meilisearch/milli/src/vector/mod.rs

209 lines
6.0 KiB
Rust
Raw Normal View History

use self::error::{EmbedError, NewEmbedderError};
use crate::prompt::PromptData;
pub mod error;
pub mod hf;
pub mod manual;
pub mod openai;
pub mod settings;
pub use self::error::Error;
pub type Embedding = Vec<f32>;
pub struct Embeddings<F> {
data: Vec<F>,
dimension: usize,
}
impl<F> Embeddings<F> {
pub fn new(dimension: usize) -> Self {
Self { data: Default::default(), dimension }
}
pub fn from_single_embedding(embedding: Vec<F>) -> Self {
Self { dimension: embedding.len(), data: embedding }
}
pub fn from_inner(data: Vec<F>, dimension: usize) -> Result<Self, Vec<F>> {
let mut this = Self::new(dimension);
this.append(data)?;
Ok(this)
}
pub fn embedding_count(&self) -> usize {
self.data.len() / self.dimension
}
pub fn dimension(&self) -> usize {
self.dimension
}
pub fn into_inner(self) -> Vec<F> {
self.data
}
pub fn as_inner(&self) -> &[F] {
&self.data
}
pub fn iter(&self) -> impl Iterator<Item = &'_ [F]> + '_ {
self.data.as_slice().chunks_exact(self.dimension)
}
pub fn push(&mut self, mut embedding: Vec<F>) -> Result<(), Vec<F>> {
if embedding.len() != self.dimension {
return Err(embedding);
}
self.data.append(&mut embedding);
Ok(())
}
pub fn append(&mut self, mut embeddings: Vec<F>) -> Result<(), Vec<F>> {
if embeddings.len() % self.dimension != 0 {
return Err(embeddings);
}
self.data.append(&mut embeddings);
Ok(())
}
}
#[derive(Debug)]
pub enum Embedder {
HuggingFace(hf::Embedder),
OpenAi(openai::Embedder),
UserProvided(manual::Embedder),
}
#[derive(Debug, Clone, Default, serde::Deserialize, serde::Serialize)]
pub struct EmbeddingConfig {
pub embedder_options: EmbedderOptions,
pub prompt: PromptData,
// TODO: add metrics and anything needed
}
#[derive(Debug, Clone, Hash, PartialEq, Eq, serde::Deserialize, serde::Serialize)]
pub enum EmbedderOptions {
HuggingFace(hf::EmbedderOptions),
OpenAi(openai::EmbedderOptions),
UserProvided(manual::EmbedderOptions),
}
impl Default for EmbedderOptions {
fn default() -> Self {
Self::HuggingFace(Default::default())
}
}
impl EmbedderOptions {
pub fn huggingface() -> Self {
Self::HuggingFace(hf::EmbedderOptions::new())
}
pub fn openai(api_key: Option<String>) -> Self {
Self::OpenAi(openai::EmbedderOptions::with_default_model(api_key))
}
}
impl Embedder {
pub fn new(options: EmbedderOptions) -> std::result::Result<Self, NewEmbedderError> {
Ok(match options {
EmbedderOptions::HuggingFace(options) => Self::HuggingFace(hf::Embedder::new(options)?),
EmbedderOptions::OpenAi(options) => Self::OpenAi(openai::Embedder::new(options)?),
EmbedderOptions::UserProvided(options) => {
Self::UserProvided(manual::Embedder::new(options))
}
})
}
pub async fn embed(
&self,
texts: Vec<String>,
) -> std::result::Result<Vec<Embeddings<f32>>, EmbedError> {
match self {
Embedder::HuggingFace(embedder) => embedder.embed(texts),
Embedder::OpenAi(embedder) => embedder.embed(texts).await,
Embedder::UserProvided(embedder) => embedder.embed(texts),
}
}
pub async fn embed_chunks(
&self,
text_chunks: Vec<Vec<String>>,
) -> std::result::Result<Vec<Vec<Embeddings<f32>>>, EmbedError> {
match self {
Embedder::HuggingFace(embedder) => embedder.embed_chunks(text_chunks),
Embedder::OpenAi(embedder) => embedder.embed_chunks(text_chunks).await,
Embedder::UserProvided(embedder) => embedder.embed_chunks(text_chunks),
}
}
pub fn chunk_count_hint(&self) -> usize {
match self {
Embedder::HuggingFace(embedder) => embedder.chunk_count_hint(),
Embedder::OpenAi(embedder) => embedder.chunk_count_hint(),
Embedder::UserProvided(_) => 1,
}
}
pub fn prompt_count_in_chunk_hint(&self) -> usize {
match self {
Embedder::HuggingFace(embedder) => embedder.prompt_count_in_chunk_hint(),
Embedder::OpenAi(embedder) => embedder.prompt_count_in_chunk_hint(),
Embedder::UserProvided(_) => 1,
}
}
pub fn dimensions(&self) -> usize {
match self {
Embedder::HuggingFace(embedder) => embedder.dimensions(),
Embedder::OpenAi(embedder) => embedder.dimensions(),
Embedder::UserProvided(embedder) => embedder.dimensions(),
}
}
}
#[derive(Debug, Clone, Copy)]
pub struct DistributionShift {
pub current_mean: f32,
pub current_sigma: f32,
}
impl DistributionShift {
/// `None` if sigma <= 0.
pub fn new(mean: f32, sigma: f32) -> Option<Self> {
if sigma <= 0.0 {
None
} else {
Some(Self { current_mean: mean, current_sigma: sigma })
}
}
pub fn shift(&self, score: f32) -> f32 {
// <https://math.stackexchange.com/a/2894689>
// We're somewhat abusively mapping the distribution of distances to a gaussian.
// The parameters we're given is the mean and sigma of the native result distribution.
// We're using them to retarget the distribution to a gaussian centered on 0.5 with a sigma of 0.4.
let target_mean = 0.5;
let target_sigma = 0.4;
// a^2 sig1^2 = sig2^2 => a^2 = sig2^2 / sig1^2 => a = sig2 / sig1, assuming a, sig1, and sig2 positive.
let factor = target_sigma / self.current_sigma;
// a*mu1 + b = mu2 => b = mu2 - a*mu1
let offset = target_mean - (factor * self.current_mean);
let mut score = factor * score + offset;
// clamp the final score in the ]0, 1] interval.
if score <= 0.0 {
score = f32::EPSILON;
}
if score > 1.0 {
score = 1.0;
}
score
}
}