mirror of
https://github.com/snowykami/mbcp.git
synced 2024-11-24 07:15:03 +08:00
40 lines
69 KiB
HTML
40 lines
69 KiB
HTML
<!DOCTYPE html>
|
||
<html lang="ja-JP" dir="ltr">
|
||
<head>
|
||
<meta charset="utf-8">
|
||
<meta name="viewport" content="width=device-width,initial-scale=1">
|
||
<title>mbcp.mp_math.function | MBCP docs</title>
|
||
<meta name="description" content="Minecraftのパーティクル生成用のライブラリ">
|
||
<meta name="generator" content="VitePress v1.3.4">
|
||
<link rel="preload stylesheet" href="/assets/style.CTLFORxu.css" as="style">
|
||
|
||
<script type="module" src="/assets/app.DSCSdM_3.js"></script>
|
||
<link rel="preload" href="/assets/inter-roman-latin.Di8DUHzh.woff2" as="font" type="font/woff2" crossorigin="">
|
||
<link rel="modulepreload" href="/assets/chunks/theme.CIS5wKR_.js">
|
||
<link rel="modulepreload" href="/assets/chunks/framework.C94oF1kp.js">
|
||
<link rel="modulepreload" href="/assets/ja_api_mp_math_function.md.Bx9H66-W.lean.js">
|
||
<script id="check-dark-mode">(()=>{const e=localStorage.getItem("vitepress-theme-appearance")||"auto",a=window.matchMedia("(prefers-color-scheme: dark)").matches;(!e||e==="auto"?a:e==="dark")&&document.documentElement.classList.add("dark")})();</script>
|
||
<script id="check-mac-os">document.documentElement.classList.toggle("mac",/Mac|iPhone|iPod|iPad/i.test(navigator.platform));</script>
|
||
</head>
|
||
<body>
|
||
<div id="app"><div class="Layout" data-v-22f859ac><!--[--><!--]--><!--[--><span tabindex="-1" data-v-3e86afbf></span><a href="#VPContent" class="VPSkipLink visually-hidden" data-v-3e86afbf> Skip to content </a><!--]--><!----><header class="VPNav" data-v-22f859ac data-v-2a4e514e><div class="VPNavBar has-sidebar top" data-v-2a4e514e data-v-1303e283><div class="wrapper" data-v-1303e283><div class="container" data-v-1303e283><div class="title" data-v-1303e283><div class="VPNavBarTitle has-sidebar" data-v-1303e283 data-v-10b95b50><a class="title" href="/ja/" data-v-10b95b50><!--[--><!--]--><!----><span data-v-10b95b50>MBCP docs</span><!--[--><!--]--></a></div></div><div class="content" data-v-1303e283><div class="content-body" data-v-1303e283><!--[--><!--]--><div class="VPNavBarSearch search" data-v-1303e283><!----></div><nav aria-labelledby="main-nav-aria-label" class="VPNavBarMenu menu" data-v-1303e283 data-v-0fb289c1><span id="main-nav-aria-label" class="visually-hidden" data-v-0fb289c1> Main Navigation </span><!--[--><!--[--><a class="VPLink link VPNavBarMenuLink" href="/ja/guide/" tabindex="0" data-v-0fb289c1 data-v-ad4a8b64><!--[--><span data-v-ad4a8b64>スタート</span><!--]--></a><!--]--><!--[--><a class="VPLink link VPNavBarMenuLink" href="/ja/refer.html" tabindex="0" data-v-0fb289c1 data-v-ad4a8b64><!--[--><span data-v-ad4a8b64>リファレンス</span><!--]--></a><!--]--><!--[--><a class="VPLink link VPNavBarMenuLink" href="/ja/api/" tabindex="0" data-v-0fb289c1 data-v-ad4a8b64><!--[--><span data-v-ad4a8b64>APIドキュメント</span><!--]--></a><!--]--><!--[--><a class="VPLink link VPNavBarMenuLink" href="/ja/demo/" tabindex="0" data-v-0fb289c1 data-v-ad4a8b64><!--[--><span data-v-ad4a8b64>インスタンス</span><!--]--></a><!--]--><!--]--></nav><div class="VPFlyout VPNavBarTranslations translations" data-v-1303e283 data-v-cd7b67e8 data-v-ec8c49bc><button type="button" class="button" aria-haspopup="true" aria-expanded="false" aria-label="Change language" data-v-ec8c49bc><span class="text" data-v-ec8c49bc><span class="vpi-languages option-icon" data-v-ec8c49bc></span><!----><span class="vpi-chevron-down text-icon" data-v-ec8c49bc></span></span></button><div class="menu" data-v-ec8c49bc><div class="VPMenu" data-v-ec8c49bc data-v-9990563e><!----><!--[--><!--[--><div class="items" data-v-cd7b67e8><p class="title" data-v-cd7b67e8>日本語</p><!--[--><div class="VPMenuLink" data-v-cd7b67e8 data-v-79776a7a><a class="VPLink link" href="/api/mp_math/function.html" data-v-79776a7a><!--[-->简体中文<!--]--></a></div><div class="VPMenuLink" data-v-cd7b67e8 data-v-79776a7a><a class="VPLink link" href="/en/api/mp_math/function.html" data-v-79776a7a><!--[-->English<!--]--></a></div><div class="VPMenuLink" data-v-cd7b67e8 data-v-79776a7a><a class="VPLink link" href="/zht/api/mp_math/function.html" data-v-79776a7a><!--[-->繁體中文<!--]--></a></div><!--]--></div><!--]--><!--]--></div></div></div><div class="VPNavBarAppearance appearance" data-v-1303e283 data-v-2a6692f8><button class="VPSwitch VPSwitchAppearance" type="button" role="switch" title="Switch to dark theme" aria-checked="false" data-v-2a6692f8 data-v-3a50aa5c data-v-d82e607b><span class="check" data-v-d82e607b><span class="icon" data-v-d82e607b><!--[--><span class="vpi-sun sun" data-v-3a50aa5c></span><span class="vpi-moon moon" data-v-3a50aa5c></span><!--]--></span></span></button></div><div class="VPSocialLinks VPNavBarSocialLinks social-links" data-v-1303e283 data-v-f3b91b3a data-v-fa18fe49><!--[--><a class="VPSocialLink no-icon" href="https://github.com/snowykami/mbcp" aria-label="github" target="_blank" rel="noopener" data-v-fa18fe49 data-v-b0526bd7><span class="vpi-social-github" /></a><!--]--></div><div class="VPFlyout VPNavBarExtra extra" data-v-1303e283 data-v-2fc967b6 data-v-ec8c49bc><button type="button" class="button" aria-haspopup="true" aria-expanded="false" aria-label="extra navigation" data-v-ec8c49bc><span class="vpi-more-horizontal icon" data-v-ec8c49bc></span></button><div class="menu" data-v-ec8c49bc><div class="VPMenu" data-v-ec8c49bc data-v-9990563e><!----><!--[--><!--[--><div class="group translations" data-v-2fc967b6><p class="trans-title" data-v-2fc967b6>日本語</p><!--[--><div class="VPMenuLink" data-v-2fc967b6 data-v-79776a7a><a class="VPLink link" href="/api/mp_math/function.html" data-v-79776a7a><!--[-->简体中文<!--]--></a></div><div class="VPMenuLink" data-v-2fc967b6 data-v-79776a7a><a class="VPLink link" href="/en/api/mp_math/function.html" data-v-79776a7a><!--[-->English<!--]--></a></div><div class="VPMenuLink" data-v-2fc967b6 data-v-79776a7a><a class="VPLink link" href="/zht/api/mp_math/function.html" data-v-79776a7a><!--[-->繁體中文<!--]--></a></div><!--]--></div><div class="group" data-v-2fc967b6><div class="item appearance" data-v-2fc967b6><p class="label" data-v-2fc967b6>Appearance</p><div class="appearance-action" data-v-2fc967b6><button class="VPSwitch VPSwitchAppearance" type="button" role="switch" title="Switch to dark theme" aria-checked="false" data-v-2fc967b6 data-v-3a50aa5c data-v-d82e607b><span class="check" data-v-d82e607b><span class="icon" data-v-d82e607b><!--[--><span class="vpi-sun sun" data-v-3a50aa5c></span><span class="vpi-moon moon" data-v-3a50aa5c></span><!--]--></span></span></button></div></div></div><div class="group" data-v-2fc967b6><div class="item social-links" data-v-2fc967b6><div class="VPSocialLinks social-links-list" data-v-2fc967b6 data-v-fa18fe49><!--[--><a class="VPSocialLink no-icon" href="https://github.com/snowykami/mbcp" aria-label="github" target="_blank" rel="noopener" data-v-fa18fe49 data-v-b0526bd7><span class="vpi-social-github" /></a><!--]--></div></div></div><!--]--><!--]--></div></div></div><!--[--><!--]--><button type="button" class="VPNavBarHamburger hamburger" aria-label="mobile navigation" aria-expanded="false" aria-controls="VPNavScreen" data-v-1303e283 data-v-be64de2d><span class="container" data-v-be64de2d><span class="top" data-v-be64de2d></span><span class="middle" data-v-be64de2d></span><span class="bottom" data-v-be64de2d></span></span></button></div></div></div></div><div class="divider" data-v-1303e283><div class="divider-line" data-v-1303e283></div></div></div><!----></header><div class="VPLocalNav has-sidebar empty" data-v-22f859ac data-v-8af612ea><div class="container" data-v-8af612ea><button class="menu" aria-expanded="false" aria-controls="VPSidebarNav" data-v-8af612ea><span class="vpi-align-left menu-icon" data-v-8af612ea></span><span class="menu-text" data-v-8af612ea>Menu</span></button><div class="VPLocalNavOutlineDropdown" style="--vp-vh:0px;" data-v-8af612ea data-v-b418bf42><button data-v-b418bf42>Return to top</button><!----></div></div></div><aside class="VPSidebar" data-v-22f859ac data-v-edd7de80><div class="curtain" data-v-edd7de80></div><nav class="nav" id="VPSidebarNav" aria-labelledby="sidebar-aria-label" tabindex="-1" data-v-edd7de80><span class="visually-hidden" id="sidebar-aria-label" data-v-edd7de80> Sidebar Navigation </span><!--[--><!--]--><!--[--><div class="no-transition group" data-v-c3eaeb1a><section class="VPSidebarItem level-0 has-active" data-v-c3eaeb1a data-v-9035698b><div class="item" role="button" tabindex="0" data-v-9035698b><div class="indicator" data-v-9035698b></div><h2 class="text" data-v-9035698b>MBCP</h2><!----></div><div class="items" data-v-9035698b><!--[--><div class="VPSidebarItem level-1 is-link" data-v-9035698b data-v-9035698b><div class="item" data-v-9035698b><div class="indicator" data-v-9035698b></div><a class="VPLink link link" href="/ja/api/api.html" data-v-9035698b><!--[--><p class="text" data-v-9035698b>mbcp</p><!--]--></a><!----></div><!----></div><section class="VPSidebarItem level-1 collapsible is-link has-active" data-v-9035698b data-v-9035698b><div class="item" tabindex="0" data-v-9035698b><div class="indicator" data-v-9035698b></div><a class="VPLink link link" href="/ja/api/mp_math/mp_math.html" data-v-9035698b><!--[--><h3 class="text" data-v-9035698b>mbcp.mp_math</h3><!--]--></a><div class="caret" role="button" aria-label="toggle section" tabindex="0" data-v-9035698b><span class="vpi-chevron-right caret-icon" data-v-9035698b></span></div></div><div class="items" data-v-9035698b><!--[--><div class="VPSidebarItem level-2 is-link" data-v-9035698b data-v-9035698b><div class="item" data-v-9035698b><div class="indicator" data-v-9035698b></div><a class="VPLink link link" href="/ja/api/mp_math/angle.html" data-v-9035698b><!--[--><p class="text" data-v-9035698b>mbcp.mp_math.angle</p><!--]--></a><!----></div><!----></div><div class="VPSidebarItem level-2 is-link" data-v-9035698b data-v-9035698b><div class="item" data-v-9035698b><div class="indicator" data-v-9035698b></div><a class="VPLink link link" href="/ja/api/mp_math/const.html" data-v-9035698b><!--[--><p class="text" data-v-9035698b>mbcp.mp_math.const</p><!--]--></a><!----></div><!----></div><div class="VPSidebarItem level-2 is-link" data-v-9035698b data-v-9035698b><div class="item" data-v-9035698b><div class="indicator" data-v-9035698b></div><a class="VPLink link link" href="/ja/api/mp_math/equation.html" data-v-9035698b><!--[--><p class="text" data-v-9035698b>mbcp.mp_math.equation</p><!--]--></a><!----></div><!----></div><div class="VPSidebarItem level-2 is-link" data-v-9035698b data-v-9035698b><div class="item" data-v-9035698b><div class="indicator" data-v-9035698b></div><a class="VPLink link link" href="/ja/api/mp_math/function.html" data-v-9035698b><!--[--><p class="text" data-v-9035698b>mbcp.mp_math.function</p><!--]--></a><!----></div><!----></div><div class="VPSidebarItem level-2 is-link" data-v-9035698b data-v-9035698b><div class="item" data-v-9035698b><div class="indicator" data-v-9035698b></div><a class="VPLink link link" href="/ja/api/mp_math/" data-v-9035698b><!--[--><p class="text" data-v-9035698b>mbcp.mp_math</p><!--]--></a><!----></div><!----></div><div class="VPSidebarItem level-2 is-link" data-v-9035698b data-v-9035698b><div class="item" data-v-9035698b><div class="indicator" data-v-9035698b></div><a class="VPLink link link" href="/ja/api/mp_math/line.html" data-v-9035698b><!--[--><p class="text" data-v-9035698b>mbcp.mp_math.line</p><!--]--></a><!----></div><!----></div><div class="VPSidebarItem level-2 is-link" data-v-9035698b data-v-9035698b><div class="item" data-v-9035698b><div class="indicator" data-v-9035698b></div><a class="VPLink link link" href="/ja/api/mp_math/mp_math_typing.html" data-v-9035698b><!--[--><p class="text" data-v-9035698b>mbcp.mp_math.mp_math_typing</p><!--]--></a><!----></div><!----></div><div class="VPSidebarItem level-2 is-link" data-v-9035698b data-v-9035698b><div class="item" data-v-9035698b><div class="indicator" data-v-9035698b></div><a class="VPLink link link" href="/ja/api/mp_math/plane.html" data-v-9035698b><!--[--><p class="text" data-v-9035698b>mbcp.mp_math.plane</p><!--]--></a><!----></div><!----></div><div class="VPSidebarItem level-2 is-link" data-v-9035698b data-v-9035698b><div class="item" data-v-9035698b><div class="indicator" data-v-9035698b></div><a class="VPLink link link" href="/ja/api/mp_math/point.html" data-v-9035698b><!--[--><p class="text" data-v-9035698b>mbcp.mp_math.point</p><!--]--></a><!----></div><!----></div><div class="VPSidebarItem level-2 is-link" data-v-9035698b data-v-9035698b><div class="item" data-v-9035698b><div class="indicator" data-v-9035698b></div><a class="VPLink link link" href="/ja/api/mp_math/segment.html" data-v-9035698b><!--[--><p class="text" data-v-9035698b>mbcp.mp_math.segment</p><!--]--></a><!----></div><!----></div><div class="VPSidebarItem level-2 is-link" data-v-9035698b data-v-9035698b><div class="item" data-v-9035698b><div class="indicator" data-v-9035698b></div><a class="VPLink link link" href="/ja/api/mp_math/utils.html" data-v-9035698b><!--[--><p class="text" data-v-9035698b>mbcp.mp_math.utils</p><!--]--></a><!----></div><!----></div><div class="VPSidebarItem level-2 is-link" data-v-9035698b data-v-9035698b><div class="item" data-v-9035698b><div class="indicator" data-v-9035698b></div><a class="VPLink link link" href="/ja/api/mp_math/vector.html" data-v-9035698b><!--[--><p class="text" data-v-9035698b>mbcp.mp_math.vector</p><!--]--></a><!----></div><!----></div><!--]--></div></section><section class="VPSidebarItem level-1 collapsible collapsed is-link" data-v-9035698b data-v-9035698b><div class="item" tabindex="0" data-v-9035698b><div class="indicator" data-v-9035698b></div><a class="VPLink link link" href="/ja/api/particle/particle.html" data-v-9035698b><!--[--><h3 class="text" data-v-9035698b>mbcp.particle</h3><!--]--></a><div class="caret" role="button" aria-label="toggle section" tabindex="0" data-v-9035698b><span class="vpi-chevron-right caret-icon" data-v-9035698b></span></div></div><div class="items" data-v-9035698b><!--[--><div class="VPSidebarItem level-2 is-link" data-v-9035698b data-v-9035698b><div class="item" data-v-9035698b><div class="indicator" data-v-9035698b></div><a class="VPLink link link" href="/ja/api/particle/" data-v-9035698b><!--[--><p class="text" data-v-9035698b>mbcp.particle</p><!--]--></a><!----></div><!----></div><!--]--></div></section><section class="VPSidebarItem level-1 collapsible collapsed is-link" data-v-9035698b data-v-9035698b><div class="item" tabindex="0" data-v-9035698b><div class="indicator" data-v-9035698b></div><a class="VPLink link link" href="/ja/api/presets/presets.html" data-v-9035698b><!--[--><h3 class="text" data-v-9035698b>mbcp.presets</h3><!--]--></a><div class="caret" role="button" aria-label="toggle section" tabindex="0" data-v-9035698b><span class="vpi-chevron-right caret-icon" data-v-9035698b></span></div></div><div class="items" data-v-9035698b><!--[--><div class="VPSidebarItem level-2 is-link" data-v-9035698b data-v-9035698b><div class="item" data-v-9035698b><div class="indicator" data-v-9035698b></div><a class="VPLink link link" href="/ja/api/presets/" data-v-9035698b><!--[--><p class="text" data-v-9035698b>mbcp.presets</p><!--]--></a><!----></div><!----></div><section class="VPSidebarItem level-2 collapsible collapsed is-link" data-v-9035698b data-v-9035698b><div class="item" tabindex="0" data-v-9035698b><div class="indicator" data-v-9035698b></div><a class="VPLink link link" href="/ja/api/presets/model/model.html" data-v-9035698b><!--[--><h4 class="text" data-v-9035698b>mbcp.presets.model</h4><!--]--></a><div class="caret" role="button" aria-label="toggle section" tabindex="0" data-v-9035698b><span class="vpi-chevron-right caret-icon" data-v-9035698b></span></div></div><div class="items" data-v-9035698b><!--[--><div class="VPSidebarItem level-3 is-link" data-v-9035698b data-v-9035698b><div class="item" data-v-9035698b><div class="indicator" data-v-9035698b></div><a class="VPLink link link" href="/ja/api/presets/model/" data-v-9035698b><!--[--><p class="text" data-v-9035698b>mbcp.presets.model</p><!--]--></a><!----></div><!----></div><!--]--></div></section><!--]--></div></section><!--]--></div></section></div><!--]--><!--[--><!--]--></nav></aside><div class="VPContent has-sidebar" id="VPContent" data-v-22f859ac data-v-ec7dbf3e><div class="VPDoc has-sidebar has-aside" data-v-ec7dbf3e data-v-40342069><!--[--><!--]--><div class="container" data-v-40342069><div class="aside" data-v-40342069><div class="aside-curtain" data-v-40342069></div><div class="aside-container" data-v-40342069><div class="aside-content" data-v-40342069><div class="VPDocAside" data-v-40342069 data-v-0ff3c77f><!--[--><!--]--><!--[--><!--]--><nav aria-labelledby="doc-outline-aria-label" class="VPDocAsideOutline" data-v-0ff3c77f data-v-e7b12e6e><div class="content" data-v-e7b12e6e><div class="outline-marker" data-v-e7b12e6e></div><div aria-level="2" class="outline-title" id="doc-outline-aria-label" role="heading" data-v-e7b12e6e>このページについて</div><ul class="VPDocOutlineItem root" data-v-e7b12e6e data-v-51c2c770><!--[--><!--]--></ul></div></nav><!--[--><!--]--><div class="spacer" data-v-0ff3c77f></div><!--[--><!--]--><!----><!--[--><!--]--><!--[--><!--]--></div></div></div></div><div class="content" data-v-40342069><div class="content-container" data-v-40342069><!--[--><!--]--><main class="main" data-v-40342069><div style="position:relative;" class="vp-doc _ja_api_mp_math_function" data-v-40342069><div><h1 id="mbcp-mp-math-function" tabindex="-1">mbcp.mp_math.function <a class="header-anchor" href="#mbcp-mp-math-function" aria-label="Permalink to "mbcp.mp_math.function""></a></h1><p><strong>説明</strong>: AAA</p><h3 id="def-cal-gradient-3vf-func-threesinglevarsfunc-p-point3-epsilon-float-epsilon-vector3" tabindex="-1"><em><strong>def</strong></em> <code>cal_gradient_3vf(func: ThreeSingleVarsFunc, p: Point3, epsilon: float = EPSILON) -> Vector3</code> <a class="header-anchor" href="#def-cal-gradient-3vf-func-threesinglevarsfunc-p-point3-epsilon-float-epsilon-vector3" aria-label="Permalink to "***def*** `cal_gradient_3vf(func: ThreeSingleVarsFunc, p: Point3, epsilon: float = EPSILON) -> Vector3`""></a></h3><p><strong>説明</strong>: 计算三元函数在某点的梯度向量。</p><div class="tip custom-block github-alert"><p class="custom-block-title">TIP</p><p>已知一个函数<mjx-container class="MathJax" jax="SVG" style="direction:ltr;position:relative;"><svg style="overflow:visible;min-height:1px;min-width:1px;vertical-align:-0.566ex;" xmlns="http://www.w3.org/2000/svg" width="8.471ex" height="2.262ex" role="img" focusable="false" viewBox="0 -750 3744.3 1000" aria-hidden="true"><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g data-mml-node="math"><g data-mml-node="mi"><path data-c="1D453" d="M118 -162Q120 -162 124 -164T135 -167T147 -168Q160 -168 171 -155T187 -126Q197 -99 221 27T267 267T289 382V385H242Q195 385 192 387Q188 390 188 397L195 425Q197 430 203 430T250 431Q298 431 298 432Q298 434 307 482T319 540Q356 705 465 705Q502 703 526 683T550 630Q550 594 529 578T487 561Q443 561 443 603Q443 622 454 636T478 657L487 662Q471 668 457 668Q445 668 434 658T419 630Q412 601 403 552T387 469T380 433Q380 431 435 431Q480 431 487 430T498 424Q499 420 496 407T491 391Q489 386 482 386T428 385H372L349 263Q301 15 282 -47Q255 -132 212 -173Q175 -205 139 -205Q107 -205 81 -186T55 -132Q55 -95 76 -78T118 -61Q162 -61 162 -103Q162 -122 151 -136T127 -157L118 -162Z" style="stroke-width:3;"></path></g><g data-mml-node="mo" transform="translate(550,0)"><path data-c="28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z" style="stroke-width:3;"></path></g><g data-mml-node="mi" transform="translate(939,0)"><path data-c="1D465" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z" style="stroke-width:3;"></path></g><g data-mml-node="mo" transform="translate(1511,0)"><path data-c="2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z" style="stroke-width:3;"></path></g><g data-mml-node="mi" transform="translate(1955.7,0)"><path data-c="1D466" d="M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z" style="stroke-width:3;"></path></g><g data-mml-node="mo" transform="translate(2445.7,0)"><path data-c="2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z" style="stroke-width:3;"></path></g><g data-mml-node="mi" transform="translate(2890.3,0)"><path data-c="1D467" d="M347 338Q337 338 294 349T231 360Q211 360 197 356T174 346T162 335T155 324L153 320Q150 317 138 317Q117 317 117 325Q117 330 120 339Q133 378 163 406T229 440Q241 442 246 442Q271 442 291 425T329 392T367 375Q389 375 411 408T434 441Q435 442 449 442H462Q468 436 468 434Q468 430 463 420T449 399T432 377T418 358L411 349Q368 298 275 214T160 106L148 94L163 93Q185 93 227 82T290 71Q328 71 360 90T402 140Q406 149 409 151T424 153Q443 153 443 143Q443 138 442 134Q425 72 376 31T278 -11Q252 -11 232 6T193 40T155 57Q111 57 76 -3Q70 -11 59 -11H54H41Q35 -5 35 -2Q35 13 93 84Q132 129 225 214T340 322Q352 338 347 338Z" style="stroke-width:3;"></path></g><g data-mml-node="mo" transform="translate(3355.3,0)"><path data-c="29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z" style="stroke-width:3;"></path></g></g></g></svg><mjx-assistive-mml unselectable="on" display="inline" style="top:0px;left:0px;clip:rect(1px, 1px, 1px, 1px);-webkit-touch-callout:none;-webkit-user-select:none;-khtml-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none;position:absolute;padding:1px 0px 0px 0px;border:0px;display:block;width:auto;overflow:hidden;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>z</mi><mo stretchy="false">)</mo></math></mjx-assistive-mml></mjx-container>,则其在点<mjx-container class="MathJax" jax="SVG" style="direction:ltr;position:relative;"><svg style="overflow:visible;min-height:1px;min-width:1px;vertical-align:-0.566ex;" xmlns="http://www.w3.org/2000/svg" width="10.19ex" height="2.262ex" role="img" focusable="false" viewBox="0 -750 4504 1000" aria-hidden="true"><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g data-mml-node="math"><g data-mml-node="mo"><path data-c="28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z" style="stroke-width:3;"></path></g><g data-mml-node="msub" transform="translate(389,0)"><g data-mml-node="mi"><path data-c="1D465" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z" style="stroke-width:3;"></path></g><g data-mml-node="mn" transform="translate(605,-150) scale(0.707)"><path data-c="30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z" style="stroke-width:3;"></path></g></g><g data-mml-node="mo" transform="translate(1397.6,0)"><path data-c="2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z" style="stroke-width:3;"></path></g><g data-mml-node="msub" transform="translate(1842.2,0)"><g data-mml-node="mi"><path data-c="1D466" d="M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z" style="stroke-width:3;"></path></g><g data-mml-node="mn" transform="translate(523,-150) scale(0.707)"><path data-c="30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z" style="stroke-width:3;"></path></g></g><g data-mml-node="mo" transform="translate(2768.8,0)"><path data-c="2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z" style="stroke-width:3;"></path></g><g data-mml-node="msub" transform="translate(3213.4,0)"><g data-mml-node="mi"><path data-c="1D467" d="M347 338Q337 338 294 349T231 360Q211 360 197 356T174 346T162 335T155 324L153 320Q150 317 138 317Q117 317 117 325Q117 330 120 339Q133 378 163 406T229 440Q241 442 246 442Q271 442 291 425T329 392T367 375Q389 375 411 408T434 441Q435 442 449 442H462Q468 436 468 434Q468 430 463 420T449 399T432 377T418 358L411 349Q368 298 275 214T160 106L148 94L163 93Q185 93 227 82T290 71Q328 71 360 90T402 140Q406 149 409 151T424 153Q443 153 443 143Q443 138 442 134Q425 72 376 31T278 -11Q252 -11 232 6T193 40T155 57Q111 57 76 -3Q70 -11 59 -11H54H41Q35 -5 35 -2Q35 13 93 84Q132 129 225 214T340 322Q352 338 347 338Z" style="stroke-width:3;"></path></g><g data-mml-node="mn" transform="translate(498,-150) scale(0.707)"><path data-c="30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z" style="stroke-width:3;"></path></g></g><g data-mml-node="mo" transform="translate(4115,0)"><path data-c="29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z" style="stroke-width:3;"></path></g></g></g></svg><mjx-assistive-mml unselectable="on" display="inline" style="top:0px;left:0px;clip:rect(1px, 1px, 1px, 1px);-webkit-touch-callout:none;-webkit-user-select:none;-khtml-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none;position:absolute;padding:1px 0px 0px 0px;border:0px;display:block;width:auto;overflow:hidden;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo stretchy="false">(</mo><msub><mi>x</mi><mn>0</mn></msub><mo>,</mo><msub><mi>y</mi><mn>0</mn></msub><mo>,</mo><msub><mi>z</mi><mn>0</mn></msub><mo stretchy="false">)</mo></math></mjx-assistive-mml></mjx-container>处的梯度向量为: <mjx-container class="MathJax" jax="SVG" style="direction:ltr;position:relative;"><svg style="overflow:visible;min-height:1px;min-width:1px;vertical-align:-1.469ex;" xmlns="http://www.w3.org/2000/svg" width="29.427ex" height="4.07ex" role="img" focusable="false" viewBox="0 -1149.5 13006.8 1799" aria-hidden="true"><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g data-mml-node="math"><g data-mml-node="mi"><path data-c="2207" d="M46 676Q46 679 51 683H781Q786 679 786 676Q786 674 617 326T444 -26Q439 -33 416 -33T388 -26Q385 -22 216 326T46 676ZM697 596Q697 597 445 597T193 596Q195 591 319 336T445 80L697 596Z" style="stroke-width:3;"></path></g><g data-mml-node="mi" transform="translate(833,0)"><path data-c="1D453" d="M118 -162Q120 -162 124 -164T135 -167T147 -168Q160 -168 171 -155T187 -126Q197 -99 221 27T267 267T289 382V385H242Q195 385 192 387Q188 390 188 397L195 425Q197 430 203 430T250 431Q298 431 298 432Q298 434 307 482T319 540Q356 705 465 705Q502 703 526 683T550 630Q550 594 529 578T487 561Q443 561 443 603Q443 622 454 636T478 657L487 662Q471 668 457 668Q445 668 434 658T419 630Q412 601 403 552T387 469T380 433Q380 431 435 431Q480 431 487 430T498 424Q499 420 496 407T491 391Q489 386 482 386T428 385H372L349 263Q301 15 282 -47Q255 -132 212 -173Q175 -205 139 -205Q107 -205 81 -186T55 -132Q55 -95 76 -78T118 -61Q162 -61 162 -103Q162 -122 151 -136T127 -157L118 -162Z" style="stroke-width:3;"></path></g><g data-mml-node="mo" transform="translate(1383,0)"><path data-c="28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z" style="stroke-width:3;"></path></g><g data-mml-node="msub" transform="translate(1772,0)"><g data-mml-node="mi"><path data-c="1D465" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z" style="stroke-width:3;"></path></g><g data-mml-node="mn" transform="translate(605,-150) scale(0.707)"><path data-c="30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z" style="stroke-width:3;"></path></g></g><g data-mml-node="mo" transform="translate(2780.6,0)"><path data-c="2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z" style="stroke-width:3;"></path></g><g data-mml-node="msub" transform="translate(3225.2,0)"><g data-mml-node="mi"><path data-c="1D466" d="M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z" style="stroke-width:3;"></path></g><g data-mml-node="mn" transform="translate(523,-150) scale(0.707)"><path data-c="30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z" style="stroke-width:3;"></path></g></g><g data-mml-node="mo" transform="translate(4151.8,0)"><path data-c="2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z" style="stroke-width:3;"></path></g><g data-mml-node="msub" transform="translate(4596.4,0)"><g data-mml-node="mi"><path data-c="1D467" d="M347 338Q337 338 294 349T231 360Q211 360 197 356T174 346T162 335T155 324L153 320Q150 317 138 317Q117 317 117 325Q117 330 120 339Q133 378 163 406T229 440Q241 442 246 442Q271 442 291 425T329 392T367 375Q389 375 411 408T434 441Q435 442 449 442H462Q468 436 468 434Q468 430 463 420T449 399T432 377T418 358L411 349Q368 298 275 214T160 106L148 94L163 93Q185 93 227 82T290 71Q328 71 360 90T402 140Q406 149 409 151T424 153Q443 153 443 143Q443 138 442 134Q425 72 376 31T278 -11Q252 -11 232 6T193 40T155 57Q111 57 76 -3Q70 -11 59 -11H54H41Q35 -5 35 -2Q35 13 93 84Q132 129 225 214T340 322Q352 338 347 338Z" style="stroke-width:3;"></path></g><g data-mml-node="mn" transform="translate(498,-150) scale(0.707)"><path data-c="30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z" style="stroke-width:3;"></path></g></g><g data-mml-node="mo" transform="translate(5498,0)"><path data-c="29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z" style="stroke-width:3;"></path></g><g data-mml-node="mo" transform="translate(6164.8,0)"><path data-c="3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z" style="stroke-width:3;"></path></g><g data-mml-node="mrow" transform="translate(7220.5,0)"><g data-mml-node="mo" transform="translate(0 -0.5)"><path data-c="28" d="M180 96T180 250T205 541T266 770T353 944T444 1069T527 1150H555Q561 1144 561 1141Q561 1137 545 1120T504 1072T447 995T386 878T330 721T288 513T272 251Q272 133 280 56Q293 -87 326 -209T399 -405T475 -531T536 -609T561 -640Q561 -643 555 -649H527Q483 -612 443 -568T353 -443T266 -270T205 -41Z" style="stroke-width:3;"></path></g><g data-mml-node="mfrac" transform="translate(597,0)"><g data-mml-node="mrow" transform="translate(227.8,485) scale(0.707)"><g data-mml-node="mi"><path data-c="1D715" d="M202 508Q179 508 169 520T158 547Q158 557 164 577T185 624T230 675T301 710L333 715H345Q378 715 384 714Q447 703 489 661T549 568T566 457Q566 362 519 240T402 53Q321 -22 223 -22Q123 -22 73 56Q42 102 42 148V159Q42 276 129 370T322 465Q383 465 414 434T455 367L458 378Q478 461 478 515Q478 603 437 639T344 676Q266 676 223 612Q264 606 264 572Q264 547 246 528T202 508ZM430 306Q430 372 401 400T333 428Q270 428 222 382Q197 354 183 323T150 221Q132 149 132 116Q132 21 232 21Q244 21 250 22Q327 35 374 112Q389 137 409 196T430 306Z" style="stroke-width:3;"></path></g><g data-mml-node="mi" transform="translate(566,0)"><path data-c="1D453" d="M118 -162Q120 -162 124 -164T135 -167T147 -168Q160 -168 171 -155T187 -126Q197 -99 221 27T267 267T289 382V385H242Q195 385 192 387Q188 390 188 397L195 425Q197 430 203 430T250 431Q298 431 298 432Q298 434 307 482T319 540Q356 705 465 705Q502 703 526 683T550 630Q550 594 529 578T487 561Q443 561 443 603Q443 622 454 636T478 657L487 662Q471 668 457 668Q445 668 434 658T419 630Q412 601 403 552T387 469T380 433Q380 431 435 431Q480 431 487 430T498 424Q499 420 496 407T491 391Q489 386 482 386T428 385H372L349 263Q301 15 282 -47Q255 -132 212 -173Q175 -205 139 -205Q107 -205 81 -186T55 -132Q55 -95 76 -78T118 -61Q162 -61 162 -103Q162 -122 151 -136T127 -157L118 -162Z" style="stroke-width:3;"></path></g></g><g data-mml-node="mrow" transform="translate(220,-345.6) scale(0.707)"><g data-mml-node="mi"><path data-c="1D715" d="M202 508Q179 508 169 520T158 547Q158 557 164 577T185 624T230 675T301 710L333 715H345Q378 715 384 714Q447 703 489 661T549 568T566 457Q566 362 519 240T402 53Q321 -22 223 -22Q123 -22 73 56Q42 102 42 148V159Q42 276 129 370T322 465Q383 465 414 434T455 367L458 378Q478 461 478 515Q478 603 437 639T344 676Q266 676 223 612Q264 606 264 572Q264 547 246 528T202 508ZM430 306Q430 372 401 400T333 428Q270 428 222 382Q197 354 183 323T150 221Q132 149 132 116Q132 21 232 21Q244 21 250 22Q327 35 374 112Q389 137 409 196T430 306Z" style="stroke-width:3;"></path></g><g data-mml-node="mi" transform="translate(566,0)"><path data-c="1D465" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z" style="stroke-width:3;"></path></g></g><rect width="1004.7" height="60" x="120" y="220"></rect></g><g data-mml-node="mo" transform="translate(1841.7,0)"><path data-c="2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z" style="stroke-width:3;"></path></g><g data-mml-node="mfrac" transform="translate(2286.4,0)"><g data-mml-node="mrow" transform="translate(220,485) scale(0.707)"><g data-mml-node="mi"><path data-c="1D715" d="M202 508Q179 508 169 520T158 547Q158 557 164 577T185 624T230 675T301 710L333 715H345Q378 715 384 714Q447 703 489 661T549 568T566 457Q566 362 519 240T402 53Q321 -22 223 -22Q123 -22 73 56Q42 102 42 148V159Q42 276 129 370T322 465Q383 465 414 434T455 367L458 378Q478 461 478 515Q478 603 437 639T344 676Q266 676 223 612Q264 606 264 572Q264 547 246 528T202 508ZM430 306Q430 372 401 400T333 428Q270 428 222 382Q197 354 183 323T150 221Q132 149 132 116Q132 21 232 21Q244 21 250 22Q327 35 374 112Q389 137 409 196T430 306Z" style="stroke-width:3;"></path></g><g data-mml-node="mi" transform="translate(566,0)"><path data-c="1D453" d="M118 -162Q120 -162 124 -164T135 -167T147 -168Q160 -168 171 -155T187 -126Q197 -99 221 27T267 267T289 382V385H242Q195 385 192 387Q188 390 188 397L195 425Q197 430 203 430T250 431Q298 431 298 432Q298 434 307 482T319 540Q356 705 465 705Q502 703 526 683T550 630Q550 594 529 578T487 561Q443 561 443 603Q443 622 454 636T478 657L487 662Q471 668 457 668Q445 668 434 658T419 630Q412 601 403 552T387 469T380 433Q380 431 435 431Q480 431 487 430T498 424Q499 420 496 407T491 391Q489 386 482 386T428 385H372L349 263Q301 15 282 -47Q255 -132 212 -173Q175 -205 139 -205Q107 -205 81 -186T55 -132Q55 -95 76 -78T118 -61Q162 -61 162 -103Q162 -122 151 -136T127 -157L118 -162Z" style="stroke-width:3;"></path></g></g><g data-mml-node="mrow" transform="translate(241.2,-345.6) scale(0.707)"><g data-mml-node="mi"><path data-c="1D715" d="M202 508Q179 508 169 520T158 547Q158 557 164 577T185 624T230 675T301 710L333 715H345Q378 715 384 714Q447 703 489 661T549 568T566 457Q566 362 519 240T402 53Q321 -22 223 -22Q123 -22 73 56Q42 102 42 148V159Q42 276 129 370T322 465Q383 465 414 434T455 367L458 378Q478 461 478 515Q478 603 437 639T344 676Q266 676 223 612Q264 606 264 572Q264 547 246 528T202 508ZM430 306Q430 372 401 400T333 428Q270 428 222 382Q197 354 183 323T150 221Q132 149 132 116Q132 21 232 21Q244 21 250 22Q327 35 374 112Q389 137 409 196T430 306Z" style="stroke-width:3;"></path></g><g data-mml-node="mi" transform="translate(566,0)"><path data-c="1D466" d="M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z" style="stroke-width:3;"></path></g></g><rect width="989.1" height="60" x="120" y="220"></rect></g><g data-mml-node="mo" transform="translate(3515.5,0)"><path data-c="2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z" style="stroke-width:3;"></path></g><g data-mml-node="mfrac" transform="translate(3960.2,0)"><g data-mml-node="mrow" transform="translate(220,485) scale(0.707)"><g data-mml-node="mi"><path data-c="1D715" d="M202 508Q179 508 169 520T158 547Q158 557 164 577T185 624T230 675T301 710L333 715H345Q378 715 384 714Q447 703 489 661T549 568T566 457Q566 362 519 240T402 53Q321 -22 223 -22Q123 -22 73 56Q42 102 42 148V159Q42 276 129 370T322 465Q383 465 414 434T455 367L458 378Q478 461 478 515Q478 603 437 639T344 676Q266 676 223 612Q264 606 264 572Q264 547 246 528T202 508ZM430 306Q430 372 401 400T333 428Q270 428 222 382Q197 354 183 323T150 221Q132 149 132 116Q132 21 232 21Q244 21 250 22Q327 35 374 112Q389 137 409 196T430 306Z" style="stroke-width:3;"></path></g><g data-mml-node="mi" transform="translate(566,0)"><path data-c="1D453" d="M118 -162Q120 -162 124 -164T135 -167T147 -168Q160 -168 171 -155T187 -126Q197 -99 221 27T267 267T289 382V385H242Q195 385 192 387Q188 390 188 397L195 425Q197 430 203 430T250 431Q298 431 298 432Q298 434 307 482T319 540Q356 705 465 705Q502 703 526 683T550 630Q550 594 529 578T487 561Q443 561 443 603Q443 622 454 636T478 657L487 662Q471 668 457 668Q445 668 434 658T419 630Q412 601 403 552T387 469T380 433Q380 431 435 431Q480 431 487 430T498 424Q499 420 496 407T491 391Q489 386 482 386T428 385H372L349 263Q301 15 282 -47Q255 -132 212 -173Q175 -205 139 -205Q107 -205 81 -186T55 -132Q55 -95 76 -78T118 -61Q162 -61 162 -103Q162 -122 151 -136T127 -157L118 -162Z" style="stroke-width:3;"></path></g></g><g data-mml-node="mrow" transform="translate(250.1,-345.6) scale(0.707)"><g data-mml-node="mi"><path data-c="1D715" d="M202 508Q179 508 169 520T158 547Q158 557 164 577T185 624T230 675T301 710L333 715H345Q378 715 384 714Q447 703 489 661T549 568T566 457Q566 362 519 240T402 53Q321 -22 223 -22Q123 -22 73 56Q42 102 42 148V159Q42 276 129 370T322 465Q383 465 414 434T455 367L458 378Q478 461 478 515Q478 603 437 639T344 676Q266 676 223 612Q264 606 264 572Q264 547 246 528T202 508ZM430 306Q430 372 401 400T333 428Q270 428 222 382Q197 354 183 323T150 221Q132 149 132 116Q132 21 232 21Q244 21 250 22Q327 35 374 112Q389 137 409 196T430 306Z" style="stroke-width:3;"></path></g><g data-mml-node="mi" transform="translate(566,0)"><path data-c="1D467" d="M347 338Q337 338 294 349T231 360Q211 360 197 356T174 346T162 335T155 324L153 320Q150 317 138 317Q117 317 117 325Q117 330 120 339Q133 378 163 406T229 440Q241 442 246 442Q271 442 291 425T329 392T367 375Q389 375 411 408T434 441Q435 442 449 442H462Q468 436 468 434Q468 430 463 420T449 399T432 377T418 358L411 349Q368 298 275 214T160 106L148 94L163 93Q185 93 227 82T290 71Q328 71 360 90T402 140Q406 149 409 151T424 153Q443 153 443 143Q443 138 442 134Q425 72 376 31T278 -11Q252 -11 232 6T193 40T155 57Q111 57 76 -3Q70 -11 59 -11H54H41Q35 -5 35 -2Q35 13 93 84Q132 129 225 214T340 322Q352 338 347 338Z" style="stroke-width:3;"></path></g></g><rect width="989.1" height="60" x="120" y="220"></rect></g><g data-mml-node="mo" transform="translate(5189.3,0) translate(0 -0.5)"><path data-c="29" d="M35 1138Q35 1150 51 1150H56H69Q113 1113 153 1069T243 944T330 771T391 541T416 250T391 -40T330 -270T243 -443T152 -568T69 -649H56Q43 -649 39 -647T35 -637Q65 -607 110 -548Q283 -316 316 56Q324 133 324 251Q324 368 316 445Q278 877 48 1123Q36 1137 35 1138Z" style="stroke-width:3;"></path></g></g></g></g></svg><mjx-assistive-mml unselectable="on" display="inline" style="top:0px;left:0px;clip:rect(1px, 1px, 1px, 1px);-webkit-touch-callout:none;-webkit-user-select:none;-khtml-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none;position:absolute;padding:1px 0px 0px 0px;border:0px;display:block;width:auto;overflow:hidden;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">∇</mi><mi>f</mi><mo stretchy="false">(</mo><msub><mi>x</mi><mn>0</mn></msub><mo>,</mo><msub><mi>y</mi><mn>0</mn></msub><mo>,</mo><msub><mi>z</mi><mn>0</mn></msub><mo stretchy="false">)</mo><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mfrac><mrow><mi>∂</mi><mi>f</mi></mrow><mrow><mi>∂</mi><mi>x</mi></mrow></mfrac><mo>,</mo><mfrac><mrow><mi>∂</mi><mi>f</mi></mrow><mrow><mi>∂</mi><mi>y</mi></mrow></mfrac><mo>,</mo><mfrac><mrow><mi>∂</mi><mi>f</mi></mrow><mrow><mi>∂</mi><mi>z</mi></mrow></mfrac><mo data-mjx-texclass="CLOSE">)</mo></mrow></math></mjx-assistive-mml></mjx-container></p></div><p><strong>引数</strong>:</p><blockquote><ul><li>func: 三元函数</li><li>p: 点</li><li>epsilon: 偏移量</li></ul></blockquote><p><strong>戻り値</strong>: 梯度</p><details><summary><b>ソースコード</b></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> cal_gradient_3vf</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(func: ThreeSingleVarsFunc, p: Point3, epsilon: </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">float</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">EPSILON</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) -> Vector3:</span></span>
|
||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> """</span></span>
|
||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 计算三元函数在某点的梯度向量。</span></span>
|
||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> > [!tip]</span></span>
|
||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> > 已知一个函数$f(x, y, z)$,则其在点$(x_0, y_0, z_0)$处的梯度向量为:</span></span>
|
||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> $</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">\\</span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">nabla f(x_0, y_0, z_0) = </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">\\</span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">left(</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">\\</span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">frac{</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">\\</span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">partial f}{</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">\\</span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">partial x}, </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">\\</span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">frac{</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">\\</span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">partial f}{</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">\\</span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">partial y}, </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">\\</span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">frac{</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">\\</span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">partial f}{</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">\\</span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">partial z}</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">\\</span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">right)$</span></span>
|
||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Args:</span></span>
|
||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> func: 三元函数</span></span>
|
||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> p: 点</span></span>
|
||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> epsilon: 偏移量</span></span>
|
||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Returns:</span></span>
|
||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 梯度</span></span>
|
||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> """</span></span>
|
||
<span class="line"><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> dx </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> (func(p.x </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">+</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> epsilon, p.y, p.z) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> func(p.x </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> epsilon, p.y, p.z)) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">/</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> (</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">2</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> *</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> epsilon)</span></span>
|
||
<span class="line"><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> dy </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> (func(p.x, p.y </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">+</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> epsilon, p.z) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> func(p.x, p.y </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> epsilon, p.z)) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">/</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> (</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">2</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> *</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> epsilon)</span></span>
|
||
<span class="line"><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> dz </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> (func(p.x, p.y, p.z </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">+</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> epsilon) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> func(p.x, p.y, p.z </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> epsilon)) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">/</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> (</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">2</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> *</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> epsilon)</span></span>
|
||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> Vector3(dx, dy, dz)</span></span></code></pre></div></details></div></div></main><footer class="VPDocFooter" data-v-40342069 data-v-a4b38bd6><!--[--><!--]--><!----><nav class="prev-next" aria-labelledby="doc-footer-aria-label" data-v-a4b38bd6><span class="visually-hidden" id="doc-footer-aria-label" data-v-a4b38bd6>Pager</span><div class="pager" data-v-a4b38bd6><a class="VPLink link pager-link prev" href="/ja/api/mp_math/equation.html" data-v-a4b38bd6><!--[--><span class="desc" data-v-a4b38bd6>Previous page</span><span class="title" data-v-a4b38bd6>mbcp.mp_math.equation</span><!--]--></a></div><div class="pager" data-v-a4b38bd6><a class="VPLink link pager-link next" href="/ja/api/mp_math/" data-v-a4b38bd6><!--[--><span class="desc" data-v-a4b38bd6>Next page</span><span class="title" data-v-a4b38bd6>mbcp.mp_math</span><!--]--></a></div></nav></footer><!--[--><!--]--></div></div></div><!--[--><!--]--></div></div><footer class="VPFooter has-sidebar" data-v-22f859ac data-v-e3ca6860><div class="container" data-v-e3ca6860><p class="message" data-v-e3ca6860><a href="https://vitepress.dev/">VitePress</a> で構築されたドキュメント | <a href="https://github.com/LiteyukiStudio/litedoc">litedoc</a> によって生成されたAPIリファレンス</p><p class="copyright" data-v-e3ca6860>Copyright (C) 2020-2024 SnowyKami. All Rights Reserved</p></div></footer><!--[--><!--]--></div></div>
|
||
<script>window.__VP_HASH_MAP__=JSON.parse("{\"api_api.md\":\"D_B0Hlcp\",\"api_index.md\":\"C_wESrrY\",\"api_mp_math_angle.md\":\"vKQLLqTS\",\"api_mp_math_const.md\":\"BAf8mK4W\",\"api_mp_math_equation.md\":\"DpRfW_6Z\",\"api_mp_math_function.md\":\"Cj4FyaYl\",\"api_mp_math_index.md\":\"BNf7bQqL\",\"api_mp_math_line.md\":\"DPWL9O-M\",\"api_mp_math_mp_math.md\":\"GlFMkWiQ\",\"api_mp_math_mp_math_typing.md\":\"DlnJmkos\",\"api_mp_math_plane.md\":\"DTAJAb0P\",\"api_mp_math_point.md\":\"vtgIded6\",\"api_mp_math_segment.md\":\"D-8aRB8W\",\"api_mp_math_utils.md\":\"DaaoR634\",\"api_mp_math_vector.md\":\"BTnPeAKR\",\"api_particle_index.md\":\"Cm3Vk-es\",\"api_particle_particle.md\":\"yD6tcNSr\",\"api_presets_index.md\":\"CD62I2gv\",\"api_presets_model_index.md\":\"gO0Notp6\",\"api_presets_model_model.md\":\"s8f68j_n\",\"api_presets_presets.md\":\"4R0VRbQo\",\"demo_index.md\":\"D-H9zRUE\",\"en_api_api.md\":\"BSgrCX1d\",\"en_api_index.md\":\"Dj_5nFTt\",\"en_api_mp_math_angle.md\":\"Bu07wjnV\",\"en_api_mp_math_const.md\":\"gGpXUShq\",\"en_api_mp_math_equation.md\":\"DqlD6s-6\",\"en_api_mp_math_function.md\":\"Bgn-YygZ\",\"en_api_mp_math_index.md\":\"BEjLBMpH\",\"en_api_mp_math_line.md\":\"BGq09mco\",\"en_api_mp_math_mp_math.md\":\"D6ihYPav\",\"en_api_mp_math_mp_math_typing.md\":\"Dnl2aJQ4\",\"en_api_mp_math_plane.md\":\"C3KPGKE4\",\"en_api_mp_math_point.md\":\"D7ZdR7VM\",\"en_api_mp_math_segment.md\":\"DMW-YUfw\",\"en_api_mp_math_utils.md\":\"B3i5gz_2\",\"en_api_mp_math_vector.md\":\"CgtIoM4A\",\"en_api_particle_index.md\":\"BfyNQiRg\",\"en_api_particle_particle.md\":\"BNkfEyJn\",\"en_api_presets_index.md\":\"BWb2fpTg\",\"en_api_presets_model_index.md\":\"pbEu-669\",\"en_api_presets_model_model.md\":\"CL5uKZbj\",\"en_api_presets_presets.md\":\"CCUzsYog\",\"en_guide_index.md\":\"DrDHTYCZ\",\"en_index.md\":\"MCm69eyE\",\"en_refer_index.md\":\"alw4L-bp\",\"guide_index.md\":\"Cfmzk2IH\",\"index.md\":\"BjJ9-kbE\",\"ja_api_api.md\":\"CPz58qIw\",\"ja_api_index.md\":\"CnUeuifx\",\"ja_api_mp_math_angle.md\":\"DTK1PNuJ\",\"ja_api_mp_math_const.md\":\"DGXAgDfn\",\"ja_api_mp_math_equation.md\":\"Bt8bfjRZ\",\"ja_api_mp_math_function.md\":\"Bx9H66-W\",\"ja_api_mp_math_index.md\":\"CTZZ-p9Z\",\"ja_api_mp_math_line.md\":\"DYJV4KNE\",\"ja_api_mp_math_mp_math.md\":\"D-prC0UO\",\"ja_api_mp_math_mp_math_typing.md\":\"BNymgrCT\",\"ja_api_mp_math_plane.md\":\"D-yHaxP-\",\"ja_api_mp_math_point.md\":\"DjHRkHI5\",\"ja_api_mp_math_segment.md\":\"37V8kAc1\",\"ja_api_mp_math_utils.md\":\"BbdhM1tp\",\"ja_api_mp_math_vector.md\":\"BBVnCwJa\",\"ja_api_particle_index.md\":\"Jr41Y3TS\",\"ja_api_particle_particle.md\":\"exTt46pq\",\"ja_api_presets_index.md\":\"CQqdQbIZ\",\"ja_api_presets_model_index.md\":\"C-Ypf-qh\",\"ja_api_presets_model_model.md\":\"Dwbc1qIc\",\"ja_api_presets_presets.md\":\"DwzXdDqR\",\"ja_guide_index.md\":\"BxGnZYwR\",\"ja_index.md\":\"CtozMsIU\",\"ja_refer_index.md\":\"CODW6iMX\",\"refer_function_curry.md\":\"DwKZawp5\",\"refer_function_function.md\":\"D3IgfZX2\",\"refer_index.md\":\"CczYTl3j\",\"zht_api_api.md\":\"DyUSHA0S\",\"zht_api_index.md\":\"CgZH6aHQ\",\"zht_api_mp_math_angle.md\":\"lzcXwnW6\",\"zht_api_mp_math_const.md\":\"xwQvuYck\",\"zht_api_mp_math_equation.md\":\"Bn6MiQ1c\",\"zht_api_mp_math_function.md\":\"C6pPUbwO\",\"zht_api_mp_math_index.md\":\"mmeMMriu\",\"zht_api_mp_math_line.md\":\"DX62bgjZ\",\"zht_api_mp_math_mp_math.md\":\"C302rxKc\",\"zht_api_mp_math_mp_math_typing.md\":\"CNiSnuMw\",\"zht_api_mp_math_plane.md\":\"DJ_9NQFz\",\"zht_api_mp_math_point.md\":\"D1nAiRP0\",\"zht_api_mp_math_segment.md\":\"CMRey-MG\",\"zht_api_mp_math_utils.md\":\"BDpW2Fd4\",\"zht_api_mp_math_vector.md\":\"DGVOQo3Y\",\"zht_api_particle_index.md\":\"8GaGB1ul\",\"zht_api_particle_particle.md\":\"huuRTEb9\",\"zht_api_presets_index.md\":\"DvOViSox\",\"zht_api_presets_model_index.md\":\"BJWX_k6K\",\"zht_api_presets_model_model.md\":\"CNI4ubOh\",\"zht_api_presets_presets.md\":\"CsDHjRbK\",\"zht_guide_index.md\":\"CsuFVFxu\",\"zht_index.md\":\"V9U3SwDR\",\"zht_refer_index.md\":\"Bz6voxEQ\"}");window.__VP_SITE_DATA__=JSON.parse("{\"lang\":\"en-US\",\"dir\":\"ltr\",\"title\":\"MBCP docs\",\"description\":\"MBCP library docs\",\"base\":\"/\",\"head\":[],\"router\":{\"prefetchLinks\":true},\"appearance\":true,\"themeConfig\":{\"sidebar\":{\"/api/\":{\"base\":\"/api/\",\"items\":[{\"text\":\"MBCP\",\"items\":[{\"text\":\"mbcp\",\"link\":\"api\"},{\"text\":\"mbcp.mp_math\",\"link\":\"mp_math/mp_math\",\"items\":[{\"text\":\"mbcp.mp_math.angle\",\"link\":\"mp_math/angle\"},{\"text\":\"mbcp.mp_math.const\",\"link\":\"mp_math/const\"},{\"text\":\"mbcp.mp_math.equation\",\"link\":\"mp_math/equation\"},{\"text\":\"mbcp.mp_math.function\",\"link\":\"mp_math/function\"},{\"text\":\"mbcp.mp_math\",\"link\":\"mp_math/\"},{\"text\":\"mbcp.mp_math.line\",\"link\":\"mp_math/line\"},{\"text\":\"mbcp.mp_math.mp_math_typing\",\"link\":\"mp_math/mp_math_typing\"},{\"text\":\"mbcp.mp_math.plane\",\"link\":\"mp_math/plane\"},{\"text\":\"mbcp.mp_math.point\",\"link\":\"mp_math/point\"},{\"text\":\"mbcp.mp_math.segment\",\"link\":\"mp_math/segment\"},{\"text\":\"mbcp.mp_math.utils\",\"link\":\"mp_math/utils\"},{\"text\":\"mbcp.mp_math.vector\",\"link\":\"mp_math/vector\"}],\"collapsed\":true},{\"text\":\"mbcp.particle\",\"link\":\"particle/particle\",\"items\":[{\"text\":\"mbcp.particle\",\"link\":\"particle/\"}],\"collapsed\":true},{\"text\":\"mbcp.presets\",\"link\":\"presets/presets\",\"items\":[{\"text\":\"mbcp.presets\",\"link\":\"presets/\"},{\"text\":\"mbcp.presets.model\",\"link\":\"presets/model/model\",\"items\":[{\"text\":\"mbcp.presets.model\",\"link\":\"presets/model/\"}],\"collapsed\":true}],\"collapsed\":true}]}]},\"/refer/\":{\"base\":\"/refer/\",\"items\":[{\"text\":\"MBCP\",\"items\":[{\"text\":\"函数\",\"link\":\"function/function\",\"items\":[{\"text\":\"柯里化\",\"link\":\"function/curry\"}],\"collapsed\":true}]}]},\"/guide/\":{\"base\":\"/guide/\",\"items\":[{\"text\":\"MBCP\",\"items\":[]}]},\"/en/api/\":{\"base\":\"/en/api/\",\"items\":[{\"text\":\"MBCP\",\"items\":[{\"text\":\"mbcp\",\"link\":\"api\"},{\"text\":\"mbcp.mp_math\",\"link\":\"mp_math/mp_math\",\"items\":[{\"text\":\"mbcp.mp_math.angle\",\"link\":\"mp_math/angle\"},{\"text\":\"mbcp.mp_math.const\",\"link\":\"mp_math/const\"},{\"text\":\"mbcp.mp_math.equation\",\"link\":\"mp_math/equation\"},{\"text\":\"mbcp.mp_math.function\",\"link\":\"mp_math/function\"},{\"text\":\"mbcp.mp_math\",\"link\":\"mp_math/\"},{\"text\":\"mbcp.mp_math.line\",\"link\":\"mp_math/line\"},{\"text\":\"mbcp.mp_math.mp_math_typing\",\"link\":\"mp_math/mp_math_typing\"},{\"text\":\"mbcp.mp_math.plane\",\"link\":\"mp_math/plane\"},{\"text\":\"mbcp.mp_math.point\",\"link\":\"mp_math/point\"},{\"text\":\"mbcp.mp_math.segment\",\"link\":\"mp_math/segment\"},{\"text\":\"mbcp.mp_math.utils\",\"link\":\"mp_math/utils\"},{\"text\":\"mbcp.mp_math.vector\",\"link\":\"mp_math/vector\"}],\"collapsed\":true},{\"text\":\"mbcp.particle\",\"link\":\"particle/particle\",\"items\":[{\"text\":\"mbcp.particle\",\"link\":\"particle/\"}],\"collapsed\":true},{\"text\":\"mbcp.presets\",\"link\":\"presets/presets\",\"items\":[{\"text\":\"mbcp.presets\",\"link\":\"presets/\"},{\"text\":\"mbcp.presets.model\",\"link\":\"presets/model/model\",\"items\":[{\"text\":\"mbcp.presets.model\",\"link\":\"presets/model/\"}],\"collapsed\":true}],\"collapsed\":true}]}]},\"/en/refer/\":{\"base\":\"/en/refer/\",\"items\":[{\"text\":\"MBCP\",\"items\":[]}]},\"/en/guide/\":{\"base\":\"/en/guide/\",\"items\":[{\"text\":\"MBCP\",\"items\":[]}]},\"/ja/api/\":{\"base\":\"/ja/api/\",\"items\":[{\"text\":\"MBCP\",\"items\":[{\"text\":\"mbcp\",\"link\":\"api\"},{\"text\":\"mbcp.mp_math\",\"link\":\"mp_math/mp_math\",\"items\":[{\"text\":\"mbcp.mp_math.angle\",\"link\":\"mp_math/angle\"},{\"text\":\"mbcp.mp_math.const\",\"link\":\"mp_math/const\"},{\"text\":\"mbcp.mp_math.equation\",\"link\":\"mp_math/equation\"},{\"text\":\"mbcp.mp_math.function\",\"link\":\"mp_math/function\"},{\"text\":\"mbcp.mp_math\",\"link\":\"mp_math/\"},{\"text\":\"mbcp.mp_math.line\",\"link\":\"mp_math/line\"},{\"text\":\"mbcp.mp_math.mp_math_typing\",\"link\":\"mp_math/mp_math_typing\"},{\"text\":\"mbcp.mp_math.plane\",\"link\":\"mp_math/plane\"},{\"text\":\"mbcp.mp_math.point\",\"link\":\"mp_math/point\"},{\"text\":\"mbcp.mp_math.segment\",\"link\":\"mp_math/segment\"},{\"text\":\"mbcp.mp_math.utils\",\"link\":\"mp_math/utils\"},{\"text\":\"mbcp.mp_math.vector\",\"link\":\"mp_math/vector\"}],\"collapsed\":true},{\"text\":\"mbcp.particle\",\"link\":\"particle/particle\",\"items\":[{\"text\":\"mbcp.particle\",\"link\":\"particle/\"}],\"collapsed\":true},{\"text\":\"mbcp.presets\",\"link\":\"presets/presets\",\"items\":[{\"text\":\"mbcp.presets\",\"link\":\"presets/\"},{\"text\":\"mbcp.presets.model\",\"link\":\"presets/model/model\",\"items\":[{\"text\":\"mbcp.presets.model\",\"link\":\"presets/model/\"}],\"collapsed\":true}],\"collapsed\":true}]}]},\"/ja/refer/\":{\"base\":\"/ja/refer/\",\"items\":[{\"text\":\"MBCP\",\"items\":[]}]},\"/ja/guide/\":{\"base\":\"/ja/guide/\",\"items\":[{\"text\":\"MBCP\",\"items\":[]}]},\"/zht/api/\":{\"base\":\"/zht/api/\",\"items\":[{\"text\":\"MBCP\",\"items\":[{\"text\":\"mbcp\",\"link\":\"api\"},{\"text\":\"mbcp.mp_math\",\"link\":\"mp_math/mp_math\",\"items\":[{\"text\":\"mbcp.mp_math.angle\",\"link\":\"mp_math/angle\"},{\"text\":\"mbcp.mp_math.const\",\"link\":\"mp_math/const\"},{\"text\":\"mbcp.mp_math.equation\",\"link\":\"mp_math/equation\"},{\"text\":\"mbcp.mp_math.function\",\"link\":\"mp_math/function\"},{\"text\":\"mbcp.mp_math\",\"link\":\"mp_math/\"},{\"text\":\"mbcp.mp_math.line\",\"link\":\"mp_math/line\"},{\"text\":\"mbcp.mp_math.mp_math_typing\",\"link\":\"mp_math/mp_math_typing\"},{\"text\":\"mbcp.mp_math.plane\",\"link\":\"mp_math/plane\"},{\"text\":\"mbcp.mp_math.point\",\"link\":\"mp_math/point\"},{\"text\":\"mbcp.mp_math.segment\",\"link\":\"mp_math/segment\"},{\"text\":\"mbcp.mp_math.utils\",\"link\":\"mp_math/utils\"},{\"text\":\"mbcp.mp_math.vector\",\"link\":\"mp_math/vector\"}],\"collapsed\":true},{\"text\":\"mbcp.particle\",\"link\":\"particle/particle\",\"items\":[{\"text\":\"mbcp.particle\",\"link\":\"particle/\"}],\"collapsed\":true},{\"text\":\"mbcp.presets\",\"link\":\"presets/presets\",\"items\":[{\"text\":\"mbcp.presets\",\"link\":\"presets/\"},{\"text\":\"mbcp.presets.model\",\"link\":\"presets/model/model\",\"items\":[{\"text\":\"mbcp.presets.model\",\"link\":\"presets/model/\"}],\"collapsed\":true}],\"collapsed\":true}]}]},\"/zht/refer/\":{\"base\":\"/zht/refer/\",\"items\":[{\"text\":\"MBCP\",\"items\":[]}]},\"/zht/guide/\":{\"base\":\"/zht/guide/\",\"items\":[{\"text\":\"MBCP\",\"items\":[]}]}},\"socialLinks\":[{\"icon\":\"github\",\"link\":\"https://github.com/snowykami/mbcp\"}],\"editLink\":{\"pattern\":\"https://github.com/snowykami/mbcp/tree/main/docs/:path\"},\"outline\":[2,6]},\"locales\":{\"root\":{\"label\":\"简体中文\",\"lang\":\"zh-Hans\",\"description\":\"一个用于Minecraft粒子计算和生成的库\",\"themeConfig\":{\"nav\":[{\"text\":\"快速开始\",\"link\":\"/guide/\"},{\"text\":\"参考\",\"link\":\"/refer\"},{\"text\":\"API文档\",\"link\":\"/api/\"},{\"text\":\"实例\",\"link\":\"/demo/\"}],\"footer\":{\"message\":\"文档由 <a href=\\\"https://vitepress.dev/\\\">VitePress</a> 构建 | API引用由 <a href=\\\"https://github.com/LiteyukiStudio/litedoc\\\">litedoc</a> 生成\",\"copyright\":\"Copyright (C) 2020-2024 SnowyKami. All Rights Reserved\"},\"outline\":{\"label\":\"页面内容\",\"level\":[2,6]}}},\"en\":{\"label\":\"English\",\"lang\":\"en-US\",\"description\":\"A library made for Minecraft particle generation\",\"themeConfig\":{\"nav\":[{\"text\":\"Get Start\",\"link\":\"/en/guide/\"},{\"text\":\"Reference\",\"link\":\"/en/refer\"},{\"text\":\"API Document\",\"link\":\"/en/api/\"},{\"text\":\"Demo\",\"link\":\"/en/demo/\"}],\"footer\":{\"message\":\"Documentation built with <a href=\\\"https://vitepress.dev/\\\">VitePress</a> | API references generated by <a href=\\\"https://github.com/LiteyukiStudio/litedoc\\\">litedoc</a>\",\"copyright\":\"Copyright (C) 2020-2024 SnowyKami. All Rights Reserved\"},\"outline\":{\"label\":\"On this page\",\"level\":[2,6]}}},\"ja\":{\"label\":\"日本語\",\"lang\":\"ja-JP\",\"description\":\"Minecraftのパーティクル生成用のライブラリ\",\"themeConfig\":{\"nav\":[{\"text\":\"スタート\",\"link\":\"/ja/guide/\"},{\"text\":\"リファレンス\",\"link\":\"/ja/refer\"},{\"text\":\"APIドキュメント\",\"link\":\"/ja/api/\"},{\"text\":\"インスタンス\",\"link\":\"/ja/demo/\"}],\"footer\":{\"message\":\"<a href=\\\"https://vitepress.dev/\\\">VitePress</a> で構築されたドキュメント | <a href=\\\"https://github.com/LiteyukiStudio/litedoc\\\">litedoc</a> によって生成されたAPIリファレンス\",\"copyright\":\"Copyright (C) 2020-2024 SnowyKami. All Rights Reserved\"},\"outline\":{\"label\":\"このページについて\",\"level\":[2,6]}}},\"zht\":{\"label\":\"繁體中文\",\"lang\":\"zh-Hant\",\"description\":\"一個用於Minecraft粒子計算和生成的軟體庫\",\"themeConfig\":{\"nav\":[{\"text\":\"指引\",\"link\":\"/zht/guide/\"},{\"text\":\"參考\",\"link\":\"/zht/refer\"},{\"text\":\"API文檔\",\"link\":\"/zht/api/\"},{\"text\":\"示範\",\"link\":\"/zht/demo/\"}],\"footer\":{\"message\":\"文檔由 <a href=\\\"https://vitepress.dev/\\\">VitePress</a> 構建 | API引用由 <a href=\\\"https://github.com/LiteyukiStudio/litedoc\\\">litedoc</a> 生成\",\"copyright\":\"Copyright (C) 2020-2024 SnowyKami. All Rights Reserved\"},\"outline\":{\"label\":\"頁面內容\",\"level\":[2,6]}}}},\"scrollOffset\":134,\"cleanUrls\":false}");</script>
|
||
|
||
</body>
|
||
</html> |