meilisearch/milli/src/search/new/mod.rs

131 lines
3.8 KiB
Rust
Raw Normal View History

mod db_cache;
mod graph_based_ranking_rule;
mod interner;
mod logger;
mod query_graph;
mod query_term;
mod ranking_rule_graph;
mod ranking_rules;
mod resolve_query_graph;
mod small_bitmap;
mod sort;
mod words;
use self::interner::Interner;
use self::logger::SearchLogger;
use self::query_term::Phrase;
use self::resolve_query_graph::{resolve_query_graph, NodeDocIdsCache};
use crate::new::query_term::located_query_terms_from_string;
use crate::{Filter, Index, Result, TermsMatchingStrategy};
use charabia::Tokenize;
use db_cache::DatabaseCache;
use heed::RoTxn;
use query_graph::{QueryGraph, QueryNode};
pub use ranking_rules::{
apply_ranking_rules, RankingRule, RankingRuleOutput, RankingRuleOutputIter,
RankingRuleOutputIterWrapper, RankingRuleQueryTrait,
};
use roaring::RoaringBitmap;
use std::collections::BTreeSet;
pub enum BitmapOrAllRef<'s> {
Bitmap(&'s RoaringBitmap),
All,
}
pub struct SearchContext<'search> {
pub index: &'search Index,
pub txn: &'search RoTxn<'search>,
pub db_cache: DatabaseCache<'search>,
pub word_interner: Interner<String>,
pub phrase_interner: Interner<Phrase>,
pub node_docids_cache: NodeDocIdsCache,
}
impl<'search> SearchContext<'search> {
pub fn new(index: &'search Index, txn: &'search RoTxn<'search>) -> Self {
Self {
index,
txn,
db_cache: <_>::default(),
word_interner: <_>::default(),
phrase_interner: <_>::default(),
node_docids_cache: <_>::default(),
}
}
}
#[allow(clippy::too_many_arguments)]
pub fn resolve_maximally_reduced_query_graph<'search>(
ctx: &mut SearchContext<'search>,
universe: &RoaringBitmap,
query_graph: &QueryGraph,
matching_strategy: TermsMatchingStrategy,
logger: &mut dyn SearchLogger<QueryGraph>,
) -> Result<RoaringBitmap> {
let mut graph = query_graph.clone();
let mut positions_to_remove = match matching_strategy {
TermsMatchingStrategy::Last => {
let mut all_positions = BTreeSet::new();
for n in query_graph.nodes.iter() {
match n {
QueryNode::Term(term) => {
all_positions.extend(term.positions.clone().into_iter());
}
QueryNode::Deleted | QueryNode::Start | QueryNode::End => {}
}
}
all_positions.into_iter().collect()
}
TermsMatchingStrategy::All => vec![],
};
// don't remove the first term
positions_to_remove.remove(0);
loop {
if positions_to_remove.is_empty() {
break;
} else {
let position_to_remove = positions_to_remove.pop().unwrap();
let _ = graph.remove_words_at_position(position_to_remove);
}
}
logger.query_for_universe(&graph);
let docids = resolve_query_graph(ctx, &graph, universe)?;
Ok(docids)
}
#[allow(clippy::too_many_arguments)]
pub fn execute_search<'search>(
ctx: &mut SearchContext<'search>,
query: &str,
filters: Option<Filter>,
from: usize,
length: usize,
logger: &mut dyn SearchLogger<QueryGraph>,
) -> Result<Vec<u32>> {
assert!(!query.is_empty());
let query_terms = located_query_terms_from_string(ctx, query.tokenize(), None)?;
let graph = QueryGraph::from_query(ctx, query_terms)?;
logger.initial_query(&graph);
let universe = if let Some(filters) = filters {
filters.evaluate(ctx.txn, ctx.index)?
} else {
ctx.index.documents_ids(ctx.txn)?
};
let universe = resolve_maximally_reduced_query_graph(
ctx,
&universe,
&graph,
TermsMatchingStrategy::Last,
logger,
)?;
// TODO: create ranking rules here
logger.initial_universe(&universe);
apply_ranking_rules(ctx, &graph, &universe, from, length, logger)
}