meilisearch/src/automaton/mod.rs

203 lines
6.5 KiB
Rust
Raw Normal View History

mod dfa;
mod query_enhancer;
use std::cmp::Reverse;
use std::vec;
use fst::{IntoStreamer, Streamer};
use levenshtein_automata::DFA;
use meilidb_tokenizer::{split_query_string, is_cjk};
use crate::store;
use self::dfa::{build_dfa, build_prefix_dfa};
use self::query_enhancer::QueryEnhancerBuilder;
pub use self::query_enhancer::QueryEnhancer;
const NGRAMS: usize = 3;
pub struct AutomatonProducer {
automatons: Vec<Vec<Automaton>>,
}
impl AutomatonProducer {
pub fn new(
reader: &rkv::Reader,
query: &str,
synonyms_store: store::Synonyms,
) -> (AutomatonProducer, QueryEnhancer)
{
let (automatons, query_enhancer) = generate_automatons(reader, query, synonyms_store).unwrap();
(AutomatonProducer { automatons }, query_enhancer)
}
pub fn into_iter(self) -> vec::IntoIter<Vec<Automaton>> {
self.automatons.into_iter()
}
}
pub struct Automaton {
pub index: usize,
pub ngram: usize,
pub query_len: usize,
pub is_exact: bool,
pub is_prefix: bool,
pub query: String,
}
impl Automaton {
pub fn dfa(&self) -> DFA {
if self.is_prefix {
build_prefix_dfa(&self.query)
} else {
build_dfa(&self.query)
}
}
fn exact(index: usize, ngram: usize, query: &str) -> Automaton {
Automaton {
index,
ngram,
query_len: query.len(),
is_exact: true,
is_prefix: false,
query: query.to_string(),
}
}
fn prefix_exact(index: usize, ngram: usize, query: &str) -> Automaton {
Automaton {
index,
ngram,
query_len: query.len(),
is_exact: true,
is_prefix: true,
query: query.to_string(),
}
}
fn non_exact(index: usize, ngram: usize, query: &str) -> Automaton {
Automaton {
index,
ngram,
query_len: query.len(),
is_exact: false,
is_prefix: false,
query: query.to_string(),
}
}
}
pub fn normalize_str(string: &str) -> String {
let mut string = string.to_lowercase();
if !string.contains(is_cjk) {
string = deunicode::deunicode_with_tofu(&string, "");
}
string
}
fn generate_automatons(
reader: &rkv::Reader,
query: &str,
synonym_store: store::Synonyms,
) -> Result<(Vec<Vec<Automaton>>, QueryEnhancer), rkv::StoreError>
{
let has_end_whitespace = query.chars().last().map_or(false, char::is_whitespace);
let query_words: Vec<_> = split_query_string(query).map(str::to_lowercase).collect();
let synonyms = synonym_store.synonyms_fst(reader)?;
let mut automatons = Vec::new();
let mut enhancer_builder = QueryEnhancerBuilder::new(&query_words);
// We must not declare the original words to the query enhancer
// *but* we need to push them in the automatons list first
let mut original_automatons = Vec::new();
let mut original_words = query_words.iter().peekable();
while let Some(word) = original_words.next() {
let has_following_word = original_words.peek().is_some();
let not_prefix_dfa = has_following_word || has_end_whitespace || word.chars().all(is_cjk);
let automaton = if not_prefix_dfa {
Automaton::exact(automatons.len(), 1, word)
} else {
Automaton::prefix_exact(automatons.len(), 1, word)
};
original_automatons.push(automaton);
}
automatons.push(original_automatons);
for n in 1..=NGRAMS {
let mut ngrams = query_words.windows(n).enumerate().peekable();
while let Some((query_index, ngram_slice)) = ngrams.next() {
let query_range = query_index..query_index + n;
let ngram_nb_words = ngram_slice.len();
let ngram = ngram_slice.join(" ");
let has_following_word = ngrams.peek().is_some();
let not_prefix_dfa = has_following_word || has_end_whitespace || ngram.chars().all(is_cjk);
// automaton of synonyms of the ngrams
let normalized = normalize_str(&ngram);
let lev = if not_prefix_dfa { build_dfa(&normalized) } else { build_prefix_dfa(&normalized) };
let mut stream = synonyms.search(&lev).into_stream();
while let Some(base) = stream.next() {
// only trigger alternatives when the last word has been typed
// i.e. "new " do not but "new yo" triggers alternatives to "new york"
let base = std::str::from_utf8(base).unwrap();
let base_nb_words = split_query_string(base).count();
if ngram_nb_words != base_nb_words { continue }
if let Some(synonyms) = synonym_store.alternatives_to(reader, base.as_bytes())? {
let mut stream = synonyms.into_stream();
while let Some(synonyms) = stream.next() {
let synonyms = std::str::from_utf8(synonyms).unwrap();
let synonyms_words: Vec<_> = split_query_string(synonyms).collect();
let nb_synonym_words = synonyms_words.len();
let real_query_index = automatons.len();
enhancer_builder.declare(query_range.clone(), real_query_index, &synonyms_words);
for synonym in synonyms_words {
let automaton = if nb_synonym_words == 1 {
Automaton::exact(automatons.len(), n, synonym)
} else {
Automaton::non_exact(automatons.len(), n, synonym)
};
automatons.push(vec![automaton]);
}
}
}
}
if n != 1 {
// automaton of concatenation of query words
let concat = ngram_slice.concat();
let normalized = normalize_str(&concat);
let real_query_index = automatons.len();
enhancer_builder.declare(query_range.clone(), real_query_index, &[&normalized]);
let automaton = Automaton::exact(automatons.len(), n, &normalized);
automatons.push(vec![automaton]);
}
}
}
// order automatons, the most important first,
// we keep the original automatons at the front.
automatons[1..].sort_unstable_by_key(|a| {
let a = a.first().unwrap();
(Reverse(a.is_exact), Reverse(a.ngram))
});
Ok((automatons, enhancer_builder.build()))
}