meilisearch/meilisearch-core/src/automaton/mod.rs

297 lines
9.4 KiB
Rust
Raw Normal View History

mod dfa;
mod query_enhancer;
use std::cmp::Reverse;
use std::{cmp, vec};
use fst::{IntoStreamer, Streamer};
use levenshtein_automata::DFA;
2019-11-26 18:06:55 +08:00
use meilisearch_tokenizer::{is_cjk, split_query_string};
use crate::database::MainT;
use crate::error::MResult;
2019-10-18 19:05:28 +08:00
use crate::store;
use self::dfa::{build_dfa, build_prefix_dfa};
pub use self::query_enhancer::QueryEnhancer;
2019-10-18 19:05:28 +08:00
use self::query_enhancer::QueryEnhancerBuilder;
const NGRAMS: usize = 3;
pub struct AutomatonProducer {
automatons: Vec<AutomatonGroup>,
}
impl AutomatonProducer {
pub fn new(
reader: &heed::RoTxn<MainT>,
query: &str,
main_store: store::Main,
postings_list_store: store::PostingsLists,
synonyms_store: store::Synonyms,
2019-10-18 19:05:28 +08:00
) -> MResult<(AutomatonProducer, QueryEnhancer)> {
2019-10-23 18:06:21 +08:00
let (automatons, query_enhancer) = generate_automatons(
reader,
query,
main_store,
postings_list_store,
synonyms_store,
)?;
Ok((AutomatonProducer { automatons }, query_enhancer))
}
pub fn into_iter(self) -> vec::IntoIter<AutomatonGroup> {
self.automatons.into_iter()
}
}
#[derive(Debug)]
2019-10-23 18:06:21 +08:00
pub struct AutomatonGroup {
pub is_phrase_query: bool,
pub automatons: Vec<Automaton>,
}
impl AutomatonGroup {
fn normal(automatons: Vec<Automaton>) -> AutomatonGroup {
AutomatonGroup {
is_phrase_query: false,
automatons,
}
}
fn phrase_query(automatons: Vec<Automaton>) -> AutomatonGroup {
AutomatonGroup {
is_phrase_query: true,
automatons,
}
}
}
#[derive(Debug)]
pub struct Automaton {
pub index: usize,
pub ngram: usize,
pub query_len: usize,
pub is_exact: bool,
pub is_prefix: bool,
pub query: String,
}
impl Automaton {
pub fn dfa(&self) -> DFA {
if self.is_prefix {
build_prefix_dfa(&self.query)
} else {
build_dfa(&self.query)
}
}
fn exact(index: usize, ngram: usize, query: &str) -> Automaton {
Automaton {
index,
ngram,
query_len: query.len(),
is_exact: true,
is_prefix: false,
query: query.to_string(),
}
}
fn prefix_exact(index: usize, ngram: usize, query: &str) -> Automaton {
Automaton {
index,
ngram,
query_len: query.len(),
is_exact: true,
is_prefix: true,
query: query.to_string(),
}
}
fn non_exact(index: usize, ngram: usize, query: &str) -> Automaton {
Automaton {
index,
ngram,
query_len: query.len(),
is_exact: false,
is_prefix: false,
query: query.to_string(),
}
}
}
pub fn normalize_str(string: &str) -> String {
let mut string = string.to_lowercase();
if !string.contains(is_cjk) {
string = deunicode::deunicode_with_tofu(&string, "");
}
string
}
fn split_best_frequency<'a>(
reader: &heed::RoTxn<MainT>,
word: &'a str,
postings_lists_store: store::PostingsLists,
) -> MResult<Option<(&'a str, &'a str)>> {
let chars = word.char_indices().skip(1);
let mut best = None;
for (i, _) in chars {
let (left, right) = word.split_at(i);
let left_freq = postings_lists_store
.postings_list(reader, left.as_ref())?
.map_or(0, |i| i.len());
let right_freq = postings_lists_store
.postings_list(reader, right.as_ref())?
.map_or(0, |i| i.len());
let min_freq = cmp::min(left_freq, right_freq);
if min_freq != 0 && best.map_or(true, |(old, _, _)| min_freq > old) {
best = Some((min_freq, left, right));
}
}
Ok(best.map(|(_, l, r)| (l, r)))
}
fn generate_automatons(
reader: &heed::RoTxn<MainT>,
query: &str,
main_store: store::Main,
postings_lists_store: store::PostingsLists,
synonym_store: store::Synonyms,
2019-10-23 18:06:21 +08:00
) -> MResult<(Vec<AutomatonGroup>, QueryEnhancer)> {
let has_end_whitespace = query.chars().last().map_or(false, char::is_whitespace);
let query_words: Vec<_> = split_query_string(query).map(str::to_lowercase).collect();
let synonyms = match main_store.synonyms_fst(reader)? {
Some(synonym) => synonym,
None => fst::Set::default(),
};
let mut automaton_index = 0;
let mut automatons = Vec::new();
let mut enhancer_builder = QueryEnhancerBuilder::new(&query_words);
// We must not declare the original words to the query enhancer
// *but* we need to push them in the automatons list first
let mut original_automatons = Vec::new();
let mut original_words = query_words.iter().peekable();
while let Some(word) = original_words.next() {
let has_following_word = original_words.peek().is_some();
let not_prefix_dfa = has_following_word || has_end_whitespace || word.chars().all(is_cjk);
let automaton = if not_prefix_dfa {
Automaton::exact(automaton_index, 1, word)
} else {
Automaton::prefix_exact(automaton_index, 1, word)
};
automaton_index += 1;
original_automatons.push(automaton);
}
2019-10-23 18:06:21 +08:00
automatons.push(AutomatonGroup::normal(original_automatons));
for n in 1..=NGRAMS {
let mut ngrams = query_words.windows(n).enumerate().peekable();
while let Some((query_index, ngram_slice)) = ngrams.next() {
let query_range = query_index..query_index + n;
let ngram_nb_words = ngram_slice.len();
let ngram = ngram_slice.join(" ");
let has_following_word = ngrams.peek().is_some();
2019-10-18 19:05:28 +08:00
let not_prefix_dfa =
has_following_word || has_end_whitespace || ngram.chars().all(is_cjk);
// automaton of synonyms of the ngrams
let normalized = normalize_str(&ngram);
2019-10-18 19:05:28 +08:00
let lev = if not_prefix_dfa {
build_dfa(&normalized)
} else {
build_prefix_dfa(&normalized)
};
let mut stream = synonyms.search(&lev).into_stream();
while let Some(base) = stream.next() {
// only trigger alternatives when the last word has been typed
// i.e. "new " do not but "new yo" triggers alternatives to "new york"
let base = std::str::from_utf8(base).unwrap();
let base_nb_words = split_query_string(base).count();
2019-10-18 19:05:28 +08:00
if ngram_nb_words != base_nb_words {
continue;
}
if let Some(synonyms) = synonym_store.synonyms(reader, base.as_bytes())? {
let mut stream = synonyms.into_stream();
while let Some(synonyms) = stream.next() {
let synonyms = std::str::from_utf8(synonyms).unwrap();
let synonyms_words: Vec<_> = split_query_string(synonyms).collect();
let nb_synonym_words = synonyms_words.len();
let real_query_index = automaton_index;
2019-10-18 19:05:28 +08:00
enhancer_builder.declare(
query_range.clone(),
real_query_index,
&synonyms_words,
);
for synonym in synonyms_words {
let automaton = if nb_synonym_words == 1 {
Automaton::exact(automaton_index, n, synonym)
} else {
Automaton::non_exact(automaton_index, n, synonym)
};
automaton_index += 1;
2019-10-23 18:06:21 +08:00
automatons.push(AutomatonGroup::normal(vec![automaton]));
}
}
}
}
if n == 1 {
2019-10-23 18:06:21 +08:00
if let Some((left, right)) =
split_best_frequency(reader, &normalized, postings_lists_store)?
{
let a = Automaton::exact(automaton_index, 1, left);
enhancer_builder.declare(query_range.clone(), automaton_index, &[left]);
automaton_index += 1;
let b = Automaton::exact(automaton_index, 1, right);
enhancer_builder.declare(query_range.clone(), automaton_index, &[left]);
automaton_index += 1;
2019-10-23 18:06:21 +08:00
automatons.push(AutomatonGroup::phrase_query(vec![a, b]));
}
} else {
// automaton of concatenation of query words
let concat = ngram_slice.concat();
let normalized = normalize_str(&concat);
let real_query_index = automaton_index;
enhancer_builder.declare(query_range.clone(), real_query_index, &[&normalized]);
let automaton = Automaton::exact(automaton_index, n, &normalized);
automaton_index += 1;
2019-10-23 18:06:21 +08:00
automatons.push(AutomatonGroup::normal(vec![automaton]));
}
}
}
// order automatons, the most important first,
// we keep the original automatons at the front.
automatons[1..].sort_by_key(|group| {
2019-10-23 18:06:21 +08:00
let a = group.automatons.first().unwrap();
(
Reverse(a.is_exact),
a.ngram,
Reverse(group.automatons.len()),
)
});
Ok((automatons, enhancer_builder.build()))
}