2020-06-09 00:05:14 +08:00
|
|
|
use std::cmp;
|
|
|
|
|
|
|
|
const ONE_ATTRIBUTE: u32 = 1000;
|
|
|
|
const MAX_INDEX: u32 = ONE_ATTRIBUTE - 1;
|
|
|
|
const MAX_DISTANCE: u32 = 8;
|
|
|
|
|
2020-06-09 23:32:25 +08:00
|
|
|
fn index_proximity(lhs: u32, rhs: u32) -> u32 {
|
|
|
|
if lhs < rhs {
|
|
|
|
cmp::min(rhs - lhs, MAX_DISTANCE)
|
|
|
|
} else {
|
|
|
|
cmp::min(lhs - rhs, MAX_DISTANCE) + 1
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
fn positions_proximity(lhs: u32, rhs: u32) -> u32 {
|
|
|
|
let (lhs_attr, lhs_index) = extract_position(lhs);
|
|
|
|
let (rhs_attr, rhs_index) = extract_position(rhs);
|
|
|
|
if lhs_attr != rhs_attr { MAX_DISTANCE }
|
|
|
|
else { index_proximity(lhs_index, rhs_index) }
|
|
|
|
}
|
|
|
|
|
2020-06-09 00:05:14 +08:00
|
|
|
// Returns the attribute and index parts.
|
|
|
|
fn extract_position(position: u32) -> (u32, u32) {
|
|
|
|
(position / ONE_ATTRIBUTE, position % ONE_ATTRIBUTE)
|
|
|
|
}
|
|
|
|
|
|
|
|
// Returns a position from the two parts of it.
|
|
|
|
fn construct_position(attr: u32, index: u32) -> u32 {
|
|
|
|
attr * ONE_ATTRIBUTE + index
|
|
|
|
}
|
|
|
|
|
|
|
|
// TODO we should use an sdset::Set for `next_positions`.
|
2020-06-09 23:32:25 +08:00
|
|
|
// TODO We must not recursively search for the best proximity but return None if proximity is not found.
|
2020-06-09 00:05:14 +08:00
|
|
|
// Returns the positions to focus that will give the best possible proximity.
|
|
|
|
fn best_proximity_for(current_position: u32, proximity: u32, next_positions: &[u32]) -> Option<(u32, Vec<u32>)> {
|
|
|
|
let (current_attr, _) = extract_position(current_position);
|
|
|
|
|
|
|
|
match proximity {
|
|
|
|
// look at i+0
|
|
|
|
0 => {
|
|
|
|
match next_positions.binary_search(¤t_position) {
|
|
|
|
Ok(_) => Some((0, vec![current_position])),
|
|
|
|
Err(_) => best_proximity_for(current_position, proximity + 1, next_positions),
|
|
|
|
}
|
|
|
|
},
|
|
|
|
// look at i+1
|
|
|
|
1 => {
|
|
|
|
let position = current_position + 1;
|
|
|
|
let (attr, _) = extract_position(position);
|
|
|
|
|
|
|
|
// We must check that we do not overflowed the current attribute. If so,
|
|
|
|
// we must check for a bigger proximity that we will be able to find behind.
|
|
|
|
if current_attr == attr {
|
|
|
|
match next_positions.binary_search(&position) {
|
|
|
|
Ok(_) => Some((1, vec![position])),
|
|
|
|
Err(_) => best_proximity_for(current_position, proximity + 1, next_positions),
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
best_proximity_for(current_position, proximity + 1, next_positions)
|
|
|
|
}
|
|
|
|
},
|
|
|
|
// look at i-(p-1), i+p
|
|
|
|
2..=7 => {
|
|
|
|
let mut output = Vec::new();
|
|
|
|
|
|
|
|
// Behind the current_position
|
|
|
|
if let Some(position) = current_position.checked_sub(proximity - 1) {
|
|
|
|
let (attr, _) = extract_position(position);
|
|
|
|
// We must make sure we are not looking at a word at the end of another attribute.
|
|
|
|
if current_attr == attr && next_positions.binary_search(&position).is_ok() {
|
|
|
|
output.push(position);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// In front of the current_position
|
|
|
|
let position = current_position + proximity;
|
|
|
|
let (attr, _) = extract_position(position);
|
|
|
|
// We must make sure we are not looking at a word at the end of another attribute.
|
|
|
|
if current_attr == attr && next_positions.binary_search(&position).is_ok() {
|
|
|
|
output.push(position);
|
|
|
|
}
|
|
|
|
|
|
|
|
if output.is_empty() {
|
|
|
|
best_proximity_for(current_position, proximity + 1, next_positions)
|
|
|
|
} else {
|
|
|
|
Some((proximity, output))
|
|
|
|
}
|
|
|
|
},
|
|
|
|
// look at i+8 and all above and i-(8-1) and all below
|
|
|
|
8 => {
|
|
|
|
let mut output = Vec::new();
|
|
|
|
|
|
|
|
// Make sure we look at the latest index of the previous attr.
|
|
|
|
if let Some(previous_position) = construct_position(current_attr, 0).checked_sub(1) {
|
|
|
|
let position = current_position.saturating_sub(7).max(previous_position);
|
|
|
|
match dbg!(next_positions.binary_search(&position)) {
|
|
|
|
Ok(i) => output.extend_from_slice(&next_positions[..=i]),
|
|
|
|
Err(i) => if let Some(i) = i.checked_sub(1) {
|
|
|
|
if let Some(positions) = next_positions.get(..=i) {
|
|
|
|
output.extend_from_slice(positions)
|
|
|
|
}
|
|
|
|
},
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Make sure the position doesn't overflow to the next attribute.
|
|
|
|
let position = (current_position + 8).min(construct_position(current_attr + 1, 0));
|
|
|
|
match next_positions.binary_search(&position) {
|
|
|
|
Ok(i) => output.extend_from_slice(&next_positions[i..]),
|
|
|
|
Err(i) => if let Some(positions) = next_positions.get(i..) {
|
|
|
|
output.extend_from_slice(positions);
|
|
|
|
},
|
|
|
|
}
|
|
|
|
|
|
|
|
if output.is_empty() {
|
|
|
|
None
|
|
|
|
} else {
|
|
|
|
Some((8, output))
|
|
|
|
}
|
|
|
|
}
|
|
|
|
_ => None,
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
pub struct BestProximity {
|
|
|
|
positions: Vec<Vec<u32>>,
|
2020-06-09 23:32:25 +08:00
|
|
|
best_proximities: Option<Vec<u32>>,
|
2020-06-09 00:05:14 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
impl BestProximity {
|
|
|
|
pub fn new(positions: Vec<Vec<u32>>) -> BestProximity {
|
2020-06-09 23:32:25 +08:00
|
|
|
BestProximity { positions, best_proximities: None }
|
2020-06-09 00:05:14 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
impl Iterator for BestProximity {
|
2020-06-09 23:32:25 +08:00
|
|
|
type Item = (u32, Vec<Vec<u32>>);
|
2020-06-09 00:05:14 +08:00
|
|
|
|
|
|
|
fn next(&mut self) -> Option<Self::Item> {
|
2020-06-09 23:32:25 +08:00
|
|
|
match &mut self.best_proximities {
|
|
|
|
Some(best_proximities) => {
|
|
|
|
let expected_proximity = best_proximities.iter().sum::<u32>() + 1;
|
|
|
|
dbg!(expected_proximity);
|
|
|
|
|
|
|
|
for (i, (win, proximity)) in self.positions.windows(2).zip(best_proximities.iter()).enumerate() {
|
|
|
|
let (posa, posb) = (&win[0], &win[1]);
|
|
|
|
dbg!(proximity, posa, posb);
|
|
|
|
let expected_proximity = proximity + 1;
|
|
|
|
let best_proximity = posa.iter().filter_map(|pa| {
|
|
|
|
best_proximity_for(*pa, expected_proximity, posb).map(|res| (*pa, res))
|
|
|
|
}).min();
|
|
|
|
dbg!(best_proximity);
|
2020-06-09 00:05:14 +08:00
|
|
|
}
|
|
|
|
|
2020-06-09 23:32:25 +08:00
|
|
|
None
|
|
|
|
},
|
|
|
|
None => {
|
|
|
|
let expected_proximity = 0;
|
|
|
|
let mut best_results = Vec::new();
|
|
|
|
|
|
|
|
for win in self.positions.windows(2) {
|
|
|
|
let (posa, posb) = (&win[0], &win[1]);
|
|
|
|
match best_results.last() {
|
|
|
|
Some((start, _)) => {
|
|
|
|
// We know from where we must continue searching for the best path.
|
|
|
|
let (best_proximity, positions) = dbg!(best_proximity_for(*start, expected_proximity, posb).unwrap());
|
|
|
|
best_results.push((positions[0], best_proximity));
|
|
|
|
},
|
|
|
|
None => {
|
|
|
|
// This is the first loop, we need to find the best start of the path.
|
|
|
|
let best_proximity = posa.iter().filter_map(|pa| {
|
|
|
|
best_proximity_for(*pa, expected_proximity, posb).map(|res| (*pa, res))
|
|
|
|
}).min();
|
|
|
|
let (pa, (best_proximity, positions)) = best_proximity.unwrap();
|
|
|
|
// We must save the best start of path we found.
|
|
|
|
best_results.push((pa, 0));
|
|
|
|
// And the next associated position along with the proximity between those.
|
|
|
|
best_results.push((positions[0], best_proximity));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2020-06-09 00:05:14 +08:00
|
|
|
|
2020-06-09 23:32:25 +08:00
|
|
|
if best_results.is_empty() {
|
|
|
|
None
|
|
|
|
} else {
|
|
|
|
let proximity = best_results.windows(2).map(|ps| positions_proximity(ps[0].0, ps[1].0)).sum::<u32>();
|
|
|
|
self.best_proximities = Some(best_results.iter().skip(1).map(|(_, p)| *p).collect());
|
|
|
|
let best_positions = best_results.into_iter().map(|(x, _)| vec![x]).collect();
|
|
|
|
Some((proximity, best_positions))
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2020-06-09 00:05:14 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#[cfg(test)]
|
|
|
|
mod tests {
|
|
|
|
use super::*;
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn same_attribute() {
|
|
|
|
let positions = vec![
|
|
|
|
vec![0, 2, 3, 4 ],
|
|
|
|
vec![ 1, ],
|
|
|
|
vec![ 3, 6],
|
|
|
|
];
|
|
|
|
let mut iter = BestProximity::new(positions);
|
|
|
|
|
2020-06-09 23:32:25 +08:00
|
|
|
assert_eq!(iter.next(), Some((1+2, vec![vec![0], vec![1], vec![3]]))); // 3
|
|
|
|
eprintln!("------------------");
|
|
|
|
assert_eq!(iter.next(), Some((2+2, vec![vec![2], vec![1], vec![3]]))); // 4
|
|
|
|
// assert_eq!(iter.next(), Some((3+2, vec![3, 1, 3]))); // 5
|
|
|
|
// assert_eq!(iter.next(), Some((1+5, vec![0, 1, 6]))); // 6
|
|
|
|
// assert_eq!(iter.next(), Some((4+2, vec![4, 1, 3]))); // 6
|
|
|
|
// assert_eq!(iter.next(), Some((2+5, vec![2, 1, 6]))); // 7
|
|
|
|
// assert_eq!(iter.next(), Some((3+5, vec![3, 1, 6]))); // 8
|
|
|
|
// assert_eq!(iter.next(), Some((4+5, vec![4, 1, 6]))); // 9
|
|
|
|
// assert_eq!(iter.next(), None);
|
2020-06-09 00:05:14 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn easy_best_proximity_for() {
|
|
|
|
// classic
|
|
|
|
assert_eq!(best_proximity_for(0, 0, &[0]), Some((0, vec![0])));
|
|
|
|
assert_eq!(best_proximity_for(0, 1, &[0]), None);
|
|
|
|
assert_eq!(best_proximity_for(1, 1, &[0]), Some((2, vec![0])));
|
|
|
|
assert_eq!(best_proximity_for(0, 1, &[0, 1]), Some((1, vec![1])));
|
|
|
|
assert_eq!(best_proximity_for(1, 1, &[0, 2]), Some((1, vec![2])));
|
|
|
|
assert_eq!(best_proximity_for(1, 2, &[0, 2]), Some((2, vec![0])));
|
|
|
|
assert_eq!(best_proximity_for(1, 2, &[0, 3]), Some((2, vec![0, 3])));
|
|
|
|
|
|
|
|
// limits
|
|
|
|
assert_eq!(best_proximity_for(2, 7, &[0, 9]), Some((7, vec![9])));
|
|
|
|
assert_eq!(best_proximity_for(12, 7, &[6, 19]), Some((7, vec![6, 19])));
|
|
|
|
|
|
|
|
// another attribute
|
|
|
|
assert_eq!(best_proximity_for(1000, 7, &[994, 1007]), Some((7, vec![1007])));
|
|
|
|
assert_eq!(best_proximity_for(1004, 7, &[994, 1011]), Some((7, vec![1011])));
|
|
|
|
assert_eq!(best_proximity_for(1004, 8, &[900, 913, 1000, 1012, 2012]), Some((8, vec![900, 913, 1012, 2012])));
|
|
|
|
assert_eq!(best_proximity_for(1009, 8, &[900, 913, 1002, 1012, 2012]), Some((8, vec![900, 913, 1002, 2012])));
|
|
|
|
}
|
|
|
|
}
|