meilisearch/src/update/delete_documents.rs

195 lines
8.0 KiB
Rust
Raw Normal View History

use std::borrow::Cow;
use std::convert::TryFrom;
use fst::{IntoStreamer, Streamer};
use roaring::RoaringBitmap;
use crate::{Index, BEU32, SmallString32};
use super::ClearDocuments;
pub struct DeleteDocuments<'t, 'u, 'i> {
2020-10-30 18:42:00 +08:00
wtxn: &'t mut heed::RwTxn<'i, 'u>,
index: &'i Index,
users_ids_documents_ids: fst::Map<Vec<u8>>,
documents_ids: RoaringBitmap,
}
impl<'t, 'u, 'i> DeleteDocuments<'t, 'u, 'i> {
pub fn new(
2020-10-30 18:42:00 +08:00
wtxn: &'t mut heed::RwTxn<'i, 'u>,
index: &'i Index,
) -> anyhow::Result<DeleteDocuments<'t, 'u, 'i>>
{
let users_ids_documents_ids = index
.users_ids_documents_ids(wtxn)?
.map_data(Cow::into_owned)?;
Ok(DeleteDocuments {
wtxn,
index,
users_ids_documents_ids,
documents_ids: RoaringBitmap::new(),
})
}
pub fn delete_document(&mut self, docid: u32) {
self.documents_ids.insert(docid);
}
pub fn delete_documents(&mut self, docids: &RoaringBitmap) {
self.documents_ids.union_with(docids);
}
pub fn delete_user_id(&mut self, user_id: &str) -> Option<u32> {
let docid = self.users_ids_documents_ids.get(user_id).map(|id| u32::try_from(id).unwrap())?;
self.delete_document(docid);
Some(docid)
}
pub fn execute(self) -> anyhow::Result<usize> {
// We retrieve remove the deleted documents ids and write them into the database.
let mut documents_ids = self.index.documents_ids(self.wtxn)?;
// We can and must stop removing documents in a database that is empty.
if documents_ids.is_empty() {
return Ok(0);
}
let current_documents_ids_len = documents_ids.len();
documents_ids.intersect_with(&self.documents_ids);
self.index.put_documents_ids(self.wtxn, &documents_ids)?;
// We can execute a ClearDocuments operation when the number of documents
// to delete is exactly the number of documents in the database.
if current_documents_ids_len == self.documents_ids.len() {
return ClearDocuments::new(self.wtxn, self.index).execute();
}
let fields_ids_map = self.index.fields_ids_map(self.wtxn)?;
let id_field = fields_ids_map.id("id").expect(r#"the field "id" to be present"#);
let Index {
env: _env,
main: _main,
word_docids,
docid_word_positions,
word_pair_proximity_docids,
documents,
} = self.index;
// Retrieve the words and the users ids contained in the documents.
let mut words = Vec::new();
let mut users_ids = Vec::new();
for docid in &documents_ids {
// We create an iterator to be able to get the content and delete the document
// content itself. It's faster to acquire a cursor to get and delete,
// as we avoid traversing the LMDB B-Tree two times but only once.
let key = BEU32::new(docid);
let mut iter = documents.range_mut(self.wtxn, &(key..=key))?;
if let Some((_key, obkv)) = iter.next().transpose()? {
if let Some(content) = obkv.get(id_field) {
let user_id: SmallString32 = serde_json::from_slice(content).unwrap();
users_ids.push(user_id);
}
iter.del_current()?;
}
drop(iter);
// We iterate througt the words positions of the document id,
// retrieve the word and delete the positions.
let mut iter = docid_word_positions.prefix_iter_mut(self.wtxn, &(docid, ""))?;
while let Some(result) = iter.next() {
let ((_docid, word), _positions) = result?;
// This boolean will indicate if we must remove this word from the words FST.
words.push((SmallString32::from(word), false));
iter.del_current()?;
}
}
// We create the FST map of the users ids that we must delete.
users_ids.sort_unstable();
let users_ids_to_delete = fst::Set::from_iter(users_ids.iter().map(AsRef::as_ref))?;
let users_ids_to_delete = fst::Map::from(users_ids_to_delete.into_fst());
let new_users_ids_documents_ids = {
// We acquire the current users ids documents ids map and create
// a difference operation between the current and to-delete users ids.
let users_ids_documents_ids = self.index.users_ids_documents_ids(self.wtxn)?;
let difference = users_ids_documents_ids.op().add(&users_ids_to_delete).difference();
// We stream the new users ids that does no more contains the to-delete users ids.
let mut iter = difference.into_stream();
let mut new_users_ids_documents_ids_builder = fst::MapBuilder::memory();
while let Some((userid, docids)) = iter.next() {
new_users_ids_documents_ids_builder.insert(userid, docids[0].value)?;
}
// We create an FST map from the above builder.
new_users_ids_documents_ids_builder.into_map()
};
// We write the new users ids into the main database.
self.index.put_users_ids_documents_ids(self.wtxn, &new_users_ids_documents_ids)?;
// Maybe we can improve the get performance of the words
// if we sort the words first, keeping the LMDB pages in cache.
words.sort_unstable();
// We iterate over the words and delete the documents ids
// from the word docids database.
for (word, must_remove) in &mut words {
// We create an iterator to be able to get the content and delete the word docids.
// It's faster to acquire a cursor to get and delete or put, as we avoid traversing
// the LMDB B-Tree two times but only once.
let mut iter = word_docids.prefix_iter_mut(self.wtxn, &word)?;
if let Some((key, mut docids)) = iter.next().transpose()? {
if key == word.as_ref() {
docids.difference_with(&mut documents_ids);
if docids.is_empty() {
iter.del_current()?;
*must_remove = true;
} else {
iter.put_current(key, &docids)?;
}
}
}
}
// We construct an FST set that contains the words to delete from the words FST.
let words_to_delete = words.iter().filter_map(|(w, d)| if *d { Some(w.as_ref()) } else { None });
let words_to_delete = fst::Set::from_iter(words_to_delete)?;
let new_words_fst = {
// We retrieve the current words FST from the database.
let words_fst = self.index.words_fst(self.wtxn)?;
let difference = words_fst.op().add(&words_to_delete).difference();
// We stream the new users ids that does no more contains the to-delete users ids.
let mut new_words_fst_builder = fst::SetBuilder::memory();
new_words_fst_builder.extend_stream(difference.into_stream())?;
// We create an words FST set from the above builder.
new_words_fst_builder.into_set()
};
// We write the new words FST into the main database.
self.index.put_words_fst(self.wtxn, &new_words_fst)?;
// We delete the documents ids that are under the pairs of words,
// it is faster and use no memory to iterate over all the words pairs than
// to compute the cartesian product of every words of the deleted documents.
let mut iter = word_pair_proximity_docids.iter_mut(self.wtxn)?;
while let Some(result) = iter.next() {
let ((w1, w2, prox), mut docids) = result?;
docids.difference_with(&documents_ids);
if docids.is_empty() {
iter.del_current()?;
} else {
iter.put_current(&(w1, w2, prox), &docids)?;
}
}
Ok(documents_ids.len() as usize)
}
}