mbcp/en/api/mp_math/line.html

72 lines
114 KiB
HTML
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en-US" dir="ltr">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width,initial-scale=1">
<title>mbcp.mp_math.line | MBCP docs</title>
<meta name="description" content="MBCP library docs">
<meta name="generator" content="VitePress v1.3.4">
<link rel="preload stylesheet" href="/assets/style.Czi07tLB.css" as="style">
<script type="module" src="/assets/app.CVoJkUMN.js"></script>
<link rel="modulepreload" href="/assets/chunks/theme.BDrzRUX0.js">
<link rel="modulepreload" href="/assets/chunks/framework.DpC1ZpOZ.js">
<link rel="modulepreload" href="/assets/en_api_mp_math_line.md.CMYXxJ26.lean.js">
<link rel="icon" type="image/svg+xml" href="/mbcp-logo.svg">
<link rel="stylesheet" href="https://fonts.font.im/css?family=Cousine:400,400i,700,700i|Poppins:100,100i,200,200i,300,300i,400,400i,500,500i,600,600i,700,700i,800,800i,900,900i">
<script id="check-dark-mode">(()=>{const e=localStorage.getItem("vitepress-theme-appearance")||"auto",a=window.matchMedia("(prefers-color-scheme: dark)").matches;(!e||e==="auto"?a:e==="dark")&&document.documentElement.classList.add("dark")})();</script>
<script id="check-mac-os">document.documentElement.classList.toggle("mac",/Mac|iPhone|iPod|iPad/i.test(navigator.platform));</script>
</head>
<body>
<div id="app"><div class="Layout" data-v-3b4648ff><!--[--><!--]--><!--[--><span tabindex="-1" data-v-e813112c></span><a href="#VPContent" class="VPSkipLink visually-hidden" data-v-e813112c> Skip to content </a><!--]--><!----><header class="VPNav" data-v-3b4648ff data-v-e823d444><div class="VPNavBar has-sidebar top" data-v-e823d444 data-v-da0688be><div class="wrapper" data-v-da0688be><div class="container" data-v-da0688be><div class="title" data-v-da0688be><div class="VPNavBarTitle has-sidebar" data-v-da0688be data-v-606a7e0f><a class="title" href="/en/" data-v-606a7e0f><!--[--><!--]--><!--[--><img class="VPImage logo" src="/mbcp-logo.svg" alt data-v-cc63e071><!--]--><span data-v-606a7e0f>MBCP docs</span><!--[--><!--]--></a></div></div><div class="content" data-v-da0688be><div class="content-body" data-v-da0688be><!--[--><!--]--><div class="VPNavBarSearch search" data-v-da0688be><!--[--><!----><div id="local-search"><button type="button" class="DocSearch DocSearch-Button" aria-label="Search"><span class="DocSearch-Button-Container"><span class="vp-icon DocSearch-Search-Icon"></span><span class="DocSearch-Button-Placeholder">Search</span></span><span class="DocSearch-Button-Keys"><kbd class="DocSearch-Button-Key"></kbd><kbd class="DocSearch-Button-Key">K</kbd></span></button></div><!--]--></div><nav aria-labelledby="main-nav-aria-label" class="VPNavBarMenu menu" data-v-da0688be data-v-bf53b681><span id="main-nav-aria-label" class="visually-hidden" data-v-bf53b681> Main Navigation </span><!--[--><!--[--><a class="VPLink link VPNavBarMenuLink" href="/en/guide/" tabindex="0" data-v-bf53b681 data-v-9a0da802><!--[--><span data-v-9a0da802>Get Start</span><!--]--></a><!--]--><!--[--><a class="VPLink link VPNavBarMenuLink" href="/en/refer.html" tabindex="0" data-v-bf53b681 data-v-9a0da802><!--[--><span data-v-9a0da802>Reference</span><!--]--></a><!--]--><!--[--><a class="VPLink link VPNavBarMenuLink" href="/en/api/" tabindex="0" data-v-bf53b681 data-v-9a0da802><!--[--><span data-v-9a0da802>API Reference</span><!--]--></a><!--]--><!--[--><a class="VPLink link VPNavBarMenuLink" href="/en/demo/" tabindex="0" data-v-bf53b681 data-v-9a0da802><!--[--><span data-v-9a0da802>Demo</span><!--]--></a><!--]--><!--]--></nav><div class="VPFlyout VPNavBarTranslations translations" data-v-da0688be data-v-912817b1 data-v-00660109><button type="button" class="button" aria-haspopup="true" aria-expanded="false" aria-label="Change language" data-v-00660109><span class="text" data-v-00660109><span class="vpi-languages option-icon" data-v-00660109></span><!----><span class="vpi-chevron-down text-icon" data-v-00660109></span></span></button><div class="menu" data-v-00660109><div class="VPMenu" data-v-00660109 data-v-809b8af7><!----><!--[--><!--[--><div class="items" data-v-912817b1><p class="title" data-v-912817b1>English</p><!--[--><div class="VPMenuLink" data-v-912817b1 data-v-25a54821><a class="VPLink link" href="/api/mp_math/line.html" data-v-25a54821><!--[-->简体中文<!--]--></a></div><div class="VPMenuLink" data-v-912817b1 data-v-25a54821><a class="VPLink link" href="/ja/api/mp_math/line.html" data-v-25a54821><!--[-->日本語<!--]--></a></div><div class="VPMenuLink" data-v-912817b1 data-v-25a54821><a class="VPLink link" href="/zht/api/mp_math/line.html" data-v-25a54821><!--[-->繁體中文<!--]--></a></div><!--]--></div><!--]--><!--]--></div></div></div><div class="VPNavBarAppearance appearance" data-v-da0688be data-v-864d2abc><button class="VPSwitch VPSwitchAppearance" type="button" role="switch" title="Switch to dark theme" aria-checked="false" data-v-864d2abc data-v-3125216b data-v-846fe538><span class="check" data-v-846fe538><span class="icon" data-v-846fe538><!--[--><span class="vpi-sun sun" data-v-3125216b></span><span class="vpi-moon moon" data-v-3125216b></span><!--]--></span></span></button></div><div class="VPSocialLinks VPNavBarSocialLinks social-links" data-v-da0688be data-v-2c606308 data-v-100434c4><!--[--><a class="VPSocialLink no-icon" href="https://github.com/snowykami/mbcp" aria-label="github" target="_blank" rel="noopener" data-v-100434c4 data-v-15a5c40e><span class="vpi-social-github" /></a><!--]--></div><div class="VPFlyout VPNavBarExtra extra" data-v-da0688be data-v-60cefd62 data-v-00660109><button type="button" class="button" aria-haspopup="true" aria-expanded="false" aria-label="extra navigation" data-v-00660109><span class="vpi-more-horizontal icon" data-v-00660109></span></button><div class="menu" data-v-00660109><div class="VPMenu" data-v-00660109 data-v-809b8af7><!----><!--[--><!--[--><div class="group translations" data-v-60cefd62><p class="trans-title" data-v-60cefd62>English</p><!--[--><div class="VPMenuLink" data-v-60cefd62 data-v-25a54821><a class="VPLink link" href="/api/mp_math/line.html" data-v-25a54821><!--[-->简体中文<!--]--></a></div><div class="VPMenuLink" data-v-60cefd62 data-v-25a54821><a class="VPLink link" href="/ja/api/mp_math/line.html" data-v-25a54821><!--[-->日本語<!--]--></a></div><div class="VPMenuLink" data-v-60cefd62 data-v-25a54821><a class="VPLink link" href="/zht/api/mp_math/line.html" data-v-25a54821><!--[-->繁體中文<!--]--></a></div><!--]--></div><div class="group" data-v-60cefd62><div class="item appearance" data-v-60cefd62><p class="label" data-v-60cefd62>Appearance</p><div class="appearance-action" data-v-60cefd62><button class="VPSwitch VPSwitchAppearance" type="button" role="switch" title="Switch to dark theme" aria-checked="false" data-v-60cefd62 data-v-3125216b data-v-846fe538><span class="check" data-v-846fe538><span class="icon" data-v-846fe538><!--[--><span class="vpi-sun sun" data-v-3125216b></span><span class="vpi-moon moon" data-v-3125216b></span><!--]--></span></span></button></div></div></div><div class="group" data-v-60cefd62><div class="item social-links" data-v-60cefd62><div class="VPSocialLinks social-links-list" data-v-60cefd62 data-v-100434c4><!--[--><a class="VPSocialLink no-icon" href="https://github.com/snowykami/mbcp" aria-label="github" target="_blank" rel="noopener" data-v-100434c4 data-v-15a5c40e><span class="vpi-social-github" /></a><!--]--></div></div></div><!--]--><!--]--></div></div></div><!--[--><!--]--><button type="button" class="VPNavBarHamburger hamburger" aria-label="mobile navigation" aria-expanded="false" aria-controls="VPNavScreen" data-v-da0688be data-v-e047a1f2><span class="container" data-v-e047a1f2><span class="top" data-v-e047a1f2></span><span class="middle" data-v-e047a1f2></span><span class="bottom" data-v-e047a1f2></span></span></button></div></div></div></div><div class="divider" data-v-da0688be><div class="divider-line" data-v-da0688be></div></div></div><!----></header><div class="VPLocalNav has-sidebar empty" data-v-3b4648ff data-v-9c649187><div class="container" data-v-9c649187><button class="menu" aria-expanded="false" aria-controls="VPSidebarNav" data-v-9c649187><span class="vpi-align-left menu-icon" data-v-9c649187></span><span class="menu-text" data-v-9c649187>Menu</span></button><div class="VPLocalNavOutlineDropdown" style="--vp-vh:0px;" data-v-9c649187 data-v-9dd5e197><button data-v-9dd5e197>Return to top</button><!----></div></div></div><aside class="VPSidebar" data-v-3b4648ff data-v-59ceefa4><div class="curtain" data-v-59ceefa4></div><nav class="nav" id="VPSidebarNav" aria-labelledby="sidebar-aria-label" tabindex="-1" data-v-59ceefa4><span class="visually-hidden" id="sidebar-aria-label" data-v-59ceefa4> Sidebar Navigation </span><!--[--><!--]--><!--[--><div class="no-transition group" data-v-72c67ed4><section class="VPSidebarItem level-0 has-active" data-v-72c67ed4 data-v-a9cdba99><div class="item" role="button" tabindex="0" data-v-a9cdba99><div class="indicator" data-v-a9cdba99></div><h2 class="text" data-v-a9cdba99>MBCP</h2><!----></div><div class="items" data-v-a9cdba99><!--[--><section class="VPSidebarItem level-1 collapsible has-active" data-v-a9cdba99 data-v-a9cdba99><div class="item" role="button" tabindex="0" data-v-a9cdba99><div class="indicator" data-v-a9cdba99></div><h3 class="text" data-v-a9cdba99>mp_math</h3><div class="caret" role="button" aria-label="toggle section" tabindex="0" data-v-a9cdba99><span class="vpi-chevron-right caret-icon" data-v-a9cdba99></span></div></div><div class="items" data-v-a9cdba99><!--[--><div class="VPSidebarItem level-2 is-link" data-v-a9cdba99 data-v-a9cdba99><div class="item" data-v-a9cdba99><div class="indicator" data-v-a9cdba99></div><a class="VPLink link link" href="/en/api/mp_math/angle.html" data-v-a9cdba99><!--[--><p class="text" data-v-a9cdba99>mbcp.mp_math.angle</p><!--]--></a><!----></div><!----></div><div class="VPSidebarItem level-2 is-link" data-v-a9cdba99 data-v-a9cdba99><div class="item" data-v-a9cdba99><div class="indicator" data-v-a9cdba99></div><a class="VPLink link link" href="/en/api/mp_math/const.html" data-v-a9cdba99><!--[--><p class="text" data-v-a9cdba99>mbcp.mp_math.const</p><!--]--></a><!----></div><!----></div><div class="VPSidebarItem level-2 is-link" data-v-a9cdba99 data-v-a9cdba99><div class="item" data-v-a9cdba99><div class="indicator" data-v-a9cdba99></div><a class="VPLink link link" href="/en/api/mp_math/equation.html" data-v-a9cdba99><!--[--><p class="text" data-v-a9cdba99>mbcp.mp_math.equation</p><!--]--></a><!----></div><!----></div><div class="VPSidebarItem level-2 is-link" data-v-a9cdba99 data-v-a9cdba99><div class="item" data-v-a9cdba99><div class="indicator" data-v-a9cdba99></div><a class="VPLink link link" href="/en/api/mp_math/function.html" data-v-a9cdba99><!--[--><p class="text" data-v-a9cdba99>mbcp.mp_math.function</p><!--]--></a><!----></div><!----></div><div class="VPSidebarItem level-2 is-link" data-v-a9cdba99 data-v-a9cdba99><div class="item" data-v-a9cdba99><div class="indicator" data-v-a9cdba99></div><a class="VPLink link link" href="/en/api/mp_math/" data-v-a9cdba99><!--[--><p class="text" data-v-a9cdba99>mbcp.mp_math</p><!--]--></a><!----></div><!----></div><div class="VPSidebarItem level-2 is-link" data-v-a9cdba99 data-v-a9cdba99><div class="item" data-v-a9cdba99><div class="indicator" data-v-a9cdba99></div><a class="VPLink link link" href="/en/api/mp_math/line.html" data-v-a9cdba99><!--[--><p class="text" data-v-a9cdba99>mbcp.mp_math.line</p><!--]--></a><!----></div><!----></div><div class="VPSidebarItem level-2 is-link" data-v-a9cdba99 data-v-a9cdba99><div class="item" data-v-a9cdba99><div class="indicator" data-v-a9cdba99></div><a class="VPLink link link" href="/en/api/mp_math/mp_math_typing.html" data-v-a9cdba99><!--[--><p class="text" data-v-a9cdba99>mbcp.mp_math.mp_math_typing</p><!--]--></a><!----></div><!----></div><div class="VPSidebarItem level-2 is-link" data-v-a9cdba99 data-v-a9cdba99><div class="item" data-v-a9cdba99><div class="indicator" data-v-a9cdba99></div><a class="VPLink link link" href="/en/api/mp_math/plane.html" data-v-a9cdba99><!--[--><p class="text" data-v-a9cdba99>mbcp.mp_math.plane</p><!--]--></a><!----></div><!----></div><div class="VPSidebarItem level-2 is-link" data-v-a9cdba99 data-v-a9cdba99><div class="item" data-v-a9cdba99><div class="indicator" data-v-a9cdba99></div><a class="VPLink link link" href="/en/api/mp_math/point.html" data-v-a9cdba99><!--[--><p class="text" data-v-a9cdba99>mbcp.mp_math.point</p><!--]--></a><!----></div><!----></div><div class="VPSidebarItem level-2 is-link" data-v-a9cdba99 data-v-a9cdba99><div class="item" data-v-a9cdba99><div class="indicator" data-v-a9cdba99></div><a class="VPLink link link" href="/en/api/mp_math/segment.html" data-v-a9cdba99><!--[--><p class="text" data-v-a9cdba99>mbcp.mp_math.segment</p><!--]--></a><!----></div><!----></div><div class="VPSidebarItem level-2 is-link" data-v-a9cdba99 data-v-a9cdba99><div class="item" data-v-a9cdba99><div class="indicator" data-v-a9cdba99></div><a class="VPLink link link" href="/en/api/mp_math/utils.html" data-v-a9cdba99><!--[--><p class="text" data-v-a9cdba99>mbcp.mp_math.utils</p><!--]--></a><!----></div><!----></div><div class="VPSidebarItem level-2 is-link" data-v-a9cdba99 data-v-a9cdba99><div class="item" data-v-a9cdba99><div class="indicator" data-v-a9cdba99></div><a class="VPLink link link" href="/en/api/mp_math/vector.html" data-v-a9cdba99><!--[--><p class="text" data-v-a9cdba99>mbcp.mp_math.vector</p><!--]--></a><!----></div><!----></div><!--]--></div></section><section class="VPSidebarItem level-1 collapsible collapsed" data-v-a9cdba99 data-v-a9cdba99><div class="item" role="button" tabindex="0" data-v-a9cdba99><div class="indicator" data-v-a9cdba99></div><h3 class="text" data-v-a9cdba99>particle</h3><div class="caret" role="button" aria-label="toggle section" tabindex="0" data-v-a9cdba99><span class="vpi-chevron-right caret-icon" data-v-a9cdba99></span></div></div><div class="items" data-v-a9cdba99><!--[--><div class="VPSidebarItem level-2 is-link" data-v-a9cdba99 data-v-a9cdba99><div class="item" data-v-a9cdba99><div class="indicator" data-v-a9cdba99></div><a class="VPLink link link" href="/en/api/particle/" data-v-a9cdba99><!--[--><p class="text" data-v-a9cdba99>mbcp.particle</p><!--]--></a><!----></div><!----></div><!--]--></div></section><section class="VPSidebarItem level-1 collapsible collapsed" data-v-a9cdba99 data-v-a9cdba99><div class="item" role="button" tabindex="0" data-v-a9cdba99><div class="indicator" data-v-a9cdba99></div><h3 class="text" data-v-a9cdba99>presets</h3><div class="caret" role="button" aria-label="toggle section" tabindex="0" data-v-a9cdba99><span class="vpi-chevron-right caret-icon" data-v-a9cdba99></span></div></div><div class="items" data-v-a9cdba99><!--[--><div class="VPSidebarItem level-2 is-link" data-v-a9cdba99 data-v-a9cdba99><div class="item" data-v-a9cdba99><div class="indicator" data-v-a9cdba99></div><a class="VPLink link link" href="/en/api/presets/" data-v-a9cdba99><!--[--><p class="text" data-v-a9cdba99>mbcp.presets</p><!--]--></a><!----></div><!----></div><section class="VPSidebarItem level-2 collapsible collapsed" data-v-a9cdba99 data-v-a9cdba99><div class="item" role="button" tabindex="0" data-v-a9cdba99><div class="indicator" data-v-a9cdba99></div><h4 class="text" data-v-a9cdba99>model</h4><div class="caret" role="button" aria-label="toggle section" tabindex="0" data-v-a9cdba99><span class="vpi-chevron-right caret-icon" data-v-a9cdba99></span></div></div><div class="items" data-v-a9cdba99><!--[--><div class="VPSidebarItem level-3 is-link" data-v-a9cdba99 data-v-a9cdba99><div class="item" data-v-a9cdba99><div class="indicator" data-v-a9cdba99></div><a class="VPLink link link" href="/en/api/presets/model/" data-v-a9cdba99><!--[--><p class="text" data-v-a9cdba99>mbcp.presets.model</p><!--]--></a><!----></div><!----></div><!--]--></div></section><!--]--></div></section><!--]--></div></section></div><!--]--><!--[--><!--]--></nav></aside><div class="VPContent has-sidebar" id="VPContent" data-v-3b4648ff data-v-fc04087f><div class="VPDoc has-sidebar has-aside" data-v-fc04087f data-v-01c90815><!--[--><!--]--><div class="container" data-v-01c90815><div class="aside" data-v-01c90815><div class="aside-curtain" data-v-01c90815></div><div class="aside-container" data-v-01c90815><div class="aside-content" data-v-01c90815><div class="VPDocAside" data-v-01c90815 data-v-8951c20f><!--[--><!--]--><!--[--><!--]--><nav aria-labelledby="doc-outline-aria-label" class="VPDocAsideOutline" data-v-8951c20f data-v-d34649dc><div class="content" data-v-d34649dc><div class="outline-marker" data-v-d34649dc></div><div aria-level="2" class="outline-title" id="doc-outline-aria-label" role="heading" data-v-d34649dc>Page Content</div><ul class="VPDocOutlineItem root" data-v-d34649dc data-v-b9c884bb><!--[--><!--]--></ul></div></nav><!--[--><!--]--><div class="spacer" data-v-8951c20f></div><!--[--><!--]--><!----><!--[--><!--]--><!--[--><!--]--></div></div></div></div><div class="content" data-v-01c90815><div class="content-container" data-v-01c90815><!--[--><!--]--><main class="main" data-v-01c90815><div style="position:relative;" class="vp-doc _en_api_mp_math_line" data-v-01c90815><div><h1 id="module-mbcp-mp-math-line" tabindex="-1"><strong>Module</strong> <code>mbcp.mp_math.line</code> <a class="header-anchor" href="#module-mbcp-mp-math-line" aria-label="Permalink to &quot;**Module** `mbcp.mp_math.line`&quot;"></a></h1><p>本模块定义了三维空间中的直线类</p><h3 id="class-line3" tabindex="-1"><em><strong>class</strong></em> <code>Line3</code> <a class="header-anchor" href="#class-line3" aria-label="Permalink to &quot;***class*** `Line3`&quot;"></a></h3><hr><h4 id="method-init-self-point-point3-direction-vector3" tabindex="-1"><em><strong>method</strong></em> <code>__init__(self, point: Point3, direction: Vector3)</code> <a class="header-anchor" href="#method-init-self-point-point3-direction-vector3" aria-label="Permalink to &quot;***method*** `__init__(self, point: Point3, direction: Vector3)`&quot;"></a></h4><p><strong>Description</strong>: 三维空间中的直线。由一个点和一个方向向量确定。</p><p><strong>Arguments</strong>:</p><blockquote><ul><li>point (<a href="./point.html#class-point3"><code>Point3</code></a>): 直线上的一点</li><li>direction (<a href="./vector.html#class-vector3"><code>Vector3</code></a>): 方向向量</li></ul></blockquote><details><summary><b>Source code</b> or <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/line.py#L19" target="_blank">View on GitHub</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> __init__</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, point: </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Point3&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">, direction: </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Vector3&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">):</span></span>
<span class="line"><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.point </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> point</span></span>
<span class="line"><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> direction</span></span></code></pre></div></details><hr><h4 id="method-approx-self-other-line3-epsilon-float-approx-bool" tabindex="-1"><em><strong>method</strong></em> <code>approx(self, other: Line3, epsilon: float = APPROX) -&gt; bool</code> <a class="header-anchor" href="#method-approx-self-other-line3-epsilon-float-approx-bool" aria-label="Permalink to &quot;***method*** `approx(self, other: Line3, epsilon: float = APPROX) -&gt; bool`&quot;"></a></h4><p><strong>Description</strong>: 判断两条直线是否近似相等。</p><p><strong>Arguments</strong>:</p><blockquote><ul><li>other (<a href="./line.html#class-line3"><code>Line3</code></a>): 另一条直线</li><li>epsilon (<a href="https://docs.python.org/3/library/functions.html#float" target="_blank" rel="noreferrer"><code>float</code></a>): 误差</li></ul></blockquote><p><strong>Return</strong>: <a href="https://docs.python.org/3/library/functions.html#bool" target="_blank" rel="noreferrer"><code>bool</code></a>: 是否近似相等</p><details><summary><b>Source code</b> or <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/line.py#L29" target="_blank">View on GitHub</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> approx</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, other: </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Line3&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">, epsilon: </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">float</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">APPROX</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) -&gt; </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">bool</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.is_approx_parallel(other, epsilon) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">and</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> (</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.point </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> other.point).is_approx_parallel(</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction, epsilon)</span></span></code></pre></div></details><hr><h4 id="method-cal-angle-self-other-line3-anyangle" tabindex="-1"><em><strong>method</strong></em> <code>cal_angle(self, other: Line3) -&gt; AnyAngle</code> <a class="header-anchor" href="#method-cal-angle-self-other-line3-anyangle" aria-label="Permalink to &quot;***method*** `cal_angle(self, other: Line3) -&gt; AnyAngle`&quot;"></a></h4><p><strong>Description</strong>: 计算直线和直线之间的夹角。</p><p><strong>Arguments</strong>:</p><blockquote><ul><li>other (<a href="./line.html#class-line3"><code>Line3</code></a>): 另一条直线</li></ul></blockquote><p><strong>Return</strong>: <a href="./angle.html#class-anyangle"><code>AnyAngle</code></a>: 夹角</p><details><summary><b>Source code</b> or <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/line.py#L40" target="_blank">View on GitHub</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> cal_angle</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, other: </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Line3&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) -&gt; </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;AnyAngle&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction.cal_angle(other.direction)</span></span></code></pre></div></details><hr><h4 id="method-cal-distance-self-other-line3-point3-float" tabindex="-1"><em><strong>method</strong></em> <code>cal_distance(self, other: Line3 | Point3) -&gt; float</code> <a class="header-anchor" href="#method-cal-distance-self-other-line3-point3-float" aria-label="Permalink to &quot;***method*** `cal_distance(self, other: Line3 | Point3) -&gt; float`&quot;"></a></h4><p><strong>Description</strong>: 计算直线和直线或点之间的距离。</p><div class="tip custom-block"><p class="custom-block-title">TIP</p><p>直线和直线之间的距离计算公式:</p><ul><li>平行/重合 = 0</li><li>平行/异面 = <mjx-container class="MathJax" jax="SVG" style="direction:ltr;position:relative;"><svg style="overflow:visible;min-height:1px;min-width:1px;vertical-align:-1.391ex;" xmlns="http://www.w3.org/2000/svg" width="7.356ex" height="4.296ex" role="img" focusable="false" viewBox="0 -1284.3 3251.5 1899" aria-hidden="true"><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g data-mml-node="math"><g data-mml-node="mfrac"><g data-mml-node="mrow" transform="translate(220,516.4) scale(0.707)"><g data-mml-node="mo" transform="translate(0 -0.5)"><path data-c="7C" d="M139 -249H137Q125 -249 119 -235V251L120 737Q130 750 139 750Q152 750 159 735V-235Q151 -249 141 -249H139Z" style="stroke-width:3;"></path></g><g data-mml-node="TeXAtom" data-mjx-texclass="ORD" transform="translate(278,0)"><g data-mml-node="mover"><g data-mml-node="mrow"><g data-mml-node="msub"><g data-mml-node="mi"><path data-c="1D443" d="M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z" style="stroke-width:3;"></path></g><g data-mml-node="mn" transform="translate(675,-150) scale(0.707)"><path data-c="31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z" style="stroke-width:3;"></path></g></g><g data-mml-node="msub" transform="translate(1078.6,0)"><g data-mml-node="mi"><path data-c="1D443" d="M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z" style="stroke-width:3;"></path></g><g data-mml-node="mn" transform="translate(675,-150) scale(0.707)"><path data-c="32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z" style="stroke-width:3;"></path></g></g></g><g data-mml-node="mo" transform="translate(1078.6,272) translate(-250 0)"><path data-c="20D7" d="M377 694Q377 702 382 708T397 714Q404 714 409 709Q414 705 419 690Q429 653 460 633Q471 626 471 615Q471 606 468 603T454 594Q411 572 379 531Q377 529 374 525T369 519T364 517T357 516Q350 516 344 521T337 536Q337 555 384 595H213L42 596Q29 605 29 615Q29 622 42 635H401Q377 673 377 694Z" style="stroke-width:3;"></path></g></g></g><g data-mml-node="mo" transform="translate(2435.1,0)"><path data-c="D7" d="M630 29Q630 9 609 9Q604 9 587 25T493 118L389 222L284 117Q178 13 175 11Q171 9 168 9Q160 9 154 15T147 29Q147 36 161 51T255 146L359 250L255 354Q174 435 161 449T147 471Q147 480 153 485T168 490Q173 490 175 489Q178 487 284 383L389 278L493 382Q570 459 587 475T609 491Q630 491 630 471Q630 464 620 453T522 355L418 250L522 145Q606 61 618 48T630 29Z" style="stroke-width:3;"></path></g><g data-mml-node="TeXAtom" data-mjx-texclass="ORD" transform="translate(3213.1,0)"><g data-mml-node="mover"><g data-mml-node="mi"><path data-c="1D463" d="M173 380Q173 405 154 405Q130 405 104 376T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Q21 294 29 316T53 368T97 419T160 441Q202 441 225 417T249 361Q249 344 246 335Q246 329 231 291T200 202T182 113Q182 86 187 69Q200 26 250 26Q287 26 319 60T369 139T398 222T409 277Q409 300 401 317T383 343T365 361T357 383Q357 405 376 424T417 443Q436 443 451 425T467 367Q467 340 455 284T418 159T347 40T241 -11Q177 -11 139 22Q102 54 102 117Q102 148 110 181T151 298Q173 362 173 380Z" style="stroke-width:3;"></path></g><g data-mml-node="mo" transform="translate(270.3,32) translate(-250 0)"><path data-c="20D7" d="M377 694Q377 702 382 708T397 714Q404 714 409 709Q414 705 419 690Q429 653 460 633Q471 626 471 615Q471 606 468 603T454 594Q411 572 379 531Q377 529 374 525T369 519T364 517T357 516Q350 516 344 521T337 536Q337 555 384 595H213L42 596Q29 605 29 615Q29 622 42 635H401Q377 673 377 694Z" style="stroke-width:3;"></path></g></g></g><g data-mml-node="mo" transform="translate(3698.1,0) translate(0 -0.5)"><path data-c="7C" d="M139 -249H137Q125 -249 119 -235V251L120 737Q130 750 139 750Q152 750 159 735V-235Q151 -249 141 -249H139Z" style="stroke-width:3;"></path></g></g><g data-mml-node="mrow" transform="translate(1257.7,-438.2) scale(0.707)"><g data-mml-node="mo" transform="translate(0 -0.5)"><path data-c="7C" d="M139 -249H137Q125 -249 119 -235V251L120 737Q130 750 139 750Q152 750 159 735V-235Q151 -249 141 -249H139Z" style="stroke-width:3;"></path></g><g data-mml-node="TeXAtom" data-mjx-texclass="ORD" transform="translate(278,0)"><g data-mml-node="mover"><g data-mml-node="mi"><path data-c="1D463" d="M173 380Q173 405 154 405Q130 405 104 376T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Q21 294 29 316T53 368T97 419T160 441Q202 441 225 417T249 361Q249 344 246 335Q246 329 231 291T200 202T182 113Q182 86 187 69Q200 26 250 26Q287 26 319 60T369 139T398 222T409 277Q409 300 401 317T383 343T365 361T357 383Q357 405 376 424T417 443Q436 443 451 425T467 367Q467 340 455 284T418 159T347 40T241 -11Q177 -11 139 22Q102 54 102 117Q102 148 110 181T151 298Q173 362 173 380Z" style="stroke-width:3;"></path></g><g data-mml-node="mo" transform="translate(270.3,32) translate(-250 0)"><path data-c="20D7" d="M377 694Q377 702 382 708T397 714Q404 714 409 709Q414 705 419 690Q429 653 460 633Q471 626 471 615Q471 606 468 603T454 594Q411 572 379 531Q377 529 374 525T369 519T364 517T357 516Q350 516 344 521T337 536Q337 555 384 595H213L42 596Q29 605 29 615Q29 622 42 635H401Q377 673 377 694Z" style="stroke-width:3;"></path></g></g></g><g data-mml-node="mo" transform="translate(763,0) translate(0 -0.5)"><path data-c="7C" d="M139 -249H137Q125 -249 119 -235V251L120 737Q130 750 139 750Q152 750 159 735V-235Q151 -249 141 -249H139Z" style="stroke-width:3;"></path></g></g><rect width="3011.5" height="60" x="120" y="220"></rect></g></g></g></svg><mjx-assistive-mml unselectable="on" display="inline" style="top:0px;left:0px;clip:rect(1px, 1px, 1px, 1px);-webkit-touch-callout:none;-webkit-user-select:none;-khtml-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none;position:absolute;padding:1px 0px 0px 0px;border:0px;display:block;width:auto;overflow:hidden;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo data-mjx-texclass="ORD" stretchy="false">|</mo><mrow data-mjx-texclass="ORD"><mover><mrow><msub><mi>P</mi><mn>1</mn></msub><msub><mi>P</mi><mn>2</mn></msub></mrow><mo stretchy="false"></mo></mover></mrow><mo>×</mo><mrow data-mjx-texclass="ORD"><mover><mi>v</mi><mo stretchy="false"></mo></mover></mrow><mo data-mjx-texclass="ORD" stretchy="false">|</mo></mrow><mrow><mo data-mjx-texclass="ORD" stretchy="false">|</mo><mrow data-mjx-texclass="ORD"><mover><mi>v</mi><mo stretchy="false"></mo></mover></mrow><mo data-mjx-texclass="ORD" stretchy="false">|</mo></mrow></mfrac></math></mjx-assistive-mml></mjx-container></li><li>相交 = 0 其中,<mjx-container class="MathJax" jax="SVG" style="direction:ltr;position:relative;"><svg style="overflow:visible;min-height:1px;min-width:1px;vertical-align:-0.339ex;" xmlns="http://www.w3.org/2000/svg" width="2.44ex" height="1.885ex" role="img" focusable="false" viewBox="0 -683 1078.6 833" aria-hidden="true"><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g data-mml-node="math"><g data-mml-node="msub"><g data-mml-node="mi"><path data-c="1D443" d="M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z" style="stroke-width:3;"></path></g><g data-mml-node="mn" transform="translate(675,-150) scale(0.707)"><path data-c="31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z" style="stroke-width:3;"></path></g></g></g></g></svg><mjx-assistive-mml unselectable="on" display="inline" style="top:0px;left:0px;clip:rect(1px, 1px, 1px, 1px);-webkit-touch-callout:none;-webkit-user-select:none;-khtml-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none;position:absolute;padding:1px 0px 0px 0px;border:0px;display:block;width:auto;overflow:hidden;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>1</mn></msub></math></mjx-assistive-mml></mjx-container><mjx-container class="MathJax" jax="SVG" style="direction:ltr;position:relative;"><svg style="overflow:visible;min-height:1px;min-width:1px;vertical-align:-0.339ex;" xmlns="http://www.w3.org/2000/svg" width="2.44ex" height="1.885ex" role="img" focusable="false" viewBox="0 -683 1078.6 833" aria-hidden="true"><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g data-mml-node="math"><g data-mml-node="msub"><g data-mml-node="mi"><path data-c="1D443" d="M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z" style="stroke-width:3;"></path></g><g data-mml-node="mn" transform="translate(675,-150) scale(0.707)"><path data-c="32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z" style="stroke-width:3;"></path></g></g></g></g></svg><mjx-assistive-mml unselectable="on" display="inline" style="top:0px;left:0px;clip:rect(1px, 1px, 1px, 1px);-webkit-touch-callout:none;-webkit-user-select:none;-khtml-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none;position:absolute;padding:1px 0px 0px 0px;border:0px;display:block;width:auto;overflow:hidden;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>2</mn></msub></math></mjx-assistive-mml></mjx-container>分别为两条直线上的点,<mjx-container class="MathJax" jax="SVG" style="direction:ltr;position:relative;"><svg style="overflow:visible;min-height:1px;min-width:1px;vertical-align:-0.025ex;" xmlns="http://www.w3.org/2000/svg" width="1.097ex" height="1.939ex" role="img" focusable="false" viewBox="0 -846 485 857" aria-hidden="true"><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g data-mml-node="math"><g data-mml-node="TeXAtom" data-mjx-texclass="ORD"><g data-mml-node="mover"><g data-mml-node="mi"><path data-c="1D463" d="M173 380Q173 405 154 405Q130 405 104 376T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Q21 294 29 316T53 368T97 419T160 441Q202 441 225 417T249 361Q249 344 246 335Q246 329 231 291T200 202T182 113Q182 86 187 69Q200 26 250 26Q287 26 319 60T369 139T398 222T409 277Q409 300 401 317T383 343T365 361T357 383Q357 405 376 424T417 443Q436 443 451 425T467 367Q467 340 455 284T418 159T347 40T241 -11Q177 -11 139 22Q102 54 102 117Q102 148 110 181T151 298Q173 362 173 380Z" style="stroke-width:3;"></path></g><g data-mml-node="mo" transform="translate(270.3,32) translate(-250 0)"><path data-c="20D7" d="M377 694Q377 702 382 708T397 714Q404 714 409 709Q414 705 419 690Q429 653 460 633Q471 626 471 615Q471 606 468 603T454 594Q411 572 379 531Q377 529 374 525T369 519T364 517T357 516Q350 516 344 521T337 536Q337 555 384 595H213L42 596Q29 605 29 615Q29 622 42 635H401Q377 673 377 694Z" style="stroke-width:3;"></path></g></g></g></g></g></svg><mjx-assistive-mml unselectable="on" display="inline" style="top:0px;left:0px;clip:rect(1px, 1px, 1px, 1px);-webkit-touch-callout:none;-webkit-user-select:none;-khtml-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none;position:absolute;padding:1px 0px 0px 0px;border:0px;display:block;width:auto;overflow:hidden;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mover><mi>v</mi><mo stretchy="false"></mo></mover></mrow></math></mjx-assistive-mml></mjx-container>为直线的方向向量。</li></ul></div><div class="tip custom-block"><p class="custom-block-title">TIP</p><p>直线和点之间的距离计算公式:</p><mjx-container tabindex="0" class="MathJax" jax="SVG" display="true" style="direction:ltr;display:block;text-align:center;margin:1em 0;position:relative;"><svg style="overflow:visible;min-height:1px;min-width:1px;vertical-align:-2.388ex;" xmlns="http://www.w3.org/2000/svg" width="10.256ex" height="6.45ex" role="img" focusable="false" viewBox="0 -1795.5 4533 2851" aria-hidden="true"><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g data-mml-node="math"><g data-mml-node="mfrac"><g data-mml-node="mrow" transform="translate(220,709.5)"><g data-mml-node="mo" transform="translate(0 -0.5)"><path data-c="7C" d="M139 -249H137Q125 -249 119 -235V251L120 737Q130 750 139 750Q152 750 159 735V-235Q151 -249 141 -249H139Z" style="stroke-width:3;"></path></g><g data-mml-node="TeXAtom" data-mjx-texclass="ORD" transform="translate(278,0)"><g data-mml-node="mover"><g data-mml-node="mrow"><g data-mml-node="msub"><g data-mml-node="mi"><path data-c="1D443" d="M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z" style="stroke-width:3;"></path></g><g data-mml-node="mn" transform="translate(675,-150) scale(0.707)"><path data-c="31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z" style="stroke-width:3;"></path></g></g><g data-mml-node="mi" transform="translate(1078.6,0)"><path data-c="1D443" d="M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z" style="stroke-width:3;"></path></g></g><g data-mml-node="mo" transform="translate(914.8,272) translate(-250 0)"><path data-c="20D7" d="M377 694Q377 702 382 708T397 714Q404 714 409 709Q414 705 419 690Q429 653 460 633Q471 626 471 615Q471 606 468 603T454 594Q411 572 379 531Q377 529 374 525T369 519T364 517T357 516Q350 516 344 521T337 536Q337 555 384 595H213L42 596Q29 605 29 615Q29 622 42 635H401Q377 673 377 694Z" style="stroke-width:3;"></path></g></g></g><g data-mml-node="mo" transform="translate(2329.8,0)"><path data-c="D7" d="M630 29Q630 9 609 9Q604 9 587 25T493 118L389 222L284 117Q178 13 175 11Q171 9 168 9Q160 9 154 15T147 29Q147 36 161 51T255 146L359 250L255 354Q174 435 161 449T147 471Q147 480 153 485T168 490Q173 490 175 489Q178 487 284 383L389 278L493 382Q570 459 587 475T609 491Q630 491 630 471Q630 464 620 453T522 355L418 250L522 145Q606 61 618 48T630 29Z" style="stroke-width:3;"></path></g><g data-mml-node="TeXAtom" data-mjx-texclass="ORD" transform="translate(3330,0)"><g data-mml-node="mover"><g data-mml-node="mi"><path data-c="1D463" d="M173 380Q173 405 154 405Q130 405 104 376T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Q21 294 29 316T53 368T97 419T160 441Q202 441 225 417T249 361Q249 344 246 335Q246 329 231 291T200 202T182 113Q182 86 187 69Q200 26 250 26Q287 26 319 60T369 139T398 222T409 277Q409 300 401 317T383 343T365 361T357 383Q357 405 376 424T417 443Q436 443 451 425T467 367Q467 340 455 284T418 159T347 40T241 -11Q177 -11 139 22Q102 54 102 117Q102 148 110 181T151 298Q173 362 173 380Z" style="stroke-width:3;"></path></g><g data-mml-node="mo" transform="translate(270.3,32) translate(-250 0)"><path data-c="20D7" d="M377 694Q377 702 382 708T397 714Q404 714 409 709Q414 705 419 690Q429 653 460 633Q471 626 471 615Q471 606 468 603T454 594Q411 572 379 531Q377 529 374 525T369 519T364 517T357 516Q350 516 344 521T337 536Q337 555 384 595H213L42 596Q29 605 29 615Q29 622 42 635H401Q377 673 377 694Z" style="stroke-width:3;"></path></g></g></g><g data-mml-node="mo" transform="translate(3815,0) translate(0 -0.5)"><path data-c="7C" d="M139 -249H137Q125 -249 119 -235V251L120 737Q130 750 139 750Q152 750 159 735V-235Q151 -249 141 -249H139Z" style="stroke-width:3;"></path></g></g><g data-mml-node="mrow" transform="translate(1746,-806)"><g data-mml-node="mo" transform="translate(0 -0.5)"><path data-c="7C" d="M139 -249H137Q125 -249 119 -235V251L120 737Q130 750 139 750Q152 750 159 735V-235Q151 -249 141 -249H139Z" style="stroke-width:3;"></path></g><g data-mml-node="TeXAtom" data-mjx-texclass="ORD" transform="translate(278,0)"><g data-mml-node="mover"><g data-mml-node="mi"><path data-c="1D463" d="M173 380Q173 405 154 405Q130 405 104 376T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Q21 294 29 316T53 368T97 419T160 441Q202 441 225 417T249 361Q249 344 246 335Q246 329 231 291T200 202T182 113Q182 86 187 69Q200 26 250 26Q287 26 319 60T369 139T398 222T409 277Q409 300 401 317T383 343T365 361T357 383Q357 405 376 424T417 443Q436 443 451 425T467 367Q467 340 455 284T418 159T347 40T241 -11Q177 -11 139 22Q102 54 102 117Q102 148 110 181T151 298Q173 362 173 380Z" style="stroke-width:3;"></path></g><g data-mml-node="mo" transform="translate(270.3,32) translate(-250 0)"><path data-c="20D7" d="M377 694Q377 702 382 708T397 714Q404 714 409 709Q414 705 419 690Q429 653 460 633Q471 626 471 615Q471 606 468 603T454 594Q411 572 379 531Q377 529 374 525T369 519T364 517T357 516Q350 516 344 521T337 536Q337 555 384 595H213L42 596Q29 605 29 615Q29 622 42 635H401Q377 673 377 694Z" style="stroke-width:3;"></path></g></g></g><g data-mml-node="mo" transform="translate(763,0) translate(0 -0.5)"><path data-c="7C" d="M139 -249H137Q125 -249 119 -235V251L120 737Q130 750 139 750Q152 750 159 735V-235Q151 -249 141 -249H139Z" style="stroke-width:3;"></path></g></g><rect width="4293" height="60" x="120" y="220"></rect></g></g></g></svg><mjx-assistive-mml unselectable="on" display="block" style="top:0px;left:0px;clip:rect(1px, 1px, 1px, 1px);-webkit-touch-callout:none;-webkit-user-select:none;-khtml-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none;position:absolute;padding:1px 0px 0px 0px;border:0px;display:block;overflow:hidden;width:100%;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mfrac><mrow><mo data-mjx-texclass="ORD" stretchy="false">|</mo><mrow data-mjx-texclass="ORD"><mover><mrow><msub><mi>P</mi><mn>1</mn></msub><mi>P</mi></mrow><mo stretchy="false"></mo></mover></mrow><mo>×</mo><mrow data-mjx-texclass="ORD"><mover><mi>v</mi><mo stretchy="false"></mo></mover></mrow><mo data-mjx-texclass="ORD" stretchy="false">|</mo></mrow><mrow><mo data-mjx-texclass="ORD" stretchy="false">|</mo><mrow data-mjx-texclass="ORD"><mover><mi>v</mi><mo stretchy="false"></mo></mover></mrow><mo data-mjx-texclass="ORD" stretchy="false">|</mo></mrow></mfrac></math></mjx-assistive-mml></mjx-container><p>其中,<mjx-container class="MathJax" jax="SVG" style="direction:ltr;position:relative;"><svg style="overflow:visible;min-height:1px;min-width:1px;vertical-align:-0.339ex;" xmlns="http://www.w3.org/2000/svg" width="2.44ex" height="1.885ex" role="img" focusable="false" viewBox="0 -683 1078.6 833" aria-hidden="true"><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g data-mml-node="math"><g data-mml-node="msub"><g data-mml-node="mi"><path data-c="1D443" d="M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z" style="stroke-width:3;"></path></g><g data-mml-node="mn" transform="translate(675,-150) scale(0.707)"><path data-c="31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z" style="stroke-width:3;"></path></g></g></g></g></svg><mjx-assistive-mml unselectable="on" display="inline" style="top:0px;left:0px;clip:rect(1px, 1px, 1px, 1px);-webkit-touch-callout:none;-webkit-user-select:none;-khtml-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none;position:absolute;padding:1px 0px 0px 0px;border:0px;display:block;width:auto;overflow:hidden;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>1</mn></msub></math></mjx-assistive-mml></mjx-container>为直线上的点,<mjx-container class="MathJax" jax="SVG" style="direction:ltr;position:relative;"><svg style="overflow:visible;min-height:1px;min-width:1px;vertical-align:0;" xmlns="http://www.w3.org/2000/svg" width="1.699ex" height="1.545ex" role="img" focusable="false" viewBox="0 -683 751 683" aria-hidden="true"><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g data-mml-node="math"><g data-mml-node="mi"><path data-c="1D443" d="M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z" style="stroke-width:3;"></path></g></g></g></svg><mjx-assistive-mml unselectable="on" display="inline" style="top:0px;left:0px;clip:rect(1px, 1px, 1px, 1px);-webkit-touch-callout:none;-webkit-user-select:none;-khtml-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none;position:absolute;padding:1px 0px 0px 0px;border:0px;display:block;width:auto;overflow:hidden;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math></mjx-assistive-mml></mjx-container>为点,<mjx-container class="MathJax" jax="SVG" style="direction:ltr;position:relative;"><svg style="overflow:visible;min-height:1px;min-width:1px;vertical-align:-0.025ex;" xmlns="http://www.w3.org/2000/svg" width="1.097ex" height="1.939ex" role="img" focusable="false" viewBox="0 -846 485 857" aria-hidden="true"><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g data-mml-node="math"><g data-mml-node="TeXAtom" data-mjx-texclass="ORD"><g data-mml-node="mover"><g data-mml-node="mi"><path data-c="1D463" d="M173 380Q173 405 154 405Q130 405 104 376T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Q21 294 29 316T53 368T97 419T160 441Q202 441 225 417T249 361Q249 344 246 335Q246 329 231 291T200 202T182 113Q182 86 187 69Q200 26 250 26Q287 26 319 60T369 139T398 222T409 277Q409 300 401 317T383 343T365 361T357 383Q357 405 376 424T417 443Q436 443 451 425T467 367Q467 340 455 284T418 159T347 40T241 -11Q177 -11 139 22Q102 54 102 117Q102 148 110 181T151 298Q173 362 173 380Z" style="stroke-width:3;"></path></g><g data-mml-node="mo" transform="translate(270.3,32) translate(-250 0)"><path data-c="20D7" d="M377 694Q377 702 382 708T397 714Q404 714 409 709Q414 705 419 690Q429 653 460 633Q471 626 471 615Q471 606 468 603T454 594Q411 572 379 531Q377 529 374 525T369 519T364 517T357 516Q350 516 344 521T337 536Q337 555 384 595H213L42 596Q29 605 29 615Q29 622 42 635H401Q377 673 377 694Z" style="stroke-width:3;"></path></g></g></g></g></g></svg><mjx-assistive-mml unselectable="on" display="inline" style="top:0px;left:0px;clip:rect(1px, 1px, 1px, 1px);-webkit-touch-callout:none;-webkit-user-select:none;-khtml-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none;position:absolute;padding:1px 0px 0px 0px;border:0px;display:block;width:auto;overflow:hidden;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mover><mi>v</mi><mo stretchy="false"></mo></mover></mrow></math></mjx-assistive-mml></mjx-container>为直线的方向向量。</p></div><p><strong>Arguments</strong>:</p><blockquote><ul><li>other (<a href="./line.html#class-line3"><code>Line3</code></a> | <a href="./point.html#class-point3"><code>Point3</code></a>): 另一条直线或点</li></ul></blockquote><p><strong>Return</strong>: <a href="https://docs.python.org/3/library/functions.html#float" target="_blank" rel="noreferrer"><code>float</code></a>: 距离</p><p><strong>Raises</strong>:</p><blockquote><ul><li><a href="https://docs.python.org/3/library/exceptions.html#TypeError" target="_blank" rel="noreferrer"><code>TypeError</code></a> 不支持的类型</li></ul></blockquote><details><summary><b>Source code</b> or <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/line.py#L50" target="_blank">View on GitHub</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> cal_distance</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, other: </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Line3 | Point3&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) -&gt; </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">float</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> if</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> isinstance</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(other, Line3):</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> if</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> ==</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> other:</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> 0</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> elif</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.is_parallel(other):</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> (other.point </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.point).cross(</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction).length </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">/</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction.length</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> elif</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> not</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.is_coplanar(other):</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> abs</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction.cross(other.direction) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">@</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> (</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.point </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> other.point) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">/</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction.cross(other.direction).length)</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> else</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> 0</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> elif</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> isinstance</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(other, Point3):</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> (other </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.point).cross(</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction).length </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">/</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction.length</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> else</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> raise</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> TypeError</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(</span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Unsupported type.&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">)</span></span></code></pre></div></details><hr><h4 id="method-cal-intersection-self-other-line3-point3" tabindex="-1"><em><strong>method</strong></em> <code>cal_intersection(self, other: Line3) -&gt; Point3</code> <a class="header-anchor" href="#method-cal-intersection-self-other-line3-point3" aria-label="Permalink to &quot;***method*** `cal_intersection(self, other: Line3) -&gt; Point3`&quot;"></a></h4><p><strong>Description</strong>: 计算两条直线的交点。</p><p><strong>Arguments</strong>:</p><blockquote><ul><li>other (<a href="./line.html#class-line3"><code>Line3</code></a>): 另一条直线</li></ul></blockquote><p><strong>Return</strong>: <a href="./point.html#class-point3"><code>Point3</code></a>: 交点</p><p><strong>Raises</strong>:</p><blockquote><ul><li><a href="https://docs.python.org/3/library/exceptions.html#TypeError" target="_blank" rel="noreferrer"><code>ValueError</code></a> 直线平行</li><li><code>ValueError</code> 直线不共面</li></ul></blockquote><details><summary><b>Source code</b> or <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/line.py#L92" target="_blank">View on GitHub</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> cal_intersection</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, other: </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Line3&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) -&gt; </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Point3&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> if</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.is_parallel(other):</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> raise</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> ValueError</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(</span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Lines are parallel and do not intersect.&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">)</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> if</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> not</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.is_coplanar(other):</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> raise</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> ValueError</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(</span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Lines are not coplanar and do not intersect.&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">)</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.point </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">+</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction.cross(other.direction) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">@</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> other.direction.cross(</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.point </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> other.point) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">/</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction.cross(other.direction).length </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">**</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> 2</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> *</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction</span></span></code></pre></div></details><hr><h4 id="method-cal-perpendicular-self-point-point3-line3" tabindex="-1"><em><strong>method</strong></em> <code>cal_perpendicular(self, point: Point3) -&gt; Line3</code> <a class="header-anchor" href="#method-cal-perpendicular-self-point-point3-line3" aria-label="Permalink to &quot;***method*** `cal_perpendicular(self, point: Point3) -&gt; Line3`&quot;"></a></h4><p><strong>Description</strong>: 计算直线经过指定点p的垂线。</p><p><strong>Arguments</strong>:</p><blockquote><ul><li>point (<a href="./point.html#class-point3"><code>Point3</code></a>): 指定点</li></ul></blockquote><p><strong>Return</strong>: <a href="./line.html#class-line3"><code>Line3</code></a>: 垂线</p><details><summary><b>Source code</b> or <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/line.py#L110" target="_blank">View on GitHub</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> cal_perpendicular</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, point: </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Point3&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) -&gt; </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Line3&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> Line3(point, </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction.cross(point </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.point))</span></span></code></pre></div></details><hr><h4 id="method-get-point-self-t-realnumber-point3" tabindex="-1"><em><strong>method</strong></em> <code>get_point(self, t: RealNumber) -&gt; Point3</code> <a class="header-anchor" href="#method-get-point-self-t-realnumber-point3" aria-label="Permalink to &quot;***method*** `get_point(self, t: RealNumber) -&gt; Point3`&quot;"></a></h4><p><strong>Description</strong>: 获取直线上的点。同一条直线但起始点和方向向量不同则同一个t对应的点不同。</p><p><strong>Arguments</strong>:</p><blockquote><ul><li>t (<a href="./mp_math_typing.html#var-realnumber"><code>RealNumber</code></a>): 参数t</li></ul></blockquote><p><strong>Return</strong>: <a href="./point.html#class-point3"><code>Point3</code></a>: 点</p><details><summary><b>Source code</b> or <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/line.py#L120" target="_blank">View on GitHub</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> get_point</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, t: RealNumber) -&gt; </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Point3&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.point </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">+</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> t </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction</span></span></code></pre></div></details><hr><h4 id="method-get-parametric-equations-self-tuple-onesinglevarfunc-onesinglevarfunc-onesinglevarfunc" tabindex="-1"><em><strong>method</strong></em> <code>get_parametric_equations(self) -&gt; tuple[OneSingleVarFunc, OneSingleVarFunc, OneSingleVarFunc]</code> <a class="header-anchor" href="#method-get-parametric-equations-self-tuple-onesinglevarfunc-onesinglevarfunc-onesinglevarfunc" aria-label="Permalink to &quot;***method*** `get_parametric_equations(self) -&gt; tuple[OneSingleVarFunc, OneSingleVarFunc, OneSingleVarFunc]`&quot;"></a></h4><p><strong>Description</strong>: 获取直线的参数方程。</p><p><strong>Return</strong>: <a href="https://docs.python.org/3/library/stdtypes.html#tuple" target="_blank" rel="noreferrer"><code>tuple</code></a>[<a href="./mp_math_typing.html#var-onesinglevarfunc"><code>OneSingleVarFunc</code></a>, <code>OneSingleVarFunc</code>, <code>OneSingleVarFunc</code>]: 参数方程</p><details><summary><b>Source code</b> or <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/line.py#L130" target="_blank">View on GitHub</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> get_parametric_equations</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self) -&gt; tuple[OneSingleVarFunc, OneSingleVarFunc, OneSingleVarFunc]:</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> (</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">lambda</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> t: </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.point.x </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">+</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction.x </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> t, </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">lambda</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> t: </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.point.y </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">+</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction.y </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> t, </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">lambda</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> t: </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.point.z </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">+</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction.z </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> t)</span></span></code></pre></div></details><hr><h4 id="method-is-approx-parallel-self-other-line3-epsilon-float-1e-06-bool" tabindex="-1"><em><strong>method</strong></em> <code>is_approx_parallel(self, other: Line3, epsilon: float = 1e-06) -&gt; bool</code> <a class="header-anchor" href="#method-is-approx-parallel-self-other-line3-epsilon-float-1e-06-bool" aria-label="Permalink to &quot;***method*** `is_approx_parallel(self, other: Line3, epsilon: float = 1e-06) -&gt; bool`&quot;"></a></h4><p><strong>Description</strong>: 判断两条直线是否近似平行。</p><p><strong>Arguments</strong>:</p><blockquote><ul><li>other (<a href="./line.html#class-line3"><code>Line3</code></a>): 另一条直线</li><li>epsilon (<a href="https://docs.python.org/3/library/functions.html#float" target="_blank" rel="noreferrer"><code>float</code></a>): 误差</li></ul></blockquote><p><strong>Return</strong>: <a href="https://docs.python.org/3/library/functions.html#bool" target="_blank" rel="noreferrer"><code>bool</code></a>: 是否近似平行</p><details><summary><b>Source code</b> or <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/line.py#L140" target="_blank">View on GitHub</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> is_approx_parallel</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, other: </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Line3&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">, epsilon: </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">float</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">1e-06</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) -&gt; </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">bool</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction.is_approx_parallel(other.direction, epsilon)</span></span></code></pre></div></details><hr><h4 id="method-is-parallel-self-other-line3-bool" tabindex="-1"><em><strong>method</strong></em> <code>is_parallel(self, other: Line3) -&gt; bool</code> <a class="header-anchor" href="#method-is-parallel-self-other-line3-bool" aria-label="Permalink to &quot;***method*** `is_parallel(self, other: Line3) -&gt; bool`&quot;"></a></h4><p><strong>Description</strong>: 判断两条直线是否平行。</p><p><strong>Arguments</strong>:</p><blockquote><ul><li>other (<a href="./line.html#class-line3"><code>Line3</code></a>): 另一</li></ul></blockquote><p><strong>Return</strong>: <a href="https://docs.python.org/3/library/functions.html#bool" target="_blank" rel="noreferrer"><code>bool</code></a>: 是否平行</p><details><summary><b>Source code</b> or <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/line.py#L151" target="_blank">View on GitHub</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> is_parallel</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, other: </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Line3&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) -&gt; </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">bool</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction.is_parallel(other.direction)</span></span></code></pre></div></details><hr><h4 id="method-is-collinear-self-other-line3-bool" tabindex="-1"><em><strong>method</strong></em> <code>is_collinear(self, other: Line3) -&gt; bool</code> <a class="header-anchor" href="#method-is-collinear-self-other-line3-bool" aria-label="Permalink to &quot;***method*** `is_collinear(self, other: Line3) -&gt; bool`&quot;"></a></h4><p><strong>Description</strong>: 判断两条直线是否共线。</p><p><strong>Arguments</strong>:</p><blockquote><ul><li>other (<a href="./line.html#class-line3"><code>Line3</code></a>): 另一</li></ul></blockquote><p><strong>Return</strong>: <a href="https://docs.python.org/3/library/functions.html#bool" target="_blank" rel="noreferrer"><code>bool</code></a>: 是否共线</p><details><summary><b>Source code</b> or <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/line.py#L161" target="_blank">View on GitHub</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> is_collinear</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, other: </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Line3&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) -&gt; </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">bool</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.is_parallel(other) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">and</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> (</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.point </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> other.point).is_parallel(</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction)</span></span></code></pre></div></details><hr><h4 id="method-is-point-on-self-point-point3-bool" tabindex="-1"><em><strong>method</strong></em> <code>is_point_on(self, point: Point3) -&gt; bool</code> <a class="header-anchor" href="#method-is-point-on-self-point-point3-bool" aria-label="Permalink to &quot;***method*** `is_point_on(self, point: Point3) -&gt; bool`&quot;"></a></h4><p><strong>Description</strong>: 判断点是否在直线上。</p><p><strong>Arguments</strong>:</p><blockquote><ul><li>point (<a href="./point.html#class-point3"><code>Point3</code></a>): 点</li></ul></blockquote><p><strong>Return</strong>: <a href="https://docs.python.org/3/library/functions.html#bool" target="_blank" rel="noreferrer"><code>bool</code></a>: 是否在直线上</p><details><summary><b>Source code</b> or <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/line.py#L171" target="_blank">View on GitHub</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> is_point_on</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, point: </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Point3&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) -&gt; </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">bool</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> (point </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.point).is_parallel(</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction)</span></span></code></pre></div></details><hr><h4 id="method-is-coplanar-self-other-line3-bool" tabindex="-1"><em><strong>method</strong></em> <code>is_coplanar(self, other: Line3) -&gt; bool</code> <a class="header-anchor" href="#method-is-coplanar-self-other-line3-bool" aria-label="Permalink to &quot;***method*** `is_coplanar(self, other: Line3) -&gt; bool`&quot;"></a></h4><p><strong>Description</strong>: 判断两条直线是否共面。 充要条件两直线方向向量的叉乘与两直线上任意一点的向量的点积为0。</p><p><strong>Arguments</strong>:</p><blockquote><ul><li>other (<a href="./line.html#class-line3"><code>Line3</code></a>): 另一</li></ul></blockquote><p><strong>Return</strong>: <a href="https://docs.python.org/3/library/functions.html#bool" target="_blank" rel="noreferrer"><code>bool</code></a>: 是否共面</p><details><summary><b>Source code</b> or <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/line.py#L181" target="_blank">View on GitHub</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> is_coplanar</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, other: </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Line3&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) -&gt; </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">bool</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction.cross(other.direction) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">@</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> (</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.point </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> other.point) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">==</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> 0</span></span></code></pre></div></details><hr><h4 id="method-simplify-self" tabindex="-1"><em><strong>method</strong></em> <code>simplify(self)</code> <a class="header-anchor" href="#method-simplify-self" aria-label="Permalink to &quot;***method*** `simplify(self)`&quot;"></a></h4><p><strong>Description</strong>: 简化直线方程,等价相等。 自体简化,不返回值。</p><p>按照可行性一次对x y z 化 0 处理,并对向量单位化</p><details><summary><b>Source code</b> or <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/line.py#L192" target="_blank">View on GitHub</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> simplify</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self):</span></span>
<span class="line"><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction.normalize()</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> if</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction.x </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">==</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> 0</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.point.x </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> 0</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> if</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction.y </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">==</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> 0</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.point.y </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> 0</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> if</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction.z </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">==</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> 0</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.point.z </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> 0</span></span></code></pre></div></details><hr><p><a href="https://docs.python.org/3/library/functions.html#classmethod" target="_blank" rel="noreferrer"><code>@classmethod</code></a></p><h4 id="method-from-two-points-cls-p1-point3-p2-point3-line3" tabindex="-1"><em><strong>method</strong></em> <code>from_two_points(cls, p1: Point3, p2: Point3) -&gt; Line3</code> <a class="header-anchor" href="#method-from-two-points-cls-p1-point3-p2-point3-line3" aria-label="Permalink to &quot;***method*** `from_two_points(cls, p1: Point3, p2: Point3) -&gt; Line3`&quot;"></a></h4><p><strong>Description</strong>: 工厂函数 由两点构造直线。</p><p><strong>Arguments</strong>:</p><blockquote><ul><li>p1 (<a href="./point.html#class-point3"><code>Point3</code></a>): 点1</li><li>p2 (<a href="./point.html#class-point3"><code>Point3</code></a>): 点2</li></ul></blockquote><p><strong>Return</strong>: <a href="./line.html#class-line3"><code>Line3</code></a>: 直线</p><details><summary><b>Source code</b> or <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/line.py#L211" target="_blank">View on GitHub</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;">@</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">classmethod</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> from_two_points</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(cls, p1: </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Point3&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">, p2: </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Point3&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) -&gt; </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Line3&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> direction </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> p2 </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> p1</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> cls</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(p1, direction)</span></span></code></pre></div></details><hr><h4 id="method-self-other-line3-line3-point3-none" tabindex="-1"><em><strong>method</strong></em> <code>self &amp; other: Line3 =&gt; Line3 | Point3 | None</code> <a class="header-anchor" href="#method-self-other-line3-line3-point3-none" aria-label="Permalink to &quot;***method*** `self &amp; other: Line3 =&gt; Line3 | Point3 | None`&quot;"></a></h4><p><strong>Description</strong>: 计算两条直线点集合的交集。重合线返回自身平行线返回None交线返回交点。</p><p><strong>Arguments</strong>:</p><blockquote><ul><li>other (<a href="./line.html#class-line3"><code>Line3</code></a>): 另一条直线</li></ul></blockquote><p><strong>Return</strong>: <a href="./line.html#class-line3"><code>Line3</code></a> | <a href="./point.html#class-point3"><code>Point3</code></a> | <a href="https://docs.python.org/3/library/constants.html#None" target="_blank" rel="noreferrer"><code>None</code></a>: 交集</p><details><summary><b>Source code</b> or <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/line.py#L223" target="_blank">View on GitHub</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> __and__</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, other: </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Line3&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) -&gt; </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Line3 | Point3 | None&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> if</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.is_collinear(other):</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> elif</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.is_parallel(other) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">or</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> not</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.is_coplanar(other):</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> None</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> else</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.cal_intersection(other)</span></span></code></pre></div></details><hr><h4 id="method-self-other-bool" tabindex="-1"><em><strong>method</strong></em> <code>self == other =&gt; bool</code> <a class="header-anchor" href="#method-self-other-bool" aria-label="Permalink to &quot;***method*** `self == other =&gt; bool`&quot;"></a></h4><p><strong>Description</strong>: 判断两条直线是否等价。</p><p>v1 // v2 ∧ (p1 - p2) // v1</p><p><strong>Arguments</strong>:</p><blockquote><ul><li>other (<a href="./line.html#class-line3"><code>Line3</code></a>): 另一条直线</li></ul></blockquote><p><strong>Return</strong>: <a href="https://docs.python.org/3/library/functions.html#bool" target="_blank" rel="noreferrer"><code>bool</code></a>: 是否等价</p><details><summary><b>Source code</b> or <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/line.py#L238" target="_blank">View on GitHub</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> __eq__</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, other) -&gt; </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">bool</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction.is_parallel(other.direction) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">and</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> (</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.point </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> other.point).is_parallel(</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction)</span></span></code></pre></div></details></div></div></main><footer class="VPDocFooter" data-v-01c90815 data-v-28deee4a><!--[--><!--]--><div class="edit-info" data-v-28deee4a><div class="edit-link" data-v-28deee4a><a class="VPLink link vp-external-link-icon no-icon edit-link-button" href="https://github.com/snowykami/mbcp/tree/main/mbcp//mp_math/line.py" target="_blank" rel="noreferrer" data-v-28deee4a><!--[--><span class="vpi-square-pen edit-link-icon" data-v-28deee4a></span> Edit this page on GitHub<!--]--></a></div><!----></div><nav class="prev-next" aria-labelledby="doc-footer-aria-label" data-v-28deee4a><span class="visually-hidden" id="doc-footer-aria-label" data-v-28deee4a>Pager</span><div class="pager" data-v-28deee4a><a class="VPLink link pager-link prev" href="/en/api/mp_math/" data-v-28deee4a><!--[--><span class="desc" data-v-28deee4a>Prev Page</span><span class="title" data-v-28deee4a>mbcp.mp_math</span><!--]--></a></div><div class="pager" data-v-28deee4a><a class="VPLink link pager-link next" href="/en/api/mp_math/mp_math_typing.html" data-v-28deee4a><!--[--><span class="desc" data-v-28deee4a>Next Page</span><span class="title" data-v-28deee4a>mbcp.mp_math.mp_math_typing</span><!--]--></a></div></nav></footer><!--[--><!--]--></div></div></div><!--[--><!--]--></div></div><footer class="VPFooter has-sidebar" data-v-3b4648ff data-v-d69bcf5d><div class="container" data-v-d69bcf5d><p class="message" data-v-d69bcf5d>Documentation built with <a href="https://vitepress.dev/">VitePress</a> | API references generated by <a href="https://github.com/LiteyukiStudio/litedoc">litedoc</a></p><p class="copyright" data-v-d69bcf5d>Copyright (C) 2020-2024 SnowyKami. All Rights Reserved</p></div></footer><!--[--><!--]--></div></div>
<script>window.__VP_HASH_MAP__=JSON.parse("{\"api_index.md\":\"BO3OGCZm\",\"api_mp_math_angle.md\":\"cWbp_yRf\",\"api_mp_math_const.md\":\"B_APaY-d\",\"api_mp_math_equation.md\":\"DFbCHARs\",\"api_mp_math_function.md\":\"BwtjCYfY\",\"api_mp_math_index.md\":\"BfSAi6YB\",\"api_mp_math_line.md\":\"DWuJmkor\",\"api_mp_math_mp_math_typing.md\":\"D0jHaHho\",\"api_mp_math_plane.md\":\"DtvqG-Rt\",\"api_mp_math_point.md\":\"DsVbhrSK\",\"api_mp_math_segment.md\":\"D6v5TkfW\",\"api_mp_math_utils.md\":\"D9iJUX5G\",\"api_mp_math_vector.md\":\"BOBPMTV2\",\"api_particle_index.md\":\"BnaJlvrB\",\"api_presets_index.md\":\"Cn3tbiU4\",\"api_presets_model_index.md\":\"DHT8mPZu\",\"demo_best-practice.md\":\"CmYjfrxd\",\"demo_index.md\":\"CVAdlaFI\",\"en_api_index.md\":\"C0-LRrMB\",\"en_api_mp_math_angle.md\":\"peSqhdX7\",\"en_api_mp_math_const.md\":\"f-2wQHW5\",\"en_api_mp_math_equation.md\":\"CEJXetPg\",\"en_api_mp_math_function.md\":\"DR6lGYv1\",\"en_api_mp_math_index.md\":\"BiDCWhuz\",\"en_api_mp_math_line.md\":\"CMYXxJ26\",\"en_api_mp_math_mp_math_typing.md\":\"A2oAWINP\",\"en_api_mp_math_plane.md\":\"QiMgSY7K\",\"en_api_mp_math_point.md\":\"xl2uoip_\",\"en_api_mp_math_segment.md\":\"DHLOJKvw\",\"en_api_mp_math_utils.md\":\"DL_PJXBC\",\"en_api_mp_math_vector.md\":\"BuCQiBiJ\",\"en_api_particle_index.md\":\"j3_p5KtY\",\"en_api_presets_index.md\":\"Bj8HQN_s\",\"en_api_presets_model_index.md\":\"80iyVJ07\",\"en_demo_best-practice.md\":\"CmtY105n\",\"en_guide_index.md\":\"C3kI8f8A\",\"en_index.md\":\"Cc-Nt9Ot\",\"en_refer_index.md\":\"Cq6GWi0V\",\"guide_index.md\":\"CJOqvlSE\",\"index.md\":\"WVpbC1C1\",\"ja_api_index.md\":\"CGngNEPX\",\"ja_api_mp_math_angle.md\":\"BDeXuTGl\",\"ja_api_mp_math_const.md\":\"kKAd6ihV\",\"ja_api_mp_math_equation.md\":\"BVM6vN6D\",\"ja_api_mp_math_function.md\":\"DvFtmM8H\",\"ja_api_mp_math_index.md\":\"BCReRKfD\",\"ja_api_mp_math_line.md\":\"Dr4fEidY\",\"ja_api_mp_math_mp_math_typing.md\":\"CzEPV5Ep\",\"ja_api_mp_math_plane.md\":\"Cc1EMdFC\",\"ja_api_mp_math_point.md\":\"dm5hc0SY\",\"ja_api_mp_math_segment.md\":\"DfoZr9ZJ\",\"ja_api_mp_math_utils.md\":\"D_CVkme_\",\"ja_api_mp_math_vector.md\":\"CCYTQMl1\",\"ja_api_particle_index.md\":\"CW1rqarC\",\"ja_api_presets_index.md\":\"BFc_PfJb\",\"ja_api_presets_model_index.md\":\"D-b3SVFG\",\"ja_demo_best-practice.md\":\"CBHiF6ec\",\"ja_guide_index.md\":\"w1Tf2Adm\",\"ja_index.md\":\"BvjV8RIJ\",\"ja_refer_index.md\":\"DamUscs8\",\"refer_7-differential-euqtion_index.md\":\"Dd2-7I9S\",\"refer_function_curry.md\":\"D_oqRDd3\",\"refer_function_function.md\":\"Bi_82lIJ\",\"refer_index.md\":\"CrLsuxQ_\",\"zht_api_index.md\":\"Bh7ICG6U\",\"zht_api_mp_math_angle.md\":\"weV9qvI5\",\"zht_api_mp_math_const.md\":\"D9eBwcNw\",\"zht_api_mp_math_equation.md\":\"DfF7GWjn\",\"zht_api_mp_math_function.md\":\"DTCO2zVM\",\"zht_api_mp_math_index.md\":\"DVqLRZhm\",\"zht_api_mp_math_line.md\":\"DMbMXNUx\",\"zht_api_mp_math_mp_math_typing.md\":\"DWzRfFJe\",\"zht_api_mp_math_plane.md\":\"BtjTSOwB\",\"zht_api_mp_math_point.md\":\"IJfK3Jwi\",\"zht_api_mp_math_segment.md\":\"Cb8cGwsr\",\"zht_api_mp_math_utils.md\":\"BNQkqXiv\",\"zht_api_mp_math_vector.md\":\"CEPTxRVM\",\"zht_api_particle_index.md\":\"bdouG1sk\",\"zht_api_presets_index.md\":\"9wdPAkKN\",\"zht_api_presets_model_index.md\":\"S5PFg9j4\",\"zht_demo_best-practice.md\":\"CPNbD_Lg\",\"zht_guide_index.md\":\"BNnMViC8\",\"zht_index.md\":\"fkOYkZZe\",\"zht_refer_index.md\":\"B7CQS2UW\"}");function deserializeFunctions(r){return Array.isArray(r)?r.map(deserializeFunctions):typeof r=="object"&&r!==null?Object.keys(r).reduce((t,n)=>(t[n]=deserializeFunctions(r[n]),t),{}):typeof r=="string"&&r.startsWith("_vp-fn_")?new Function(`return ${r.slice(7)}`)():r};window.__VP_SITE_DATA__=deserializeFunctions(JSON.parse("{\"lang\":\"en-US\",\"dir\":\"ltr\",\"title\":\"VitePress\",\"description\":\"A VitePress site\",\"base\":\"/\",\"head\":[],\"router\":{\"prefetchLinks\":true},\"appearance\":true,\"themeConfig\":{\"logo\":\"/mbcp-logo.svg\",\"sidebar\":{\"/api/\":{\"base\":\"/api/\",\"items\":[{\"text\":\"MBCP\",\"items\":[{\"text\":\"mp_math\",\"items\":[{\"text\":\"mbcp.mp_math.angle\",\"link\":\"mp_math/angle\"},{\"text\":\"mbcp.mp_math.const\",\"link\":\"mp_math/const\"},{\"text\":\"mbcp.mp_math.equation\",\"link\":\"mp_math/equation\"},{\"text\":\"mbcp.mp_math.function\",\"link\":\"mp_math/function\"},{\"text\":\"mbcp.mp_math\",\"link\":\"mp_math/\"},{\"text\":\"mbcp.mp_math.line\",\"link\":\"mp_math/line\"},{\"text\":\"mbcp.mp_math.mp_math_typing\",\"link\":\"mp_math/mp_math_typing\"},{\"text\":\"mbcp.mp_math.plane\",\"link\":\"mp_math/plane\"},{\"text\":\"mbcp.mp_math.point\",\"link\":\"mp_math/point\"},{\"text\":\"mbcp.mp_math.segment\",\"link\":\"mp_math/segment\"},{\"text\":\"mbcp.mp_math.utils\",\"link\":\"mp_math/utils\"},{\"text\":\"mbcp.mp_math.vector\",\"link\":\"mp_math/vector\"}],\"collapsed\":true},{\"text\":\"particle\",\"items\":[{\"text\":\"mbcp.particle\",\"link\":\"particle/\"}],\"collapsed\":true},{\"text\":\"presets\",\"items\":[{\"text\":\"mbcp.presets\",\"link\":\"presets/\"},{\"text\":\"model\",\"items\":[{\"text\":\"mbcp.presets.model\",\"link\":\"presets/model/\"}],\"collapsed\":true}],\"collapsed\":true}]}]},\"/refer/\":{\"base\":\"/refer/\",\"items\":[{\"text\":\"MBCP\",\"items\":[{\"text\":\"7-differential-euqtion\",\"items\":[{\"text\":\"微分方程\",\"link\":\"7-differential-euqtion/\"}],\"collapsed\":true},{\"text\":\"函数\",\"link\":\"function/function\",\"items\":[{\"text\":\"柯里化\",\"link\":\"function/curry\"}],\"collapsed\":true}]}]},\"/guide/\":{\"base\":\"/guide/\",\"items\":[{\"text\":\"MBCP\",\"items\":[]}]},\"/en/api/\":{\"base\":\"/en/api/\",\"items\":[{\"text\":\"MBCP\",\"items\":[{\"text\":\"mp_math\",\"items\":[{\"text\":\"mbcp.mp_math.angle\",\"link\":\"mp_math/angle\"},{\"text\":\"mbcp.mp_math.const\",\"link\":\"mp_math/const\"},{\"text\":\"mbcp.mp_math.equation\",\"link\":\"mp_math/equation\"},{\"text\":\"mbcp.mp_math.function\",\"link\":\"mp_math/function\"},{\"text\":\"mbcp.mp_math\",\"link\":\"mp_math/\"},{\"text\":\"mbcp.mp_math.line\",\"link\":\"mp_math/line\"},{\"text\":\"mbcp.mp_math.mp_math_typing\",\"link\":\"mp_math/mp_math_typing\"},{\"text\":\"mbcp.mp_math.plane\",\"link\":\"mp_math/plane\"},{\"text\":\"mbcp.mp_math.point\",\"link\":\"mp_math/point\"},{\"text\":\"mbcp.mp_math.segment\",\"link\":\"mp_math/segment\"},{\"text\":\"mbcp.mp_math.utils\",\"link\":\"mp_math/utils\"},{\"text\":\"mbcp.mp_math.vector\",\"link\":\"mp_math/vector\"}],\"collapsed\":true},{\"text\":\"particle\",\"items\":[{\"text\":\"mbcp.particle\",\"link\":\"particle/\"}],\"collapsed\":true},{\"text\":\"presets\",\"items\":[{\"text\":\"mbcp.presets\",\"link\":\"presets/\"},{\"text\":\"model\",\"items\":[{\"text\":\"mbcp.presets.model\",\"link\":\"presets/model/\"}],\"collapsed\":true}],\"collapsed\":true}]}]},\"/en/refer/\":{\"base\":\"/en/refer/\",\"items\":[{\"text\":\"MBCP\",\"items\":[]}]},\"/en/guide/\":{\"base\":\"/en/guide/\",\"items\":[{\"text\":\"MBCP\",\"items\":[]}]},\"/ja/api/\":{\"base\":\"/ja/api/\",\"items\":[{\"text\":\"MBCP\",\"items\":[{\"text\":\"mp_math\",\"items\":[{\"text\":\"mbcp.mp_math.angle\",\"link\":\"mp_math/angle\"},{\"text\":\"mbcp.mp_math.const\",\"link\":\"mp_math/const\"},{\"text\":\"mbcp.mp_math.equation\",\"link\":\"mp_math/equation\"},{\"text\":\"mbcp.mp_math.function\",\"link\":\"mp_math/function\"},{\"text\":\"mbcp.mp_math\",\"link\":\"mp_math/\"},{\"text\":\"mbcp.mp_math.line\",\"link\":\"mp_math/line\"},{\"text\":\"mbcp.mp_math.mp_math_typing\",\"link\":\"mp_math/mp_math_typing\"},{\"text\":\"mbcp.mp_math.plane\",\"link\":\"mp_math/plane\"},{\"text\":\"mbcp.mp_math.point\",\"link\":\"mp_math/point\"},{\"text\":\"mbcp.mp_math.segment\",\"link\":\"mp_math/segment\"},{\"text\":\"mbcp.mp_math.utils\",\"link\":\"mp_math/utils\"},{\"text\":\"mbcp.mp_math.vector\",\"link\":\"mp_math/vector\"}],\"collapsed\":true},{\"text\":\"particle\",\"items\":[{\"text\":\"mbcp.particle\",\"link\":\"particle/\"}],\"collapsed\":true},{\"text\":\"presets\",\"items\":[{\"text\":\"mbcp.presets\",\"link\":\"presets/\"},{\"text\":\"model\",\"items\":[{\"text\":\"mbcp.presets.model\",\"link\":\"presets/model/\"}],\"collapsed\":true}],\"collapsed\":true}]}]},\"/ja/refer/\":{\"base\":\"/ja/refer/\",\"items\":[{\"text\":\"MBCP\",\"items\":[]}]},\"/ja/guide/\":{\"base\":\"/ja/guide/\",\"items\":[{\"text\":\"MBCP\",\"items\":[]}]},\"/zht/api/\":{\"base\":\"/zht/api/\",\"items\":[{\"text\":\"MBCP\",\"items\":[{\"text\":\"mp_math\",\"items\":[{\"text\":\"mbcp.mp_math.angle\",\"link\":\"mp_math/angle\"},{\"text\":\"mbcp.mp_math.const\",\"link\":\"mp_math/const\"},{\"text\":\"mbcp.mp_math.equation\",\"link\":\"mp_math/equation\"},{\"text\":\"mbcp.mp_math.function\",\"link\":\"mp_math/function\"},{\"text\":\"mbcp.mp_math\",\"link\":\"mp_math/\"},{\"text\":\"mbcp.mp_math.line\",\"link\":\"mp_math/line\"},{\"text\":\"mbcp.mp_math.mp_math_typing\",\"link\":\"mp_math/mp_math_typing\"},{\"text\":\"mbcp.mp_math.plane\",\"link\":\"mp_math/plane\"},{\"text\":\"mbcp.mp_math.point\",\"link\":\"mp_math/point\"},{\"text\":\"mbcp.mp_math.segment\",\"link\":\"mp_math/segment\"},{\"text\":\"mbcp.mp_math.utils\",\"link\":\"mp_math/utils\"},{\"text\":\"mbcp.mp_math.vector\",\"link\":\"mp_math/vector\"}],\"collapsed\":true},{\"text\":\"particle\",\"items\":[{\"text\":\"mbcp.particle\",\"link\":\"particle/\"}],\"collapsed\":true},{\"text\":\"presets\",\"items\":[{\"text\":\"mbcp.presets\",\"link\":\"presets/\"},{\"text\":\"model\",\"items\":[{\"text\":\"mbcp.presets.model\",\"link\":\"presets/model/\"}],\"collapsed\":true}],\"collapsed\":true}]}]},\"/zht/refer/\":{\"base\":\"/zht/refer/\",\"items\":[{\"text\":\"MBCP\",\"items\":[]}]},\"/zht/guide/\":{\"base\":\"/zht/guide/\",\"items\":[{\"text\":\"MBCP\",\"items\":[]}]}},\"socialLinks\":[{\"icon\":\"github\",\"link\":\"https://github.com/snowykami/mbcp\"}],\"search\":{\"provider\":\"local\",\"options\":{\"locales\":{\"root\":{\"translations\":{\"button\":{\"buttonText\":\"搜索文档\",\"buttonAriaLabel\":\"打开搜索框\"},\"modal\":{\"noResultsText\":\"没有找到搜索结果\",\"resetButtonTitle\":\"清除查询条件\",\"footer\":{\"selectText\":\"选择\",\"navigateText\":\"切换\"}}}},\"en\":{\"translations\":{\"button\":{\"buttonText\":\"Search\",\"buttonAriaLabel\":\"Search\"},\"modal\":{\"noResultsText\":\"No results found\",\"resetButtonTitle\":\"Reset search query\",\"footer\":{\"selectText\":\"Select\",\"navigateText\":\"Navigate\"}}}},\"zht\":{\"translations\":{\"button\":{\"buttonText\":\"搜索文檔\",\"buttonAriaLabel\":\"打開搜索框\"},\"modal\":{\"noResultsText\":\"沒有找到搜索結果\",\"resetButtonTitle\":\"清除查詢條件\",\"footer\":{\"selectText\":\"選擇\",\"navigateText\":\"切換\"}}}},\"ja\":{\"translations\":{\"button\":{\"buttonText\":\"検索\",\"buttonAriaLabel\":\"検索を開く\"},\"modal\":{\"noResultsText\":\"検索結果が見つかりません\",\"resetButtonTitle\":\"リセット\",\"footer\":{\"selectText\":\"選択\",\"navigateText\":\"移動\"}}}}}}}},\"locales\":{\"root\":{\"label\":\"简体中文\",\"lang\":\"zh-Hans\",\"title\":\"MBCP 文档\",\"description\":\"MBCP 粒子计算和生成库文档\",\"themeConfig\":{\"nav\":[{\"text\":\"快速开始\",\"link\":\"/guide/\"},{\"text\":\"参考\",\"link\":\"/refer\"},{\"text\":\"API引用\",\"link\":\"/api/\"},{\"text\":\"实例\",\"link\":\"/demo/\"}],\"docFooter\":{\"prev\":\"上一页\",\"next\":\"下一页\"},\"editLink\":{\"pattern\":\"_vp-fn_({ filePath }) => {\\n const regex = /^[^\\\\/]+\\\\/api/;\\n if (regex.test(filePath)) {\\n filePath = filePath.replace(regex, \\\"\\\").replace(\\\"index.md\\\", \\\"__init__.py\\\").replace(\\\".md\\\", \\\".py\\\");\\n if (filePath.split(\\\"/\\\").pop().split(\\\".\\\")[0] === filePath.split(\\\"/\\\").slice(-2, -1)[0]) {\\n filePath = filePath.split(\\\"/\\\").slice(0, -1).join(\\\"/\\\") + \\\"/__init__.py\\\";\\n }\\n return `https://github.com/snowykami/mbcp/tree/main/mbcp/${filePath}`;\\n } else {\\n return `https://github.com/snowykami/mbcp/tree/main/docs/${filePath}`;\\n }\\n }\",\"text\":\"在 GitHub 上编辑此页\"},\"footer\":{\"message\":\"文档由 <a href=\\\"https://vitepress.dev/\\\">VitePress</a> 构建 | API引用由 <a href=\\\"https://github.com/LiteyukiStudio/litedoc\\\">litedoc</a> 生成\",\"copyright\":\"Copyright (C) 2020-2024 SnowyKami. All Rights Reserved\"},\"outline\":{\"label\":\"页面内容\",\"level\":[2,6]}}},\"en\":{\"label\":\"English\",\"lang\":\"en-US\",\"title\":\"MBCP docs\",\"description\":\"MBCP library docs\",\"themeConfig\":{\"nav\":[{\"text\":\"Get Start\",\"link\":\"/en/guide/\"},{\"text\":\"Reference\",\"link\":\"/en/refer\"},{\"text\":\"API Reference\",\"link\":\"/en/api/\"},{\"text\":\"Demo\",\"link\":\"/en/demo/\"}],\"docFooter\":{\"prev\":\"Prev Page\",\"next\":\"Next Page\"},\"editLink\":{\"pattern\":\"_vp-fn_({ filePath }) => {\\n const regex = /^[^\\\\/]+\\\\/api/;\\n if (regex.test(filePath)) {\\n filePath = filePath.replace(regex, \\\"\\\").replace(\\\"index.md\\\", \\\"__init__.py\\\").replace(\\\".md\\\", \\\".py\\\");\\n if (filePath.split(\\\"/\\\").pop().split(\\\".\\\")[0] === filePath.split(\\\"/\\\").slice(-2, -1)[0]) {\\n filePath = filePath.split(\\\"/\\\").slice(0, -1).join(\\\"/\\\") + \\\"/__init__.py\\\";\\n }\\n return `https://github.com/snowykami/mbcp/tree/main/mbcp/${filePath}`;\\n } else {\\n return `https://github.com/snowykami/mbcp/tree/main/docs/${filePath}`;\\n }\\n }\",\"text\":\"Edit this page on GitHub\"},\"footer\":{\"message\":\"Documentation built with <a href=\\\"https://vitepress.dev/\\\">VitePress</a> | API references generated by <a href=\\\"https://github.com/LiteyukiStudio/litedoc\\\">litedoc</a>\",\"copyright\":\"Copyright (C) 2020-2024 SnowyKami. All Rights Reserved\"},\"outline\":{\"label\":\"Page Content\",\"level\":[2,6]}}},\"ja\":{\"label\":\"日本語\",\"lang\":\"ja-JP\",\"title\":\"MBCP ドキュメント\",\"description\":\"MBCP ライブラリ ドキュメント\",\"themeConfig\":{\"nav\":[{\"text\":\"スタート\",\"link\":\"/ja/guide/\"},{\"text\":\"リファレンス\",\"link\":\"/ja/refer\"},{\"text\":\"APIリファレンス\",\"link\":\"/ja/api/\"},{\"text\":\"インスタンス\",\"link\":\"/ja/demo/\"}],\"docFooter\":{\"prev\":\"前のページ\",\"next\":\"次のページ\"},\"editLink\":{\"pattern\":\"_vp-fn_({ filePath }) => {\\n const regex = /^[^\\\\/]+\\\\/api/;\\n if (regex.test(filePath)) {\\n filePath = filePath.replace(regex, \\\"\\\").replace(\\\"index.md\\\", \\\"__init__.py\\\").replace(\\\".md\\\", \\\".py\\\");\\n if (filePath.split(\\\"/\\\").pop().split(\\\".\\\")[0] === filePath.split(\\\"/\\\").slice(-2, -1)[0]) {\\n filePath = filePath.split(\\\"/\\\").slice(0, -1).join(\\\"/\\\") + \\\"/__init__.py\\\";\\n }\\n return `https://github.com/snowykami/mbcp/tree/main/mbcp/${filePath}`;\\n } else {\\n return `https://github.com/snowykami/mbcp/tree/main/docs/${filePath}`;\\n }\\n }\",\"text\":\"このページをGitHubで編集する\"},\"footer\":{\"message\":\"<a href=\\\"https://vitepress.dev/\\\">VitePress</a> で構築されたドキュメント | <a href=\\\"https://github.com/LiteyukiStudio/litedoc\\\">litedoc</a> によって生成されたAPIリファレンス\",\"copyright\":\"Copyright (C) 2020-2024 SnowyKami. All Rights Reserved\"},\"outline\":{\"label\":\"ページの内容\",\"level\":[2,6]}}},\"zht\":{\"label\":\"繁體中文\",\"lang\":\"zh-Hant\",\"title\":\"MBCP 文檔\",\"description\":\"MBCP 粒子計算和生成庫文檔\",\"themeConfig\":{\"nav\":[{\"text\":\"指引\",\"link\":\"/zht/guide/\"},{\"text\":\"參考\",\"link\":\"/zht/refer\"},{\"text\":\"API引用\",\"link\":\"/zht/api/\"},{\"text\":\"示範\",\"link\":\"/zht/demo/\"}],\"docFooter\":{\"prev\":\"上一頁\",\"next\":\"下一頁\"},\"editLink\":{\"pattern\":\"_vp-fn_({ filePath }) => {\\n const regex = /^[^\\\\/]+\\\\/api/;\\n if (regex.test(filePath)) {\\n filePath = filePath.replace(regex, \\\"\\\").replace(\\\"index.md\\\", \\\"__init__.py\\\").replace(\\\".md\\\", \\\".py\\\");\\n if (filePath.split(\\\"/\\\").pop().split(\\\".\\\")[0] === filePath.split(\\\"/\\\").slice(-2, -1)[0]) {\\n filePath = filePath.split(\\\"/\\\").slice(0, -1).join(\\\"/\\\") + \\\"/__init__.py\\\";\\n }\\n return `https://github.com/snowykami/mbcp/tree/main/mbcp/${filePath}`;\\n } else {\\n return `https://github.com/snowykami/mbcp/tree/main/docs/${filePath}`;\\n }\\n }\",\"text\":\"於 GitHub 上編輯這頁\"},\"footer\":{\"message\":\"文檔由 <a href=\\\"https://vitepress.dev/\\\">VitePress</a> 構建 | API引用由 <a href=\\\"https://github.com/LiteyukiStudio/litedoc\\\">litedoc</a> 生成\",\"copyright\":\"Copyright (C) 2020-2024 SnowyKami. All Rights Reserved\"},\"outline\":{\"label\":\"頁面內容\",\"level\":[2,6]}}}},\"scrollOffset\":134,\"cleanUrls\":false}"));</script>
</body>
</html>