meilisearch/milli/src/update/delete_documents.rs

287 lines
12 KiB
Rust
Raw Normal View History

use fst::IntoStreamer;
use heed::types::ByteSlice;
use roaring::RoaringBitmap;
use crate::facet::FacetType;
use crate::{Index, BEU32, SmallString32, ExternalDocumentsIds};
use crate::heed_codec::facet::{FieldDocIdFacetStringCodec, FieldDocIdFacetF64Codec, FieldDocIdFacetI64Codec};
use super::ClearDocuments;
pub struct DeleteDocuments<'t, 'u, 'i> {
2020-10-30 18:42:00 +08:00
wtxn: &'t mut heed::RwTxn<'i, 'u>,
index: &'i Index,
external_documents_ids: ExternalDocumentsIds<'static>,
documents_ids: RoaringBitmap,
update_id: u64,
}
impl<'t, 'u, 'i> DeleteDocuments<'t, 'u, 'i> {
pub fn new(
2020-10-30 18:42:00 +08:00
wtxn: &'t mut heed::RwTxn<'i, 'u>,
index: &'i Index,
update_id: u64,
) -> anyhow::Result<DeleteDocuments<'t, 'u, 'i>>
{
let external_documents_ids = index
.external_documents_ids(wtxn)?
.into_static();
Ok(DeleteDocuments {
wtxn,
index,
external_documents_ids,
documents_ids: RoaringBitmap::new(),
update_id,
})
}
pub fn delete_document(&mut self, docid: u32) {
self.documents_ids.insert(docid);
}
pub fn delete_documents(&mut self, docids: &RoaringBitmap) {
self.documents_ids.union_with(docids);
}
pub fn delete_external_id(&mut self, external_id: &str) -> Option<u32> {
let docid = self.external_documents_ids.get(external_id)?;
self.delete_document(docid);
Some(docid)
}
pub fn execute(self) -> anyhow::Result<usize> {
// We retrieve the current documents ids that are in the database.
let mut documents_ids = self.index.documents_ids(self.wtxn)?;
// We can and must stop removing documents in a database that is empty.
if documents_ids.is_empty() {
return Ok(0);
}
// We remove the documents ids that we want to delete
// from the documents in the database and write them back.
let current_documents_ids_len = documents_ids.len();
documents_ids.difference_with(&self.documents_ids);
self.index.put_documents_ids(self.wtxn, &documents_ids)?;
// We can execute a ClearDocuments operation when the number of documents
// to delete is exactly the number of documents in the database.
if current_documents_ids_len == self.documents_ids.len() {
return ClearDocuments::new(self.wtxn, self.index, self.update_id).execute();
}
let fields_ids_map = self.index.fields_ids_map(self.wtxn)?;
let id_field = fields_ids_map.id("id").expect(r#"the field "id" to be present"#);
let Index {
env: _env,
main: _main,
word_docids,
docid_word_positions,
word_pair_proximity_docids,
facet_field_id_value_docids,
field_id_docid_facet_values,
documents,
} = self.index;
// Retrieve the words and the external documents ids contained in the documents.
let mut words = Vec::new();
let mut external_ids = Vec::new();
for docid in &self.documents_ids {
// We create an iterator to be able to get the content and delete the document
// content itself. It's faster to acquire a cursor to get and delete,
// as we avoid traversing the LMDB B-Tree two times but only once.
let key = BEU32::new(docid);
let mut iter = documents.range_mut(self.wtxn, &(key..=key))?;
if let Some((_key, obkv)) = iter.next().transpose()? {
if let Some(content) = obkv.get(id_field) {
let external_id: SmallString32 = serde_json::from_slice(content).unwrap();
external_ids.push(external_id);
}
iter.del_current()?;
}
drop(iter);
// We iterate througt the words positions of the document id,
// retrieve the word and delete the positions.
let mut iter = docid_word_positions.prefix_iter_mut(self.wtxn, &(docid, ""))?;
while let Some(result) = iter.next() {
let ((_docid, word), _positions) = result?;
// This boolean will indicate if we must remove this word from the words FST.
words.push((SmallString32::from(word), false));
iter.del_current()?;
}
}
// We create the FST map of the external ids that we must delete.
external_ids.sort_unstable();
let external_ids_to_delete = fst::Set::from_iter(external_ids.iter().map(AsRef::as_ref))?;
// We acquire the current external documents ids map...
let mut new_external_documents_ids = self.index.external_documents_ids(self.wtxn)?;
// ...and remove the to-delete external ids.
new_external_documents_ids.delete_ids(external_ids_to_delete)?;
// We write the new external ids into the main database.
let new_external_documents_ids = new_external_documents_ids.into_static();
self.index.put_external_documents_ids(self.wtxn, &new_external_documents_ids)?;
// Maybe we can improve the get performance of the words
// if we sort the words first, keeping the LMDB pages in cache.
words.sort_unstable();
// We iterate over the words and delete the documents ids
// from the word docids database.
for (word, must_remove) in &mut words {
// We create an iterator to be able to get the content and delete the word docids.
// It's faster to acquire a cursor to get and delete or put, as we avoid traversing
// the LMDB B-Tree two times but only once.
let mut iter = word_docids.prefix_iter_mut(self.wtxn, &word)?;
if let Some((key, mut docids)) = iter.next().transpose()? {
if key == word.as_ref() {
let previous_len = docids.len();
docids.difference_with(&self.documents_ids);
if docids.is_empty() {
iter.del_current()?;
*must_remove = true;
} else if docids.len() != previous_len {
iter.put_current(key, &docids)?;
}
}
}
}
// We construct an FST set that contains the words to delete from the words FST.
let words_to_delete = words.iter().filter_map(|(word, must_remove)| {
if *must_remove { Some(word.as_ref()) } else { None }
});
let words_to_delete = fst::Set::from_iter(words_to_delete)?;
let new_words_fst = {
// We retrieve the current words FST from the database.
let words_fst = self.index.words_fst(self.wtxn)?;
let difference = words_fst.op().add(&words_to_delete).difference();
// We stream the new external ids that does no more contains the to-delete external ids.
let mut new_words_fst_builder = fst::SetBuilder::memory();
new_words_fst_builder.extend_stream(difference.into_stream())?;
// We create an words FST set from the above builder.
new_words_fst_builder.into_set()
};
// We write the new words FST into the main database.
self.index.put_words_fst(self.wtxn, &new_words_fst)?;
// We delete the documents ids that are under the pairs of words,
// it is faster and use no memory to iterate over all the words pairs than
// to compute the cartesian product of every words of the deleted documents.
let mut iter = word_pair_proximity_docids.remap_key_type::<ByteSlice>().iter_mut(self.wtxn)?;
while let Some(result) = iter.next() {
let (bytes, mut docids) = result?;
let previous_len = docids.len();
docids.difference_with(&self.documents_ids);
if docids.is_empty() {
iter.del_current()?;
} else if docids.len() != previous_len {
iter.put_current(bytes, &docids)?;
}
}
drop(iter);
// Remove the documents ids from the faceted documents ids.
let faceted_fields = self.index.faceted_fields_ids(self.wtxn)?;
for (field_id, facet_type) in faceted_fields {
let mut docids = self.index.faceted_documents_ids(self.wtxn, field_id)?;
docids.difference_with(&self.documents_ids);
self.index.put_faceted_documents_ids(self.wtxn, field_id, &docids)?;
// We delete the entries that are part of the documents ids.
let iter = field_id_docid_facet_values.prefix_iter_mut(self.wtxn, &[field_id])?;
match facet_type {
FacetType::String => {
let mut iter = iter.remap_key_type::<FieldDocIdFacetStringCodec>();
while let Some(result) = iter.next() {
let ((_fid, docid, _value), ()) = result?;
if self.documents_ids.contains(docid) {
iter.del_current()?;
}
}
},
FacetType::Float => {
let mut iter = iter.remap_key_type::<FieldDocIdFacetF64Codec>();
while let Some(result) = iter.next() {
let ((_fid, docid, _value), ()) = result?;
if self.documents_ids.contains(docid) {
iter.del_current()?;
}
}
},
FacetType::Integer => {
let mut iter = iter.remap_key_type::<FieldDocIdFacetI64Codec>();
while let Some(result) = iter.next() {
let ((_fid, docid, _value), ()) = result?;
if self.documents_ids.contains(docid) {
iter.del_current()?;
}
}
},
}
}
// We delete the documents ids that are under the facet field id values.
let mut iter = facet_field_id_value_docids.iter_mut(self.wtxn)?;
while let Some(result) = iter.next() {
let (bytes, mut docids) = result?;
let previous_len = docids.len();
docids.difference_with(&self.documents_ids);
if docids.is_empty() {
iter.del_current()?;
} else if docids.len() != previous_len {
iter.put_current(bytes, &docids)?;
}
}
drop(iter);
Ok(self.documents_ids.len() as usize)
}
}
#[cfg(test)]
mod tests {
use heed::EnvOpenOptions;
use crate::update::{IndexDocuments, UpdateFormat};
use super::*;
#[test]
fn delete_documents_with_numbers_as_primary_key() {
let path = tempfile::tempdir().unwrap();
let mut options = EnvOpenOptions::new();
options.map_size(10 * 1024 * 1024); // 10 MB
let index = Index::new(options, &path).unwrap();
// First we send 3 documents with an id for only one of them.
let mut wtxn = index.write_txn().unwrap();
let content = &br#"[
{ "id": 0, "name": "kevin", "object": { "key1": "value1", "key2": "value2" } },
{ "id": 1, "name": "kevina", "array": ["I", "am", "fine"] },
{ "id": 2, "name": "benoit", "array_of_object": [{ "wow": "amazing" }] }
]"#[..];
let mut builder = IndexDocuments::new(&mut wtxn, &index, 0);
builder.update_format(UpdateFormat::Json);
builder.execute(content, |_, _| ()).unwrap();
// delete those documents, ids are synchronous therefore 0, 1, and 2.
let mut builder = DeleteDocuments::new(&mut wtxn, &index, 1).unwrap();
builder.delete_document(0);
builder.delete_document(1);
builder.delete_document(2);
builder.execute().unwrap();
wtxn.commit().unwrap();
}
}