mirror of
https://github.com/meilisearch/meilisearch.git
synced 2025-01-24 03:53:09 +08:00
335 lines
12 KiB
Rust
335 lines
12 KiB
Rust
|
use std::cmp::Reverse;
|
||
|
use std::ops::RangeInclusive;
|
||
|
|
||
|
use charabia::Token;
|
||
|
|
||
|
use super::super::interner::Interned;
|
||
|
use super::super::query_term::{
|
||
|
Lazy, LocatedQueryTerm, OneTypoTerm, QueryTerm, TwoTypoTerm, ZeroTypoTerm,
|
||
|
};
|
||
|
use super::super::{DedupInterner, Phrase};
|
||
|
use crate::SearchContext;
|
||
|
|
||
|
pub struct LocatedMatchingPhrase {
|
||
|
pub value: Interned<Phrase>,
|
||
|
pub positions: RangeInclusive<WordId>,
|
||
|
}
|
||
|
|
||
|
pub struct LocatedMatchingWords {
|
||
|
pub value: Vec<Interned<String>>,
|
||
|
pub positions: RangeInclusive<WordId>,
|
||
|
pub is_prefix: bool,
|
||
|
}
|
||
|
|
||
|
/// Structure created from a query tree
|
||
|
/// referencing words that match the given query tree.
|
||
|
pub struct MatchingWords<'ctx> {
|
||
|
word_interner: &'ctx DedupInterner<String>,
|
||
|
phrase_interner: &'ctx DedupInterner<Phrase>,
|
||
|
phrases: Vec<LocatedMatchingPhrase>,
|
||
|
words: Vec<LocatedMatchingWords>,
|
||
|
}
|
||
|
|
||
|
/// Extract and centralize the different phrases and words to match stored in a QueryTerm.
|
||
|
fn extract_matching_terms(term: &QueryTerm) -> (Vec<Interned<Phrase>>, Vec<Interned<String>>) {
|
||
|
let mut matching_words = Vec::new();
|
||
|
let mut matching_phrases = Vec::new();
|
||
|
|
||
|
// the structure is exhaustively extracted to ensure that no field is missing.
|
||
|
let QueryTerm {
|
||
|
original: _,
|
||
|
is_multiple_words: _,
|
||
|
max_nbr_typos: _,
|
||
|
is_prefix: _,
|
||
|
zero_typo,
|
||
|
one_typo,
|
||
|
two_typo,
|
||
|
} = term;
|
||
|
|
||
|
// the structure is exhaustively extracted to ensure that no field is missing.
|
||
|
let ZeroTypoTerm { phrase, zero_typo, prefix_of: _, synonyms, use_prefix_db: _ } = zero_typo;
|
||
|
|
||
|
// zero typo
|
||
|
if let Some(phrase) = phrase {
|
||
|
matching_phrases.push(*phrase);
|
||
|
}
|
||
|
if let Some(zero_typo) = zero_typo {
|
||
|
matching_words.push(*zero_typo);
|
||
|
}
|
||
|
for synonym in synonyms {
|
||
|
matching_phrases.push(*synonym);
|
||
|
}
|
||
|
|
||
|
// one typo
|
||
|
// the structure is exhaustively extracted to ensure that no field is missing.
|
||
|
if let Lazy::Init(OneTypoTerm { split_words, one_typo }) = one_typo {
|
||
|
if let Some(split_words) = split_words {
|
||
|
matching_phrases.push(*split_words);
|
||
|
}
|
||
|
for one_typo in one_typo {
|
||
|
matching_words.push(*one_typo);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// two typos
|
||
|
// the structure is exhaustively extracted to ensure that no field is missing.
|
||
|
if let Lazy::Init(TwoTypoTerm { two_typos }) = two_typo {
|
||
|
for two_typos in two_typos {
|
||
|
matching_words.push(*two_typos);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
(matching_phrases, matching_words)
|
||
|
}
|
||
|
|
||
|
impl<'ctx> MatchingWords<'ctx> {
|
||
|
pub fn new(ctx: &'ctx SearchContext, located_terms: Vec<LocatedQueryTerm>) -> Self {
|
||
|
let mut phrases = Vec::new();
|
||
|
let mut words = Vec::new();
|
||
|
|
||
|
// Extract and centralize the different phrases and words to match stored in a QueryTerm using extract_matching_terms
|
||
|
// and wrap them in dedicated structures.
|
||
|
for located_term in located_terms {
|
||
|
let term = ctx.term_interner.get(located_term.value);
|
||
|
let (matching_phrases, matching_words) = extract_matching_terms(term);
|
||
|
|
||
|
for matching_phrase in matching_phrases {
|
||
|
phrases.push(LocatedMatchingPhrase {
|
||
|
value: matching_phrase,
|
||
|
positions: located_term.positions.clone(),
|
||
|
});
|
||
|
}
|
||
|
words.push(LocatedMatchingWords {
|
||
|
value: matching_words,
|
||
|
positions: located_term.positions.clone(),
|
||
|
is_prefix: term.is_prefix,
|
||
|
});
|
||
|
}
|
||
|
|
||
|
// Sort word to put prefixes at the bottom prioritizing the exact matches.
|
||
|
words.sort_unstable_by_key(|lmw| (lmw.is_prefix, Reverse(lmw.positions.len())));
|
||
|
|
||
|
Self {
|
||
|
phrases,
|
||
|
words,
|
||
|
word_interner: &ctx.word_interner,
|
||
|
phrase_interner: &ctx.phrase_interner,
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// Returns an iterator over terms that match or partially match the given token.
|
||
|
pub fn match_token<'b>(&'ctx self, token: &'b Token<'b>) -> MatchesIter<'ctx, 'b> {
|
||
|
MatchesIter { matching_words: self, phrases: Box::new(self.phrases.iter()), token }
|
||
|
}
|
||
|
|
||
|
/// Try to match the token with one of the located_words.
|
||
|
fn match_unique_words(&'ctx self, token: &Token) -> Option<MatchType<'ctx>> {
|
||
|
for located_words in &self.words {
|
||
|
for word in &located_words.value {
|
||
|
let word = self.word_interner.get(*word);
|
||
|
// if the word is a prefix we match using starts_with.
|
||
|
if located_words.is_prefix && token.lemma().starts_with(word) {
|
||
|
let char_len = token.original_lengths(word.len()).0;
|
||
|
let ids = &located_words.positions;
|
||
|
return Some(MatchType::Full { char_len, ids });
|
||
|
// else we exact match the token.
|
||
|
} else if token.lemma() == word {
|
||
|
let char_len = token.char_end - token.char_start;
|
||
|
let ids = &located_words.positions;
|
||
|
return Some(MatchType::Full { char_len, ids });
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
None
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// Iterator over terms that match the given token,
|
||
|
/// This allow to lazily evaluate matches.
|
||
|
pub struct MatchesIter<'a, 'b> {
|
||
|
matching_words: &'a MatchingWords<'a>,
|
||
|
phrases: Box<dyn Iterator<Item = &'a LocatedMatchingPhrase> + 'a>,
|
||
|
token: &'b Token<'b>,
|
||
|
}
|
||
|
|
||
|
impl<'a> Iterator for MatchesIter<'a, '_> {
|
||
|
type Item = MatchType<'a>;
|
||
|
|
||
|
fn next(&mut self) -> Option<Self::Item> {
|
||
|
match self.phrases.next() {
|
||
|
// Try to match all the phrases first.
|
||
|
Some(located_phrase) => {
|
||
|
let phrase = self.matching_words.phrase_interner.get(located_phrase.value);
|
||
|
|
||
|
// create a PartialMatch struct to make it compute the first match
|
||
|
// instead of duplicating the code.
|
||
|
let ids = &located_phrase.positions;
|
||
|
// collect the references of words from the interner.
|
||
|
let words = phrase
|
||
|
.words
|
||
|
.iter()
|
||
|
.map(|word| {
|
||
|
word.map(|word| self.matching_words.word_interner.get(word).as_str())
|
||
|
})
|
||
|
.collect();
|
||
|
let partial = PartialMatch { matching_words: words, ids, char_len: 0 };
|
||
|
|
||
|
partial.match_token(self.token).or_else(|| self.next())
|
||
|
}
|
||
|
// If no phrases matches, try to match uiques words.
|
||
|
None => self.matching_words.match_unique_words(self.token),
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// Id of a matching term corespounding to a word written by the end user.
|
||
|
pub type WordId = u16;
|
||
|
|
||
|
/// A given token can partially match a query word for several reasons:
|
||
|
/// - split words
|
||
|
/// - multi-word synonyms
|
||
|
/// In these cases we need to match consecutively several tokens to consider that the match is full.
|
||
|
#[derive(Debug, PartialEq)]
|
||
|
pub enum MatchType<'a> {
|
||
|
Full { char_len: usize, ids: &'a RangeInclusive<WordId> },
|
||
|
Partial(PartialMatch<'a>),
|
||
|
}
|
||
|
|
||
|
/// Structure helper to match several tokens in a row in order to complete a partial match.
|
||
|
#[derive(Debug, PartialEq)]
|
||
|
pub struct PartialMatch<'a> {
|
||
|
matching_words: Vec<Option<&'a str>>,
|
||
|
ids: &'a RangeInclusive<WordId>,
|
||
|
char_len: usize,
|
||
|
}
|
||
|
|
||
|
impl<'a> PartialMatch<'a> {
|
||
|
/// Returns:
|
||
|
/// - None if the given token breaks the partial match
|
||
|
/// - Partial if the given token matches the partial match but doesn't complete it
|
||
|
/// - Full if the given token completes the partial match
|
||
|
pub fn match_token(self, token: &Token) -> Option<MatchType<'a>> {
|
||
|
let Self { mut matching_words, ids, .. } = self;
|
||
|
|
||
|
let is_matching = match matching_words.first()? {
|
||
|
Some(word) => &token.lemma() == word,
|
||
|
// a None value in the phrase corresponds to a stop word,
|
||
|
// the walue is considered a match if the current token is categorized as a stop word.
|
||
|
None => token.is_stopword(),
|
||
|
};
|
||
|
|
||
|
let char_len = token.char_end - token.char_start;
|
||
|
// if there are remaining words to match in the phrase and the current token is matching,
|
||
|
// return a new Partial match allowing the highlighter to continue.
|
||
|
if is_matching && matching_words.len() > 1 {
|
||
|
matching_words.remove(0);
|
||
|
Some(MatchType::Partial(PartialMatch { matching_words, ids, char_len }))
|
||
|
// if there is no remaining word to match in the phrase and the current token is matching,
|
||
|
// return a Full match.
|
||
|
} else if is_matching {
|
||
|
Some(MatchType::Full { char_len, ids })
|
||
|
// if the current token doesn't match, return None to break the match sequence.
|
||
|
} else {
|
||
|
None
|
||
|
}
|
||
|
}
|
||
|
|
||
|
pub fn char_len(&self) -> usize {
|
||
|
self.char_len
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#[cfg(test)]
|
||
|
pub(crate) mod tests {
|
||
|
use std::borrow::Cow;
|
||
|
|
||
|
use charabia::{TokenKind, TokenizerBuilder};
|
||
|
|
||
|
use super::super::super::located_query_terms_from_string;
|
||
|
use super::*;
|
||
|
use crate::index::tests::TempIndex;
|
||
|
|
||
|
pub(crate) fn temp_index_with_documents() -> TempIndex {
|
||
|
let temp_index = TempIndex::new();
|
||
|
temp_index
|
||
|
.add_documents(documents!([
|
||
|
{ "id": 1, "name": "split this world westfali westfalia the" },
|
||
|
]))
|
||
|
.unwrap();
|
||
|
temp_index
|
||
|
}
|
||
|
|
||
|
#[test]
|
||
|
fn matching_words() {
|
||
|
let temp_index = temp_index_with_documents();
|
||
|
let rtxn = temp_index.read_txn().unwrap();
|
||
|
let mut ctx = SearchContext::new(&temp_index, &rtxn);
|
||
|
let tokenizer = TokenizerBuilder::new().build();
|
||
|
let tokens = tokenizer.tokenize("split this world");
|
||
|
let query_terms = located_query_terms_from_string(&mut ctx, tokens, None).unwrap();
|
||
|
let matching_words = MatchingWords::new(&ctx, query_terms);
|
||
|
|
||
|
assert_eq!(
|
||
|
matching_words
|
||
|
.match_token(&Token {
|
||
|
kind: TokenKind::Word,
|
||
|
lemma: Cow::Borrowed("split"),
|
||
|
char_end: "split".chars().count(),
|
||
|
byte_end: "split".len(),
|
||
|
..Default::default()
|
||
|
})
|
||
|
.next(),
|
||
|
Some(MatchType::Full { char_len: 5, ids: &(0..=0) })
|
||
|
);
|
||
|
assert_eq!(
|
||
|
matching_words
|
||
|
.match_token(&Token {
|
||
|
kind: TokenKind::Word,
|
||
|
lemma: Cow::Borrowed("nyc"),
|
||
|
char_end: "nyc".chars().count(),
|
||
|
byte_end: "nyc".len(),
|
||
|
..Default::default()
|
||
|
})
|
||
|
.next(),
|
||
|
None
|
||
|
);
|
||
|
assert_eq!(
|
||
|
matching_words
|
||
|
.match_token(&Token {
|
||
|
kind: TokenKind::Word,
|
||
|
lemma: Cow::Borrowed("world"),
|
||
|
char_end: "world".chars().count(),
|
||
|
byte_end: "world".len(),
|
||
|
..Default::default()
|
||
|
})
|
||
|
.next(),
|
||
|
Some(MatchType::Full { char_len: 5, ids: &(2..=2) })
|
||
|
);
|
||
|
assert_eq!(
|
||
|
matching_words
|
||
|
.match_token(&Token {
|
||
|
kind: TokenKind::Word,
|
||
|
lemma: Cow::Borrowed("worlded"),
|
||
|
char_end: "worlded".chars().count(),
|
||
|
byte_end: "worlded".len(),
|
||
|
..Default::default()
|
||
|
})
|
||
|
.next(),
|
||
|
Some(MatchType::Full { char_len: 5, ids: &(2..=2) })
|
||
|
);
|
||
|
assert_eq!(
|
||
|
matching_words
|
||
|
.match_token(&Token {
|
||
|
kind: TokenKind::Word,
|
||
|
lemma: Cow::Borrowed("thisnew"),
|
||
|
char_end: "thisnew".chars().count(),
|
||
|
byte_end: "thisnew".len(),
|
||
|
..Default::default()
|
||
|
})
|
||
|
.next(),
|
||
|
None
|
||
|
);
|
||
|
}
|
||
|
}
|