) => output.extend_from_slice(&next_positions[..=i]),
Err(i) => if let Some(i) = i.checked_sub(1) {
if let Some(positions) = next_positions.get(..=i) {
output.extend_from_slice(positions)
}
},
}
} }
// Make sure the position doesn't overflow to the next attribute. fn is_complete(&self, positions: &[Vec<u32>]) -> bool {
let position = (current_position + 8).min(construct_position(current_attr + 1, 0)); positions.len() == self.0.len()
match next_positions.binary_search(&position) {
Ok(i) => output.extend_from_slice(&next_positions[i..]),
Err(i) => if let Some(positions) = next_positions.get(i..) {
output.extend_from_slice(positions);
},
}
if output.is_empty() {
None
} else {
Some((8, output))
}
}
_ => None,
} }
} }
pub struct BestProximity { pub struct BestProximity {
positions: Vec<Vec<u32>>, positions: Vec<Vec<u32>>,
best_proximities: Option<Vec<u32>>, best_proximity: u32,
} }
impl BestProximity { impl BestProximity {
pub fn new(positions: Vec<Vec<u32>>) -> BestProximity { pub fn new(positions: Vec<Vec<u32>>) -> BestProximity {
BestProximity { positions, best_proximities: None } BestProximity { positions, best_proximity: 0 }
}
fn is_path_successful(&self, path: &Path) -> bool {
path.is_complete(&self.positions) && path.proximity() >= self.best_proximity
} }
} }
@ -137,59 +71,44 @@ impl Iterator for BestProximity {
type Item = (u32, Vec<Vec<u32>>); type Item = (u32, Vec<Vec<u32>>);
fn next(&mut self) -> Option<Self::Item> { fn next(&mut self) -> Option<Self::Item> {
match &mut self.best_proximities { let mut output: Option<(u32, Vec<Vec<u32>>)> = None;
Some(best_proximities) => {
let expected_proximity = best_proximities.iter().sum::<u32>() + 1;
dbg!(expected_proximity);
for (i, (win, proximity)) in self.positions.windows(2).zip(best_proximities.iter()).enumerate() { unimplemented!("we must use and update self.best_proximity");
let (posa, posb) = (&win[0], &win[1]);
dbg!(proximity, posa, posb); loop {
let expected_proximity = proximity + 1; let start = Path::new(&self.positions)?;
let best_proximity = posa.iter().filter_map(|pa| { let result = dijkstra(
best_proximity_for(*pa, expected_proximity, posb).map(|res| (*pa, res)) &start,
}).min(); |p| p.successors(&self.positions),
dbg!(best_proximity); |p| self.is_path_successful(p) && output.as_ref().map_or(true, |paths| !paths.1.contains(&p.0)),
);
match result {
Some((mut paths, proximity)) => {
let positions = paths.pop().unwrap();
// If the current output is
match &mut output {
Some((best_proximity, paths)) => {
// If the shortest path we found is bigger than the one requested
// it means that we found all the paths with the same proximity and can
// return those to the user.
if proximity > *best_proximity {
break;
} }
None // We add the new path to the output list as this path is known
// to be the requested distance.
paths.push(positions.0);
}, },
None => { None => output = Some((positions.proximity(), vec![positions.0])),
let expected_proximity = 0; }
let mut best_results = Vec::new();
for win in self.positions.windows(2) {
let (posa, posb) = (&win[0], &win[1]);
match best_results.last() {
Some((start, _)) => {
// We know from where we must continue searching for the best path.
let (best_proximity, positions) = dbg!(best_proximity_for(*start, expected_proximity, posb).unwrap());
best_results.push((positions[0], best_proximity));
}, },
None => { None => break,
// This is the first loop, we need to find the best start of the path.
let best_proximity = posa.iter().filter_map(|pa| {
best_proximity_for(*pa, expected_proximity, posb).map(|res| (*pa, res))
}).min();
let (pa, (best_proximity, positions)) = best_proximity.unwrap();
// We must save the best start of path we found.
best_results.push((pa, 0));
// And the next associated position along with the proximity between those.
best_results.push((positions[0], best_proximity));
}
} }
} }
if best_results.is_empty() { output
None
} else {
let proximity = best_results.windows(2).map(|ps| positions_proximity(ps[0].0, ps[1].0)).sum::<u32>();
self.best_proximities = Some(best_results.iter().skip(1).map(|(_, p)| *p).collect());
let best_positions = best_results.into_iter().map(|(x, _)| vec![x]).collect();
Some((proximity, best_positions))
}
}
}
} }
} }
@ -217,26 +136,4 @@ mod tests {
// assert_eq!(iter.next(), Some((4+5, vec![4, 1, 6]))); // 9 // assert_eq!(iter.next(), Some((4+5, vec![4, 1, 6]))); // 9
// assert_eq!(iter.next(), None); // assert_eq!(iter.next(), None);
} }
#[test]
fn easy_best_proximity_for() {
// classic
assert_eq!(best_proximity_for(0, 0, &[0]), Some((0, vec![0])));
assert_eq!(best_proximity_for(0, 1, &[0]), None);
assert_eq!(best_proximity_for(1, 1, &[0]), Some((2, vec![0])));
assert_eq!(best_proximity_for(0, 1, &[0, 1]), Some((1, vec![1])));
assert_eq!(best_proximity_for(1, 1, &[0, 2]), Some((1, vec![2])));
assert_eq!(best_proximity_for(1, 2, &[0, 2]), Some((2, vec![0])));
assert_eq!(best_proximity_for(1, 2, &[0, 3]), Some((2, vec![0, 3])));
// limits
assert_eq!(best_proximity_for(2, 7, &[0, 9]), Some((7, vec![9])));
assert_eq!(best_proximity_for(12, 7, &[6, 19]), Some((7, vec![6, 19])));
// another attribute
assert_eq!(best_proximity_for(1000, 7, &[994, 1007]), Some((7, vec![1007])));
assert_eq!(best_proximity_for(1004, 7, &[994, 1011]), Some((7, vec![1011])));
assert_eq!(best_proximity_for(1004, 8, &[900, 913, 1000, 1012, 2012]), Some((8, vec![900, 913, 1012, 2012])));
assert_eq!(best_proximity_for(1009, 8, &[900, 913, 1002, 1012, 2012]), Some((8, vec![900, 913, 1002, 2012])));
}
} }