2020-08-17 21:15:37 +08:00
|
|
|
use std::path::PathBuf;
|
|
|
|
use std::{str, io};
|
|
|
|
|
|
|
|
use heed::EnvOpenOptions;
|
|
|
|
use milli::Index;
|
|
|
|
use structopt::StructOpt;
|
|
|
|
|
|
|
|
#[cfg(target_os = "linux")]
|
|
|
|
#[global_allocator]
|
|
|
|
static ALLOC: jemallocator::Jemalloc = jemallocator::Jemalloc;
|
|
|
|
|
|
|
|
#[derive(Debug, StructOpt)]
|
|
|
|
#[structopt(name = "milli-info", about = "A stats crawler for milli.")]
|
|
|
|
struct Opt {
|
|
|
|
/// The database path where the database is located.
|
|
|
|
/// It is created if it doesn't already exist.
|
|
|
|
#[structopt(long = "db", parse(from_os_str))]
|
|
|
|
database: PathBuf,
|
|
|
|
|
|
|
|
/// The maximum size the database can take on disk. It is recommended to specify
|
|
|
|
/// the whole disk space (value must be a multiple of a page size).
|
|
|
|
#[structopt(long = "db-size", default_value = "107374182400")] // 100 GB
|
|
|
|
database_size: usize,
|
|
|
|
|
|
|
|
/// Verbose mode (-v, -vv, -vvv, etc.)
|
|
|
|
#[structopt(short, long, parse(from_occurrences))]
|
|
|
|
verbose: usize,
|
|
|
|
|
|
|
|
#[structopt(subcommand)]
|
|
|
|
command: Command,
|
|
|
|
}
|
|
|
|
|
|
|
|
#[derive(Debug, StructOpt)]
|
|
|
|
enum Command {
|
|
|
|
/// Outputs a CSV of the most frequent words of this index.
|
|
|
|
///
|
|
|
|
/// `word` are displayed and ordered by frequency.
|
|
|
|
/// `document_frequency` defines the number of documents which contains the word.
|
|
|
|
/// `frequency` defines the number times the word appears in all the documents.
|
|
|
|
MostCommonWords {
|
|
|
|
/// The maximum number of frequencies to return.
|
|
|
|
#[structopt(default_value = "10")]
|
|
|
|
limit: usize,
|
2020-08-21 20:24:05 +08:00
|
|
|
},
|
|
|
|
|
|
|
|
/// Outputs a CSV with the frequencies of the specified words.
|
|
|
|
///
|
|
|
|
/// Read the documentation of the `most-common-words` command
|
|
|
|
/// for more information about the CSV headers.
|
|
|
|
WordsFrequencies {
|
|
|
|
/// The words you want to retrieve frequencies of.
|
|
|
|
words: Vec<String>,
|
2020-08-17 21:15:37 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
fn main() -> anyhow::Result<()> {
|
|
|
|
let opt = Opt::from_args();
|
|
|
|
|
|
|
|
stderrlog::new()
|
|
|
|
.verbosity(opt.verbose)
|
|
|
|
.show_level(false)
|
|
|
|
.timestamp(stderrlog::Timestamp::Off)
|
|
|
|
.init()?;
|
|
|
|
|
|
|
|
let env = EnvOpenOptions::new()
|
|
|
|
.map_size(opt.database_size)
|
|
|
|
.max_dbs(10)
|
|
|
|
.open(&opt.database)?;
|
|
|
|
|
|
|
|
// Open the LMDB database.
|
|
|
|
let index = Index::new(&env, opt.database)?;
|
|
|
|
let rtxn = env.read_txn()?;
|
|
|
|
|
|
|
|
match opt.command {
|
|
|
|
Command::MostCommonWords { limit } => most_common_words(&index, &rtxn, limit),
|
2020-08-21 20:24:05 +08:00
|
|
|
Command::WordsFrequencies { words } => words_frequencies(&index, &rtxn, words),
|
2020-08-17 21:15:37 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
fn most_common_words(index: &Index, rtxn: &heed::RoTxn, limit: usize) -> anyhow::Result<()> {
|
|
|
|
use std::collections::BinaryHeap;
|
|
|
|
use std::cmp::Reverse;
|
|
|
|
use roaring::RoaringBitmap;
|
|
|
|
|
|
|
|
let mut heap = BinaryHeap::with_capacity(limit + 1);
|
|
|
|
let mut prev = None as Option<(String, u64, RoaringBitmap)>;
|
|
|
|
for result in index.word_position_docids.iter(rtxn)? {
|
|
|
|
if limit == 0 { break }
|
|
|
|
|
|
|
|
let (bytes, postings) = result?;
|
|
|
|
let (word, _position) = bytes.split_at(bytes.len() - 4);
|
|
|
|
let word = str::from_utf8(word)?;
|
|
|
|
|
|
|
|
match prev.as_mut() {
|
|
|
|
Some((prev_word, freq, docids)) if prev_word == word => {
|
2020-08-21 20:24:05 +08:00
|
|
|
*freq += postings.len();
|
2020-08-17 21:15:37 +08:00
|
|
|
docids.union_with(&postings);
|
|
|
|
},
|
|
|
|
Some((prev_word, freq, docids)) => {
|
|
|
|
heap.push(Reverse((docids.len(), *freq, prev_word.to_string())));
|
|
|
|
if heap.len() > limit { heap.pop(); }
|
|
|
|
prev = Some((word.to_string(), postings.len(), postings))
|
|
|
|
},
|
|
|
|
None => prev = Some((word.to_string(), postings.len(), postings)),
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if let Some((prev_word, freq, docids)) = prev {
|
|
|
|
heap.push(Reverse((docids.len(), freq, prev_word.to_string())));
|
|
|
|
if heap.len() > limit { heap.pop(); }
|
|
|
|
}
|
|
|
|
|
|
|
|
let stdout = io::stdout();
|
|
|
|
let mut wtr = csv::Writer::from_writer(stdout.lock());
|
|
|
|
wtr.write_record(&["word", "document_frequency", "frequency"])?;
|
|
|
|
|
|
|
|
for Reverse((document_frequency, frequency, word)) in heap.into_sorted_vec() {
|
|
|
|
wtr.write_record(&[word, document_frequency.to_string(), frequency.to_string()])?;
|
|
|
|
}
|
|
|
|
|
|
|
|
Ok(wtr.flush()?)
|
|
|
|
}
|
2020-08-21 20:24:05 +08:00
|
|
|
|
|
|
|
fn words_frequencies(index: &Index, rtxn: &heed::RoTxn, words: Vec<String>) -> anyhow::Result<()> {
|
|
|
|
use roaring::RoaringBitmap;
|
|
|
|
|
|
|
|
let stdout = io::stdout();
|
|
|
|
let mut wtr = csv::Writer::from_writer(stdout.lock());
|
|
|
|
wtr.write_record(&["word", "document_frequency", "frequency"])?;
|
|
|
|
|
|
|
|
for word in words {
|
|
|
|
let mut document_frequency = RoaringBitmap::new();
|
|
|
|
let mut frequency = 0;
|
|
|
|
for result in index.word_position_docids.prefix_iter(rtxn, word.as_bytes())? {
|
|
|
|
let (bytes, postings) = result?;
|
|
|
|
let (w, _position) = bytes.split_at(bytes.len() - 4);
|
|
|
|
|
|
|
|
// if the word is not exactly the word we requested then it means
|
|
|
|
// we found a word that *starts with* the requested word and we must stop.
|
|
|
|
if word.as_bytes() != w { break }
|
|
|
|
|
|
|
|
document_frequency.union_with(&postings);
|
|
|
|
frequency += postings.len();
|
|
|
|
}
|
|
|
|
wtr.write_record(&[word, document_frequency.len().to_string(), frequency.to_string()])?;
|
|
|
|
}
|
|
|
|
|
|
|
|
Ok(wtr.flush()?)
|
|
|
|
}
|