**MeiliSearch** is a powerful, fast, open-source, easy to use and deploy search engine. Both searching and indexing are highly customizable. Features such as typo-tolerance, filters, and synonyms are provided out-of-the-box.
Let's create an index! If you need a sample dataset, use [this movie database](https://www.notion.so/meilisearch/A-movies-dataset-to-test-Meili-1cbf7c9cfa4247249c40edfa22d7ca87#b5ae399b81834705ba5420ac70358a65). You can also find it in the `datasets/` directory.
You can access the web interface in your web browser at the root of the server. The default URL is [http://127.0.0.1:7700](http://127.0.0.1:7700). All you need to do is open your web browser and enter MeiliSearch’s address to visit it. This will lead you to a web page with a search bar that will allow you to search in the selected index.
Now that your MeiliSearch server is up and running, you can learn more about how to tune your search engine in [the documentation](https://docs.meilisearch.com).
- Provides [6 default ranking criteria](https://github.com/meilisearch/MeiliSearch/blob/3ea5aa18a209b6973b921542d46a79e1c753c163/meilisearch-core/src/criterion/mod.rs#L106-L111) used to [bucket sort](https://en.wikipedia.org/wiki/Bucket_sort) documents
- Accepts [custom criteria](https://github.com/meilisearch/MeiliSearch/blob/3ea5aa18a209b6973b921542d46a79e1c753c163/meilisearch-core/src/criterion/mod.rs#L20-L29) and can apply them in any custom order
- Can [distinct](https://github.com/meilisearch/MeiliSearch/blob/3ea5aa18a209b6973b921542d46a79e1c753c163/meilisearch-core/src/query_builder.rs#L324-L329) and [filter](https://github.com/meilisearch/MeiliSearch/blob/3ea5aa18a209b6973b921542d46a79e1c753c163/meilisearch-core/src/query_builder.rs#L313-L318) returned documents based on context defined rules
- Searches for [concatenated](https://github.com/meilisearch/MeiliSearch/pull/164) and [splitted query words](https://github.com/meilisearch/MeiliSearch/pull/232) to improve the search quality.
- Can store complete documents or only [user schema specified fields](https://github.com/meilisearch/MeiliSearch/blob/3ea5aa18a209b6973b921542d46a79e1c753c163/datasets/movies/schema.toml)
- The [default tokenizer](https://github.com/meilisearch/MeiliSearch/blob/3ea5aa18a209b6973b921542d46a79e1c753c163/meilisearch-tokenizer/src/lib.rs) can index Latin based languages and Kanji characters
- Returns [the matching text areas](https://github.com/meilisearch/MeiliSearch/blob/3ea5aa18a209b6973b921542d46a79e1c753c163/meilisearch-types/src/lib.rs#L49-L65), useful to highlight matched words in results
- Accepts query time search config like the [searchable attributes](https://github.com/meilisearch/MeiliSearch/blob/3ea5aa18a209b6973b921542d46a79e1c753c163/meilisearch-core/src/query_builder.rs#L331-L336)
When processing a dataset composed of 5M books, each with their own titles and authors, MeiliSearch is able to carry out more than 553 req/sec with an average response time of 21 ms on an Intel i7-7700 (8) @ 4.2GHz.
We also indexed a dataset containing about _12 millions_ cities names in _24 minutes_ on a _8 cores_, _64 GB of RAM_, and a _300 GB NMVe_ SSD machine.<br/>
The size of the resulting database reached _16 GB_ and search results were presented between _30 ms_ and _4 seconds_ for short prefix queries.
Hey! We're glad you're thinking about contributing to MeiliSearch! If you think something is missing or could be improved, please open issues and pull requests. If you'd like to help this project grow, we'd love to have you! To start contributing, checking [issues tagged as "good-first-issue"](https://github.com/meilisearch/MeiliSearch/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22) is a good start!
* Via the chat box available on every page of [our documentation](https://docs.meilisearch.com/) and on [our landing page](https://www.meilisearch.com/).