mbcp/ja/api/mp_math/equation.html

89 lines
55 KiB
HTML
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="ja-JP" dir="ltr">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width,initial-scale=1">
<title>mbcp.mp_math.equation | MBCP ドキュメント</title>
<meta name="description" content="MBCP ライブラリ ドキュメント">
<meta name="generator" content="VitePress v1.3.4">
<link rel="preload stylesheet" href="/assets/style.B17AbvQp.css" as="style">
<script type="module" src="/assets/app.DSCSdM_3.js"></script>
<link rel="modulepreload" href="/assets/chunks/theme.CIS5wKR_.js">
<link rel="modulepreload" href="/assets/chunks/framework.C94oF1kp.js">
<link rel="modulepreload" href="/assets/ja_api_mp_math_equation.md.bBbnLveW.lean.js">
<link rel="icon" type="image/svg+xml" href="/mbcp-logo.svg">
<link rel="stylesheet" href="https://fonts.font.im/css?family=Cousine:400,400i,700,700i|Poppins:100,100i,200,200i,300,300i,400,400i,500,500i,600,600i,700,700i,800,800i,900,900i">
<script id="check-dark-mode">(()=>{const e=localStorage.getItem("vitepress-theme-appearance")||"auto",a=window.matchMedia("(prefers-color-scheme: dark)").matches;(!e||e==="auto"?a:e==="dark")&&document.documentElement.classList.add("dark")})();</script>
<script id="check-mac-os">document.documentElement.classList.toggle("mac",/Mac|iPhone|iPod|iPad/i.test(navigator.platform));</script>
</head>
<body>
<div id="app"><div class="Layout" data-v-22f859ac><!--[--><!--]--><!--[--><span tabindex="-1" data-v-3e86afbf></span><a href="#VPContent" class="VPSkipLink visually-hidden" data-v-3e86afbf> Skip to content </a><!--]--><!----><header class="VPNav" data-v-22f859ac data-v-2a4e514e><div class="VPNavBar has-sidebar top" data-v-2a4e514e data-v-1303e283><div class="wrapper" data-v-1303e283><div class="container" data-v-1303e283><div class="title" data-v-1303e283><div class="VPNavBarTitle has-sidebar" data-v-1303e283 data-v-10b95b50><a class="title" href="/ja/" data-v-10b95b50><!--[--><!--]--><!--[--><img class="VPImage logo" src="/mbcp-logo.svg" alt data-v-f925500d><!--]--><span data-v-10b95b50>MBCP ドキュメント</span><!--[--><!--]--></a></div></div><div class="content" data-v-1303e283><div class="content-body" data-v-1303e283><!--[--><!--]--><div class="VPNavBarSearch search" data-v-1303e283><!----></div><nav aria-labelledby="main-nav-aria-label" class="VPNavBarMenu menu" data-v-1303e283 data-v-0fb289c1><span id="main-nav-aria-label" class="visually-hidden" data-v-0fb289c1> Main Navigation </span><!--[--><!--[--><a class="VPLink link VPNavBarMenuLink" href="/ja/guide/" tabindex="0" data-v-0fb289c1 data-v-ad4a8b64><!--[--><span data-v-ad4a8b64>スタート</span><!--]--></a><!--]--><!--[--><a class="VPLink link VPNavBarMenuLink" href="/ja/refer.html" tabindex="0" data-v-0fb289c1 data-v-ad4a8b64><!--[--><span data-v-ad4a8b64>リファレンス</span><!--]--></a><!--]--><!--[--><a class="VPLink link VPNavBarMenuLink" href="/ja/api/" tabindex="0" data-v-0fb289c1 data-v-ad4a8b64><!--[--><span data-v-ad4a8b64>APIリファレンス</span><!--]--></a><!--]--><!--[--><a class="VPLink link VPNavBarMenuLink" href="/ja/demo/" tabindex="0" data-v-0fb289c1 data-v-ad4a8b64><!--[--><span data-v-ad4a8b64>インスタンス</span><!--]--></a><!--]--><!--]--></nav><div class="VPFlyout VPNavBarTranslations translations" data-v-1303e283 data-v-cd7b67e8 data-v-ec8c49bc><button type="button" class="button" aria-haspopup="true" aria-expanded="false" aria-label="Change language" data-v-ec8c49bc><span class="text" data-v-ec8c49bc><span class="vpi-languages option-icon" data-v-ec8c49bc></span><!----><span class="vpi-chevron-down text-icon" data-v-ec8c49bc></span></span></button><div class="menu" data-v-ec8c49bc><div class="VPMenu" data-v-ec8c49bc data-v-9990563e><!----><!--[--><!--[--><div class="items" data-v-cd7b67e8><p class="title" data-v-cd7b67e8>日本語</p><!--[--><div class="VPMenuLink" data-v-cd7b67e8 data-v-79776a7a><a class="VPLink link" href="/api/mp_math/equation.html" data-v-79776a7a><!--[-->简体中文<!--]--></a></div><div class="VPMenuLink" data-v-cd7b67e8 data-v-79776a7a><a class="VPLink link" href="/en/api/mp_math/equation.html" data-v-79776a7a><!--[-->English<!--]--></a></div><div class="VPMenuLink" data-v-cd7b67e8 data-v-79776a7a><a class="VPLink link" href="/zht/api/mp_math/equation.html" data-v-79776a7a><!--[-->繁體中文<!--]--></a></div><!--]--></div><!--]--><!--]--></div></div></div><div class="VPNavBarAppearance appearance" data-v-1303e283 data-v-2a6692f8><button class="VPSwitch VPSwitchAppearance" type="button" role="switch" title="Switch to dark theme" aria-checked="false" data-v-2a6692f8 data-v-3a50aa5c data-v-d82e607b><span class="check" data-v-d82e607b><span class="icon" data-v-d82e607b><!--[--><span class="vpi-sun sun" data-v-3a50aa5c></span><span class="vpi-moon moon" data-v-3a50aa5c></span><!--]--></span></span></button></div><div class="VPSocialLinks VPNavBarSocialLinks social-links" data-v-1303e283 data-v-f3b91b3a data-v-fa18fe49><!--[--><a class="VPSocialLink no-icon" href="https://github.com/snowykami/mbcp" aria-label="github" target="_blank" rel="noopener" data-v-fa18fe49 data-v-b0526bd7><span class="vpi-social-github" /></a><!--]--></div><div class="VPFlyout VPNavBarExtra extra" data-v-1303e283 data-v-2fc967b6 data-v-ec8c49bc><button type="button" class="button" aria-haspopup="true" aria-expanded="false" aria-label="extra navigation" data-v-ec8c49bc><span class="vpi-more-horizontal icon" data-v-ec8c49bc></span></button><div class="menu" data-v-ec8c49bc><div class="VPMenu" data-v-ec8c49bc data-v-9990563e><!----><!--[--><!--[--><div class="group translations" data-v-2fc967b6><p class="trans-title" data-v-2fc967b6>日本語</p><!--[--><div class="VPMenuLink" data-v-2fc967b6 data-v-79776a7a><a class="VPLink link" href="/api/mp_math/equation.html" data-v-79776a7a><!--[-->简体中文<!--]--></a></div><div class="VPMenuLink" data-v-2fc967b6 data-v-79776a7a><a class="VPLink link" href="/en/api/mp_math/equation.html" data-v-79776a7a><!--[-->English<!--]--></a></div><div class="VPMenuLink" data-v-2fc967b6 data-v-79776a7a><a class="VPLink link" href="/zht/api/mp_math/equation.html" data-v-79776a7a><!--[-->繁體中文<!--]--></a></div><!--]--></div><div class="group" data-v-2fc967b6><div class="item appearance" data-v-2fc967b6><p class="label" data-v-2fc967b6>Appearance</p><div class="appearance-action" data-v-2fc967b6><button class="VPSwitch VPSwitchAppearance" type="button" role="switch" title="Switch to dark theme" aria-checked="false" data-v-2fc967b6 data-v-3a50aa5c data-v-d82e607b><span class="check" data-v-d82e607b><span class="icon" data-v-d82e607b><!--[--><span class="vpi-sun sun" data-v-3a50aa5c></span><span class="vpi-moon moon" data-v-3a50aa5c></span><!--]--></span></span></button></div></div></div><div class="group" data-v-2fc967b6><div class="item social-links" data-v-2fc967b6><div class="VPSocialLinks social-links-list" data-v-2fc967b6 data-v-fa18fe49><!--[--><a class="VPSocialLink no-icon" href="https://github.com/snowykami/mbcp" aria-label="github" target="_blank" rel="noopener" data-v-fa18fe49 data-v-b0526bd7><span class="vpi-social-github" /></a><!--]--></div></div></div><!--]--><!--]--></div></div></div><!--[--><!--]--><button type="button" class="VPNavBarHamburger hamburger" aria-label="mobile navigation" aria-expanded="false" aria-controls="VPNavScreen" data-v-1303e283 data-v-be64de2d><span class="container" data-v-be64de2d><span class="top" data-v-be64de2d></span><span class="middle" data-v-be64de2d></span><span class="bottom" data-v-be64de2d></span></span></button></div></div></div></div><div class="divider" data-v-1303e283><div class="divider-line" data-v-1303e283></div></div></div><!----></header><div class="VPLocalNav has-sidebar empty" data-v-22f859ac data-v-8af612ea><div class="container" data-v-8af612ea><button class="menu" aria-expanded="false" aria-controls="VPSidebarNav" data-v-8af612ea><span class="vpi-align-left menu-icon" data-v-8af612ea></span><span class="menu-text" data-v-8af612ea>Menu</span></button><div class="VPLocalNavOutlineDropdown" style="--vp-vh:0px;" data-v-8af612ea data-v-b418bf42><button data-v-b418bf42>Return to top</button><!----></div></div></div><aside class="VPSidebar" data-v-22f859ac data-v-edd7de80><div class="curtain" data-v-edd7de80></div><nav class="nav" id="VPSidebarNav" aria-labelledby="sidebar-aria-label" tabindex="-1" data-v-edd7de80><span class="visually-hidden" id="sidebar-aria-label" data-v-edd7de80> Sidebar Navigation </span><!--[--><!--]--><!--[--><div class="no-transition group" data-v-c3eaeb1a><section class="VPSidebarItem level-0 has-active" data-v-c3eaeb1a data-v-9035698b><div class="item" role="button" tabindex="0" data-v-9035698b><div class="indicator" data-v-9035698b></div><h2 class="text" data-v-9035698b>MBCP</h2><!----></div><div class="items" data-v-9035698b><!--[--><div class="VPSidebarItem level-1 is-link" data-v-9035698b data-v-9035698b><div class="item" data-v-9035698b><div class="indicator" data-v-9035698b></div><a class="VPLink link link" href="/ja/api/api.html" data-v-9035698b><!--[--><p class="text" data-v-9035698b>mbcp</p><!--]--></a><!----></div><!----></div><section class="VPSidebarItem level-1 collapsible is-link has-active" data-v-9035698b data-v-9035698b><div class="item" tabindex="0" data-v-9035698b><div class="indicator" data-v-9035698b></div><a class="VPLink link link" href="/ja/api/mp_math/mp_math.html" data-v-9035698b><!--[--><h3 class="text" data-v-9035698b>mbcp.mp_math</h3><!--]--></a><div class="caret" role="button" aria-label="toggle section" tabindex="0" data-v-9035698b><span class="vpi-chevron-right caret-icon" data-v-9035698b></span></div></div><div class="items" data-v-9035698b><!--[--><div class="VPSidebarItem level-2 is-link" data-v-9035698b data-v-9035698b><div class="item" data-v-9035698b><div class="indicator" data-v-9035698b></div><a class="VPLink link link" href="/ja/api/mp_math/angle.html" data-v-9035698b><!--[--><p class="text" data-v-9035698b>mbcp.mp_math.angle</p><!--]--></a><!----></div><!----></div><div class="VPSidebarItem level-2 is-link" data-v-9035698b data-v-9035698b><div class="item" data-v-9035698b><div class="indicator" data-v-9035698b></div><a class="VPLink link link" href="/ja/api/mp_math/const.html" data-v-9035698b><!--[--><p class="text" data-v-9035698b>mbcp.mp_math.const</p><!--]--></a><!----></div><!----></div><div class="VPSidebarItem level-2 is-link" data-v-9035698b data-v-9035698b><div class="item" data-v-9035698b><div class="indicator" data-v-9035698b></div><a class="VPLink link link" href="/ja/api/mp_math/equation.html" data-v-9035698b><!--[--><p class="text" data-v-9035698b>mbcp.mp_math.equation</p><!--]--></a><!----></div><!----></div><div class="VPSidebarItem level-2 is-link" data-v-9035698b data-v-9035698b><div class="item" data-v-9035698b><div class="indicator" data-v-9035698b></div><a class="VPLink link link" href="/ja/api/mp_math/function.html" data-v-9035698b><!--[--><p class="text" data-v-9035698b>mbcp.mp_math.function</p><!--]--></a><!----></div><!----></div><div class="VPSidebarItem level-2 is-link" data-v-9035698b data-v-9035698b><div class="item" data-v-9035698b><div class="indicator" data-v-9035698b></div><a class="VPLink link link" href="/ja/api/mp_math/" data-v-9035698b><!--[--><p class="text" data-v-9035698b>mbcp.mp_math</p><!--]--></a><!----></div><!----></div><div class="VPSidebarItem level-2 is-link" data-v-9035698b data-v-9035698b><div class="item" data-v-9035698b><div class="indicator" data-v-9035698b></div><a class="VPLink link link" href="/ja/api/mp_math/line.html" data-v-9035698b><!--[--><p class="text" data-v-9035698b>mbcp.mp_math.line</p><!--]--></a><!----></div><!----></div><div class="VPSidebarItem level-2 is-link" data-v-9035698b data-v-9035698b><div class="item" data-v-9035698b><div class="indicator" data-v-9035698b></div><a class="VPLink link link" href="/ja/api/mp_math/mp_math_typing.html" data-v-9035698b><!--[--><p class="text" data-v-9035698b>mbcp.mp_math.mp_math_typing</p><!--]--></a><!----></div><!----></div><div class="VPSidebarItem level-2 is-link" data-v-9035698b data-v-9035698b><div class="item" data-v-9035698b><div class="indicator" data-v-9035698b></div><a class="VPLink link link" href="/ja/api/mp_math/plane.html" data-v-9035698b><!--[--><p class="text" data-v-9035698b>mbcp.mp_math.plane</p><!--]--></a><!----></div><!----></div><div class="VPSidebarItem level-2 is-link" data-v-9035698b data-v-9035698b><div class="item" data-v-9035698b><div class="indicator" data-v-9035698b></div><a class="VPLink link link" href="/ja/api/mp_math/point.html" data-v-9035698b><!--[--><p class="text" data-v-9035698b>mbcp.mp_math.point</p><!--]--></a><!----></div><!----></div><div class="VPSidebarItem level-2 is-link" data-v-9035698b data-v-9035698b><div class="item" data-v-9035698b><div class="indicator" data-v-9035698b></div><a class="VPLink link link" href="/ja/api/mp_math/segment.html" data-v-9035698b><!--[--><p class="text" data-v-9035698b>mbcp.mp_math.segment</p><!--]--></a><!----></div><!----></div><div class="VPSidebarItem level-2 is-link" data-v-9035698b data-v-9035698b><div class="item" data-v-9035698b><div class="indicator" data-v-9035698b></div><a class="VPLink link link" href="/ja/api/mp_math/utils.html" data-v-9035698b><!--[--><p class="text" data-v-9035698b>mbcp.mp_math.utils</p><!--]--></a><!----></div><!----></div><div class="VPSidebarItem level-2 is-link" data-v-9035698b data-v-9035698b><div class="item" data-v-9035698b><div class="indicator" data-v-9035698b></div><a class="VPLink link link" href="/ja/api/mp_math/vector.html" data-v-9035698b><!--[--><p class="text" data-v-9035698b>mbcp.mp_math.vector</p><!--]--></a><!----></div><!----></div><!--]--></div></section><section class="VPSidebarItem level-1 collapsible collapsed is-link" data-v-9035698b data-v-9035698b><div class="item" tabindex="0" data-v-9035698b><div class="indicator" data-v-9035698b></div><a class="VPLink link link" href="/ja/api/particle/particle.html" data-v-9035698b><!--[--><h3 class="text" data-v-9035698b>mbcp.particle</h3><!--]--></a><div class="caret" role="button" aria-label="toggle section" tabindex="0" data-v-9035698b><span class="vpi-chevron-right caret-icon" data-v-9035698b></span></div></div><div class="items" data-v-9035698b><!--[--><div class="VPSidebarItem level-2 is-link" data-v-9035698b data-v-9035698b><div class="item" data-v-9035698b><div class="indicator" data-v-9035698b></div><a class="VPLink link link" href="/ja/api/particle/" data-v-9035698b><!--[--><p class="text" data-v-9035698b>mbcp.particle</p><!--]--></a><!----></div><!----></div><!--]--></div></section><section class="VPSidebarItem level-1 collapsible collapsed is-link" data-v-9035698b data-v-9035698b><div class="item" tabindex="0" data-v-9035698b><div class="indicator" data-v-9035698b></div><a class="VPLink link link" href="/ja/api/presets/presets.html" data-v-9035698b><!--[--><h3 class="text" data-v-9035698b>mbcp.presets</h3><!--]--></a><div class="caret" role="button" aria-label="toggle section" tabindex="0" data-v-9035698b><span class="vpi-chevron-right caret-icon" data-v-9035698b></span></div></div><div class="items" data-v-9035698b><!--[--><div class="VPSidebarItem level-2 is-link" data-v-9035698b data-v-9035698b><div class="item" data-v-9035698b><div class="indicator" data-v-9035698b></div><a class="VPLink link link" href="/ja/api/presets/" data-v-9035698b><!--[--><p class="text" data-v-9035698b>mbcp.presets</p><!--]--></a><!----></div><!----></div><section class="VPSidebarItem level-2 collapsible collapsed is-link" data-v-9035698b data-v-9035698b><div class="item" tabindex="0" data-v-9035698b><div class="indicator" data-v-9035698b></div><a class="VPLink link link" href="/ja/api/presets/model/model.html" data-v-9035698b><!--[--><h4 class="text" data-v-9035698b>mbcp.presets.model</h4><!--]--></a><div class="caret" role="button" aria-label="toggle section" tabindex="0" data-v-9035698b><span class="vpi-chevron-right caret-icon" data-v-9035698b></span></div></div><div class="items" data-v-9035698b><!--[--><div class="VPSidebarItem level-3 is-link" data-v-9035698b data-v-9035698b><div class="item" data-v-9035698b><div class="indicator" data-v-9035698b></div><a class="VPLink link link" href="/ja/api/presets/model/" data-v-9035698b><!--[--><p class="text" data-v-9035698b>mbcp.presets.model</p><!--]--></a><!----></div><!----></div><!--]--></div></section><!--]--></div></section><!--]--></div></section></div><!--]--><!--[--><!--]--></nav></aside><div class="VPContent has-sidebar" id="VPContent" data-v-22f859ac data-v-ec7dbf3e><div class="VPDoc has-sidebar has-aside" data-v-ec7dbf3e data-v-40342069><!--[--><!--]--><div class="container" data-v-40342069><div class="aside" data-v-40342069><div class="aside-curtain" data-v-40342069></div><div class="aside-container" data-v-40342069><div class="aside-content" data-v-40342069><div class="VPDocAside" data-v-40342069 data-v-0ff3c77f><!--[--><!--]--><!--[--><!--]--><nav aria-labelledby="doc-outline-aria-label" class="VPDocAsideOutline" data-v-0ff3c77f data-v-e7b12e6e><div class="content" data-v-e7b12e6e><div class="outline-marker" data-v-e7b12e6e></div><div aria-level="2" class="outline-title" id="doc-outline-aria-label" role="heading" data-v-e7b12e6e>このページについて</div><ul class="VPDocOutlineItem root" data-v-e7b12e6e data-v-51c2c770><!--[--><!--]--></ul></div></nav><!--[--><!--]--><div class="spacer" data-v-0ff3c77f></div><!--[--><!--]--><!----><!--[--><!--]--><!--[--><!--]--></div></div></div></div><div class="content" data-v-40342069><div class="content-container" data-v-40342069><!--[--><!--]--><main class="main" data-v-40342069><div style="position:relative;" class="vp-doc _ja_api_mp_math_equation" data-v-40342069><div><h1 id="mbcp-mp-math-equation" tabindex="-1">mbcp.mp_math.equation <a class="header-anchor" href="#mbcp-mp-math-equation" aria-label="Permalink to &quot;mbcp.mp_math.equation&quot;"></a></h1><p><strong>説明</strong>: 本模块定义了方程相关的类和函数以及一些常用的数学函数</p><h3 id="class-curveequation" tabindex="-1"><em><strong>class</strong></em> <code>CurveEquation</code> <a class="header-anchor" href="#class-curveequation" aria-label="Permalink to &quot;***class*** `CurveEquation`&quot;"></a></h3><h4 id="def-init-self-x-func-onevarfunc-y-func-onevarfunc-z-func-onevarfunc" tabindex="-1"><em><strong>def</strong></em> <code>__init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc)</code> <a class="header-anchor" href="#def-init-self-x-func-onevarfunc-y-func-onevarfunc-z-func-onevarfunc" aria-label="Permalink to &quot;***def*** `__init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc)`&quot;"></a></h4><p><strong>説明</strong>: 曲线方程。</p><p><strong>引数</strong>:</p><blockquote><ul><li>x_func: x函数</li><li>y_func: y函数</li><li>z_func: z函数</li></ul></blockquote><details><summary><b>ソースコード</b> または <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/equation.py#L12" target="_blank">GitHubで表示</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> __init__</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc):</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 曲线方程。</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Args:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> x_func: x函数</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> y_func: y函数</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> z_func: z函数</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.x_func </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> x_func</span></span>
<span class="line"><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.y_func </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> y_func</span></span>
<span class="line"><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.z_func </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> z_func</span></span></code></pre></div></details><h4 id="def-call-self-t-var-point3-tuple-point3" tabindex="-1"><em><strong>def</strong></em> <code>__call__(self, *t: Var) -&gt; Point3 | tuple[Point3, ...]</code> <a class="header-anchor" href="#def-call-self-t-var-point3-tuple-point3" aria-label="Permalink to &quot;***def*** `__call__(self, *t: Var) -&gt; Point3 | tuple[Point3, ...]`&quot;"></a></h4><p><strong>説明</strong>: 计算曲线上的点。</p><p><strong>引数</strong>:</p><blockquote><ul><li>*t:</li><li>参数:</li></ul></blockquote><p><strong>戻り値</strong>: 目标点</p><details><summary><b>ソースコード</b> または <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/equation.py#L24" target="_blank">GitHubで表示</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> __call__</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">t: Var) -&gt; Point3 </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">|</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> tuple[Point3, </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">...</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">]:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 计算曲线上的点。</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Args:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> *t:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 参数</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Returns:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 目标点</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> if</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> len</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(t) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">==</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> 1</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> Point3(</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.x_func(t[</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">0</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">]), </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.y_func(t[</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">0</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">]), </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.z_func(t[</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">0</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">]))</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> else</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> tuple</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">([Point3(x, y, z) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">for</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> x, y, z </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">in</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> zip</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.x_func(t), </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.y_func(t), </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.z_func(t))])</span></span></code></pre></div></details><h3 id="def-get-partial-derivative-func-func-multivarsfunc-var-int-tuple-int-epsilon-number-epsilon-multivarsfunc" tabindex="-1"><em><strong>def</strong></em> <code>get_partial_derivative_func(func: MultiVarsFunc, var: int | tuple[int, ...], epsilon: Number = EPSILON) -&gt; MultiVarsFunc</code> <a class="header-anchor" href="#def-get-partial-derivative-func-func-multivarsfunc-var-int-tuple-int-epsilon-number-epsilon-multivarsfunc" aria-label="Permalink to &quot;***def*** `get_partial_derivative_func(func: MultiVarsFunc, var: int | tuple[int, ...], epsilon: Number = EPSILON) -&gt; MultiVarsFunc`&quot;"></a></h3><p><strong>説明</strong>: 求N元函数一阶偏导函数。这玩意不太稳定慎用。</p><div class="warning custom-block github-alert"><p class="custom-block-title">WARNING</p><p>目前数学界对于一个函数的导函数并没有通解的说法,因此该函数的稳定性有待提升</p></div><p><strong>引数</strong>:</p><blockquote><ul><li>func: 函数</li><li>var: 变量位置,可为整数(一阶偏导)或整数元组(高阶偏导)</li><li>epsilon: 偏移量</li></ul></blockquote><p><strong>戻り値</strong>: 偏导函数</p><p><strong>例外</strong>:</p><blockquote><ul><li>ValueError 无效变量类型</li></ul></blockquote><details><summary><b>ソースコード</b> または <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/equation.py#L42" target="_blank">GitHubで表示</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> get_partial_derivative_func</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(func: MultiVarsFunc, var: </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">int</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> |</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> tuple[</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">int</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">, </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">...</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">], epsilon: Number</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">EPSILON</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) -&gt; MultiVarsFunc:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 求N元函数一阶偏导函数。这玩意不太稳定慎用。</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &gt; [!warning]</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &gt; 目前数学界对于一个函数的导函数并没有通解的说法,因此该函数的稳定性有待提升</span></span>
<span class="line"></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Args:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> func: 函数</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> var: 变量位置,可为整数(一阶偏导)或整数元组(高阶偏导)</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> epsilon: 偏移量</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Returns:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 偏导函数</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Raises:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> ValueError: 无效变量类型</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> if</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> isinstance</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(var, </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">int</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">):</span></span>
<span class="line"></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> partial_derivative_func</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">args: Var) -&gt; Var:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;@litedoc-hide&quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> args_list_plus </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> list</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(args)</span></span>
<span class="line"><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> args_list_plus[var] </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">+=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> epsilon</span></span>
<span class="line"><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> args_list_minus </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> list</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(args)</span></span>
<span class="line"><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> args_list_minus[var] </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> epsilon</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> (func(</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">args_list_plus) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> func(</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">args_list_minus)) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">/</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> (</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">2</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> *</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> epsilon)</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> partial_derivative_func</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> elif</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> isinstance</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(var, </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">tuple</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">):</span></span>
<span class="line"></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> high_order_partial_derivative_func</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">args: Var) -&gt; Var:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> @litedoc-hide</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 求高阶偏导函数</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Args:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> *args: 参数</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Returns:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 高阶偏导数值</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> result_func </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> func</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> for</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> v </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">in</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> var:</span></span>
<span class="line"><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> result_func </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> get_partial_derivative_func(result_func, v, epsilon)</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> result_func(</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">args)</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> high_order_partial_derivative_func</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> else</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> raise</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> ValueError</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(</span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Invalid var type&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">)</span></span></code></pre></div></details></div></div></main><footer class="VPDocFooter" data-v-40342069 data-v-a4b38bd6><!--[--><!--]--><!----><nav class="prev-next" aria-labelledby="doc-footer-aria-label" data-v-a4b38bd6><span class="visually-hidden" id="doc-footer-aria-label" data-v-a4b38bd6>Pager</span><div class="pager" data-v-a4b38bd6><a class="VPLink link pager-link prev" href="/ja/api/mp_math/const.html" data-v-a4b38bd6><!--[--><span class="desc" data-v-a4b38bd6>前のページ</span><span class="title" data-v-a4b38bd6>mbcp.mp_math.const</span><!--]--></a></div><div class="pager" data-v-a4b38bd6><a class="VPLink link pager-link next" href="/ja/api/mp_math/function.html" data-v-a4b38bd6><!--[--><span class="desc" data-v-a4b38bd6>次のページ</span><span class="title" data-v-a4b38bd6>mbcp.mp_math.function</span><!--]--></a></div></nav></footer><!--[--><!--]--></div></div></div><!--[--><!--]--></div></div><footer class="VPFooter has-sidebar" data-v-22f859ac data-v-e3ca6860><div class="container" data-v-e3ca6860><p class="message" data-v-e3ca6860><a href="https://vitepress.dev/">VitePress</a> で構築されたドキュメント | <a href="https://github.com/LiteyukiStudio/litedoc">litedoc</a> によって生成されたAPIリファレンス</p><p class="copyright" data-v-e3ca6860>Copyright (C) 2020-2024 SnowyKami. All Rights Reserved</p></div></footer><!--[--><!--]--></div></div>
<script>window.__VP_HASH_MAP__=JSON.parse("{\"api_api.md\":\"D_B0Hlcp\",\"api_index.md\":\"C_wESrrY\",\"api_mp_math_angle.md\":\"C-N73CgT\",\"api_mp_math_const.md\":\"BAf8mK4W\",\"api_mp_math_equation.md\":\"Cp31USqa\",\"api_mp_math_function.md\":\"DIC1Ry3F\",\"api_mp_math_index.md\":\"BNf7bQqL\",\"api_mp_math_line.md\":\"CtD6lWPK\",\"api_mp_math_mp_math.md\":\"GlFMkWiQ\",\"api_mp_math_mp_math_typing.md\":\"DlnJmkos\",\"api_mp_math_plane.md\":\"ad6doatt\",\"api_mp_math_point.md\":\"BY0HIcUa\",\"api_mp_math_segment.md\":\"CmG5SWCe\",\"api_mp_math_utils.md\":\"CAI5jzaB\",\"api_mp_math_vector.md\":\"BnKft09t\",\"api_particle_index.md\":\"Cm3Vk-es\",\"api_particle_particle.md\":\"yD6tcNSr\",\"api_presets_index.md\":\"CD62I2gv\",\"api_presets_model_index.md\":\"CxTdQozZ\",\"api_presets_model_model.md\":\"C5hmcIxj\",\"api_presets_presets.md\":\"4R0VRbQo\",\"demo_index.md\":\"D-H9zRUE\",\"en_api_api.md\":\"BSgrCX1d\",\"en_api_index.md\":\"Dj_5nFTt\",\"en_api_mp_math_angle.md\":\"Dgb5qA7e\",\"en_api_mp_math_const.md\":\"gGpXUShq\",\"en_api_mp_math_equation.md\":\"BNTh5S3G\",\"en_api_mp_math_function.md\":\"CKbXJNVH\",\"en_api_mp_math_index.md\":\"BEjLBMpH\",\"en_api_mp_math_line.md\":\"BkGvfNB7\",\"en_api_mp_math_mp_math.md\":\"D6ihYPav\",\"en_api_mp_math_mp_math_typing.md\":\"Dnl2aJQ4\",\"en_api_mp_math_plane.md\":\"IO0Boeqk\",\"en_api_mp_math_point.md\":\"BfLB2Pov\",\"en_api_mp_math_segment.md\":\"4UlH6aD-\",\"en_api_mp_math_utils.md\":\"a8Vzn8__\",\"en_api_mp_math_vector.md\":\"CG9JbG4z\",\"en_api_particle_index.md\":\"BfyNQiRg\",\"en_api_particle_particle.md\":\"BNkfEyJn\",\"en_api_presets_index.md\":\"BWb2fpTg\",\"en_api_presets_model_index.md\":\"DIdYh3vo\",\"en_api_presets_model_model.md\":\"Dp27PGgh\",\"en_api_presets_presets.md\":\"CCUzsYog\",\"en_guide_index.md\":\"DrDHTYCZ\",\"en_index.md\":\"BSTSOH39\",\"en_refer_index.md\":\"alw4L-bp\",\"guide_index.md\":\"Cfmzk2IH\",\"index.md\":\"CNF8LJa0\",\"ja_api_api.md\":\"CPz58qIw\",\"ja_api_index.md\":\"CnUeuifx\",\"ja_api_mp_math_angle.md\":\"R64H2-ob\",\"ja_api_mp_math_const.md\":\"DGXAgDfn\",\"ja_api_mp_math_equation.md\":\"bBbnLveW\",\"ja_api_mp_math_function.md\":\"KS50DwZu\",\"ja_api_mp_math_index.md\":\"CTZZ-p9Z\",\"ja_api_mp_math_line.md\":\"B3oNfIkI\",\"ja_api_mp_math_mp_math.md\":\"D-prC0UO\",\"ja_api_mp_math_mp_math_typing.md\":\"BNymgrCT\",\"ja_api_mp_math_plane.md\":\"DFKYhl6m\",\"ja_api_mp_math_point.md\":\"CQIfQely\",\"ja_api_mp_math_segment.md\":\"y5HJ_Cqz\",\"ja_api_mp_math_utils.md\":\"RNFMo8bK\",\"ja_api_mp_math_vector.md\":\"NRH_z6Ha\",\"ja_api_particle_index.md\":\"Jr41Y3TS\",\"ja_api_particle_particle.md\":\"exTt46pq\",\"ja_api_presets_index.md\":\"CQqdQbIZ\",\"ja_api_presets_model_index.md\":\"CubDnh2b\",\"ja_api_presets_model_model.md\":\"Dqxl5NOT\",\"ja_api_presets_presets.md\":\"DwzXdDqR\",\"ja_guide_index.md\":\"BxGnZYwR\",\"ja_index.md\":\"DCWiTENz\",\"ja_refer_index.md\":\"CODW6iMX\",\"refer_function_curry.md\":\"DwKZawp5\",\"refer_function_function.md\":\"D3IgfZX2\",\"refer_index.md\":\"CczYTl3j\",\"zht_api_api.md\":\"DyUSHA0S\",\"zht_api_index.md\":\"CgZH6aHQ\",\"zht_api_mp_math_angle.md\":\"UUc3s3KL\",\"zht_api_mp_math_const.md\":\"xwQvuYck\",\"zht_api_mp_math_equation.md\":\"DkZNMC3t\",\"zht_api_mp_math_function.md\":\"CYwI6A0a\",\"zht_api_mp_math_index.md\":\"mmeMMriu\",\"zht_api_mp_math_line.md\":\"ByORXAGU\",\"zht_api_mp_math_mp_math.md\":\"C302rxKc\",\"zht_api_mp_math_mp_math_typing.md\":\"CNiSnuMw\",\"zht_api_mp_math_plane.md\":\"DL8PMQ01\",\"zht_api_mp_math_point.md\":\"FCf8N9tu\",\"zht_api_mp_math_segment.md\":\"B62sPC-7\",\"zht_api_mp_math_utils.md\":\"es0XyXO5\",\"zht_api_mp_math_vector.md\":\"8hzEA9LV\",\"zht_api_particle_index.md\":\"8GaGB1ul\",\"zht_api_particle_particle.md\":\"huuRTEb9\",\"zht_api_presets_index.md\":\"DvOViSox\",\"zht_api_presets_model_index.md\":\"C7QkAD_l\",\"zht_api_presets_model_model.md\":\"aGdpVmbK\",\"zht_api_presets_presets.md\":\"CsDHjRbK\",\"zht_guide_index.md\":\"CsuFVFxu\",\"zht_index.md\":\"VMjJ0lpj\",\"zht_refer_index.md\":\"Bz6voxEQ\"}");function deserializeFunctions(r){return Array.isArray(r)?r.map(deserializeFunctions):typeof r=="object"&&r!==null?Object.keys(r).reduce((t,n)=>(t[n]=deserializeFunctions(r[n]),t),{}):typeof r=="string"&&r.startsWith("_vp-fn_")?new Function(`return ${r.slice(7)}`)():r};window.__VP_SITE_DATA__=deserializeFunctions(JSON.parse("{\"lang\":\"en-US\",\"dir\":\"ltr\",\"title\":\"VitePress\",\"description\":\"A VitePress site\",\"base\":\"/\",\"head\":[],\"router\":{\"prefetchLinks\":true},\"appearance\":true,\"themeConfig\":{\"logo\":\"/mbcp-logo.svg\",\"sidebar\":{\"/api/\":{\"base\":\"/api/\",\"items\":[{\"text\":\"MBCP\",\"items\":[{\"text\":\"mbcp\",\"link\":\"api\"},{\"text\":\"mbcp.mp_math\",\"link\":\"mp_math/mp_math\",\"items\":[{\"text\":\"mbcp.mp_math.angle\",\"link\":\"mp_math/angle\"},{\"text\":\"mbcp.mp_math.const\",\"link\":\"mp_math/const\"},{\"text\":\"mbcp.mp_math.equation\",\"link\":\"mp_math/equation\"},{\"text\":\"mbcp.mp_math.function\",\"link\":\"mp_math/function\"},{\"text\":\"mbcp.mp_math\",\"link\":\"mp_math/\"},{\"text\":\"mbcp.mp_math.line\",\"link\":\"mp_math/line\"},{\"text\":\"mbcp.mp_math.mp_math_typing\",\"link\":\"mp_math/mp_math_typing\"},{\"text\":\"mbcp.mp_math.plane\",\"link\":\"mp_math/plane\"},{\"text\":\"mbcp.mp_math.point\",\"link\":\"mp_math/point\"},{\"text\":\"mbcp.mp_math.segment\",\"link\":\"mp_math/segment\"},{\"text\":\"mbcp.mp_math.utils\",\"link\":\"mp_math/utils\"},{\"text\":\"mbcp.mp_math.vector\",\"link\":\"mp_math/vector\"}],\"collapsed\":true},{\"text\":\"mbcp.particle\",\"link\":\"particle/particle\",\"items\":[{\"text\":\"mbcp.particle\",\"link\":\"particle/\"}],\"collapsed\":true},{\"text\":\"mbcp.presets\",\"link\":\"presets/presets\",\"items\":[{\"text\":\"mbcp.presets\",\"link\":\"presets/\"},{\"text\":\"mbcp.presets.model\",\"link\":\"presets/model/model\",\"items\":[{\"text\":\"mbcp.presets.model\",\"link\":\"presets/model/\"}],\"collapsed\":true}],\"collapsed\":true}]}]},\"/refer/\":{\"base\":\"/refer/\",\"items\":[{\"text\":\"MBCP\",\"items\":[{\"text\":\"函数\",\"link\":\"function/function\",\"items\":[{\"text\":\"柯里化\",\"link\":\"function/curry\"}],\"collapsed\":true}]}]},\"/guide/\":{\"base\":\"/guide/\",\"items\":[{\"text\":\"MBCP\",\"items\":[]}]},\"/en/api/\":{\"base\":\"/en/api/\",\"items\":[{\"text\":\"MBCP\",\"items\":[{\"text\":\"mbcp\",\"link\":\"api\"},{\"text\":\"mbcp.mp_math\",\"link\":\"mp_math/mp_math\",\"items\":[{\"text\":\"mbcp.mp_math.angle\",\"link\":\"mp_math/angle\"},{\"text\":\"mbcp.mp_math.const\",\"link\":\"mp_math/const\"},{\"text\":\"mbcp.mp_math.equation\",\"link\":\"mp_math/equation\"},{\"text\":\"mbcp.mp_math.function\",\"link\":\"mp_math/function\"},{\"text\":\"mbcp.mp_math\",\"link\":\"mp_math/\"},{\"text\":\"mbcp.mp_math.line\",\"link\":\"mp_math/line\"},{\"text\":\"mbcp.mp_math.mp_math_typing\",\"link\":\"mp_math/mp_math_typing\"},{\"text\":\"mbcp.mp_math.plane\",\"link\":\"mp_math/plane\"},{\"text\":\"mbcp.mp_math.point\",\"link\":\"mp_math/point\"},{\"text\":\"mbcp.mp_math.segment\",\"link\":\"mp_math/segment\"},{\"text\":\"mbcp.mp_math.utils\",\"link\":\"mp_math/utils\"},{\"text\":\"mbcp.mp_math.vector\",\"link\":\"mp_math/vector\"}],\"collapsed\":true},{\"text\":\"mbcp.particle\",\"link\":\"particle/particle\",\"items\":[{\"text\":\"mbcp.particle\",\"link\":\"particle/\"}],\"collapsed\":true},{\"text\":\"mbcp.presets\",\"link\":\"presets/presets\",\"items\":[{\"text\":\"mbcp.presets\",\"link\":\"presets/\"},{\"text\":\"mbcp.presets.model\",\"link\":\"presets/model/model\",\"items\":[{\"text\":\"mbcp.presets.model\",\"link\":\"presets/model/\"}],\"collapsed\":true}],\"collapsed\":true}]}]},\"/en/refer/\":{\"base\":\"/en/refer/\",\"items\":[{\"text\":\"MBCP\",\"items\":[]}]},\"/en/guide/\":{\"base\":\"/en/guide/\",\"items\":[{\"text\":\"MBCP\",\"items\":[]}]},\"/ja/api/\":{\"base\":\"/ja/api/\",\"items\":[{\"text\":\"MBCP\",\"items\":[{\"text\":\"mbcp\",\"link\":\"api\"},{\"text\":\"mbcp.mp_math\",\"link\":\"mp_math/mp_math\",\"items\":[{\"text\":\"mbcp.mp_math.angle\",\"link\":\"mp_math/angle\"},{\"text\":\"mbcp.mp_math.const\",\"link\":\"mp_math/const\"},{\"text\":\"mbcp.mp_math.equation\",\"link\":\"mp_math/equation\"},{\"text\":\"mbcp.mp_math.function\",\"link\":\"mp_math/function\"},{\"text\":\"mbcp.mp_math\",\"link\":\"mp_math/\"},{\"text\":\"mbcp.mp_math.line\",\"link\":\"mp_math/line\"},{\"text\":\"mbcp.mp_math.mp_math_typing\",\"link\":\"mp_math/mp_math_typing\"},{\"text\":\"mbcp.mp_math.plane\",\"link\":\"mp_math/plane\"},{\"text\":\"mbcp.mp_math.point\",\"link\":\"mp_math/point\"},{\"text\":\"mbcp.mp_math.segment\",\"link\":\"mp_math/segment\"},{\"text\":\"mbcp.mp_math.utils\",\"link\":\"mp_math/utils\"},{\"text\":\"mbcp.mp_math.vector\",\"link\":\"mp_math/vector\"}],\"collapsed\":true},{\"text\":\"mbcp.particle\",\"link\":\"particle/particle\",\"items\":[{\"text\":\"mbcp.particle\",\"link\":\"particle/\"}],\"collapsed\":true},{\"text\":\"mbcp.presets\",\"link\":\"presets/presets\",\"items\":[{\"text\":\"mbcp.presets\",\"link\":\"presets/\"},{\"text\":\"mbcp.presets.model\",\"link\":\"presets/model/model\",\"items\":[{\"text\":\"mbcp.presets.model\",\"link\":\"presets/model/\"}],\"collapsed\":true}],\"collapsed\":true}]}]},\"/ja/refer/\":{\"base\":\"/ja/refer/\",\"items\":[{\"text\":\"MBCP\",\"items\":[]}]},\"/ja/guide/\":{\"base\":\"/ja/guide/\",\"items\":[{\"text\":\"MBCP\",\"items\":[]}]},\"/zht/api/\":{\"base\":\"/zht/api/\",\"items\":[{\"text\":\"MBCP\",\"items\":[{\"text\":\"mbcp\",\"link\":\"api\"},{\"text\":\"mbcp.mp_math\",\"link\":\"mp_math/mp_math\",\"items\":[{\"text\":\"mbcp.mp_math.angle\",\"link\":\"mp_math/angle\"},{\"text\":\"mbcp.mp_math.const\",\"link\":\"mp_math/const\"},{\"text\":\"mbcp.mp_math.equation\",\"link\":\"mp_math/equation\"},{\"text\":\"mbcp.mp_math.function\",\"link\":\"mp_math/function\"},{\"text\":\"mbcp.mp_math\",\"link\":\"mp_math/\"},{\"text\":\"mbcp.mp_math.line\",\"link\":\"mp_math/line\"},{\"text\":\"mbcp.mp_math.mp_math_typing\",\"link\":\"mp_math/mp_math_typing\"},{\"text\":\"mbcp.mp_math.plane\",\"link\":\"mp_math/plane\"},{\"text\":\"mbcp.mp_math.point\",\"link\":\"mp_math/point\"},{\"text\":\"mbcp.mp_math.segment\",\"link\":\"mp_math/segment\"},{\"text\":\"mbcp.mp_math.utils\",\"link\":\"mp_math/utils\"},{\"text\":\"mbcp.mp_math.vector\",\"link\":\"mp_math/vector\"}],\"collapsed\":true},{\"text\":\"mbcp.particle\",\"link\":\"particle/particle\",\"items\":[{\"text\":\"mbcp.particle\",\"link\":\"particle/\"}],\"collapsed\":true},{\"text\":\"mbcp.presets\",\"link\":\"presets/presets\",\"items\":[{\"text\":\"mbcp.presets\",\"link\":\"presets/\"},{\"text\":\"mbcp.presets.model\",\"link\":\"presets/model/model\",\"items\":[{\"text\":\"mbcp.presets.model\",\"link\":\"presets/model/\"}],\"collapsed\":true}],\"collapsed\":true}]}]},\"/zht/refer/\":{\"base\":\"/zht/refer/\",\"items\":[{\"text\":\"MBCP\",\"items\":[]}]},\"/zht/guide/\":{\"base\":\"/zht/guide/\",\"items\":[{\"text\":\"MBCP\",\"items\":[]}]}},\"socialLinks\":[{\"icon\":\"github\",\"link\":\"https://github.com/snowykami/mbcp\"}],\"outline\":[2,6]},\"locales\":{\"root\":{\"label\":\"简体中文\",\"lang\":\"zh-Hans\",\"title\":\"MBCP 文档\",\"description\":\"MBCP 粒子计算和生成库文档\",\"themeConfig\":{\"nav\":[{\"text\":\"快速开始\",\"link\":\"/guide/\"},{\"text\":\"参考\",\"link\":\"/refer\"},{\"text\":\"API引用\",\"link\":\"/api/\"},{\"text\":\"实例\",\"link\":\"/demo/\"}],\"docFooter\":{\"prev\":\"上一页\",\"next\":\"下一页\"},\"editLink\":{\"pattern\":\"_vp-fn_({ filePath }) => {\\n const regex = /^[^\\\\/]+\\\\/api/;\\n if (regex.test(filePath)) {\\n filePath = filePath.replace(regex, \\\"\\\").replace(\\\"index.md\\\", \\\"__init__.py\\\").replace(\\\".md\\\", \\\".py\\\");\\n return `https://github.com/snowykami/mbcp/tree/main/mbcp/${filePath}`;\\n } else {\\n return `https://github.com/snowykami/mbcp/tree/main/docs/${filePath}`;\\n }\\n }\",\"text\":\"在 GitHub 上编辑此页\"},\"footer\":{\"message\":\"文档由 <a href=\\\"https://vitepress.dev/\\\">VitePress</a> 构建 | API引用由 <a href=\\\"https://github.com/LiteyukiStudio/litedoc\\\">litedoc</a> 生成\",\"copyright\":\"Copyright (C) 2020-2024 SnowyKami. All Rights Reserved\"},\"outline\":{\"label\":\"页面内容\",\"level\":[2,6]}}},\"en\":{\"label\":\"English\",\"lang\":\"en-US\",\"title\":\"MBCP docs\",\"description\":\"MBCP library docs\",\"themeConfig\":{\"nav\":[{\"text\":\"Get Start\",\"link\":\"/en/guide/\"},{\"text\":\"Reference\",\"link\":\"/en/refer\"},{\"text\":\"API Reference\",\"link\":\"/en/api/\"},{\"text\":\"Demo\",\"link\":\"/en/demo/\"}],\"docFooter\":{\"prev\":\"Prev Page\",\"next\":\"Next Page\"},\"editLink\":{\"pattern\":\"_vp-fn_({ filePath }) => {\\n const regex = /^[^\\\\/]+\\\\/api/;\\n if (regex.test(filePath)) {\\n filePath = filePath.replace(regex, \\\"\\\").replace(\\\"index.md\\\", \\\"__init__.py\\\").replace(\\\".md\\\", \\\".py\\\");\\n return `https://github.com/snowykami/mbcp/tree/main/mbcp/${filePath}`;\\n } else {\\n return `https://github.com/snowykami/mbcp/tree/main/docs/${filePath}`;\\n }\\n }\",\"text\":\"Edit this page on GitHub\"},\"footer\":{\"message\":\"Documentation built with <a href=\\\"https://vitepress.dev/\\\">VitePress</a> | API references generated by <a href=\\\"https://github.com/LiteyukiStudio/litedoc\\\">litedoc</a>\",\"copyright\":\"Copyright (C) 2020-2024 SnowyKami. All Rights Reserved\"},\"outline\":{\"label\":\"On this page\",\"level\":[2,6]}}},\"ja\":{\"label\":\"日本語\",\"lang\":\"ja-JP\",\"title\":\"MBCP ドキュメント\",\"description\":\"MBCP ライブラリ ドキュメント\",\"themeConfig\":{\"nav\":[{\"text\":\"スタート\",\"link\":\"/ja/guide/\"},{\"text\":\"リファレンス\",\"link\":\"/ja/refer\"},{\"text\":\"APIリファレンス\",\"link\":\"/ja/api/\"},{\"text\":\"インスタンス\",\"link\":\"/ja/demo/\"}],\"docFooter\":{\"prev\":\"前のページ\",\"next\":\"次のページ\"},\"editLink\":{\"pattern\":\"_vp-fn_({ filePath }) => {\\n const regex = /^[^\\\\/]+\\\\/api/;\\n if (regex.test(filePath)) {\\n filePath = filePath.replace(regex, \\\"\\\").replace(\\\"index.md\\\", \\\"__init__.py\\\").replace(\\\".md\\\", \\\".py\\\");\\n return `https://github.com/snowykami/mbcp/tree/main/mbcp/${filePath}`;\\n } else {\\n return `https://github.com/snowykami/mbcp/tree/main/docs/${filePath}`;\\n }\\n }\",\"text\":\"このページをGitHubで編集する\"},\"footer\":{\"message\":\"<a href=\\\"https://vitepress.dev/\\\">VitePress</a> で構築されたドキュメント | <a href=\\\"https://github.com/LiteyukiStudio/litedoc\\\">litedoc</a> によって生成されたAPIリファレンス\",\"copyright\":\"Copyright (C) 2020-2024 SnowyKami. All Rights Reserved\"},\"outline\":{\"label\":\"このページについて\",\"level\":[2,6]}}},\"zht\":{\"label\":\"繁體中文\",\"lang\":\"zh-Hant\",\"title\":\"MBCP 文檔\",\"description\":\"MBCP 粒子計算和生成庫文檔\",\"themeConfig\":{\"nav\":[{\"text\":\"指引\",\"link\":\"/zht/guide/\"},{\"text\":\"參考\",\"link\":\"/zht/refer\"},{\"text\":\"API引用\",\"link\":\"/zht/api/\"},{\"text\":\"示範\",\"link\":\"/zht/demo/\"}],\"docFooter\":{\"prev\":\"上一頁\",\"next\":\"下一頁\"},\"editLink\":{\"pattern\":\"_vp-fn_({ filePath }) => {\\n const regex = /^[^\\\\/]+\\\\/api/;\\n if (regex.test(filePath)) {\\n filePath = filePath.replace(regex, \\\"\\\").replace(\\\"index.md\\\", \\\"__init__.py\\\").replace(\\\".md\\\", \\\".py\\\");\\n return `https://github.com/snowykami/mbcp/tree/main/mbcp/${filePath}`;\\n } else {\\n return `https://github.com/snowykami/mbcp/tree/main/docs/${filePath}`;\\n }\\n }\",\"text\":\"於 GitHub 上編輯這頁\"},\"footer\":{\"message\":\"文檔由 <a href=\\\"https://vitepress.dev/\\\">VitePress</a> 構建 | API引用由 <a href=\\\"https://github.com/LiteyukiStudio/litedoc\\\">litedoc</a> 生成\",\"copyright\":\"Copyright (C) 2020-2024 SnowyKami. All Rights Reserved\"},\"outline\":{\"label\":\"頁面內容\",\"level\":[2,6]}}}},\"scrollOffset\":134,\"cleanUrls\":false}"));</script>
</body>
</html>