mirror of
https://github.com/snowykami/mbcp.git
synced 2024-11-27 08:45:03 +08:00
111 lines
200 KiB
HTML
111 lines
200 KiB
HTML
<!DOCTYPE html>
|
||
<html lang="zh-Hant" dir="ltr">
|
||
<head>
|
||
<meta charset="utf-8">
|
||
<meta name="viewport" content="width=device-width,initial-scale=1">
|
||
<title>mbcp.mp_math.plane | MBCP 文檔</title>
|
||
<meta name="description" content="MBCP 粒子計算和生成庫文檔">
|
||
<meta name="generator" content="VitePress v1.3.4">
|
||
<link rel="preload stylesheet" href="/assets/style.Czi07tLB.css" as="style">
|
||
|
||
<script type="module" src="/assets/app.CVoJkUMN.js"></script>
|
||
<link rel="modulepreload" href="/assets/chunks/theme.BDrzRUX0.js">
|
||
<link rel="modulepreload" href="/assets/chunks/framework.DpC1ZpOZ.js">
|
||
<link rel="modulepreload" href="/assets/zht_api_mp_math_plane.md.BtjTSOwB.lean.js">
|
||
<link rel="icon" type="image/svg+xml" href="/mbcp-logo.svg">
|
||
<link rel="stylesheet" href="https://fonts.font.im/css?family=Cousine:400,400i,700,700i|Poppins:100,100i,200,200i,300,300i,400,400i,500,500i,600,600i,700,700i,800,800i,900,900i">
|
||
<script id="check-dark-mode">(()=>{const e=localStorage.getItem("vitepress-theme-appearance")||"auto",a=window.matchMedia("(prefers-color-scheme: dark)").matches;(!e||e==="auto"?a:e==="dark")&&document.documentElement.classList.add("dark")})();</script>
|
||
<script id="check-mac-os">document.documentElement.classList.toggle("mac",/Mac|iPhone|iPod|iPad/i.test(navigator.platform));</script>
|
||
</head>
|
||
<body>
|
||
<div id="app"><div class="Layout" data-v-3b4648ff><!--[--><!--]--><!--[--><span tabindex="-1" data-v-e813112c></span><a href="#VPContent" class="VPSkipLink visually-hidden" data-v-e813112c> Skip to content </a><!--]--><!----><header class="VPNav" data-v-3b4648ff data-v-e823d444><div class="VPNavBar has-sidebar top" data-v-e823d444 data-v-da0688be><div class="wrapper" data-v-da0688be><div class="container" data-v-da0688be><div class="title" data-v-da0688be><div class="VPNavBarTitle has-sidebar" data-v-da0688be data-v-606a7e0f><a class="title" href="/zht/" data-v-606a7e0f><!--[--><!--]--><!--[--><img class="VPImage logo" src="/mbcp-logo.svg" alt data-v-cc63e071><!--]--><span data-v-606a7e0f>MBCP 文檔</span><!--[--><!--]--></a></div></div><div class="content" data-v-da0688be><div class="content-body" data-v-da0688be><!--[--><!--]--><div class="VPNavBarSearch search" data-v-da0688be><!--[--><!----><div id="local-search"><button type="button" class="DocSearch DocSearch-Button" aria-label="打開搜索框"><span class="DocSearch-Button-Container"><span class="vp-icon DocSearch-Search-Icon"></span><span class="DocSearch-Button-Placeholder">搜索文檔</span></span><span class="DocSearch-Button-Keys"><kbd class="DocSearch-Button-Key"></kbd><kbd class="DocSearch-Button-Key">K</kbd></span></button></div><!--]--></div><nav aria-labelledby="main-nav-aria-label" class="VPNavBarMenu menu" data-v-da0688be data-v-bf53b681><span id="main-nav-aria-label" class="visually-hidden" data-v-bf53b681> Main Navigation </span><!--[--><!--[--><a class="VPLink link VPNavBarMenuLink" href="/zht/guide/" tabindex="0" data-v-bf53b681 data-v-9a0da802><!--[--><span data-v-9a0da802>指引</span><!--]--></a><!--]--><!--[--><a class="VPLink link VPNavBarMenuLink" href="/zht/refer.html" tabindex="0" data-v-bf53b681 data-v-9a0da802><!--[--><span data-v-9a0da802>參考</span><!--]--></a><!--]--><!--[--><a class="VPLink link VPNavBarMenuLink" href="/zht/api/" tabindex="0" data-v-bf53b681 data-v-9a0da802><!--[--><span data-v-9a0da802>API引用</span><!--]--></a><!--]--><!--[--><a class="VPLink link VPNavBarMenuLink" href="/zht/demo/" tabindex="0" data-v-bf53b681 data-v-9a0da802><!--[--><span data-v-9a0da802>示範</span><!--]--></a><!--]--><!--]--></nav><div class="VPFlyout VPNavBarTranslations translations" data-v-da0688be data-v-912817b1 data-v-00660109><button type="button" class="button" aria-haspopup="true" aria-expanded="false" aria-label="Change language" data-v-00660109><span class="text" data-v-00660109><span class="vpi-languages option-icon" data-v-00660109></span><!----><span class="vpi-chevron-down text-icon" data-v-00660109></span></span></button><div class="menu" data-v-00660109><div class="VPMenu" data-v-00660109 data-v-809b8af7><!----><!--[--><!--[--><div class="items" data-v-912817b1><p class="title" data-v-912817b1>繁體中文</p><!--[--><div class="VPMenuLink" data-v-912817b1 data-v-25a54821><a class="VPLink link" href="/api/mp_math/plane.html" data-v-25a54821><!--[-->简体中文<!--]--></a></div><div class="VPMenuLink" data-v-912817b1 data-v-25a54821><a class="VPLink link" href="/en/api/mp_math/plane.html" data-v-25a54821><!--[-->English<!--]--></a></div><div class="VPMenuLink" data-v-912817b1 data-v-25a54821><a class="VPLink link" href="/ja/api/mp_math/plane.html" data-v-25a54821><!--[-->日本語<!--]--></a></div><!--]--></div><!--]--><!--]--></div></div></div><div class="VPNavBarAppearance appearance" data-v-da0688be data-v-864d2abc><button class="VPSwitch VPSwitchAppearance" type="button" role="switch" title="Switch to dark theme" aria-checked="false" data-v-864d2abc data-v-3125216b data-v-846fe538><span class="check" data-v-846fe538><span class="icon" data-v-846fe538><!--[--><span class="vpi-sun sun" data-v-3125216b></span><span class="vpi-moon moon" data-v-3125216b></span><!--]--></span></span></button></div><div class="VPSocialLinks VPNavBarSocialLinks social-links" data-v-da0688be data-v-2c606308 data-v-100434c4><!--[--><a class="VPSocialLink no-icon" href="https://github.com/snowykami/mbcp" aria-label="github" target="_blank" rel="noopener" data-v-100434c4 data-v-15a5c40e><span class="vpi-social-github" /></a><!--]--></div><div class="VPFlyout VPNavBarExtra extra" data-v-da0688be data-v-60cefd62 data-v-00660109><button type="button" class="button" aria-haspopup="true" aria-expanded="false" aria-label="extra navigation" data-v-00660109><span class="vpi-more-horizontal icon" data-v-00660109></span></button><div class="menu" data-v-00660109><div class="VPMenu" data-v-00660109 data-v-809b8af7><!----><!--[--><!--[--><div class="group translations" data-v-60cefd62><p class="trans-title" data-v-60cefd62>繁體中文</p><!--[--><div class="VPMenuLink" data-v-60cefd62 data-v-25a54821><a class="VPLink link" href="/api/mp_math/plane.html" data-v-25a54821><!--[-->简体中文<!--]--></a></div><div class="VPMenuLink" data-v-60cefd62 data-v-25a54821><a class="VPLink link" href="/en/api/mp_math/plane.html" data-v-25a54821><!--[-->English<!--]--></a></div><div class="VPMenuLink" data-v-60cefd62 data-v-25a54821><a class="VPLink link" href="/ja/api/mp_math/plane.html" data-v-25a54821><!--[-->日本語<!--]--></a></div><!--]--></div><div class="group" data-v-60cefd62><div class="item appearance" data-v-60cefd62><p class="label" data-v-60cefd62>Appearance</p><div class="appearance-action" data-v-60cefd62><button class="VPSwitch VPSwitchAppearance" type="button" role="switch" title="Switch to dark theme" aria-checked="false" data-v-60cefd62 data-v-3125216b data-v-846fe538><span class="check" data-v-846fe538><span class="icon" data-v-846fe538><!--[--><span class="vpi-sun sun" data-v-3125216b></span><span class="vpi-moon moon" data-v-3125216b></span><!--]--></span></span></button></div></div></div><div class="group" data-v-60cefd62><div class="item social-links" data-v-60cefd62><div class="VPSocialLinks social-links-list" data-v-60cefd62 data-v-100434c4><!--[--><a class="VPSocialLink no-icon" href="https://github.com/snowykami/mbcp" aria-label="github" target="_blank" rel="noopener" data-v-100434c4 data-v-15a5c40e><span class="vpi-social-github" /></a><!--]--></div></div></div><!--]--><!--]--></div></div></div><!--[--><!--]--><button type="button" class="VPNavBarHamburger hamburger" aria-label="mobile navigation" aria-expanded="false" aria-controls="VPNavScreen" data-v-da0688be data-v-e047a1f2><span class="container" data-v-e047a1f2><span class="top" data-v-e047a1f2></span><span class="middle" data-v-e047a1f2></span><span class="bottom" data-v-e047a1f2></span></span></button></div></div></div></div><div class="divider" data-v-da0688be><div class="divider-line" data-v-da0688be></div></div></div><!----></header><div class="VPLocalNav has-sidebar empty" data-v-3b4648ff data-v-9c649187><div class="container" data-v-9c649187><button class="menu" aria-expanded="false" aria-controls="VPSidebarNav" data-v-9c649187><span class="vpi-align-left menu-icon" data-v-9c649187></span><span class="menu-text" data-v-9c649187>Menu</span></button><div class="VPLocalNavOutlineDropdown" style="--vp-vh:0px;" data-v-9c649187 data-v-9dd5e197><button data-v-9dd5e197>Return to top</button><!----></div></div></div><aside class="VPSidebar" data-v-3b4648ff data-v-59ceefa4><div class="curtain" data-v-59ceefa4></div><nav class="nav" id="VPSidebarNav" aria-labelledby="sidebar-aria-label" tabindex="-1" data-v-59ceefa4><span class="visually-hidden" id="sidebar-aria-label" data-v-59ceefa4> Sidebar Navigation </span><!--[--><!--]--><!--[--><div class="no-transition group" data-v-72c67ed4><section class="VPSidebarItem level-0 has-active" data-v-72c67ed4 data-v-a9cdba99><div class="item" role="button" tabindex="0" data-v-a9cdba99><div class="indicator" data-v-a9cdba99></div><h2 class="text" data-v-a9cdba99>MBCP</h2><!----></div><div class="items" data-v-a9cdba99><!--[--><section class="VPSidebarItem level-1 collapsible has-active" data-v-a9cdba99 data-v-a9cdba99><div class="item" role="button" tabindex="0" data-v-a9cdba99><div class="indicator" data-v-a9cdba99></div><h3 class="text" data-v-a9cdba99>mp_math</h3><div class="caret" role="button" aria-label="toggle section" tabindex="0" data-v-a9cdba99><span class="vpi-chevron-right caret-icon" data-v-a9cdba99></span></div></div><div class="items" data-v-a9cdba99><!--[--><div class="VPSidebarItem level-2 is-link" data-v-a9cdba99 data-v-a9cdba99><div class="item" data-v-a9cdba99><div class="indicator" data-v-a9cdba99></div><a class="VPLink link link" href="/zht/api/mp_math/angle.html" data-v-a9cdba99><!--[--><p class="text" data-v-a9cdba99>mbcp.mp_math.angle</p><!--]--></a><!----></div><!----></div><div class="VPSidebarItem level-2 is-link" data-v-a9cdba99 data-v-a9cdba99><div class="item" data-v-a9cdba99><div class="indicator" data-v-a9cdba99></div><a class="VPLink link link" href="/zht/api/mp_math/const.html" data-v-a9cdba99><!--[--><p class="text" data-v-a9cdba99>mbcp.mp_math.const</p><!--]--></a><!----></div><!----></div><div class="VPSidebarItem level-2 is-link" data-v-a9cdba99 data-v-a9cdba99><div class="item" data-v-a9cdba99><div class="indicator" data-v-a9cdba99></div><a class="VPLink link link" href="/zht/api/mp_math/equation.html" data-v-a9cdba99><!--[--><p class="text" data-v-a9cdba99>mbcp.mp_math.equation</p><!--]--></a><!----></div><!----></div><div class="VPSidebarItem level-2 is-link" data-v-a9cdba99 data-v-a9cdba99><div class="item" data-v-a9cdba99><div class="indicator" data-v-a9cdba99></div><a class="VPLink link link" href="/zht/api/mp_math/function.html" data-v-a9cdba99><!--[--><p class="text" data-v-a9cdba99>mbcp.mp_math.function</p><!--]--></a><!----></div><!----></div><div class="VPSidebarItem level-2 is-link" data-v-a9cdba99 data-v-a9cdba99><div class="item" data-v-a9cdba99><div class="indicator" data-v-a9cdba99></div><a class="VPLink link link" href="/zht/api/mp_math/" data-v-a9cdba99><!--[--><p class="text" data-v-a9cdba99>mbcp.mp_math</p><!--]--></a><!----></div><!----></div><div class="VPSidebarItem level-2 is-link" data-v-a9cdba99 data-v-a9cdba99><div class="item" data-v-a9cdba99><div class="indicator" data-v-a9cdba99></div><a class="VPLink link link" href="/zht/api/mp_math/line.html" data-v-a9cdba99><!--[--><p class="text" data-v-a9cdba99>mbcp.mp_math.line</p><!--]--></a><!----></div><!----></div><div class="VPSidebarItem level-2 is-link" data-v-a9cdba99 data-v-a9cdba99><div class="item" data-v-a9cdba99><div class="indicator" data-v-a9cdba99></div><a class="VPLink link link" href="/zht/api/mp_math/mp_math_typing.html" data-v-a9cdba99><!--[--><p class="text" data-v-a9cdba99>mbcp.mp_math.mp_math_typing</p><!--]--></a><!----></div><!----></div><div class="VPSidebarItem level-2 is-link" data-v-a9cdba99 data-v-a9cdba99><div class="item" data-v-a9cdba99><div class="indicator" data-v-a9cdba99></div><a class="VPLink link link" href="/zht/api/mp_math/plane.html" data-v-a9cdba99><!--[--><p class="text" data-v-a9cdba99>mbcp.mp_math.plane</p><!--]--></a><!----></div><!----></div><div class="VPSidebarItem level-2 is-link" data-v-a9cdba99 data-v-a9cdba99><div class="item" data-v-a9cdba99><div class="indicator" data-v-a9cdba99></div><a class="VPLink link link" href="/zht/api/mp_math/point.html" data-v-a9cdba99><!--[--><p class="text" data-v-a9cdba99>mbcp.mp_math.point</p><!--]--></a><!----></div><!----></div><div class="VPSidebarItem level-2 is-link" data-v-a9cdba99 data-v-a9cdba99><div class="item" data-v-a9cdba99><div class="indicator" data-v-a9cdba99></div><a class="VPLink link link" href="/zht/api/mp_math/segment.html" data-v-a9cdba99><!--[--><p class="text" data-v-a9cdba99>mbcp.mp_math.segment</p><!--]--></a><!----></div><!----></div><div class="VPSidebarItem level-2 is-link" data-v-a9cdba99 data-v-a9cdba99><div class="item" data-v-a9cdba99><div class="indicator" data-v-a9cdba99></div><a class="VPLink link link" href="/zht/api/mp_math/utils.html" data-v-a9cdba99><!--[--><p class="text" data-v-a9cdba99>mbcp.mp_math.utils</p><!--]--></a><!----></div><!----></div><div class="VPSidebarItem level-2 is-link" data-v-a9cdba99 data-v-a9cdba99><div class="item" data-v-a9cdba99><div class="indicator" data-v-a9cdba99></div><a class="VPLink link link" href="/zht/api/mp_math/vector.html" data-v-a9cdba99><!--[--><p class="text" data-v-a9cdba99>mbcp.mp_math.vector</p><!--]--></a><!----></div><!----></div><!--]--></div></section><section class="VPSidebarItem level-1 collapsible collapsed" data-v-a9cdba99 data-v-a9cdba99><div class="item" role="button" tabindex="0" data-v-a9cdba99><div class="indicator" data-v-a9cdba99></div><h3 class="text" data-v-a9cdba99>particle</h3><div class="caret" role="button" aria-label="toggle section" tabindex="0" data-v-a9cdba99><span class="vpi-chevron-right caret-icon" data-v-a9cdba99></span></div></div><div class="items" data-v-a9cdba99><!--[--><div class="VPSidebarItem level-2 is-link" data-v-a9cdba99 data-v-a9cdba99><div class="item" data-v-a9cdba99><div class="indicator" data-v-a9cdba99></div><a class="VPLink link link" href="/zht/api/particle/" data-v-a9cdba99><!--[--><p class="text" data-v-a9cdba99>mbcp.particle</p><!--]--></a><!----></div><!----></div><!--]--></div></section><section class="VPSidebarItem level-1 collapsible collapsed" data-v-a9cdba99 data-v-a9cdba99><div class="item" role="button" tabindex="0" data-v-a9cdba99><div class="indicator" data-v-a9cdba99></div><h3 class="text" data-v-a9cdba99>presets</h3><div class="caret" role="button" aria-label="toggle section" tabindex="0" data-v-a9cdba99><span class="vpi-chevron-right caret-icon" data-v-a9cdba99></span></div></div><div class="items" data-v-a9cdba99><!--[--><div class="VPSidebarItem level-2 is-link" data-v-a9cdba99 data-v-a9cdba99><div class="item" data-v-a9cdba99><div class="indicator" data-v-a9cdba99></div><a class="VPLink link link" href="/zht/api/presets/" data-v-a9cdba99><!--[--><p class="text" data-v-a9cdba99>mbcp.presets</p><!--]--></a><!----></div><!----></div><section class="VPSidebarItem level-2 collapsible collapsed" data-v-a9cdba99 data-v-a9cdba99><div class="item" role="button" tabindex="0" data-v-a9cdba99><div class="indicator" data-v-a9cdba99></div><h4 class="text" data-v-a9cdba99>model</h4><div class="caret" role="button" aria-label="toggle section" tabindex="0" data-v-a9cdba99><span class="vpi-chevron-right caret-icon" data-v-a9cdba99></span></div></div><div class="items" data-v-a9cdba99><!--[--><div class="VPSidebarItem level-3 is-link" data-v-a9cdba99 data-v-a9cdba99><div class="item" data-v-a9cdba99><div class="indicator" data-v-a9cdba99></div><a class="VPLink link link" href="/zht/api/presets/model/" data-v-a9cdba99><!--[--><p class="text" data-v-a9cdba99>mbcp.presets.model</p><!--]--></a><!----></div><!----></div><!--]--></div></section><!--]--></div></section><!--]--></div></section></div><!--]--><!--[--><!--]--></nav></aside><div class="VPContent has-sidebar" id="VPContent" data-v-3b4648ff data-v-fc04087f><div class="VPDoc has-sidebar has-aside" data-v-fc04087f data-v-01c90815><!--[--><!--]--><div class="container" data-v-01c90815><div class="aside" data-v-01c90815><div class="aside-curtain" data-v-01c90815></div><div class="aside-container" data-v-01c90815><div class="aside-content" data-v-01c90815><div class="VPDocAside" data-v-01c90815 data-v-8951c20f><!--[--><!--]--><!--[--><!--]--><nav aria-labelledby="doc-outline-aria-label" class="VPDocAsideOutline" data-v-8951c20f data-v-d34649dc><div class="content" data-v-d34649dc><div class="outline-marker" data-v-d34649dc></div><div aria-level="2" class="outline-title" id="doc-outline-aria-label" role="heading" data-v-d34649dc>頁面內容</div><ul class="VPDocOutlineItem root" data-v-d34649dc data-v-b9c884bb><!--[--><!--]--></ul></div></nav><!--[--><!--]--><div class="spacer" data-v-8951c20f></div><!--[--><!--]--><!----><!--[--><!--]--><!--[--><!--]--></div></div></div></div><div class="content" data-v-01c90815><div class="content-container" data-v-01c90815><!--[--><!--]--><main class="main" data-v-01c90815><div style="position:relative;" class="vp-doc _zht_api_mp_math_plane" data-v-01c90815><div><h1 id="模組-mbcp-mp-math-plane" tabindex="-1"><strong>模組</strong> <code>mbcp.mp_math.plane</code> <a class="header-anchor" href="#模組-mbcp-mp-math-plane" aria-label="Permalink to "**模組** `mbcp.mp_math.plane`""></a></h1><p>本模块定义了三维空间中的平面类</p><h3 id="class-plane3" tabindex="-1"><em><strong>class</strong></em> <code>Plane3</code> <a class="header-anchor" href="#class-plane3" aria-label="Permalink to "***class*** `Plane3`""></a></h3><hr><h4 id="method-init-self-a-float-b-float-c-float-d-float" tabindex="-1"><em><strong>method</strong></em> <code>__init__(self, a: float, b: float, c: float, d: float)</code> <a class="header-anchor" href="#method-init-self-a-float-b-float-c-float-d-float" aria-label="Permalink to "***method*** `__init__(self, a: float, b: float, c: float, d: float)`""></a></h4><p><strong>説明</strong>: 平面方程:ax + by + cz + d = 0</p><p><strong>變數説明</strong>:</p><blockquote><ul><li>a (<a href="https://docs.python.org/3/library/functions.html#float" target="_blank" rel="noreferrer"><code>float</code></a>): x系数</li><li>b (<code>float</code>): y系数</li><li>c (<code>float</code>): z系数</li><li>d (<code>float</code>): 常数项</li></ul></blockquote><details><summary><b>源碼</b> 或 <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/plane.py#L20" target="_blank">於GitHub上查看</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> __init__</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, a: </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">float</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">, b: </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">float</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">, c: </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">float</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">, d: </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">float</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">):</span></span>
|
||
<span class="line"><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.a </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> a</span></span>
|
||
<span class="line"><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.b </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> b</span></span>
|
||
<span class="line"><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.c </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> c</span></span>
|
||
<span class="line"><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.d </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> d</span></span></code></pre></div></details><hr><h4 id="method-approx-self-other-plane3-bool" tabindex="-1"><em><strong>method</strong></em> <code>approx(self, other: Plane3) -> bool</code> <a class="header-anchor" href="#method-approx-self-other-plane3-bool" aria-label="Permalink to "***method*** `approx(self, other: Plane3) -> bool`""></a></h4><p><strong>説明</strong>: 判断两个平面是否近似相等。</p><p><strong>變數説明</strong>:</p><blockquote><ul><li>other (<a href="./plane.html#class-plane3"><code>Plane3</code></a>): 另一个平面</li></ul></blockquote><p><strong>返回</strong>: <a href="https://docs.python.org/3/library/functions.html#bool" target="_blank" rel="noreferrer"><code>bool</code></a>: 是否近似相等</p><details><summary><b>源碼</b> 或 <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/plane.py#L34" target="_blank">於GitHub上查看</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> approx</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, other: </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">'Plane3'</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) -> </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">bool</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
|
||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> if</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.a </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">!=</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> 0</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
|
||
<span class="line"><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> k </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> other.a </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">/</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.a</span></span>
|
||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> approx(other.b, </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.b </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> k) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">and</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> approx(other.c, </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.c </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> k) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">and</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> approx(other.d, </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.d </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> k)</span></span>
|
||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> elif</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.b </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">!=</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> 0</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
|
||
<span class="line"><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> k </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> other.b </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">/</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.b</span></span>
|
||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> approx(other.a, </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.a </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> k) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">and</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> approx(other.c, </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.c </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> k) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">and</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> approx(other.d, </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.d </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> k)</span></span>
|
||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> elif</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.c </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">!=</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> 0</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
|
||
<span class="line"><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> k </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> other.c </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">/</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.c</span></span>
|
||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> approx(other.a, </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.a </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> k) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">and</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> approx(other.b, </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.b </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> k) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">and</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> approx(other.d, </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.d </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> k)</span></span>
|
||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> else</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
|
||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> False</span></span></code></pre></div></details><hr><h4 id="method-cal-angle-self-other-line3-plane3-anyangle" tabindex="-1"><em><strong>method</strong></em> <code>cal_angle(self, other: Line3 | Plane3) -> AnyAngle</code> <a class="header-anchor" href="#method-cal-angle-self-other-line3-plane3-anyangle" aria-label="Permalink to "***method*** `cal_angle(self, other: Line3 | Plane3) -> AnyAngle`""></a></h4><p><strong>説明</strong>: 计算平面与平面之间的夹角。</p><div class="tip custom-block"><p class="custom-block-title">TIP</p><p>平面间夹角计算公式:</p><mjx-container tabindex="0" class="MathJax" jax="SVG" display="true" style="direction:ltr;display:block;text-align:center;margin:1em 0;position:relative;"><svg style="overflow:visible;min-height:1px;min-width:1px;vertical-align:-2.17ex;" xmlns="http://www.w3.org/2000/svg" width="22.011ex" height="5.206ex" role="img" focusable="false" viewBox="0 -1342 9729 2301" aria-hidden="true"><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g data-mml-node="math"><g data-mml-node="mi"><path data-c="1D703" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z" style="stroke-width:3;"></path></g><g data-mml-node="mo" transform="translate(746.8,0)"><path data-c="3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z" style="stroke-width:3;"></path></g><g data-mml-node="mi" transform="translate(1802.6,0)"><path data-c="61" d="M137 305T115 305T78 320T63 359Q63 394 97 421T218 448Q291 448 336 416T396 340Q401 326 401 309T402 194V124Q402 76 407 58T428 40Q443 40 448 56T453 109V145H493V106Q492 66 490 59Q481 29 455 12T400 -6T353 12T329 54V58L327 55Q325 52 322 49T314 40T302 29T287 17T269 6T247 -2T221 -8T190 -11Q130 -11 82 20T34 107Q34 128 41 147T68 188T116 225T194 253T304 268H318V290Q318 324 312 340Q290 411 215 411Q197 411 181 410T156 406T148 403Q170 388 170 359Q170 334 154 320ZM126 106Q126 75 150 51T209 26Q247 26 276 49T315 109Q317 116 318 175Q318 233 317 233Q309 233 296 232T251 223T193 203T147 166T126 106Z" style="stroke-width:3;"></path><path data-c="72" d="M36 46H50Q89 46 97 60V68Q97 77 97 91T98 122T98 161T98 203Q98 234 98 269T98 328L97 351Q94 370 83 376T38 385H20V408Q20 431 22 431L32 432Q42 433 60 434T96 436Q112 437 131 438T160 441T171 442H174V373Q213 441 271 441H277Q322 441 343 419T364 373Q364 352 351 337T313 322Q288 322 276 338T263 372Q263 381 265 388T270 400T273 405Q271 407 250 401Q234 393 226 386Q179 341 179 207V154Q179 141 179 127T179 101T180 81T180 66V61Q181 59 183 57T188 54T193 51T200 49T207 48T216 47T225 47T235 46T245 46H276V0H267Q249 3 140 3Q37 3 28 0H20V46H36Z" transform="translate(500,0)" style="stroke-width:3;"></path><path data-c="63" d="M370 305T349 305T313 320T297 358Q297 381 312 396Q317 401 317 402T307 404Q281 408 258 408Q209 408 178 376Q131 329 131 219Q131 137 162 90Q203 29 272 29Q313 29 338 55T374 117Q376 125 379 127T395 129H409Q415 123 415 120Q415 116 411 104T395 71T366 33T318 2T249 -11Q163 -11 99 53T34 214Q34 318 99 383T250 448T370 421T404 357Q404 334 387 320Z" transform="translate(892,0)" style="stroke-width:3;"></path><path data-c="63" d="M370 305T349 305T313 320T297 358Q297 381 312 396Q317 401 317 402T307 404Q281 408 258 408Q209 408 178 376Q131 329 131 219Q131 137 162 90Q203 29 272 29Q313 29 338 55T374 117Q376 125 379 127T395 129H409Q415 123 415 120Q415 116 411 104T395 71T366 33T318 2T249 -11Q163 -11 99 53T34 214Q34 318 99 383T250 448T370 421T404 357Q404 334 387 320Z" transform="translate(1336,0)" style="stroke-width:3;"></path><path data-c="6F" d="M28 214Q28 309 93 378T250 448Q340 448 405 380T471 215Q471 120 407 55T250 -10Q153 -10 91 57T28 214ZM250 30Q372 30 372 193V225V250Q372 272 371 288T364 326T348 362T317 390T268 410Q263 411 252 411Q222 411 195 399Q152 377 139 338T126 246V226Q126 130 145 91Q177 30 250 30Z" transform="translate(1780,0)" style="stroke-width:3;"></path><path data-c="73" d="M295 316Q295 356 268 385T190 414Q154 414 128 401Q98 382 98 349Q97 344 98 336T114 312T157 287Q175 282 201 278T245 269T277 256Q294 248 310 236T342 195T359 133Q359 71 321 31T198 -10H190Q138 -10 94 26L86 19L77 10Q71 4 65 -1L54 -11H46H42Q39 -11 33 -5V74V132Q33 153 35 157T45 162H54Q66 162 70 158T75 146T82 119T101 77Q136 26 198 26Q295 26 295 104Q295 133 277 151Q257 175 194 187T111 210Q75 227 54 256T33 318Q33 357 50 384T93 424T143 442T187 447H198Q238 447 268 432L283 424L292 431Q302 440 314 448H322H326Q329 448 335 442V310L329 304H301Q295 310 295 316Z" transform="translate(2280,0)" style="stroke-width:3;"></path></g><g data-mml-node="mo" transform="translate(4476.6,0)"><path data-c="2061" d="" style="stroke-width:3;"></path></g><g data-mml-node="mo" transform="translate(4476.6,0)"><path data-c="28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z" style="stroke-width:3;"></path></g><g data-mml-node="mfrac" transform="translate(4865.6,0)"><g data-mml-node="mrow" transform="translate(776,676)"><g data-mml-node="mi"><path data-c="1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z" style="stroke-width:3;"></path></g><g data-mml-node="mn" transform="translate(600,0)"><path data-c="31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z" style="stroke-width:3;"></path></g><g data-mml-node="mo" transform="translate(1322.2,0)"><path data-c="22C5" d="M78 250Q78 274 95 292T138 310Q162 310 180 294T199 251Q199 226 182 208T139 190T96 207T78 250Z" style="stroke-width:3;"></path></g><g data-mml-node="mi" transform="translate(1822.4,0)"><path data-c="1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z" style="stroke-width:3;"></path></g><g data-mml-node="mn" transform="translate(2422.4,0)"><path data-c="32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z" style="stroke-width:3;"></path></g></g><g data-mml-node="mrow" transform="translate(220,-709.5)"><g data-mml-node="mo" transform="translate(0 -0.5)"><path data-c="7C" d="M139 -249H137Q125 -249 119 -235V251L120 737Q130 750 139 750Q152 750 159 735V-235Q151 -249 141 -249H139Z" style="stroke-width:3;"></path></g><g data-mml-node="mi" transform="translate(278,0)"><path data-c="1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z" style="stroke-width:3;"></path></g><g data-mml-node="mn" transform="translate(878,0)"><path data-c="31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z" style="stroke-width:3;"></path></g><g data-mml-node="mo" transform="translate(1378,0) translate(0 -0.5)"><path data-c="7C" d="M139 -249H137Q125 -249 119 -235V251L120 737Q130 750 139 750Q152 750 159 735V-235Q151 -249 141 -249H139Z" style="stroke-width:3;"></path></g><g data-mml-node="mo" transform="translate(1878.2,0)"><path data-c="22C5" d="M78 250Q78 274 95 292T138 310Q162 310 180 294T199 251Q199 226 182 208T139 190T96 207T78 250Z" style="stroke-width:3;"></path></g><g data-mml-node="mo" transform="translate(2378.4,0) translate(0 -0.5)"><path data-c="7C" d="M139 -249H137Q125 -249 119 -235V251L120 737Q130 750 139 750Q152 750 159 735V-235Q151 -249 141 -249H139Z" style="stroke-width:3;"></path></g><g data-mml-node="mi" transform="translate(2656.4,0)"><path data-c="1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z" style="stroke-width:3;"></path></g><g data-mml-node="mn" transform="translate(3256.4,0)"><path data-c="32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z" style="stroke-width:3;"></path></g><g data-mml-node="mo" transform="translate(3756.4,0) translate(0 -0.5)"><path data-c="7C" d="M139 -249H137Q125 -249 119 -235V251L120 737Q130 750 139 750Q152 750 159 735V-235Q151 -249 141 -249H139Z" style="stroke-width:3;"></path></g></g><rect width="4234.4" height="60" x="120" y="220"></rect></g><g data-mml-node="mo" transform="translate(9340,0)"><path data-c="29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z" style="stroke-width:3;"></path></g></g></g></svg><mjx-assistive-mml unselectable="on" display="block" style="top:0px;left:0px;clip:rect(1px, 1px, 1px, 1px);-webkit-touch-callout:none;-webkit-user-select:none;-khtml-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none;position:absolute;padding:1px 0px 0px 0px;border:0px;display:block;overflow:hidden;width:100%;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mi>θ</mi><mo>=</mo><mi>arccos</mi><mo data-mjx-texclass="NONE"></mo><mo stretchy="false">(</mo><mfrac><mrow><mi>n</mi><mn>1</mn><mo>⋅</mo><mi>n</mi><mn>2</mn></mrow><mrow><mo data-mjx-texclass="ORD" stretchy="false">|</mo><mi>n</mi><mn>1</mn><mo data-mjx-texclass="ORD" stretchy="false">|</mo><mo>⋅</mo><mo data-mjx-texclass="ORD" stretchy="false">|</mo><mi>n</mi><mn>2</mn><mo data-mjx-texclass="ORD" stretchy="false">|</mo></mrow></mfrac><mo stretchy="false">)</mo></math></mjx-assistive-mml></mjx-container><p>其中 <mjx-container class="MathJax" jax="SVG" style="direction:ltr;position:relative;"><svg style="overflow:visible;min-height:1px;min-width:1px;vertical-align:-0.025ex;" xmlns="http://www.w3.org/2000/svg" width="2.489ex" height="1.532ex" role="img" focusable="false" viewBox="0 -666 1100 677" aria-hidden="true"><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g data-mml-node="math"><g data-mml-node="mi"><path data-c="1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z" style="stroke-width:3;"></path></g><g data-mml-node="mn" transform="translate(600,0)"><path data-c="31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z" style="stroke-width:3;"></path></g></g></g></svg><mjx-assistive-mml unselectable="on" display="inline" style="top:0px;left:0px;clip:rect(1px, 1px, 1px, 1px);-webkit-touch-callout:none;-webkit-user-select:none;-khtml-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none;position:absolute;padding:1px 0px 0px 0px;border:0px;display:block;width:auto;overflow:hidden;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mn>1</mn></math></mjx-assistive-mml></mjx-container> 和 <mjx-container class="MathJax" jax="SVG" style="direction:ltr;position:relative;"><svg style="overflow:visible;min-height:1px;min-width:1px;vertical-align:-0.025ex;" xmlns="http://www.w3.org/2000/svg" width="2.489ex" height="1.532ex" role="img" focusable="false" viewBox="0 -666 1100 677" aria-hidden="true"><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g data-mml-node="math"><g data-mml-node="mi"><path data-c="1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z" style="stroke-width:3;"></path></g><g data-mml-node="mn" transform="translate(600,0)"><path data-c="32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z" style="stroke-width:3;"></path></g></g></g></svg><mjx-assistive-mml unselectable="on" display="inline" style="top:0px;left:0px;clip:rect(1px, 1px, 1px, 1px);-webkit-touch-callout:none;-webkit-user-select:none;-khtml-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none;position:absolute;padding:1px 0px 0px 0px;border:0px;display:block;width:auto;overflow:hidden;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mn>2</mn></math></mjx-assistive-mml></mjx-container> 分别为两个平面的法向量</p></div><div class="tip custom-block"><p class="custom-block-title">TIP</p><p>平面与直线夹角计算公式:</p><mjx-container tabindex="0" class="MathJax" jax="SVG" display="true" style="direction:ltr;display:block;text-align:center;margin:1em 0;position:relative;"><svg style="overflow:visible;min-height:1px;min-width:1px;vertical-align:-2.17ex;" xmlns="http://www.w3.org/2000/svg" width="19.568ex" height="5.269ex" role="img" focusable="false" viewBox="0 -1370 8649 2329" aria-hidden="true"><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g data-mml-node="math"><g data-mml-node="mi"><path data-c="1D703" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z" style="stroke-width:3;"></path></g><g data-mml-node="mo" transform="translate(746.8,0)"><path data-c="3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z" style="stroke-width:3;"></path></g><g data-mml-node="mi" transform="translate(1802.6,0)"><path data-c="61" d="M137 305T115 305T78 320T63 359Q63 394 97 421T218 448Q291 448 336 416T396 340Q401 326 401 309T402 194V124Q402 76 407 58T428 40Q443 40 448 56T453 109V145H493V106Q492 66 490 59Q481 29 455 12T400 -6T353 12T329 54V58L327 55Q325 52 322 49T314 40T302 29T287 17T269 6T247 -2T221 -8T190 -11Q130 -11 82 20T34 107Q34 128 41 147T68 188T116 225T194 253T304 268H318V290Q318 324 312 340Q290 411 215 411Q197 411 181 410T156 406T148 403Q170 388 170 359Q170 334 154 320ZM126 106Q126 75 150 51T209 26Q247 26 276 49T315 109Q317 116 318 175Q318 233 317 233Q309 233 296 232T251 223T193 203T147 166T126 106Z" style="stroke-width:3;"></path><path data-c="72" d="M36 46H50Q89 46 97 60V68Q97 77 97 91T98 122T98 161T98 203Q98 234 98 269T98 328L97 351Q94 370 83 376T38 385H20V408Q20 431 22 431L32 432Q42 433 60 434T96 436Q112 437 131 438T160 441T171 442H174V373Q213 441 271 441H277Q322 441 343 419T364 373Q364 352 351 337T313 322Q288 322 276 338T263 372Q263 381 265 388T270 400T273 405Q271 407 250 401Q234 393 226 386Q179 341 179 207V154Q179 141 179 127T179 101T180 81T180 66V61Q181 59 183 57T188 54T193 51T200 49T207 48T216 47T225 47T235 46T245 46H276V0H267Q249 3 140 3Q37 3 28 0H20V46H36Z" transform="translate(500,0)" style="stroke-width:3;"></path><path data-c="63" d="M370 305T349 305T313 320T297 358Q297 381 312 396Q317 401 317 402T307 404Q281 408 258 408Q209 408 178 376Q131 329 131 219Q131 137 162 90Q203 29 272 29Q313 29 338 55T374 117Q376 125 379 127T395 129H409Q415 123 415 120Q415 116 411 104T395 71T366 33T318 2T249 -11Q163 -11 99 53T34 214Q34 318 99 383T250 448T370 421T404 357Q404 334 387 320Z" transform="translate(892,0)" style="stroke-width:3;"></path><path data-c="63" d="M370 305T349 305T313 320T297 358Q297 381 312 396Q317 401 317 402T307 404Q281 408 258 408Q209 408 178 376Q131 329 131 219Q131 137 162 90Q203 29 272 29Q313 29 338 55T374 117Q376 125 379 127T395 129H409Q415 123 415 120Q415 116 411 104T395 71T366 33T318 2T249 -11Q163 -11 99 53T34 214Q34 318 99 383T250 448T370 421T404 357Q404 334 387 320Z" transform="translate(1336,0)" style="stroke-width:3;"></path><path data-c="6F" d="M28 214Q28 309 93 378T250 448Q340 448 405 380T471 215Q471 120 407 55T250 -10Q153 -10 91 57T28 214ZM250 30Q372 30 372 193V225V250Q372 272 371 288T364 326T348 362T317 390T268 410Q263 411 252 411Q222 411 195 399Q152 377 139 338T126 246V226Q126 130 145 91Q177 30 250 30Z" transform="translate(1780,0)" style="stroke-width:3;"></path><path data-c="73" d="M295 316Q295 356 268 385T190 414Q154 414 128 401Q98 382 98 349Q97 344 98 336T114 312T157 287Q175 282 201 278T245 269T277 256Q294 248 310 236T342 195T359 133Q359 71 321 31T198 -10H190Q138 -10 94 26L86 19L77 10Q71 4 65 -1L54 -11H46H42Q39 -11 33 -5V74V132Q33 153 35 157T45 162H54Q66 162 70 158T75 146T82 119T101 77Q136 26 198 26Q295 26 295 104Q295 133 277 151Q257 175 194 187T111 210Q75 227 54 256T33 318Q33 357 50 384T93 424T143 442T187 447H198Q238 447 268 432L283 424L292 431Q302 440 314 448H322H326Q329 448 335 442V310L329 304H301Q295 310 295 316Z" transform="translate(2280,0)" style="stroke-width:3;"></path></g><g data-mml-node="mo" transform="translate(4476.6,0)"><path data-c="2061" d="" style="stroke-width:3;"></path></g><g data-mml-node="mo" transform="translate(4476.6,0)"><path data-c="28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z" style="stroke-width:3;"></path></g><g data-mml-node="mfrac" transform="translate(4865.6,0)"><g data-mml-node="mrow" transform="translate(776,676)"><g data-mml-node="mi"><path data-c="1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z" style="stroke-width:3;"></path></g><g data-mml-node="mo" transform="translate(822.2,0)"><path data-c="22C5" d="M78 250Q78 274 95 292T138 310Q162 310 180 294T199 251Q199 226 182 208T139 190T96 207T78 250Z" style="stroke-width:3;"></path></g><g data-mml-node="mi" transform="translate(1322.4,0)"><path data-c="1D451" d="M366 683Q367 683 438 688T511 694Q523 694 523 686Q523 679 450 384T375 83T374 68Q374 26 402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487H491Q506 153 506 145Q506 140 503 129Q490 79 473 48T445 8T417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157Q33 205 53 255T101 341Q148 398 195 420T280 442Q336 442 364 400Q369 394 369 396Q370 400 396 505T424 616Q424 629 417 632T378 637H357Q351 643 351 645T353 664Q358 683 366 683ZM352 326Q329 405 277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q233 26 290 98L298 109L352 326Z" style="stroke-width:3;"></path></g></g><g data-mml-node="mrow" transform="translate(220,-709.5)"><g data-mml-node="mo" transform="translate(0 -0.5)"><path data-c="7C" d="M139 -249H137Q125 -249 119 -235V251L120 737Q130 750 139 750Q152 750 159 735V-235Q151 -249 141 -249H139Z" style="stroke-width:3;"></path></g><g data-mml-node="mi" transform="translate(278,0)"><path data-c="1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z" style="stroke-width:3;"></path></g><g data-mml-node="mo" transform="translate(878,0) translate(0 -0.5)"><path data-c="7C" d="M139 -249H137Q125 -249 119 -235V251L120 737Q130 750 139 750Q152 750 159 735V-235Q151 -249 141 -249H139Z" style="stroke-width:3;"></path></g><g data-mml-node="mo" transform="translate(1378.2,0)"><path data-c="22C5" d="M78 250Q78 274 95 292T138 310Q162 310 180 294T199 251Q199 226 182 208T139 190T96 207T78 250Z" style="stroke-width:3;"></path></g><g data-mml-node="mo" transform="translate(1878.4,0) translate(0 -0.5)"><path data-c="7C" d="M139 -249H137Q125 -249 119 -235V251L120 737Q130 750 139 750Q152 750 159 735V-235Q151 -249 141 -249H139Z" style="stroke-width:3;"></path></g><g data-mml-node="mi" transform="translate(2156.4,0)"><path data-c="1D451" d="M366 683Q367 683 438 688T511 694Q523 694 523 686Q523 679 450 384T375 83T374 68Q374 26 402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487H491Q506 153 506 145Q506 140 503 129Q490 79 473 48T445 8T417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157Q33 205 53 255T101 341Q148 398 195 420T280 442Q336 442 364 400Q369 394 369 396Q370 400 396 505T424 616Q424 629 417 632T378 637H357Q351 643 351 645T353 664Q358 683 366 683ZM352 326Q329 405 277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q233 26 290 98L298 109L352 326Z" style="stroke-width:3;"></path></g><g data-mml-node="mo" transform="translate(2676.4,0) translate(0 -0.5)"><path data-c="7C" d="M139 -249H137Q125 -249 119 -235V251L120 737Q130 750 139 750Q152 750 159 735V-235Q151 -249 141 -249H139Z" style="stroke-width:3;"></path></g></g><rect width="3154.4" height="60" x="120" y="220"></rect></g><g data-mml-node="mo" transform="translate(8260,0)"><path data-c="29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z" style="stroke-width:3;"></path></g></g></g></svg><mjx-assistive-mml unselectable="on" display="block" style="top:0px;left:0px;clip:rect(1px, 1px, 1px, 1px);-webkit-touch-callout:none;-webkit-user-select:none;-khtml-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none;position:absolute;padding:1px 0px 0px 0px;border:0px;display:block;overflow:hidden;width:100%;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mi>θ</mi><mo>=</mo><mi>arccos</mi><mo data-mjx-texclass="NONE"></mo><mo stretchy="false">(</mo><mfrac><mrow><mi>n</mi><mo>⋅</mo><mi>d</mi></mrow><mrow><mo data-mjx-texclass="ORD" stretchy="false">|</mo><mi>n</mi><mo data-mjx-texclass="ORD" stretchy="false">|</mo><mo>⋅</mo><mo data-mjx-texclass="ORD" stretchy="false">|</mo><mi>d</mi><mo data-mjx-texclass="ORD" stretchy="false">|</mo></mrow></mfrac><mo stretchy="false">)</mo></math></mjx-assistive-mml></mjx-container><p>其中 <mjx-container class="MathJax" jax="SVG" style="direction:ltr;position:relative;"><svg style="overflow:visible;min-height:1px;min-width:1px;vertical-align:-0.025ex;" xmlns="http://www.w3.org/2000/svg" width="1.357ex" height="1.025ex" role="img" focusable="false" viewBox="0 -442 600 453" aria-hidden="true"><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g data-mml-node="math"><g data-mml-node="mi"><path data-c="1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z" style="stroke-width:3;"></path></g></g></g></svg><mjx-assistive-mml unselectable="on" display="inline" style="top:0px;left:0px;clip:rect(1px, 1px, 1px, 1px);-webkit-touch-callout:none;-webkit-user-select:none;-khtml-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none;position:absolute;padding:1px 0px 0px 0px;border:0px;display:block;width:auto;overflow:hidden;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math></mjx-assistive-mml></mjx-container> 为平面的法向量,<mjx-container class="MathJax" jax="SVG" style="direction:ltr;position:relative;"><svg style="overflow:visible;min-height:1px;min-width:1px;vertical-align:-0.023ex;" xmlns="http://www.w3.org/2000/svg" width="1.176ex" height="1.593ex" role="img" focusable="false" viewBox="0 -694 520 704" aria-hidden="true"><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g data-mml-node="math"><g data-mml-node="mi"><path data-c="1D451" d="M366 683Q367 683 438 688T511 694Q523 694 523 686Q523 679 450 384T375 83T374 68Q374 26 402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487H491Q506 153 506 145Q506 140 503 129Q490 79 473 48T445 8T417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157Q33 205 53 255T101 341Q148 398 195 420T280 442Q336 442 364 400Q369 394 369 396Q370 400 396 505T424 616Q424 629 417 632T378 637H357Q351 643 351 645T353 664Q358 683 366 683ZM352 326Q329 405 277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q233 26 290 98L298 109L352 326Z" style="stroke-width:3;"></path></g></g></g></svg><mjx-assistive-mml unselectable="on" display="inline" style="top:0px;left:0px;clip:rect(1px, 1px, 1px, 1px);-webkit-touch-callout:none;-webkit-user-select:none;-khtml-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none;position:absolute;padding:1px 0px 0px 0px;border:0px;display:block;width:auto;overflow:hidden;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math></mjx-assistive-mml></mjx-container> 为直线的方向向量</p></div><p><strong>變數説明</strong>:</p><blockquote><ul><li>other (<a href="./line.html#class-line3"><code>Line3</code></a> | <a href="./plane.html#class-plane3"><code>Plane3</code></a>): 另一个平面或直线</li></ul></blockquote><p><strong>返回</strong>: <a href="./angle.html#class-anyangle"><code>AnyAngle</code></a>: 夹角</p><p><strong>抛出</strong>:</p><blockquote><ul><li><a href="https://docs.python.org/3/library/exceptions.html#TypeError" target="_blank" rel="noreferrer"><code>TypeError</code></a> 不支持的类型</li></ul></blockquote><details><summary><b>源碼</b> 或 <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/plane.py#L54" target="_blank">於GitHub上查看</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> cal_angle</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, other: </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">'Line3 | Plane3'</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) -> </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">'AnyAngle'</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
|
||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> if</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> isinstance</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(other, Line3):</span></span>
|
||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.normal.cal_angle(other.direction).complementary</span></span>
|
||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> elif</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> isinstance</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(other, Plane3):</span></span>
|
||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> AnyAngle(math.acos(</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.normal </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">@</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> other.normal </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">/</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> (</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.normal.length </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> other.normal.length)), </span><span style="--shiki-light:#E36209;--shiki-dark:#FFAB70;">is_radian</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">True</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">)</span></span>
|
||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> else</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
|
||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> raise</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> TypeError</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">f</span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">'Unsupported type: </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">{type</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(other)</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">}</span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">'</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">)</span></span></code></pre></div></details><hr><h4 id="method-cal-distance-self-other-plane3-point3-float" tabindex="-1"><em><strong>method</strong></em> <code>cal_distance(self, other: Plane3 | Point3) -> float</code> <a class="header-anchor" href="#method-cal-distance-self-other-plane3-point3-float" aria-label="Permalink to "***method*** `cal_distance(self, other: Plane3 | Point3) -> float`""></a></h4><p><strong>説明</strong>: 计算平面与平面或点之间的距离。</p><div class="tip custom-block"><p class="custom-block-title">TIP</p><p>平面和平面之间的距离计算公式: 暂未实现</p><ul><li>平行 = 0</li><li>相交 = 0</li><li>不平行 = <mjx-container class="MathJax" jax="SVG" style="direction:ltr;position:relative;"><svg style="overflow:visible;min-height:1px;min-width:1px;vertical-align:-1.389ex;" xmlns="http://www.w3.org/2000/svg" width="6.74ex" height="4.295ex" role="img" focusable="false" viewBox="0 -1284.3 2979.3 1898.3" aria-hidden="true"><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g data-mml-node="math"><g data-mml-node="mfrac"><g data-mml-node="mrow" transform="translate(220,516.4) scale(0.707)"><g data-mml-node="mo" transform="translate(0 -0.5)"><path data-c="7C" d="M139 -249H137Q125 -249 119 -235V251L120 737Q130 750 139 750Q152 750 159 735V-235Q151 -249 141 -249H139Z" style="stroke-width:3;"></path></g><g data-mml-node="TeXAtom" data-mjx-texclass="ORD" transform="translate(278,0)"><g data-mml-node="mover"><g data-mml-node="mrow"><g data-mml-node="msub"><g data-mml-node="mi"><path data-c="1D443" d="M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z" style="stroke-width:3;"></path></g><g data-mml-node="mn" transform="translate(675,-150) scale(0.707)"><path data-c="31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z" style="stroke-width:3;"></path></g></g><g data-mml-node="msub" transform="translate(1078.6,0)"><g data-mml-node="mi"><path data-c="1D443" d="M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z" style="stroke-width:3;"></path></g><g data-mml-node="mn" transform="translate(675,-150) scale(0.707)"><path data-c="32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z" style="stroke-width:3;"></path></g></g></g><g data-mml-node="mo" transform="translate(1078.6,272) translate(-250 0)"><path data-c="20D7" d="M377 694Q377 702 382 708T397 714Q404 714 409 709Q414 705 419 690Q429 653 460 633Q471 626 471 615Q471 606 468 603T454 594Q411 572 379 531Q377 529 374 525T369 519T364 517T357 516Q350 516 344 521T337 536Q337 555 384 595H213L42 596Q29 605 29 615Q29 622 42 635H401Q377 673 377 694Z" style="stroke-width:3;"></path></g></g></g><g data-mml-node="mo" transform="translate(2435.1,0)"><path data-c="22C5" d="M78 250Q78 274 95 292T138 310Q162 310 180 294T199 251Q199 226 182 208T139 190T96 207T78 250Z" style="stroke-width:3;"></path></g><g data-mml-node="TeXAtom" data-mjx-texclass="ORD" transform="translate(2713.1,0)"><g data-mml-node="mover"><g data-mml-node="mi"><path data-c="1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z" style="stroke-width:3;"></path></g><g data-mml-node="mo" transform="translate(300,31) translate(-250 0)"><path data-c="20D7" d="M377 694Q377 702 382 708T397 714Q404 714 409 709Q414 705 419 690Q429 653 460 633Q471 626 471 615Q471 606 468 603T454 594Q411 572 379 531Q377 529 374 525T369 519T364 517T357 516Q350 516 344 521T337 536Q337 555 384 595H213L42 596Q29 605 29 615Q29 622 42 635H401Q377 673 377 694Z" style="stroke-width:3;"></path></g></g></g><g data-mml-node="mo" transform="translate(3313.1,0) translate(0 -0.5)"><path data-c="7C" d="M139 -249H137Q125 -249 119 -235V251L120 737Q130 750 139 750Q152 750 159 735V-235Q151 -249 141 -249H139Z" style="stroke-width:3;"></path></g></g><g data-mml-node="mrow" transform="translate(1080.9,-437.5) scale(0.707)"><g data-mml-node="mo" transform="translate(0 -0.5)"><path data-c="7C" d="M139 -249H137Q125 -249 119 -235V251L120 737Q130 750 139 750Q152 750 159 735V-235Q151 -249 141 -249H139Z" style="stroke-width:3;"></path></g><g data-mml-node="TeXAtom" data-mjx-texclass="ORD" transform="translate(278,0)"><g data-mml-node="mover"><g data-mml-node="mi"><path data-c="1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z" style="stroke-width:3;"></path></g><g data-mml-node="mo" transform="translate(300,31) translate(-250 0)"><path data-c="20D7" d="M377 694Q377 702 382 708T397 714Q404 714 409 709Q414 705 419 690Q429 653 460 633Q471 626 471 615Q471 606 468 603T454 594Q411 572 379 531Q377 529 374 525T369 519T364 517T357 516Q350 516 344 521T337 536Q337 555 384 595H213L42 596Q29 605 29 615Q29 622 42 635H401Q377 673 377 694Z" style="stroke-width:3;"></path></g></g></g><g data-mml-node="mo" transform="translate(878,0) translate(0 -0.5)"><path data-c="7C" d="M139 -249H137Q125 -249 119 -235V251L120 737Q130 750 139 750Q152 750 159 735V-235Q151 -249 141 -249H139Z" style="stroke-width:3;"></path></g></g><rect width="2739.3" height="60" x="120" y="220"></rect></g></g></g></svg><mjx-assistive-mml unselectable="on" display="inline" style="top:0px;left:0px;clip:rect(1px, 1px, 1px, 1px);-webkit-touch-callout:none;-webkit-user-select:none;-khtml-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none;position:absolute;padding:1px 0px 0px 0px;border:0px;display:block;width:auto;overflow:hidden;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo data-mjx-texclass="ORD" stretchy="false">|</mo><mrow data-mjx-texclass="ORD"><mover><mrow><msub><mi>P</mi><mn>1</mn></msub><msub><mi>P</mi><mn>2</mn></msub></mrow><mo stretchy="false">→</mo></mover></mrow><mo>⋅</mo><mrow data-mjx-texclass="ORD"><mover><mi>n</mi><mo stretchy="false">→</mo></mover></mrow><mo data-mjx-texclass="ORD" stretchy="false">|</mo></mrow><mrow><mo data-mjx-texclass="ORD" stretchy="false">|</mo><mrow data-mjx-texclass="ORD"><mover><mi>n</mi><mo stretchy="false">→</mo></mover></mrow><mo data-mjx-texclass="ORD" stretchy="false">|</mo></mrow></mfrac></math></mjx-assistive-mml></mjx-container> 其中,<mjx-container class="MathJax" jax="SVG" style="direction:ltr;position:relative;"><svg style="overflow:visible;min-height:1px;min-width:1px;vertical-align:-0.339ex;" xmlns="http://www.w3.org/2000/svg" width="2.44ex" height="1.885ex" role="img" focusable="false" viewBox="0 -683 1078.6 833" aria-hidden="true"><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g data-mml-node="math"><g data-mml-node="msub"><g data-mml-node="mi"><path data-c="1D443" d="M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z" style="stroke-width:3;"></path></g><g data-mml-node="mn" transform="translate(675,-150) scale(0.707)"><path data-c="31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z" style="stroke-width:3;"></path></g></g></g></g></svg><mjx-assistive-mml unselectable="on" display="inline" style="top:0px;left:0px;clip:rect(1px, 1px, 1px, 1px);-webkit-touch-callout:none;-webkit-user-select:none;-khtml-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none;position:absolute;padding:1px 0px 0px 0px;border:0px;display:block;width:auto;overflow:hidden;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>1</mn></msub></math></mjx-assistive-mml></mjx-container>和<mjx-container class="MathJax" jax="SVG" style="direction:ltr;position:relative;"><svg style="overflow:visible;min-height:1px;min-width:1px;vertical-align:-0.339ex;" xmlns="http://www.w3.org/2000/svg" width="2.44ex" height="1.885ex" role="img" focusable="false" viewBox="0 -683 1078.6 833" aria-hidden="true"><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g data-mml-node="math"><g data-mml-node="msub"><g data-mml-node="mi"><path data-c="1D443" d="M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z" style="stroke-width:3;"></path></g><g data-mml-node="mn" transform="translate(675,-150) scale(0.707)"><path data-c="32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z" style="stroke-width:3;"></path></g></g></g></g></svg><mjx-assistive-mml unselectable="on" display="inline" style="top:0px;left:0px;clip:rect(1px, 1px, 1px, 1px);-webkit-touch-callout:none;-webkit-user-select:none;-khtml-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none;position:absolute;padding:1px 0px 0px 0px;border:0px;display:block;width:auto;overflow:hidden;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>2</mn></msub></math></mjx-assistive-mml></mjx-container>分别为两个平面上的点,<mjx-container class="MathJax" jax="SVG" style="direction:ltr;position:relative;"><svg style="overflow:visible;min-height:1px;min-width:1px;vertical-align:-0.025ex;" xmlns="http://www.w3.org/2000/svg" width="1.357ex" height="1.937ex" role="img" focusable="false" viewBox="0 -845 600 856" aria-hidden="true"><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g data-mml-node="math"><g data-mml-node="TeXAtom" data-mjx-texclass="ORD"><g data-mml-node="mover"><g data-mml-node="mi"><path data-c="1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z" style="stroke-width:3;"></path></g><g data-mml-node="mo" transform="translate(300,31) translate(-250 0)"><path data-c="20D7" d="M377 694Q377 702 382 708T397 714Q404 714 409 709Q414 705 419 690Q429 653 460 633Q471 626 471 615Q471 606 468 603T454 594Q411 572 379 531Q377 529 374 525T369 519T364 517T357 516Q350 516 344 521T337 536Q337 555 384 595H213L42 596Q29 605 29 615Q29 622 42 635H401Q377 673 377 694Z" style="stroke-width:3;"></path></g></g></g></g></g></svg><mjx-assistive-mml unselectable="on" display="inline" style="top:0px;left:0px;clip:rect(1px, 1px, 1px, 1px);-webkit-touch-callout:none;-webkit-user-select:none;-khtml-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none;position:absolute;padding:1px 0px 0px 0px;border:0px;display:block;width:auto;overflow:hidden;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mover><mi>n</mi><mo stretchy="false">→</mo></mover></mrow></math></mjx-assistive-mml></mjx-container>为平面的法向量。</li></ul></div><div class="tip custom-block"><p class="custom-block-title">TIP</p><p>平面和点之间的距离计算公式:</p><mjx-container tabindex="0" class="MathJax" jax="SVG" display="true" style="direction:ltr;display:block;text-align:center;margin:1em 0;position:relative;"><svg style="overflow:visible;min-height:1px;min-width:1px;vertical-align:-2.386ex;" xmlns="http://www.w3.org/2000/svg" width="9.385ex" height="6.448ex" role="img" focusable="false" viewBox="0 -1795.5 4148 2850" aria-hidden="true"><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g data-mml-node="math"><g data-mml-node="mfrac"><g data-mml-node="mrow" transform="translate(220,709.5)"><g data-mml-node="mo" transform="translate(0 -0.5)"><path data-c="7C" d="M139 -249H137Q125 -249 119 -235V251L120 737Q130 750 139 750Q152 750 159 735V-235Q151 -249 141 -249H139Z" style="stroke-width:3;"></path></g><g data-mml-node="TeXAtom" data-mjx-texclass="ORD" transform="translate(278,0)"><g data-mml-node="mover"><g data-mml-node="mrow"><g data-mml-node="msub"><g data-mml-node="mi"><path data-c="1D443" d="M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z" style="stroke-width:3;"></path></g><g data-mml-node="mn" transform="translate(675,-150) scale(0.707)"><path data-c="31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z" style="stroke-width:3;"></path></g></g><g data-mml-node="mi" transform="translate(1078.6,0)"><path data-c="1D443" d="M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z" style="stroke-width:3;"></path></g></g><g data-mml-node="mo" transform="translate(914.8,272) translate(-250 0)"><path data-c="20D7" d="M377 694Q377 702 382 708T397 714Q404 714 409 709Q414 705 419 690Q429 653 460 633Q471 626 471 615Q471 606 468 603T454 594Q411 572 379 531Q377 529 374 525T369 519T364 517T357 516Q350 516 344 521T337 536Q337 555 384 595H213L42 596Q29 605 29 615Q29 622 42 635H401Q377 673 377 694Z" style="stroke-width:3;"></path></g></g></g><g data-mml-node="mo" transform="translate(2329.8,0)"><path data-c="22C5" d="M78 250Q78 274 95 292T138 310Q162 310 180 294T199 251Q199 226 182 208T139 190T96 207T78 250Z" style="stroke-width:3;"></path></g><g data-mml-node="TeXAtom" data-mjx-texclass="ORD" transform="translate(2830,0)"><g data-mml-node="mover"><g data-mml-node="mi"><path data-c="1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z" style="stroke-width:3;"></path></g><g data-mml-node="mo" transform="translate(300,31) translate(-250 0)"><path data-c="20D7" d="M377 694Q377 702 382 708T397 714Q404 714 409 709Q414 705 419 690Q429 653 460 633Q471 626 471 615Q471 606 468 603T454 594Q411 572 379 531Q377 529 374 525T369 519T364 517T357 516Q350 516 344 521T337 536Q337 555 384 595H213L42 596Q29 605 29 615Q29 622 42 635H401Q377 673 377 694Z" style="stroke-width:3;"></path></g></g></g><g data-mml-node="mo" transform="translate(3430,0) translate(0 -0.5)"><path data-c="7C" d="M139 -249H137Q125 -249 119 -235V251L120 737Q130 750 139 750Q152 750 159 735V-235Q151 -249 141 -249H139Z" style="stroke-width:3;"></path></g></g><g data-mml-node="mrow" transform="translate(1496,-805)"><g data-mml-node="mo" transform="translate(0 -0.5)"><path data-c="7C" d="M139 -249H137Q125 -249 119 -235V251L120 737Q130 750 139 750Q152 750 159 735V-235Q151 -249 141 -249H139Z" style="stroke-width:3;"></path></g><g data-mml-node="TeXAtom" data-mjx-texclass="ORD" transform="translate(278,0)"><g data-mml-node="mover"><g data-mml-node="mi"><path data-c="1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z" style="stroke-width:3;"></path></g><g data-mml-node="mo" transform="translate(300,31) translate(-250 0)"><path data-c="20D7" d="M377 694Q377 702 382 708T397 714Q404 714 409 709Q414 705 419 690Q429 653 460 633Q471 626 471 615Q471 606 468 603T454 594Q411 572 379 531Q377 529 374 525T369 519T364 517T357 516Q350 516 344 521T337 536Q337 555 384 595H213L42 596Q29 605 29 615Q29 622 42 635H401Q377 673 377 694Z" style="stroke-width:3;"></path></g></g></g><g data-mml-node="mo" transform="translate(878,0) translate(0 -0.5)"><path data-c="7C" d="M139 -249H137Q125 -249 119 -235V251L120 737Q130 750 139 750Q152 750 159 735V-235Q151 -249 141 -249H139Z" style="stroke-width:3;"></path></g></g><rect width="3908" height="60" x="120" y="220"></rect></g></g></g></svg><mjx-assistive-mml unselectable="on" display="block" style="top:0px;left:0px;clip:rect(1px, 1px, 1px, 1px);-webkit-touch-callout:none;-webkit-user-select:none;-khtml-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none;position:absolute;padding:1px 0px 0px 0px;border:0px;display:block;overflow:hidden;width:100%;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mfrac><mrow><mo data-mjx-texclass="ORD" stretchy="false">|</mo><mrow data-mjx-texclass="ORD"><mover><mrow><msub><mi>P</mi><mn>1</mn></msub><mi>P</mi></mrow><mo stretchy="false">→</mo></mover></mrow><mo>⋅</mo><mrow data-mjx-texclass="ORD"><mover><mi>n</mi><mo stretchy="false">→</mo></mover></mrow><mo data-mjx-texclass="ORD" stretchy="false">|</mo></mrow><mrow><mo data-mjx-texclass="ORD" stretchy="false">|</mo><mrow data-mjx-texclass="ORD"><mover><mi>n</mi><mo stretchy="false">→</mo></mover></mrow><mo data-mjx-texclass="ORD" stretchy="false">|</mo></mrow></mfrac></math></mjx-assistive-mml></mjx-container><p>其中,<mjx-container class="MathJax" jax="SVG" style="direction:ltr;position:relative;"><svg style="overflow:visible;min-height:1px;min-width:1px;vertical-align:-0.339ex;" xmlns="http://www.w3.org/2000/svg" width="2.44ex" height="1.885ex" role="img" focusable="false" viewBox="0 -683 1078.6 833" aria-hidden="true"><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g data-mml-node="math"><g data-mml-node="msub"><g data-mml-node="mi"><path data-c="1D443" d="M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z" style="stroke-width:3;"></path></g><g data-mml-node="mn" transform="translate(675,-150) scale(0.707)"><path data-c="31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z" style="stroke-width:3;"></path></g></g></g></g></svg><mjx-assistive-mml unselectable="on" display="inline" style="top:0px;left:0px;clip:rect(1px, 1px, 1px, 1px);-webkit-touch-callout:none;-webkit-user-select:none;-khtml-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none;position:absolute;padding:1px 0px 0px 0px;border:0px;display:block;width:auto;overflow:hidden;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>1</mn></msub></math></mjx-assistive-mml></mjx-container>为平面上的点,<mjx-container class="MathJax" jax="SVG" style="direction:ltr;position:relative;"><svg style="overflow:visible;min-height:1px;min-width:1px;vertical-align:0;" xmlns="http://www.w3.org/2000/svg" width="1.699ex" height="1.545ex" role="img" focusable="false" viewBox="0 -683 751 683" aria-hidden="true"><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g data-mml-node="math"><g data-mml-node="mi"><path data-c="1D443" d="M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z" style="stroke-width:3;"></path></g></g></g></svg><mjx-assistive-mml unselectable="on" display="inline" style="top:0px;left:0px;clip:rect(1px, 1px, 1px, 1px);-webkit-touch-callout:none;-webkit-user-select:none;-khtml-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none;position:absolute;padding:1px 0px 0px 0px;border:0px;display:block;width:auto;overflow:hidden;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math></mjx-assistive-mml></mjx-container>为点,<mjx-container class="MathJax" jax="SVG" style="direction:ltr;position:relative;"><svg style="overflow:visible;min-height:1px;min-width:1px;vertical-align:-0.025ex;" xmlns="http://www.w3.org/2000/svg" width="1.357ex" height="1.937ex" role="img" focusable="false" viewBox="0 -845 600 856" aria-hidden="true"><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g data-mml-node="math"><g data-mml-node="TeXAtom" data-mjx-texclass="ORD"><g data-mml-node="mover"><g data-mml-node="mi"><path data-c="1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z" style="stroke-width:3;"></path></g><g data-mml-node="mo" transform="translate(300,31) translate(-250 0)"><path data-c="20D7" d="M377 694Q377 702 382 708T397 714Q404 714 409 709Q414 705 419 690Q429 653 460 633Q471 626 471 615Q471 606 468 603T454 594Q411 572 379 531Q377 529 374 525T369 519T364 517T357 516Q350 516 344 521T337 536Q337 555 384 595H213L42 596Q29 605 29 615Q29 622 42 635H401Q377 673 377 694Z" style="stroke-width:3;"></path></g></g></g></g></g></svg><mjx-assistive-mml unselectable="on" display="inline" style="top:0px;left:0px;clip:rect(1px, 1px, 1px, 1px);-webkit-touch-callout:none;-webkit-user-select:none;-khtml-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none;position:absolute;padding:1px 0px 0px 0px;border:0px;display:block;width:auto;overflow:hidden;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mover><mi>n</mi><mo stretchy="false">→</mo></mover></mrow></math></mjx-assistive-mml></mjx-container>为平面的法向量。</p></div><p><strong>變數説明</strong>:</p><blockquote><ul><li>other (<a href="./plane.html#class-plane3"><code>Plane3</code></a> | <a href="./point.html#class-point3"><code>Point3</code></a>): 另一个平面或点</li></ul></blockquote><p><strong>返回</strong>: <a href="https://docs.python.org/3/library/functions.html#float" target="_blank" rel="noreferrer"><code>float</code></a>: 距离</p><p><strong>抛出</strong>:</p><blockquote><ul><li><a href="https://docs.python.org/3/library/exceptions.html#TypeError" target="_blank" rel="noreferrer"><code>TypeError</code></a> 不支持的类型</li></ul></blockquote><details><summary><b>源碼</b> 或 <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/plane.py#L81" target="_blank">於GitHub上查看</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> cal_distance</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, other: </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">'Plane3 | Point3'</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) -> </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">float</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
|
||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> if</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> isinstance</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(other, Plane3):</span></span>
|
||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> raise</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> NotImplementedError</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(</span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">'Not implemented yet.'</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">)</span></span>
|
||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> elif</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> isinstance</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(other, Point3):</span></span>
|
||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> abs</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.a </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> other.x </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">+</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.b </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> other.y </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">+</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.c </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> other.z </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">+</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.d) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">/</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> (</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.a </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">**</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> 2</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> +</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.b </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">**</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> 2</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> +</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.c </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">**</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> 2</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">**</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> 0.5</span></span>
|
||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> else</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
|
||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> raise</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> TypeError</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">f</span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">'Unsupported type: </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">{type</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(other)</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">}</span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">'</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">)</span></span></code></pre></div></details><hr><h4 id="method-cal-intersection-line3-self-other-plane3-line3" tabindex="-1"><em><strong>method</strong></em> <code>cal_intersection_line3(self, other: Plane3) -> Line3</code> <a class="header-anchor" href="#method-cal-intersection-line3-self-other-plane3-line3" aria-label="Permalink to "***method*** `cal_intersection_line3(self, other: Plane3) -> Line3`""></a></h4><p><strong>説明</strong>: 计算两平面的交线。</p><div class="tip custom-block"><p class="custom-block-title">TIP</p><p>计算两平面交线的一般步骤:</p><ol><li>求两平面的法向量的叉乘得到方向向量</li></ol><mjx-container tabindex="0" class="MathJax" jax="SVG" display="true" style="direction:ltr;display:block;text-align:center;margin:1em 0;position:relative;"><svg style="overflow:visible;min-height:1px;min-width:1px;vertical-align:-0.186ex;" xmlns="http://www.w3.org/2000/svg" width="11.937ex" height="1.756ex" role="img" focusable="false" viewBox="0 -694 5276 776" aria-hidden="true"><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g data-mml-node="math"><g data-mml-node="mi"><path data-c="1D451" d="M366 683Q367 683 438 688T511 694Q523 694 523 686Q523 679 450 384T375 83T374 68Q374 26 402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487H491Q506 153 506 145Q506 140 503 129Q490 79 473 48T445 8T417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157Q33 205 53 255T101 341Q148 398 195 420T280 442Q336 442 364 400Q369 394 369 396Q370 400 396 505T424 616Q424 629 417 632T378 637H357Q351 643 351 645T353 664Q358 683 366 683ZM352 326Q329 405 277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q233 26 290 98L298 109L352 326Z" style="stroke-width:3;"></path></g><g data-mml-node="mo" transform="translate(797.8,0)"><path data-c="3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z" style="stroke-width:3;"></path></g><g data-mml-node="mi" transform="translate(1853.6,0)"><path data-c="1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z" style="stroke-width:3;"></path></g><g data-mml-node="mn" transform="translate(2453.6,0)"><path data-c="31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z" style="stroke-width:3;"></path></g><g data-mml-node="mo" transform="translate(3175.8,0)"><path data-c="D7" d="M630 29Q630 9 609 9Q604 9 587 25T493 118L389 222L284 117Q178 13 175 11Q171 9 168 9Q160 9 154 15T147 29Q147 36 161 51T255 146L359 250L255 354Q174 435 161 449T147 471Q147 480 153 485T168 490Q173 490 175 489Q178 487 284 383L389 278L493 382Q570 459 587 475T609 491Q630 491 630 471Q630 464 620 453T522 355L418 250L522 145Q606 61 618 48T630 29Z" style="stroke-width:3;"></path></g><g data-mml-node="mi" transform="translate(4176,0)"><path data-c="1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z" style="stroke-width:3;"></path></g><g data-mml-node="mn" transform="translate(4776,0)"><path data-c="32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z" style="stroke-width:3;"></path></g></g></g></svg><mjx-assistive-mml unselectable="on" display="block" style="top:0px;left:0px;clip:rect(1px, 1px, 1px, 1px);-webkit-touch-callout:none;-webkit-user-select:none;-khtml-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none;position:absolute;padding:1px 0px 0px 0px;border:0px;display:block;overflow:hidden;width:100%;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mi>d</mi><mo>=</mo><mi>n</mi><mn>1</mn><mo>×</mo><mi>n</mi><mn>2</mn></math></mjx-assistive-mml></mjx-container><ol start="2"><li>寻找直线上的一点,依次假设<mjx-container class="MathJax" jax="SVG" style="direction:ltr;position:relative;"><svg style="overflow:visible;min-height:1px;min-width:1px;vertical-align:-0.186ex;" xmlns="http://www.w3.org/2000/svg" width="5.442ex" height="1.692ex" role="img" focusable="false" viewBox="0 -666 2405.6 748" aria-hidden="true"><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g data-mml-node="math"><g data-mml-node="mi"><path data-c="1D465" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z" style="stroke-width:3;"></path></g><g data-mml-node="mo" transform="translate(849.8,0)"><path data-c="3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z" style="stroke-width:3;"></path></g><g data-mml-node="mn" transform="translate(1905.6,0)"><path data-c="30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z" style="stroke-width:3;"></path></g></g></g></svg><mjx-assistive-mml unselectable="on" display="inline" style="top:0px;left:0px;clip:rect(1px, 1px, 1px, 1px);-webkit-touch-callout:none;-webkit-user-select:none;-khtml-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none;position:absolute;padding:1px 0px 0px 0px;border:0px;display:block;width:auto;overflow:hidden;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn></math></mjx-assistive-mml></mjx-container>, <mjx-container class="MathJax" jax="SVG" style="direction:ltr;position:relative;"><svg style="overflow:visible;min-height:1px;min-width:1px;vertical-align:-0.464ex;" xmlns="http://www.w3.org/2000/svg" width="5.257ex" height="1.971ex" role="img" focusable="false" viewBox="0 -666 2323.6 871" aria-hidden="true"><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g data-mml-node="math"><g data-mml-node="mi"><path data-c="1D466" d="M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z" style="stroke-width:3;"></path></g><g data-mml-node="mo" transform="translate(767.8,0)"><path data-c="3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z" style="stroke-width:3;"></path></g><g data-mml-node="mn" transform="translate(1823.6,0)"><path data-c="30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z" style="stroke-width:3;"></path></g></g></g></svg><mjx-assistive-mml unselectable="on" display="inline" style="top:0px;left:0px;clip:rect(1px, 1px, 1px, 1px);-webkit-touch-callout:none;-webkit-user-select:none;-khtml-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none;position:absolute;padding:1px 0px 0px 0px;border:0px;display:block;width:auto;overflow:hidden;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>0</mn></math></mjx-assistive-mml></mjx-container>, <mjx-container class="MathJax" jax="SVG" style="direction:ltr;position:relative;"><svg style="overflow:visible;min-height:1px;min-width:1px;vertical-align:-0.186ex;" xmlns="http://www.w3.org/2000/svg" width="5.2ex" height="1.692ex" role="img" focusable="false" viewBox="0 -666 2298.6 748" aria-hidden="true"><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g data-mml-node="math"><g data-mml-node="mi"><path data-c="1D467" d="M347 338Q337 338 294 349T231 360Q211 360 197 356T174 346T162 335T155 324L153 320Q150 317 138 317Q117 317 117 325Q117 330 120 339Q133 378 163 406T229 440Q241 442 246 442Q271 442 291 425T329 392T367 375Q389 375 411 408T434 441Q435 442 449 442H462Q468 436 468 434Q468 430 463 420T449 399T432 377T418 358L411 349Q368 298 275 214T160 106L148 94L163 93Q185 93 227 82T290 71Q328 71 360 90T402 140Q406 149 409 151T424 153Q443 153 443 143Q443 138 442 134Q425 72 376 31T278 -11Q252 -11 232 6T193 40T155 57Q111 57 76 -3Q70 -11 59 -11H54H41Q35 -5 35 -2Q35 13 93 84Q132 129 225 214T340 322Q352 338 347 338Z" style="stroke-width:3;"></path></g><g data-mml-node="mo" transform="translate(742.8,0)"><path data-c="3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z" style="stroke-width:3;"></path></g><g data-mml-node="mn" transform="translate(1798.6,0)"><path data-c="30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z" style="stroke-width:3;"></path></g></g></g></svg><mjx-assistive-mml unselectable="on" display="inline" style="top:0px;left:0px;clip:rect(1px, 1px, 1px, 1px);-webkit-touch-callout:none;-webkit-user-select:none;-khtml-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none;position:absolute;padding:1px 0px 0px 0px;border:0px;display:block;width:auto;overflow:hidden;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi><mo>=</mo><mn>0</mn></math></mjx-assistive-mml></mjx-container>,并代入两平面方程求出合适的点 直线最终可用参数方程或点向式表示</li></ol><mjx-container tabindex="0" class="MathJax" jax="SVG" display="true" style="direction:ltr;display:block;text-align:center;margin:1em 0;position:relative;"><svg style="overflow:visible;min-height:1px;min-width:1px;vertical-align:-3.281ex;" xmlns="http://www.w3.org/2000/svg" width="13.363ex" height="7.692ex" role="img" focusable="false" viewBox="0 -1950 5906.6 3400" aria-hidden="true"><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g data-mml-node="math"><g data-mml-node="mrow"><g data-mml-node="mo"><path data-c="23A7" d="M712 899L718 893V876V865Q718 854 704 846Q627 793 577 710T510 525Q510 524 509 521Q505 493 504 349Q504 345 504 334Q504 277 504 240Q504 -2 503 -4Q502 -8 494 -9T444 -10Q392 -10 390 -9Q387 -8 386 -5Q384 5 384 230Q384 262 384 312T383 382Q383 481 392 535T434 656Q510 806 664 892L677 899H712Z" transform="translate(0,1051)" style="stroke-width:3;"></path><path data-c="23A9" d="M718 -893L712 -899H677L666 -893Q542 -825 468 -714T385 -476Q384 -466 384 -282Q384 3 385 5L389 9Q392 10 444 10Q486 10 494 9T503 4Q504 2 504 -239V-310V-366Q504 -470 508 -513T530 -609Q546 -657 569 -698T617 -767T661 -812T699 -843T717 -856T718 -876V-893Z" transform="translate(0,-551)" style="stroke-width:3;"></path><path data-c="23A8" d="M389 1159Q391 1160 455 1160Q496 1160 498 1159Q501 1158 502 1155Q504 1145 504 924Q504 691 503 682Q494 549 425 439T243 259L229 250L243 241Q349 175 421 66T503 -182Q504 -191 504 -424Q504 -600 504 -629T499 -659H498Q496 -660 444 -660T390 -659Q387 -658 386 -655Q384 -645 384 -425V-282Q384 -176 377 -116T342 10Q325 54 301 92T255 155T214 196T183 222T171 232Q170 233 170 250T171 268Q171 269 191 284T240 331T300 407T354 524T383 679Q384 691 384 925Q384 1152 385 1155L389 1159Z" transform="translate(0,0)" style="stroke-width:3;"></path><svg width="889" height="81" y="1060" x="0" viewBox="0 14.3 889 81"><path data-c="23AA" d="M384 150V266Q384 304 389 309Q391 310 455 310Q496 310 498 309Q502 308 503 298Q504 283 504 150Q504 32 504 12T499 -9H498Q496 -10 444 -10T390 -9Q386 -8 385 2Q384 17 384 150Z" transform="scale(1,0.398)" style="stroke-width:3;"></path></svg><svg width="889" height="81" y="-641" x="0" viewBox="0 14.3 889 81"><path data-c="23AA" d="M384 150V266Q384 304 389 309Q391 310 455 310Q496 310 498 309Q502 308 503 298Q504 283 504 150Q504 32 504 12T499 -9H498Q496 -10 444 -10T390 -9Q386 -8 385 2Q384 17 384 150Z" transform="scale(1,0.398)" style="stroke-width:3;"></path></svg></g><g data-mml-node="mtable" transform="translate(889,0)"><g data-mml-node="mtr" transform="translate(0,1200)"><g data-mml-node="mtd"><g data-mml-node="mi"><path data-c="1D465" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z" style="stroke-width:3;"></path></g><g data-mml-node="mo" transform="translate(849.8,0)"><path data-c="3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z" style="stroke-width:3;"></path></g><g data-mml-node="msub" transform="translate(1905.6,0)"><g data-mml-node="mi"><path data-c="1D465" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z" style="stroke-width:3;"></path></g><g data-mml-node="mn" transform="translate(605,-150) scale(0.707)"><path data-c="30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z" style="stroke-width:3;"></path></g></g><g data-mml-node="mo" transform="translate(3136.3,0)"><path data-c="2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z" style="stroke-width:3;"></path></g><g data-mml-node="mi" transform="translate(4136.6,0)"><path data-c="1D451" d="M366 683Q367 683 438 688T511 694Q523 694 523 686Q523 679 450 384T375 83T374 68Q374 26 402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487H491Q506 153 506 145Q506 140 503 129Q490 79 473 48T445 8T417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157Q33 205 53 255T101 341Q148 398 195 420T280 442Q336 442 364 400Q369 394 369 396Q370 400 396 505T424 616Q424 629 417 632T378 637H357Q351 643 351 645T353 664Q358 683 366 683ZM352 326Q329 405 277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q233 26 290 98L298 109L352 326Z" style="stroke-width:3;"></path></g><g data-mml-node="mi" transform="translate(4656.6,0)"><path data-c="1D461" d="M26 385Q19 392 19 395Q19 399 22 411T27 425Q29 430 36 430T87 431H140L159 511Q162 522 166 540T173 566T179 586T187 603T197 615T211 624T229 626Q247 625 254 615T261 596Q261 589 252 549T232 470L222 433Q222 431 272 431H323Q330 424 330 420Q330 398 317 385H210L174 240Q135 80 135 68Q135 26 162 26Q197 26 230 60T283 144Q285 150 288 151T303 153H307Q322 153 322 145Q322 142 319 133Q314 117 301 95T267 48T216 6T155 -11Q125 -11 98 4T59 56Q57 64 57 83V101L92 241Q127 382 128 383Q128 385 77 385H26Z" style="stroke-width:3;"></path></g></g></g><g data-mml-node="mtr" transform="translate(0,0)"><g data-mml-node="mtd"><g data-mml-node="mi"><path data-c="1D466" d="M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z" style="stroke-width:3;"></path></g><g data-mml-node="mo" transform="translate(767.8,0)"><path data-c="3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z" style="stroke-width:3;"></path></g><g data-mml-node="msub" transform="translate(1823.6,0)"><g data-mml-node="mi"><path data-c="1D466" d="M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z" style="stroke-width:3;"></path></g><g data-mml-node="mn" transform="translate(523,-150) scale(0.707)"><path data-c="30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z" style="stroke-width:3;"></path></g></g><g data-mml-node="mo" transform="translate(2972.3,0)"><path data-c="2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z" style="stroke-width:3;"></path></g><g data-mml-node="mi" transform="translate(3972.6,0)"><path data-c="1D451" d="M366 683Q367 683 438 688T511 694Q523 694 523 686Q523 679 450 384T375 83T374 68Q374 26 402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487H491Q506 153 506 145Q506 140 503 129Q490 79 473 48T445 8T417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157Q33 205 53 255T101 341Q148 398 195 420T280 442Q336 442 364 400Q369 394 369 396Q370 400 396 505T424 616Q424 629 417 632T378 637H357Q351 643 351 645T353 664Q358 683 366 683ZM352 326Q329 405 277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q233 26 290 98L298 109L352 326Z" style="stroke-width:3;"></path></g><g data-mml-node="mi" transform="translate(4492.6,0)"><path data-c="1D461" d="M26 385Q19 392 19 395Q19 399 22 411T27 425Q29 430 36 430T87 431H140L159 511Q162 522 166 540T173 566T179 586T187 603T197 615T211 624T229 626Q247 625 254 615T261 596Q261 589 252 549T232 470L222 433Q222 431 272 431H323Q330 424 330 420Q330 398 317 385H210L174 240Q135 80 135 68Q135 26 162 26Q197 26 230 60T283 144Q285 150 288 151T303 153H307Q322 153 322 145Q322 142 319 133Q314 117 301 95T267 48T216 6T155 -11Q125 -11 98 4T59 56Q57 64 57 83V101L92 241Q127 382 128 383Q128 385 77 385H26Z" style="stroke-width:3;"></path></g></g></g><g data-mml-node="mtr" transform="translate(0,-1200)"><g data-mml-node="mtd"><g data-mml-node="mi"><path data-c="1D467" d="M347 338Q337 338 294 349T231 360Q211 360 197 356T174 346T162 335T155 324L153 320Q150 317 138 317Q117 317 117 325Q117 330 120 339Q133 378 163 406T229 440Q241 442 246 442Q271 442 291 425T329 392T367 375Q389 375 411 408T434 441Q435 442 449 442H462Q468 436 468 434Q468 430 463 420T449 399T432 377T418 358L411 349Q368 298 275 214T160 106L148 94L163 93Q185 93 227 82T290 71Q328 71 360 90T402 140Q406 149 409 151T424 153Q443 153 443 143Q443 138 442 134Q425 72 376 31T278 -11Q252 -11 232 6T193 40T155 57Q111 57 76 -3Q70 -11 59 -11H54H41Q35 -5 35 -2Q35 13 93 84Q132 129 225 214T340 322Q352 338 347 338Z" style="stroke-width:3;"></path></g><g data-mml-node="mo" transform="translate(742.8,0)"><path data-c="3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z" style="stroke-width:3;"></path></g><g data-mml-node="msub" transform="translate(1798.6,0)"><g data-mml-node="mi"><path data-c="1D467" d="M347 338Q337 338 294 349T231 360Q211 360 197 356T174 346T162 335T155 324L153 320Q150 317 138 317Q117 317 117 325Q117 330 120 339Q133 378 163 406T229 440Q241 442 246 442Q271 442 291 425T329 392T367 375Q389 375 411 408T434 441Q435 442 449 442H462Q468 436 468 434Q468 430 463 420T449 399T432 377T418 358L411 349Q368 298 275 214T160 106L148 94L163 93Q185 93 227 82T290 71Q328 71 360 90T402 140Q406 149 409 151T424 153Q443 153 443 143Q443 138 442 134Q425 72 376 31T278 -11Q252 -11 232 6T193 40T155 57Q111 57 76 -3Q70 -11 59 -11H54H41Q35 -5 35 -2Q35 13 93 84Q132 129 225 214T340 322Q352 338 347 338Z" style="stroke-width:3;"></path></g><g data-mml-node="mn" transform="translate(498,-150) scale(0.707)"><path data-c="30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z" style="stroke-width:3;"></path></g></g><g data-mml-node="mo" transform="translate(2922.3,0)"><path data-c="2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z" style="stroke-width:3;"></path></g><g data-mml-node="mi" transform="translate(3922.6,0)"><path data-c="1D451" d="M366 683Q367 683 438 688T511 694Q523 694 523 686Q523 679 450 384T375 83T374 68Q374 26 402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487H491Q506 153 506 145Q506 140 503 129Q490 79 473 48T445 8T417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157Q33 205 53 255T101 341Q148 398 195 420T280 442Q336 442 364 400Q369 394 369 396Q370 400 396 505T424 616Q424 629 417 632T378 637H357Q351 643 351 645T353 664Q358 683 366 683ZM352 326Q329 405 277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q233 26 290 98L298 109L352 326Z" style="stroke-width:3;"></path></g><g data-mml-node="mi" transform="translate(4442.6,0)"><path data-c="1D461" d="M26 385Q19 392 19 395Q19 399 22 411T27 425Q29 430 36 430T87 431H140L159 511Q162 522 166 540T173 566T179 586T187 603T197 615T211 624T229 626Q247 625 254 615T261 596Q261 589 252 549T232 470L222 433Q222 431 272 431H323Q330 424 330 420Q330 398 317 385H210L174 240Q135 80 135 68Q135 26 162 26Q197 26 230 60T283 144Q285 150 288 151T303 153H307Q322 153 322 145Q322 142 319 133Q314 117 301 95T267 48T216 6T155 -11Q125 -11 98 4T59 56Q57 64 57 83V101L92 241Q127 382 128 383Q128 385 77 385H26Z" style="stroke-width:3;"></path></g></g></g></g><g data-mml-node="mo" transform="translate(5906.6,0) translate(0 250)"></g></g></g></g></svg><mjx-assistive-mml unselectable="on" display="block" style="top:0px;left:0px;clip:rect(1px, 1px, 1px, 1px);-webkit-touch-callout:none;-webkit-user-select:none;-khtml-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none;position:absolute;padding:1px 0px 0px 0px;border:0px;display:block;overflow:hidden;width:100%;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">{</mo><mtable columnalign="left left" columnspacing="1em" rowspacing=".2em"><mtr><mtd><mi>x</mi><mo>=</mo><msub><mi>x</mi><mn>0</mn></msub><mo>+</mo><mi>d</mi><mi>t</mi></mtd></mtr><mtr><mtd><mi>y</mi><mo>=</mo><msub><mi>y</mi><mn>0</mn></msub><mo>+</mo><mi>d</mi><mi>t</mi></mtd></mtr><mtr><mtd><mi>z</mi><mo>=</mo><msub><mi>z</mi><mn>0</mn></msub><mo>+</mo><mi>d</mi><mi>t</mi></mtd></mtr></mtable><mo data-mjx-texclass="CLOSE" fence="true" stretchy="true" symmetric="true"></mo></mrow></math></mjx-assistive-mml></mjx-container><p>或</p><mjx-container tabindex="0" class="MathJax" jax="SVG" display="true" style="direction:ltr;display:block;text-align:center;margin:1em 0;position:relative;"><svg style="overflow:visible;min-height:1px;min-width:1px;vertical-align:-1.991ex;" xmlns="http://www.w3.org/2000/svg" width="27.19ex" height="4.839ex" role="img" focusable="false" viewBox="0 -1259 12018.1 2139" aria-hidden="true"><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g data-mml-node="math"><g data-mml-node="mfrac"><g data-mml-node="mrow" transform="translate(220,676)"><g data-mml-node="mi"><path data-c="1D465" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z" style="stroke-width:3;"></path></g><g data-mml-node="mo" transform="translate(794.2,0)"><path data-c="2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z" style="stroke-width:3;"></path></g><g data-mml-node="msub" transform="translate(1794.4,0)"><g data-mml-node="mi"><path data-c="1D465" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z" style="stroke-width:3;"></path></g><g data-mml-node="mn" transform="translate(605,-150) scale(0.707)"><path data-c="30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z" style="stroke-width:3;"></path></g></g></g><g data-mml-node="mi" transform="translate(1182.5,-686)"><path data-c="1D45A" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z" style="stroke-width:3;"></path></g><rect width="3003" height="60" x="120" y="220"></rect></g><g data-mml-node="mo" transform="translate(3520.8,0)"><path data-c="3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z" style="stroke-width:3;"></path></g><g data-mml-node="mfrac" transform="translate(4576.6,0)"><g data-mml-node="mrow" transform="translate(220,676)"><g data-mml-node="mi"><path data-c="1D466" d="M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z" style="stroke-width:3;"></path></g><g data-mml-node="mo" transform="translate(712.2,0)"><path data-c="2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z" style="stroke-width:3;"></path></g><g data-mml-node="msub" transform="translate(1712.4,0)"><g data-mml-node="mi"><path data-c="1D466" d="M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z" style="stroke-width:3;"></path></g><g data-mml-node="mn" transform="translate(523,-150) scale(0.707)"><path data-c="30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z" style="stroke-width:3;"></path></g></g></g><g data-mml-node="mi" transform="translate(1239.5,-686)"><path data-c="1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z" style="stroke-width:3;"></path></g><rect width="2839" height="60" x="120" y="220"></rect></g><g data-mml-node="mo" transform="translate(7933.3,0)"><path data-c="3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z" style="stroke-width:3;"></path></g><g data-mml-node="mfrac" transform="translate(8989.1,0)"><g data-mml-node="mrow" transform="translate(220,676)"><g data-mml-node="mi"><path data-c="1D467" d="M347 338Q337 338 294 349T231 360Q211 360 197 356T174 346T162 335T155 324L153 320Q150 317 138 317Q117 317 117 325Q117 330 120 339Q133 378 163 406T229 440Q241 442 246 442Q271 442 291 425T329 392T367 375Q389 375 411 408T434 441Q435 442 449 442H462Q468 436 468 434Q468 430 463 420T449 399T432 377T418 358L411 349Q368 298 275 214T160 106L148 94L163 93Q185 93 227 82T290 71Q328 71 360 90T402 140Q406 149 409 151T424 153Q443 153 443 143Q443 138 442 134Q425 72 376 31T278 -11Q252 -11 232 6T193 40T155 57Q111 57 76 -3Q70 -11 59 -11H54H41Q35 -5 35 -2Q35 13 93 84Q132 129 225 214T340 322Q352 338 347 338Z" style="stroke-width:3;"></path></g><g data-mml-node="mo" transform="translate(687.2,0)"><path data-c="2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z" style="stroke-width:3;"></path></g><g data-mml-node="msub" transform="translate(1687.4,0)"><g data-mml-node="mi"><path data-c="1D467" d="M347 338Q337 338 294 349T231 360Q211 360 197 356T174 346T162 335T155 324L153 320Q150 317 138 317Q117 317 117 325Q117 330 120 339Q133 378 163 406T229 440Q241 442 246 442Q271 442 291 425T329 392T367 375Q389 375 411 408T434 441Q435 442 449 442H462Q468 436 468 434Q468 430 463 420T449 399T432 377T418 358L411 349Q368 298 275 214T160 106L148 94L163 93Q185 93 227 82T290 71Q328 71 360 90T402 140Q406 149 409 151T424 153Q443 153 443 143Q443 138 442 134Q425 72 376 31T278 -11Q252 -11 232 6T193 40T155 57Q111 57 76 -3Q70 -11 59 -11H54H41Q35 -5 35 -2Q35 13 93 84Q132 129 225 214T340 322Q352 338 347 338Z" style="stroke-width:3;"></path></g><g data-mml-node="mn" transform="translate(498,-150) scale(0.707)"><path data-c="30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z" style="stroke-width:3;"></path></g></g></g><g data-mml-node="mi" transform="translate(1263,-686)"><path data-c="1D45D" d="M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z" style="stroke-width:3;"></path></g><rect width="2789" height="60" x="120" y="220"></rect></g></g></g></svg><mjx-assistive-mml unselectable="on" display="block" style="top:0px;left:0px;clip:rect(1px, 1px, 1px, 1px);-webkit-touch-callout:none;-webkit-user-select:none;-khtml-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none;position:absolute;padding:1px 0px 0px 0px;border:0px;display:block;overflow:hidden;width:100%;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mfrac><mrow><mi>x</mi><mo>−</mo><msub><mi>x</mi><mn>0</mn></msub></mrow><mi>m</mi></mfrac><mo>=</mo><mfrac><mrow><mi>y</mi><mo>−</mo><msub><mi>y</mi><mn>0</mn></msub></mrow><mi>n</mi></mfrac><mo>=</mo><mfrac><mrow><mi>z</mi><mo>−</mo><msub><mi>z</mi><mn>0</mn></msub></mrow><mi>p</mi></mfrac></math></mjx-assistive-mml></mjx-container></div><p><strong>變數説明</strong>:</p><blockquote><ul><li>other (<a href="./plane.html#class-plane3"><code>Plane3</code></a>): 另一个平面</li></ul></blockquote><p><strong>返回</strong>: <a href="./line.html#class-line3"><code>Line3</code></a>: 交线</p><p><strong>抛出</strong>:</p><blockquote><ul><li><a href="https://docs.python.org/3/library/exceptions.html#ValueError" target="_blank" rel="noreferrer"><code>ValueError</code></a> 平面平行且无交线</li></ul></blockquote><details><summary><b>源碼</b> 或 <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/plane.py#L111" target="_blank">於GitHub上查看</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> cal_intersection_line3</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, other: </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">'Plane3'</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) -> </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">'Line3'</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
|
||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> if</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.normal.is_parallel(other.normal):</span></span>
|
||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> raise</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> ValueError</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(</span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">'Planes are parallel and have no intersection.'</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">)</span></span>
|
||
<span class="line"><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> direction </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.normal.cross(other.normal)</span></span>
|
||
<span class="line"><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> x, y, z </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> (</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">0</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">, </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">0</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">, </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">0</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">)</span></span>
|
||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> if</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.a </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">!=</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> 0</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> and</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> other.a </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">!=</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> 0</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
|
||
<span class="line"><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> A </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> np.array([[</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.b, </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.c], [other.b, other.c]])</span></span>
|
||
<span class="line"><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> B </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> np.array([</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.d, </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">other.d])</span></span>
|
||
<span class="line"><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> y, z </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> np.linalg.solve(A, B)</span></span>
|
||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> elif</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.b </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">!=</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> 0</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> and</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> other.b </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">!=</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> 0</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
|
||
<span class="line"><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> A </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> np.array([[</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.a, </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.c], [other.a, other.c]])</span></span>
|
||
<span class="line"><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> B </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> np.array([</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.d, </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">other.d])</span></span>
|
||
<span class="line"><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> x, z </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> np.linalg.solve(A, B)</span></span>
|
||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> elif</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.c </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">!=</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> 0</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> and</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> other.c </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">!=</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> 0</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
|
||
<span class="line"><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> A </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> np.array([[</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.a, </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.b], [other.a, other.b]])</span></span>
|
||
<span class="line"><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> B </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> np.array([</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.d, </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">other.d])</span></span>
|
||
<span class="line"><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> x, y </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> np.linalg.solve(A, B)</span></span>
|
||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> Line3(Point3(x, y, z), direction)</span></span></code></pre></div></details><hr><h4 id="method-cal-intersection-point3-self-other-line3-point3" tabindex="-1"><em><strong>method</strong></em> <code>cal_intersection_point3(self, other: Line3) -> Point3</code> <a class="header-anchor" href="#method-cal-intersection-point3-self-other-line3-point3" aria-label="Permalink to "***method*** `cal_intersection_point3(self, other: Line3) -> Point3`""></a></h4><p><strong>説明</strong>: 计算平面与直线的交点。</p><div class="tip custom-block"><p class="custom-block-title">TIP</p><p>计算平面与直线交点的一般步骤:</p><ol><li>求直线的参数方程</li><li>代入平面方程,解出t</li><li>代入直线参数方程,求出交点</li></ol></div><p><strong>變數説明</strong>:</p><blockquote><ul><li>other (<a href="./line.html#class-line3"><code>Line3</code></a>): 直线</li></ul></blockquote><p><strong>返回</strong>: <a href="./point.html#class-point3"><code>Point3</code></a>: 交点</p><p><strong>抛出</strong>:</p><blockquote><ul><li><a href="https://docs.python.org/3/library/exceptions.html#ValueError" target="_blank" rel="noreferrer"><code>ValueError</code></a> 平面与直线平行或重合</li></ul></blockquote><details><summary><b>源碼</b> 或 <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/plane.py#L155" target="_blank">於GitHub上查看</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> cal_intersection_point3</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, other: </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">'Line3'</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) -> </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">'Point3'</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
|
||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> if</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.normal </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">@</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> other.direction </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">==</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> 0</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
|
||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> raise</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> ValueError</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(</span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">'The plane and the line are parallel or coincident.'</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">)</span></span>
|
||
<span class="line"><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> x, y, z </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> other.get_parametric_equations()</span></span>
|
||
<span class="line"><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> t </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> -</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.a </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> other.point.x </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">+</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.b </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> other.point.y </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">+</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.c </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> other.point.z </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">+</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.d) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">/</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> (</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.a </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> other.direction.x </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">+</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.b </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> other.direction.y </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">+</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.c </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> other.direction.z)</span></span>
|
||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> Point3(x(t), y(t), z(t))</span></span></code></pre></div></details><hr><h4 id="method-cal-parallel-plane3-self-point-point3-plane3" tabindex="-1"><em><strong>method</strong></em> <code>cal_parallel_plane3(self, point: Point3) -> Plane3</code> <a class="header-anchor" href="#method-cal-parallel-plane3-self-point-point3-plane3" aria-label="Permalink to "***method*** `cal_parallel_plane3(self, point: Point3) -> Plane3`""></a></h4><p><strong>説明</strong>: 计算平行于该平面且过指定点的平面。</p><p><strong>變數説明</strong>:</p><blockquote><ul><li>point (<a href="./point.html#class-point3"><code>Point3</code></a>): 指定点</li></ul></blockquote><p><strong>返回</strong>: <a href="./plane.html#class-plane3"><code>Plane3</code></a>: 平面</p><details><summary><b>源碼</b> 或 <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/plane.py#L181" target="_blank">於GitHub上查看</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> cal_parallel_plane3</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, point: </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">'Point3'</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) -> </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">'Plane3'</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
|
||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> Plane3.from_point_and_normal(point, </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.normal)</span></span></code></pre></div></details><hr><h4 id="method-is-parallel-self-other-plane3-bool" tabindex="-1"><em><strong>method</strong></em> <code>is_parallel(self, other: Plane3) -> bool</code> <a class="header-anchor" href="#method-is-parallel-self-other-plane3-bool" aria-label="Permalink to "***method*** `is_parallel(self, other: Plane3) -> bool`""></a></h4><p><strong>説明</strong>: 判断两个平面是否平行。</p><p><strong>變數説明</strong>:</p><blockquote><ul><li>other (<a href="./plane.html#class-plane3"><code>Plane3</code></a>): 另一个平面</li></ul></blockquote><p><strong>返回</strong>: <a href="https://docs.python.org/3/library/functions.html#bool" target="_blank" rel="noreferrer"><code>bool</code></a>: 是否平行</p><details><summary><b>源碼</b> 或 <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/plane.py#L191" target="_blank">於GitHub上查看</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> is_parallel</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, other: </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">'Plane3'</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) -> </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">bool</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
|
||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.normal.is_parallel(other.normal)</span></span></code></pre></div></details><hr><p><a href="https://docs.python.org/3/library/functions.html#property" target="_blank" rel="noreferrer"><code>@property</code></a></p><h4 id="method-normal-self-vector3" tabindex="-1"><em><strong>method</strong></em> <code>normal(self) -> Vector3</code> <a class="header-anchor" href="#method-normal-self-vector3" aria-label="Permalink to "***method*** `normal(self) -> Vector3`""></a></h4><p><strong>説明</strong>: 平面的法向量。</p><p><strong>返回</strong>: <a href="./vector.html#class-vector3"><code>Vector3</code></a>: 法向量</p><details><summary><b>源碼</b> 或 <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/plane.py#L202" target="_blank">於GitHub上查看</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;">@</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">property</span></span>
|
||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> normal</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self) -> </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">'Vector3'</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
|
||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> Vector3(</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.a, </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.b, </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.c)</span></span></code></pre></div></details><hr><p><a href="https://docs.python.org/3/library/functions.html#classmethod" target="_blank" rel="noreferrer"><code>@classmethod</code></a></p><h4 id="method-from-point-and-normal-cls-point-point3-normal-vector3-plane3" tabindex="-1"><em><strong>method</strong></em> <code>from_point_and_normal(cls, point: Point3, normal: Vector3) -> Plane3</code> <a class="header-anchor" href="#method-from-point-and-normal-cls-point-point3-normal-vector3-plane3" aria-label="Permalink to "***method*** `from_point_and_normal(cls, point: Point3, normal: Vector3) -> Plane3`""></a></h4><p><strong>説明</strong>: 工厂函数 由点和法向量构造平面(点法式构造)。</p><p><strong>變數説明</strong>:</p><blockquote><ul><li>point (<a href="./point.html#class-point3"><code>Point3</code></a>): 平面上一点</li><li>normal (<a href="./vector.html#class-vector3"><code>Vector3</code></a>): 法向量</li></ul></blockquote><p><strong>返回</strong>: <a href="./plane.html#class-plane3"><code>Plane3</code></a>: 平面</p><details><summary><b>源碼</b> 或 <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/plane.py#L211" target="_blank">於GitHub上查看</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;">@</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">classmethod</span></span>
|
||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> from_point_and_normal</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(cls, point: </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">'Point3'</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">, normal: </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">'Vector3'</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) -> </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">'Plane3'</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
|
||
<span class="line"><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> a, b, c </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> (normal.x, normal.y, normal.z)</span></span>
|
||
<span class="line"><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> d </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> -</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">a </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> point.x </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> b </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> point.y </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> c </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> point.z</span></span>
|
||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> cls</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(a, b, c, d)</span></span></code></pre></div></details><hr><p><a href="https://docs.python.org/3/library/functions.html#classmethod" target="_blank" rel="noreferrer"><code>@classmethod</code></a></p><h4 id="method-from-three-points-cls-p1-point3-p2-point3-p3-point3-plane3" tabindex="-1"><em><strong>method</strong></em> <code>from_three_points(cls, p1: Point3, p2: Point3, p3: Point3) -> Plane3</code> <a class="header-anchor" href="#method-from-three-points-cls-p1-point3-p2-point3-p3-point3-plane3" aria-label="Permalink to "***method*** `from_three_points(cls, p1: Point3, p2: Point3, p3: Point3) -> Plane3`""></a></h4><p><strong>説明</strong>: 工厂函数 由三点构造平面。</p><p><strong>變數説明</strong>:</p><blockquote><ul><li>p1 (<a href="./point.html#class-point3"><code>Point3</code></a>): 点1</li><li>p2 (<code>Point3</code>): 点2</li><li>p3 (<code>Point3</code>): 点3</li></ul></blockquote><p><strong>返回</strong>: 平面</p><details><summary><b>源碼</b> 或 <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/plane.py#L225" target="_blank">於GitHub上查看</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;">@</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">classmethod</span></span>
|
||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> from_three_points</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(cls, p1: </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">'Point3'</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">, p2: </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">'Point3'</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">, p3: </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">'Point3'</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) -> </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">'Plane3'</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
|
||
<span class="line"><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> v1 </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> p2 </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> p1</span></span>
|
||
<span class="line"><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> v2 </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> p3 </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> p1</span></span>
|
||
<span class="line"><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> normal </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> v1.cross(v2)</span></span>
|
||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> cls</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.from_point_and_normal(p1, normal)</span></span></code></pre></div></details><hr><p><a href="https://docs.python.org/3/library/functions.html#classmethod" target="_blank" rel="noreferrer"><code>@classmethod</code></a></p><h4 id="method-from-two-lines-cls-l1-line3-l2-line3-plane3" tabindex="-1"><em><strong>method</strong></em> <code>from_two_lines(cls, l1: Line3, l2: Line3) -> Plane3</code> <a class="header-anchor" href="#method-from-two-lines-cls-l1-line3-l2-line3-plane3" aria-label="Permalink to "***method*** `from_two_lines(cls, l1: Line3, l2: Line3) -> Plane3`""></a></h4><p><strong>説明</strong>: 工厂函数 由两直线构造平面。</p><p><strong>變數説明</strong>:</p><blockquote><ul><li>l1 (<a href="./line.html#class-line3"><code>Line3</code></a>): 直线</li><li>l2 (<code>Line3</code>): 直线</li></ul></blockquote><p><strong>返回</strong>: 平面</p><details><summary><b>源碼</b> 或 <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/plane.py#L243" target="_blank">於GitHub上查看</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;">@</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">classmethod</span></span>
|
||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> from_two_lines</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(cls, l1: </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">'Line3'</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">, l2: </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">'Line3'</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) -> </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">'Plane3'</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
|
||
<span class="line"><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> v1 </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> l1.direction</span></span>
|
||
<span class="line"><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> v2 </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> l2.point </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> l1.point</span></span>
|
||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> if</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> v2 </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">==</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> zero_vector3:</span></span>
|
||
<span class="line"><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> v2 </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> l2.get_point(</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">1</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> l1.point</span></span>
|
||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> cls</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.from_point_and_normal(l1.point, v1.cross(v2))</span></span></code></pre></div></details><hr><p><a href="https://docs.python.org/3/library/functions.html#classmethod" target="_blank" rel="noreferrer"><code>@classmethod</code></a></p><h4 id="method-from-point-and-line-cls-point-point3-line-line3-plane3" tabindex="-1"><em><strong>method</strong></em> <code>from_point_and_line(cls, point: Point3, line: Line3) -> Plane3</code> <a class="header-anchor" href="#method-from-point-and-line-cls-point-point3-line-line3-plane3" aria-label="Permalink to "***method*** `from_point_and_line(cls, point: Point3, line: Line3) -> Plane3`""></a></h4><p><strong>説明</strong>: 工厂函数 由点和直线构造平面。</p><p><strong>變數説明</strong>:</p><blockquote><ul><li>point (<a href="./point.html#class-point3"><code>Point3</code></a>): 平面上一点</li><li>line (<a href="./line.html#class-line3"><code>Line3</code></a>): 直线</li></ul></blockquote><p><strong>返回</strong>: 平面</p><details><summary><b>源碼</b> 或 <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/plane.py#L259" target="_blank">於GitHub上查看</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;">@</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">classmethod</span></span>
|
||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> from_point_and_line</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(cls, point: </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">'Point3'</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">, line: </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">'Line3'</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) -> </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">'Plane3'</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
|
||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> cls</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.from_point_and_normal(point, line.direction)</span></span></code></pre></div></details><hr><p><code>@overload</code></p><h4 id="method-self-other-line3-point3-none" tabindex="-1"><em><strong>method</strong></em> <code>self & other: Line3 => Point3 | None</code> <a class="header-anchor" href="#method-self-other-line3-point3-none" aria-label="Permalink to "***method*** `self & other: Line3 => Point3 | None`""></a></h4><details><summary><b>源碼</b> 或 <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/plane.py#L296" target="_blank">於GitHub上查看</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;">@overload</span></span>
|
||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> __and__</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, other: </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">'Line3'</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) -> </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">'Point3 | None'</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
|
||
<span class="line"><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> ...</span></span></code></pre></div></details><hr><p><code>@overload</code></p><h4 id="method-self-other-plane3-line3-none" tabindex="-1"><em><strong>method</strong></em> <code>self & other: Plane3 => Line3 | None</code> <a class="header-anchor" href="#method-self-other-plane3-line3-none" aria-label="Permalink to "***method*** `self & other: Plane3 => Line3 | None`""></a></h4><details><summary><b>源碼</b> 或 <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/plane.py#L300" target="_blank">於GitHub上查看</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;">@overload</span></span>
|
||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> __and__</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, other: </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">'Plane3'</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) -> </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">'Line3 | None'</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
|
||
<span class="line"><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> ...</span></span></code></pre></div></details><hr><h4 id="method-self-other" tabindex="-1"><em><strong>method</strong></em> <code>self & other</code> <a class="header-anchor" href="#method-self-other" aria-label="Permalink to "***method*** `self & other`""></a></h4><p><strong>説明</strong>: 取两平面的交集(人话:交线)</p><p><strong>變數説明</strong>:</p><blockquote><ul><li>other (<a href="./line.html#class-line3"><code>Line3</code></a> | <a href="./plane.html#class-plane3"><code>Plane3</code></a>): 另一个平面或直线</li></ul></blockquote><p><strong>返回</strong>: <a href="./line.html#class-line3"><code>Line3</code></a> | <a href="./point.html#class-point3"><code>Point3</code></a> | <a href="https://docs.python.org/3/library/constants.html#None" target="_blank" rel="noreferrer"><code>None</code></a>: 交集</p><p><strong>抛出</strong>:</p><blockquote><ul><li><a href="https://docs.python.org/3/library/exceptions.html#TypeError" target="_blank" rel="noreferrer"><code>TypeError</code></a> 不支持的类型</li></ul></blockquote><details><summary><b>源碼</b> 或 <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/plane.py#L303" target="_blank">於GitHub上查看</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> __and__</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, other):</span></span>
|
||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> if</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> isinstance</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(other, Plane3):</span></span>
|
||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> if</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.normal.is_parallel(other.normal):</span></span>
|
||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> None</span></span>
|
||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.cal_intersection_line3(other)</span></span>
|
||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> elif</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> isinstance</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(other, Line3):</span></span>
|
||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> if</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.normal </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">@</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> other.direction </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">==</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> 0</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
|
||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> None</span></span>
|
||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.cal_intersection_point3(other)</span></span>
|
||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> else</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
|
||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> raise</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> TypeError</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">f</span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">"unsupported operand type(s) for &: 'Plane3' and '</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">{type</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(other)</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">}</span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">'"</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">)</span></span></code></pre></div></details><hr><h4 id="method-self-other-bool" tabindex="-1"><em><strong>method</strong></em> <code>self == other => bool</code> <a class="header-anchor" href="#method-self-other-bool" aria-label="Permalink to "***method*** `self == other => bool`""></a></h4><p><strong>説明</strong>: 判断两个平面是否等价。</p><p><strong>變數説明</strong>:</p><blockquote><ul><li>other (<a href="./plane.html#class-plane3"><code>Plane3</code></a>): 另一个平面</li></ul></blockquote><p><strong>返回</strong>: <a href="https://docs.python.org/3/library/functions.html#bool" target="_blank" rel="noreferrer"><code>bool</code></a>: 是否等价</p><details><summary><b>源碼</b> 或 <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/plane.py#L324" target="_blank">於GitHub上查看</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> __eq__</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, other) -> </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">bool</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
|
||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.approx(other)</span></span></code></pre></div></details><hr><h4 id="method-self-other-line3-point3" tabindex="-1"><em><strong>method</strong></em> <code>self & other: Line3 => Point3</code> <a class="header-anchor" href="#method-self-other-line3-point3" aria-label="Permalink to "***method*** `self & other: Line3 => Point3`""></a></h4><details><summary><b>源碼</b> 或 <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/plane.py#L334" target="_blank">於GitHub上查看</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> __rand__</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, other: </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">'Line3'</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) -> </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">'Point3'</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
|
||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.cal_intersection_point3(other)</span></span></code></pre></div></details></div></div></main><footer class="VPDocFooter" data-v-01c90815 data-v-28deee4a><!--[--><!--]--><div class="edit-info" data-v-28deee4a><div class="edit-link" data-v-28deee4a><a class="VPLink link vp-external-link-icon no-icon edit-link-button" href="https://github.com/snowykami/mbcp/tree/main/mbcp//mp_math/plane.py" target="_blank" rel="noreferrer" data-v-28deee4a><!--[--><span class="vpi-square-pen edit-link-icon" data-v-28deee4a></span> 於 GitHub 上編輯這頁<!--]--></a></div><!----></div><nav class="prev-next" aria-labelledby="doc-footer-aria-label" data-v-28deee4a><span class="visually-hidden" id="doc-footer-aria-label" data-v-28deee4a>Pager</span><div class="pager" data-v-28deee4a><a class="VPLink link pager-link prev" href="/zht/api/mp_math/mp_math_typing.html" data-v-28deee4a><!--[--><span class="desc" data-v-28deee4a>上一頁</span><span class="title" data-v-28deee4a>mbcp.mp_math.mp_math_typing</span><!--]--></a></div><div class="pager" data-v-28deee4a><a class="VPLink link pager-link next" href="/zht/api/mp_math/point.html" data-v-28deee4a><!--[--><span class="desc" data-v-28deee4a>下一頁</span><span class="title" data-v-28deee4a>mbcp.mp_math.point</span><!--]--></a></div></nav></footer><!--[--><!--]--></div></div></div><!--[--><!--]--></div></div><footer class="VPFooter has-sidebar" data-v-3b4648ff data-v-d69bcf5d><div class="container" data-v-d69bcf5d><p class="message" data-v-d69bcf5d>文檔由 <a href="https://vitepress.dev/">VitePress</a> 構建 | API引用由 <a href="https://github.com/LiteyukiStudio/litedoc">litedoc</a> 生成</p><p class="copyright" data-v-d69bcf5d>Copyright (C) 2020-2024 SnowyKami. All Rights Reserved</p></div></footer><!--[--><!--]--></div></div>
|
||
<script>window.__VP_HASH_MAP__=JSON.parse("{\"api_index.md\":\"BO3OGCZm\",\"api_mp_math_angle.md\":\"cWbp_yRf\",\"api_mp_math_const.md\":\"B_APaY-d\",\"api_mp_math_equation.md\":\"DFbCHARs\",\"api_mp_math_function.md\":\"BwtjCYfY\",\"api_mp_math_index.md\":\"BfSAi6YB\",\"api_mp_math_line.md\":\"DWuJmkor\",\"api_mp_math_mp_math_typing.md\":\"D0jHaHho\",\"api_mp_math_plane.md\":\"DtvqG-Rt\",\"api_mp_math_point.md\":\"DsVbhrSK\",\"api_mp_math_segment.md\":\"D6v5TkfW\",\"api_mp_math_utils.md\":\"D9iJUX5G\",\"api_mp_math_vector.md\":\"BOBPMTV2\",\"api_particle_index.md\":\"BnaJlvrB\",\"api_presets_index.md\":\"Cn3tbiU4\",\"api_presets_model_index.md\":\"DHT8mPZu\",\"demo_best-practice.md\":\"CmYjfrxd\",\"demo_index.md\":\"CVAdlaFI\",\"en_api_index.md\":\"C0-LRrMB\",\"en_api_mp_math_angle.md\":\"peSqhdX7\",\"en_api_mp_math_const.md\":\"f-2wQHW5\",\"en_api_mp_math_equation.md\":\"CEJXetPg\",\"en_api_mp_math_function.md\":\"DR6lGYv1\",\"en_api_mp_math_index.md\":\"BiDCWhuz\",\"en_api_mp_math_line.md\":\"CMYXxJ26\",\"en_api_mp_math_mp_math_typing.md\":\"A2oAWINP\",\"en_api_mp_math_plane.md\":\"QiMgSY7K\",\"en_api_mp_math_point.md\":\"xl2uoip_\",\"en_api_mp_math_segment.md\":\"DHLOJKvw\",\"en_api_mp_math_utils.md\":\"DL_PJXBC\",\"en_api_mp_math_vector.md\":\"BuCQiBiJ\",\"en_api_particle_index.md\":\"j3_p5KtY\",\"en_api_presets_index.md\":\"Bj8HQN_s\",\"en_api_presets_model_index.md\":\"80iyVJ07\",\"en_demo_best-practice.md\":\"CmtY105n\",\"en_guide_index.md\":\"C3kI8f8A\",\"en_index.md\":\"Cc-Nt9Ot\",\"en_refer_index.md\":\"Cq6GWi0V\",\"guide_index.md\":\"CJOqvlSE\",\"index.md\":\"WVpbC1C1\",\"ja_api_index.md\":\"CGngNEPX\",\"ja_api_mp_math_angle.md\":\"BDeXuTGl\",\"ja_api_mp_math_const.md\":\"kKAd6ihV\",\"ja_api_mp_math_equation.md\":\"BVM6vN6D\",\"ja_api_mp_math_function.md\":\"DvFtmM8H\",\"ja_api_mp_math_index.md\":\"BCReRKfD\",\"ja_api_mp_math_line.md\":\"Dr4fEidY\",\"ja_api_mp_math_mp_math_typing.md\":\"CzEPV5Ep\",\"ja_api_mp_math_plane.md\":\"Cc1EMdFC\",\"ja_api_mp_math_point.md\":\"dm5hc0SY\",\"ja_api_mp_math_segment.md\":\"DfoZr9ZJ\",\"ja_api_mp_math_utils.md\":\"D_CVkme_\",\"ja_api_mp_math_vector.md\":\"CCYTQMl1\",\"ja_api_particle_index.md\":\"CW1rqarC\",\"ja_api_presets_index.md\":\"BFc_PfJb\",\"ja_api_presets_model_index.md\":\"D-b3SVFG\",\"ja_demo_best-practice.md\":\"CBHiF6ec\",\"ja_guide_index.md\":\"w1Tf2Adm\",\"ja_index.md\":\"BvjV8RIJ\",\"ja_refer_index.md\":\"DamUscs8\",\"refer_7-differential-euqtion_index.md\":\"Dd2-7I9S\",\"refer_function_curry.md\":\"D_oqRDd3\",\"refer_function_function.md\":\"Bi_82lIJ\",\"refer_index.md\":\"CrLsuxQ_\",\"zht_api_index.md\":\"Bh7ICG6U\",\"zht_api_mp_math_angle.md\":\"weV9qvI5\",\"zht_api_mp_math_const.md\":\"D9eBwcNw\",\"zht_api_mp_math_equation.md\":\"DfF7GWjn\",\"zht_api_mp_math_function.md\":\"DTCO2zVM\",\"zht_api_mp_math_index.md\":\"DVqLRZhm\",\"zht_api_mp_math_line.md\":\"DMbMXNUx\",\"zht_api_mp_math_mp_math_typing.md\":\"DWzRfFJe\",\"zht_api_mp_math_plane.md\":\"BtjTSOwB\",\"zht_api_mp_math_point.md\":\"IJfK3Jwi\",\"zht_api_mp_math_segment.md\":\"Cb8cGwsr\",\"zht_api_mp_math_utils.md\":\"BNQkqXiv\",\"zht_api_mp_math_vector.md\":\"CEPTxRVM\",\"zht_api_particle_index.md\":\"bdouG1sk\",\"zht_api_presets_index.md\":\"9wdPAkKN\",\"zht_api_presets_model_index.md\":\"S5PFg9j4\",\"zht_demo_best-practice.md\":\"CPNbD_Lg\",\"zht_guide_index.md\":\"BNnMViC8\",\"zht_index.md\":\"fkOYkZZe\",\"zht_refer_index.md\":\"B7CQS2UW\"}");function deserializeFunctions(r){return Array.isArray(r)?r.map(deserializeFunctions):typeof r=="object"&&r!==null?Object.keys(r).reduce((t,n)=>(t[n]=deserializeFunctions(r[n]),t),{}):typeof r=="string"&&r.startsWith("_vp-fn_")?new Function(`return ${r.slice(7)}`)():r};window.__VP_SITE_DATA__=deserializeFunctions(JSON.parse("{\"lang\":\"en-US\",\"dir\":\"ltr\",\"title\":\"VitePress\",\"description\":\"A VitePress site\",\"base\":\"/\",\"head\":[],\"router\":{\"prefetchLinks\":true},\"appearance\":true,\"themeConfig\":{\"logo\":\"/mbcp-logo.svg\",\"sidebar\":{\"/api/\":{\"base\":\"/api/\",\"items\":[{\"text\":\"MBCP\",\"items\":[{\"text\":\"mp_math\",\"items\":[{\"text\":\"mbcp.mp_math.angle\",\"link\":\"mp_math/angle\"},{\"text\":\"mbcp.mp_math.const\",\"link\":\"mp_math/const\"},{\"text\":\"mbcp.mp_math.equation\",\"link\":\"mp_math/equation\"},{\"text\":\"mbcp.mp_math.function\",\"link\":\"mp_math/function\"},{\"text\":\"mbcp.mp_math\",\"link\":\"mp_math/\"},{\"text\":\"mbcp.mp_math.line\",\"link\":\"mp_math/line\"},{\"text\":\"mbcp.mp_math.mp_math_typing\",\"link\":\"mp_math/mp_math_typing\"},{\"text\":\"mbcp.mp_math.plane\",\"link\":\"mp_math/plane\"},{\"text\":\"mbcp.mp_math.point\",\"link\":\"mp_math/point\"},{\"text\":\"mbcp.mp_math.segment\",\"link\":\"mp_math/segment\"},{\"text\":\"mbcp.mp_math.utils\",\"link\":\"mp_math/utils\"},{\"text\":\"mbcp.mp_math.vector\",\"link\":\"mp_math/vector\"}],\"collapsed\":true},{\"text\":\"particle\",\"items\":[{\"text\":\"mbcp.particle\",\"link\":\"particle/\"}],\"collapsed\":true},{\"text\":\"presets\",\"items\":[{\"text\":\"mbcp.presets\",\"link\":\"presets/\"},{\"text\":\"model\",\"items\":[{\"text\":\"mbcp.presets.model\",\"link\":\"presets/model/\"}],\"collapsed\":true}],\"collapsed\":true}]}]},\"/refer/\":{\"base\":\"/refer/\",\"items\":[{\"text\":\"MBCP\",\"items\":[{\"text\":\"7-differential-euqtion\",\"items\":[{\"text\":\"微分方程\",\"link\":\"7-differential-euqtion/\"}],\"collapsed\":true},{\"text\":\"函数\",\"link\":\"function/function\",\"items\":[{\"text\":\"柯里化\",\"link\":\"function/curry\"}],\"collapsed\":true}]}]},\"/guide/\":{\"base\":\"/guide/\",\"items\":[{\"text\":\"MBCP\",\"items\":[]}]},\"/en/api/\":{\"base\":\"/en/api/\",\"items\":[{\"text\":\"MBCP\",\"items\":[{\"text\":\"mp_math\",\"items\":[{\"text\":\"mbcp.mp_math.angle\",\"link\":\"mp_math/angle\"},{\"text\":\"mbcp.mp_math.const\",\"link\":\"mp_math/const\"},{\"text\":\"mbcp.mp_math.equation\",\"link\":\"mp_math/equation\"},{\"text\":\"mbcp.mp_math.function\",\"link\":\"mp_math/function\"},{\"text\":\"mbcp.mp_math\",\"link\":\"mp_math/\"},{\"text\":\"mbcp.mp_math.line\",\"link\":\"mp_math/line\"},{\"text\":\"mbcp.mp_math.mp_math_typing\",\"link\":\"mp_math/mp_math_typing\"},{\"text\":\"mbcp.mp_math.plane\",\"link\":\"mp_math/plane\"},{\"text\":\"mbcp.mp_math.point\",\"link\":\"mp_math/point\"},{\"text\":\"mbcp.mp_math.segment\",\"link\":\"mp_math/segment\"},{\"text\":\"mbcp.mp_math.utils\",\"link\":\"mp_math/utils\"},{\"text\":\"mbcp.mp_math.vector\",\"link\":\"mp_math/vector\"}],\"collapsed\":true},{\"text\":\"particle\",\"items\":[{\"text\":\"mbcp.particle\",\"link\":\"particle/\"}],\"collapsed\":true},{\"text\":\"presets\",\"items\":[{\"text\":\"mbcp.presets\",\"link\":\"presets/\"},{\"text\":\"model\",\"items\":[{\"text\":\"mbcp.presets.model\",\"link\":\"presets/model/\"}],\"collapsed\":true}],\"collapsed\":true}]}]},\"/en/refer/\":{\"base\":\"/en/refer/\",\"items\":[{\"text\":\"MBCP\",\"items\":[]}]},\"/en/guide/\":{\"base\":\"/en/guide/\",\"items\":[{\"text\":\"MBCP\",\"items\":[]}]},\"/ja/api/\":{\"base\":\"/ja/api/\",\"items\":[{\"text\":\"MBCP\",\"items\":[{\"text\":\"mp_math\",\"items\":[{\"text\":\"mbcp.mp_math.angle\",\"link\":\"mp_math/angle\"},{\"text\":\"mbcp.mp_math.const\",\"link\":\"mp_math/const\"},{\"text\":\"mbcp.mp_math.equation\",\"link\":\"mp_math/equation\"},{\"text\":\"mbcp.mp_math.function\",\"link\":\"mp_math/function\"},{\"text\":\"mbcp.mp_math\",\"link\":\"mp_math/\"},{\"text\":\"mbcp.mp_math.line\",\"link\":\"mp_math/line\"},{\"text\":\"mbcp.mp_math.mp_math_typing\",\"link\":\"mp_math/mp_math_typing\"},{\"text\":\"mbcp.mp_math.plane\",\"link\":\"mp_math/plane\"},{\"text\":\"mbcp.mp_math.point\",\"link\":\"mp_math/point\"},{\"text\":\"mbcp.mp_math.segment\",\"link\":\"mp_math/segment\"},{\"text\":\"mbcp.mp_math.utils\",\"link\":\"mp_math/utils\"},{\"text\":\"mbcp.mp_math.vector\",\"link\":\"mp_math/vector\"}],\"collapsed\":true},{\"text\":\"particle\",\"items\":[{\"text\":\"mbcp.particle\",\"link\":\"particle/\"}],\"collapsed\":true},{\"text\":\"presets\",\"items\":[{\"text\":\"mbcp.presets\",\"link\":\"presets/\"},{\"text\":\"model\",\"items\":[{\"text\":\"mbcp.presets.model\",\"link\":\"presets/model/\"}],\"collapsed\":true}],\"collapsed\":true}]}]},\"/ja/refer/\":{\"base\":\"/ja/refer/\",\"items\":[{\"text\":\"MBCP\",\"items\":[]}]},\"/ja/guide/\":{\"base\":\"/ja/guide/\",\"items\":[{\"text\":\"MBCP\",\"items\":[]}]},\"/zht/api/\":{\"base\":\"/zht/api/\",\"items\":[{\"text\":\"MBCP\",\"items\":[{\"text\":\"mp_math\",\"items\":[{\"text\":\"mbcp.mp_math.angle\",\"link\":\"mp_math/angle\"},{\"text\":\"mbcp.mp_math.const\",\"link\":\"mp_math/const\"},{\"text\":\"mbcp.mp_math.equation\",\"link\":\"mp_math/equation\"},{\"text\":\"mbcp.mp_math.function\",\"link\":\"mp_math/function\"},{\"text\":\"mbcp.mp_math\",\"link\":\"mp_math/\"},{\"text\":\"mbcp.mp_math.line\",\"link\":\"mp_math/line\"},{\"text\":\"mbcp.mp_math.mp_math_typing\",\"link\":\"mp_math/mp_math_typing\"},{\"text\":\"mbcp.mp_math.plane\",\"link\":\"mp_math/plane\"},{\"text\":\"mbcp.mp_math.point\",\"link\":\"mp_math/point\"},{\"text\":\"mbcp.mp_math.segment\",\"link\":\"mp_math/segment\"},{\"text\":\"mbcp.mp_math.utils\",\"link\":\"mp_math/utils\"},{\"text\":\"mbcp.mp_math.vector\",\"link\":\"mp_math/vector\"}],\"collapsed\":true},{\"text\":\"particle\",\"items\":[{\"text\":\"mbcp.particle\",\"link\":\"particle/\"}],\"collapsed\":true},{\"text\":\"presets\",\"items\":[{\"text\":\"mbcp.presets\",\"link\":\"presets/\"},{\"text\":\"model\",\"items\":[{\"text\":\"mbcp.presets.model\",\"link\":\"presets/model/\"}],\"collapsed\":true}],\"collapsed\":true}]}]},\"/zht/refer/\":{\"base\":\"/zht/refer/\",\"items\":[{\"text\":\"MBCP\",\"items\":[]}]},\"/zht/guide/\":{\"base\":\"/zht/guide/\",\"items\":[{\"text\":\"MBCP\",\"items\":[]}]}},\"socialLinks\":[{\"icon\":\"github\",\"link\":\"https://github.com/snowykami/mbcp\"}],\"search\":{\"provider\":\"local\",\"options\":{\"locales\":{\"root\":{\"translations\":{\"button\":{\"buttonText\":\"搜索文档\",\"buttonAriaLabel\":\"打开搜索框\"},\"modal\":{\"noResultsText\":\"没有找到搜索结果\",\"resetButtonTitle\":\"清除查询条件\",\"footer\":{\"selectText\":\"选择\",\"navigateText\":\"切换\"}}}},\"en\":{\"translations\":{\"button\":{\"buttonText\":\"Search\",\"buttonAriaLabel\":\"Search\"},\"modal\":{\"noResultsText\":\"No results found\",\"resetButtonTitle\":\"Reset search query\",\"footer\":{\"selectText\":\"Select\",\"navigateText\":\"Navigate\"}}}},\"zht\":{\"translations\":{\"button\":{\"buttonText\":\"搜索文檔\",\"buttonAriaLabel\":\"打開搜索框\"},\"modal\":{\"noResultsText\":\"沒有找到搜索結果\",\"resetButtonTitle\":\"清除查詢條件\",\"footer\":{\"selectText\":\"選擇\",\"navigateText\":\"切換\"}}}},\"ja\":{\"translations\":{\"button\":{\"buttonText\":\"検索\",\"buttonAriaLabel\":\"検索を開く\"},\"modal\":{\"noResultsText\":\"検索結果が見つかりません\",\"resetButtonTitle\":\"リセット\",\"footer\":{\"selectText\":\"選択\",\"navigateText\":\"移動\"}}}}}}}},\"locales\":{\"root\":{\"label\":\"简体中文\",\"lang\":\"zh-Hans\",\"title\":\"MBCP 文档\",\"description\":\"MBCP 粒子计算和生成库文档\",\"themeConfig\":{\"nav\":[{\"text\":\"快速开始\",\"link\":\"/guide/\"},{\"text\":\"参考\",\"link\":\"/refer\"},{\"text\":\"API引用\",\"link\":\"/api/\"},{\"text\":\"实例\",\"link\":\"/demo/\"}],\"docFooter\":{\"prev\":\"上一页\",\"next\":\"下一页\"},\"editLink\":{\"pattern\":\"_vp-fn_({ filePath }) => {\\n const regex = /^[^\\\\/]+\\\\/api/;\\n if (regex.test(filePath)) {\\n filePath = filePath.replace(regex, \\\"\\\").replace(\\\"index.md\\\", \\\"__init__.py\\\").replace(\\\".md\\\", \\\".py\\\");\\n if (filePath.split(\\\"/\\\").pop().split(\\\".\\\")[0] === filePath.split(\\\"/\\\").slice(-2, -1)[0]) {\\n filePath = filePath.split(\\\"/\\\").slice(0, -1).join(\\\"/\\\") + \\\"/__init__.py\\\";\\n }\\n return `https://github.com/snowykami/mbcp/tree/main/mbcp/${filePath}`;\\n } else {\\n return `https://github.com/snowykami/mbcp/tree/main/docs/${filePath}`;\\n }\\n }\",\"text\":\"在 GitHub 上编辑此页\"},\"footer\":{\"message\":\"文档由 <a href=\\\"https://vitepress.dev/\\\">VitePress</a> 构建 | API引用由 <a href=\\\"https://github.com/LiteyukiStudio/litedoc\\\">litedoc</a> 生成\",\"copyright\":\"Copyright (C) 2020-2024 SnowyKami. All Rights Reserved\"},\"outline\":{\"label\":\"页面内容\",\"level\":[2,6]}}},\"en\":{\"label\":\"English\",\"lang\":\"en-US\",\"title\":\"MBCP docs\",\"description\":\"MBCP library docs\",\"themeConfig\":{\"nav\":[{\"text\":\"Get Start\",\"link\":\"/en/guide/\"},{\"text\":\"Reference\",\"link\":\"/en/refer\"},{\"text\":\"API Reference\",\"link\":\"/en/api/\"},{\"text\":\"Demo\",\"link\":\"/en/demo/\"}],\"docFooter\":{\"prev\":\"Prev Page\",\"next\":\"Next Page\"},\"editLink\":{\"pattern\":\"_vp-fn_({ filePath }) => {\\n const regex = /^[^\\\\/]+\\\\/api/;\\n if (regex.test(filePath)) {\\n filePath = filePath.replace(regex, \\\"\\\").replace(\\\"index.md\\\", \\\"__init__.py\\\").replace(\\\".md\\\", \\\".py\\\");\\n if (filePath.split(\\\"/\\\").pop().split(\\\".\\\")[0] === filePath.split(\\\"/\\\").slice(-2, -1)[0]) {\\n filePath = filePath.split(\\\"/\\\").slice(0, -1).join(\\\"/\\\") + \\\"/__init__.py\\\";\\n }\\n return `https://github.com/snowykami/mbcp/tree/main/mbcp/${filePath}`;\\n } else {\\n return `https://github.com/snowykami/mbcp/tree/main/docs/${filePath}`;\\n }\\n }\",\"text\":\"Edit this page on GitHub\"},\"footer\":{\"message\":\"Documentation built with <a href=\\\"https://vitepress.dev/\\\">VitePress</a> | API references generated by <a href=\\\"https://github.com/LiteyukiStudio/litedoc\\\">litedoc</a>\",\"copyright\":\"Copyright (C) 2020-2024 SnowyKami. All Rights Reserved\"},\"outline\":{\"label\":\"Page Content\",\"level\":[2,6]}}},\"ja\":{\"label\":\"日本語\",\"lang\":\"ja-JP\",\"title\":\"MBCP ドキュメント\",\"description\":\"MBCP ライブラリ ドキュメント\",\"themeConfig\":{\"nav\":[{\"text\":\"スタート\",\"link\":\"/ja/guide/\"},{\"text\":\"リファレンス\",\"link\":\"/ja/refer\"},{\"text\":\"APIリファレンス\",\"link\":\"/ja/api/\"},{\"text\":\"インスタンス\",\"link\":\"/ja/demo/\"}],\"docFooter\":{\"prev\":\"前のページ\",\"next\":\"次のページ\"},\"editLink\":{\"pattern\":\"_vp-fn_({ filePath }) => {\\n const regex = /^[^\\\\/]+\\\\/api/;\\n if (regex.test(filePath)) {\\n filePath = filePath.replace(regex, \\\"\\\").replace(\\\"index.md\\\", \\\"__init__.py\\\").replace(\\\".md\\\", \\\".py\\\");\\n if (filePath.split(\\\"/\\\").pop().split(\\\".\\\")[0] === filePath.split(\\\"/\\\").slice(-2, -1)[0]) {\\n filePath = filePath.split(\\\"/\\\").slice(0, -1).join(\\\"/\\\") + \\\"/__init__.py\\\";\\n }\\n return `https://github.com/snowykami/mbcp/tree/main/mbcp/${filePath}`;\\n } else {\\n return `https://github.com/snowykami/mbcp/tree/main/docs/${filePath}`;\\n }\\n }\",\"text\":\"このページをGitHubで編集する\"},\"footer\":{\"message\":\"<a href=\\\"https://vitepress.dev/\\\">VitePress</a> で構築されたドキュメント | <a href=\\\"https://github.com/LiteyukiStudio/litedoc\\\">litedoc</a> によって生成されたAPIリファレンス\",\"copyright\":\"Copyright (C) 2020-2024 SnowyKami. All Rights Reserved\"},\"outline\":{\"label\":\"ページの内容\",\"level\":[2,6]}}},\"zht\":{\"label\":\"繁體中文\",\"lang\":\"zh-Hant\",\"title\":\"MBCP 文檔\",\"description\":\"MBCP 粒子計算和生成庫文檔\",\"themeConfig\":{\"nav\":[{\"text\":\"指引\",\"link\":\"/zht/guide/\"},{\"text\":\"參考\",\"link\":\"/zht/refer\"},{\"text\":\"API引用\",\"link\":\"/zht/api/\"},{\"text\":\"示範\",\"link\":\"/zht/demo/\"}],\"docFooter\":{\"prev\":\"上一頁\",\"next\":\"下一頁\"},\"editLink\":{\"pattern\":\"_vp-fn_({ filePath }) => {\\n const regex = /^[^\\\\/]+\\\\/api/;\\n if (regex.test(filePath)) {\\n filePath = filePath.replace(regex, \\\"\\\").replace(\\\"index.md\\\", \\\"__init__.py\\\").replace(\\\".md\\\", \\\".py\\\");\\n if (filePath.split(\\\"/\\\").pop().split(\\\".\\\")[0] === filePath.split(\\\"/\\\").slice(-2, -1)[0]) {\\n filePath = filePath.split(\\\"/\\\").slice(0, -1).join(\\\"/\\\") + \\\"/__init__.py\\\";\\n }\\n return `https://github.com/snowykami/mbcp/tree/main/mbcp/${filePath}`;\\n } else {\\n return `https://github.com/snowykami/mbcp/tree/main/docs/${filePath}`;\\n }\\n }\",\"text\":\"於 GitHub 上編輯這頁\"},\"footer\":{\"message\":\"文檔由 <a href=\\\"https://vitepress.dev/\\\">VitePress</a> 構建 | API引用由 <a href=\\\"https://github.com/LiteyukiStudio/litedoc\\\">litedoc</a> 生成\",\"copyright\":\"Copyright (C) 2020-2024 SnowyKami. All Rights Reserved\"},\"outline\":{\"label\":\"頁面內容\",\"level\":[2,6]}}}},\"scrollOffset\":134,\"cleanUrls\":false}"));</script>
|
||
|
||
</body>
|
||
</html> |