4746: Fix hybrid search limit offset r=irevoire a=dureuill

# Pull Request

## Related issue
Fixes #4745

## What does this PR do?
- Apply offset and limit to the keyword search results when they are returned early.
- Add a test that is initially failing, and then passes


Co-authored-by: Louis Dureuil <louis@meilisearch.com>
This commit is contained in:
meili-bors[bot] 2024-06-27 12:47:08 +00:00 committed by GitHub
commit 0df84bbba7
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 73 additions and 3 deletions

View File

@ -150,6 +150,35 @@ async fn simple_search() {
snapshot!(response["semanticHitCount"], @"3");
}
#[actix_rt::test]
async fn limit_offset() {
let server = Server::new().await;
let index = index_with_documents_user_provided(&server, &SIMPLE_SEARCH_DOCUMENTS_VEC).await;
let (response, code) = index
.search_post(
json!({"q": "Captain", "vector": [1.0, 1.0], "hybrid": {"semanticRatio": 0.2}, "retrieveVectors": true, "offset": 1, "limit": 1}),
)
.await;
snapshot!(code, @"200 OK");
snapshot!(response["hits"], @r###"[{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":{"embeddings":[[2.0,3.0]],"regenerate":false}}}]"###);
snapshot!(response["semanticHitCount"], @"0");
assert_eq!(response["hits"].as_array().unwrap().len(), 1);
let server = Server::new().await;
let index = index_with_documents_user_provided(&server, &SIMPLE_SEARCH_DOCUMENTS_VEC).await;
let (response, code) = index
.search_post(
json!({"q": "Captain", "vector": [1.0, 1.0], "hybrid": {"semanticRatio": 0.9}, "retrieveVectors": true, "offset": 1, "limit": 1}),
)
.await;
snapshot!(code, @"200 OK");
snapshot!(response["hits"], @r###"[{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":{"embeddings":[[1.0,2.0]],"regenerate":false}}}]"###);
snapshot!(response["semanticHitCount"], @"1");
assert_eq!(response["hits"].as_array().unwrap().len(), 1);
}
#[actix_rt::test]
async fn simple_search_hf() {
let server = Server::new().await;

View File

@ -178,16 +178,16 @@ impl<'a> Search<'a> {
// completely skip semantic search if the results of the keyword search are good enough
if self.results_good_enough(&keyword_results, semantic_ratio) {
return Ok((keyword_results, Some(0)));
return Ok(return_keyword_results(self.limit, self.offset, keyword_results));
}
// no vector search against placeholder search
let Some(query) = search.query.take() else {
return Ok((keyword_results, Some(0)));
return Ok(return_keyword_results(self.limit, self.offset, keyword_results));
};
// no embedder, no semantic search
let Some(SemanticSearch { vector, embedder_name, embedder }) = semantic else {
return Ok((keyword_results, Some(0)));
return Ok(return_keyword_results(self.limit, self.offset, keyword_results));
};
let vector_query = match vector {
@ -239,3 +239,44 @@ impl<'a> Search<'a> {
true
}
}
fn return_keyword_results(
limit: usize,
offset: usize,
SearchResult {
matching_words,
candidates,
mut documents_ids,
mut document_scores,
degraded,
used_negative_operator,
}: SearchResult,
) -> (SearchResult, Option<u32>) {
let (documents_ids, document_scores) = if offset >= documents_ids.len() ||
// technically redudant because documents_ids.len() == document_scores.len(),
// defensive programming
offset >= document_scores.len()
{
(vec![], vec![])
} else {
// PANICS: offset < len
documents_ids.rotate_left(offset);
documents_ids.truncate(limit);
// PANICS: offset < len
document_scores.rotate_left(offset);
document_scores.truncate(limit);
(documents_ids, document_scores)
};
(
SearchResult {
matching_words,
candidates,
documents_ids,
document_scores,
degraded,
used_negative_operator,
},
Some(0),
)
}