mbcp/assets/ja_api_mp_math_line.md.Dr4fEidY.js

45 lines
80 KiB
JavaScript
Raw Permalink Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import{_ as n,c as i,j as s,a as t,a4 as e,o as a}from"./chunks/framework.DpC1ZpOZ.js";const rs=JSON.parse('{"title":"mbcp.mp_math.line","description":"","frontmatter":{"title":"mbcp.mp_math.line","lastUpdated":false},"headers":[],"relativePath":"ja/api/mp_math/line.md","filePath":"ja/api/mp_math/line.md"}'),l={name:"ja/api/mp_math/line.md"},h=e('<h1 id="モジュール-mbcp-mp-math-line" tabindex="-1"><strong>モジュール</strong> <code>mbcp.mp_math.line</code> <a class="header-anchor" href="#モジュール-mbcp-mp-math-line" aria-label="Permalink to &quot;**モジュール** `mbcp.mp_math.line`&quot;"></a></h1><p>本模块定义了三维空间中的直线类</p><h3 id="class-line3" tabindex="-1"><em><strong>class</strong></em> <code>Line3</code> <a class="header-anchor" href="#class-line3" aria-label="Permalink to &quot;***class*** `Line3`&quot;"></a></h3><hr><h4 id="method-init-self-point-point3-direction-vector3" tabindex="-1"><em><strong>method</strong></em> <code>__init__(self, point: Point3, direction: Vector3)</code> <a class="header-anchor" href="#method-init-self-point-point3-direction-vector3" aria-label="Permalink to &quot;***method*** `__init__(self, point: Point3, direction: Vector3)`&quot;"></a></h4><p><strong>説明</strong>: 三维空间中的直线。由一个点和一个方向向量确定。</p><p><strong>引数</strong>:</p><blockquote><ul><li>point (<a href="./point.html#class-point3"><code>Point3</code></a>): 直线上的一点</li><li>direction (<a href="./vector.html#class-vector3"><code>Vector3</code></a>): 方向向量</li></ul></blockquote><details><summary><b>ソースコード</b> または <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/line.py#L19" target="_blank">GitHubで表示</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> __init__</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, point: </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Point3&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">, direction: </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Vector3&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">):</span></span>\n<span class="line"><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.point </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> point</span></span>\n<span class="line"><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> direction</span></span></code></pre></div></details><hr><h4 id="method-approx-self-other-line3-epsilon-float-approx-bool" tabindex="-1"><em><strong>method</strong></em> <code>approx(self, other: Line3, epsilon: float = APPROX) -&gt; bool</code> <a class="header-anchor" href="#method-approx-self-other-line3-epsilon-float-approx-bool" aria-label="Permalink to &quot;***method*** `approx(self, other: Line3, epsilon: float = APPROX) -&gt; bool`&quot;"></a></h4><p><strong>説明</strong>: 判断两条直线是否近似相等。</p><p><strong>引数</strong>:</p><blockquote><ul><li>other (<a href="./line.html#class-line3"><code>Line3</code></a>): 另一条直线</li><li>epsilon (<a href="https://docs.python.org/3/library/functions.html#float" target="_blank" rel="noreferrer"><code>float</code></a>): 误差</li></ul></blockquote><p><strong>戻り値</strong>: <a href="https://docs.python.org/3/library/functions.html#bool" target="_blank" rel="noreferrer"><code>bool</code></a>: 是否近似相等</p><details><summary><b>ソースコード</b> または <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/line.py#L29" target="_blank">GitHubで表示</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> approx</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, other: </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Line3&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">, epsilon: </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">float</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">APPROX</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) -&gt; </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">bool</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>\n<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.is_approx_parallel(other, epsilon) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">and</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> (</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.point </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> other.point).is_approx_parallel(</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction, epsilon)</span></span></code></pre></div></details><hr><h4 id="method-cal-angle-self-other-line3-anyangle" tabindex="-1"><em><strong>method</strong></em> <code>cal_angle(self, other: Line3) -&gt; AnyAngle</code> <a class="header-anchor" href="#method-cal-angle-self-other-line3-anyangle" aria-label="Permalink to &quot;***method*** `cal_angle(self, other: Line3) -&gt; AnyAngle`&quot;"></a></h4><p><strong>説明</strong>: 计算直线和直线之间的夹角。</p><p><strong>引数</strong>:</p><blockquote><ul><li>other (<a href="./line.html#class-line3"><code>Line3</code></a>): 另一条直线</li></ul></blockquote><p><strong>戻り値</strong>: <a href="./angle.html#class-anyangle"><code>AnyAngle</code></a>: 夹角</p><details><summary><b>ソースコード</b> または <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/line.py#L40" target="_blank">GitHubで表示</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> cal_angle</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, other: </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Line3&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) -&gt; </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;AnyAngle&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>\n<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction.cal_angle(other.direction)</span></span></code></pre></div></details><hr><h4 id="method-cal-distance-self-other-line3-point3-float" tabindex="-1"><em><strong>method</strong></em> <code>cal_distance(self, other: Line3 | Point3) -&gt; float</code> <a class="header-anchor" href="#method-cal-distance-self-other-line3-point3-float" aria-label="Permalink to &quot;***method*** `cal_distance(self, other: Line3 | Point3) -&gt; float`&quot;"></a></h4><p><strong>説明</strong>: 计算直线和直线或点之间的距离。</p>',26),o={class:"tip custom-block"},p=s("p",{class:"custom-block-title"},"TIP",-1),r=s("p",null,"直线和直线之间的距离计算公式:",-1),k=s("li",null,"平行/重合 = 0",-1),d={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},g={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-1.391ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.356ex",height:"4.296ex",role:"img",focusable:"false",viewBox:"0 -1284.3 3251.5 1899","aria-hidden":"true"},c=e('<g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g data-mml-node="math"><g data-mml-node="mfrac"><g data-mml-node="mrow" transform="translate(220,516.4) scale(0.707)"><g data-mml-node="mo" transform="translate(0 -0.5)"><path data-c="7C" d="M139 -249H137Q125 -249 119 -235V251L120 737Q130 750 139 750Q152 750 159 735V-235Q151 -249 141 -249H139Z" style="stroke-width:3;"></path></g><g data-mml-node="TeXAtom" data-mjx-texclass="ORD" transform="translate(278,0)"><g data-mml-node="mover"><g data-mml-node="mrow"><g data-mml-node="msub"><g data-mml-node="mi"><path data-c="1D443" d="M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z" style="stroke-width:3;"></path></g><g data-mml-node="mn" transform="translate(675,-150) scale(0.707)"><path data-c="31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z" style="stroke-width:3;"></path></g></g><g data-mml-node="msub" transform="translate(1078.6,0)"><g data-mml-node="mi"><path data-c="1D443" d="M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z" style="stroke-width:3;"></path></g><g data-mml-node="mn" transform="translate(675,-150) scale(0.707)"><path data-c="32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z" style="stroke-width:3;"></path></g></g></g><g data-mml-node="mo" transform="translate(1078.6,272) translate(-250 0)"><path data-c="20D7" d="M377 694Q377 702 382 708T397 714Q404 714 409 709Q414 705 419 690Q429 653 460 633Q471 626 471 615Q471 606 468 603T454 594Q411 572 379 531Q377 529 374 525T369 519T364 517T357 516Q350 516 344 521T337 536Q337 555 384 595H213L42 596Q29 605 29 615Q29 622 42 635H401Q377 673 377 694Z" style="stroke-width:3;"></path></g></g></g><g data-mml-node="mo" transform="translate(2435.1,0)"><path data-c="D7" d="M630 29Q630 9 609 9Q604 9 587 25T493 118L389 222L284 117Q178 13 175 11Q171 9 168 9Q160 9 154 15T147 29Q147 36 161 51T255 146L359 250L255 354Q174 435 161 449T147 471Q147 480 153 485T168 490Q173 490 175 489Q178 487 284 383L389 278L493 382Q570 459 587 475T609 491Q630 491 630 471Q630 464 620 453T522 355L418 250L522 145Q606 61 618 48T630 29Z" style="stroke-width:3;"></path></g><g data-mml-node="TeXAtom" data-mjx-texclass="ORD" transform="translate(3213.1,0)"><g data-mml-node="mover"><g data-mml-node="mi"><path data-c="1D463" d="M173 380Q173 405 154 405Q130 405 104 376T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Q21 294 29 316T53 368T97 419T160 441Q202 441 225 417T249 361Q249 344 246 335Q246 329 231 291T200 202T182 113Q182 86 187 69Q200 26 250 26Q287 26 319 60T369 139T398 222T409 277Q409 300 401 317T383 343T365 361T357 383Q357 405 376 424T417 443Q436 443 451 425T467 367Q467 340 455 284T418 159T347 40T241 -11Q177 -11 139 22Q102 54 102 117Q102 148 110 181T151 298Q173 362 173 380Z" style="stroke-width:3;"></path></g><g data-mml-node="mo" transform="translate(270.3,32) translate(-250 0)"><path data-c="20D7" d="M377 694Q377 702 382 708T397 714Q404 714 409 709Q414 705 419 690Q429 653 460 633Q471 626 471 615Q471 606 468 603T454 594Q411 572 379 531Q377 529 374 525T369 519T364 517T357 516Q350 516 344 521T337 536Q337 555 384 595H213L42 596Q29 605 29 615Q29 622 42 635H401Q377 673 377 694Z" style="stroke-width:3;"></path></g></g></g><g data-mml-node="mo" transform="translate(3698.1,0) translate(0 -0.5)"><path data-c="7C" d="M139 -249H137Q125 -249 119 -235V251L120 737Q130 750 139 750Q152 750 159 735V-235Q151 -249 141 -249H139Z" style="stroke-width:3;"></path></g></g><g data-mml-node="mrow" transform="translate(1257.7,-438.2) scale(0.707)"><g data-mml-node="mo" transform="translate(0 -0.5)"><path data-c="7C" d="M139 -249H137Q125 -249 119 -235V251L120 737Q130 750 139 750Q152 750 159 735V-235Q151 -249 141 -249H139Z" style="stroke-width:3;"></path></g><g data-mml-node="TeXAtom" data-mjx-texclass="ORD" transform="translate(278,0)"><g data-mml-node="mover"><g data-mml-node="mi"><path data-c="1D463" d="M173 380Q173 405 154 405Q130 405 104 376T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Q21 294 29 316T53 368T97 419T160 441Q202 441 225 417T249 361Q249 344 246 335Q246 329 231 291T200 202T182 113Q182 86 187 69Q200 26 250 26Q287 26 319 60T369 139T398 222T409 277Q409 300 401 317T383 343T365 361T357 383Q357 405 376 424T417 443Q436 443 451 425T467 367Q467 340 455 284T418 159T347 40T241 -11Q177 -11 139 22Q102 54 102 117Q102 148 110 181T151 298Q173 362 173 380Z" style="stroke-width:3;"></path></g><g data-mml-node="mo" transform="translate(270.3,32) translate(-250 0)"><path data-c="20D7" d="M377 694Q377 702 382 708T397 714Q404 714 409 709Q414 705 419 690Q429 653 460 633Q471 626 471 615Q471 606 468 603T454 594Q411 572 379 531Q377 529 374 525T369 519T364 517T357 516Q350 516 344 521T337 536Q337 555 384 595H213L42 596Q29 605 29 615Q29 622 42 635H401Q377 673 377 694Z" style="stroke-width:3;"></path></g></g></g><g data-mml-node="mo" transform="translate(763,0) translate(0 -0.5)"><path data-c="7C" d="M139 -249H137Q125 -249 119 -235V251L120 737Q130 750 139 750Q152 750 159 735V-235Q151 -249 141 -249H139Z" style="stroke-width:3;"></path></g></g><rect width="3011.5" height="60" x="120" y="220"></rect></g></g></g>',1),m=[c],y=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mfrac",null,[s("mrow",null,[s("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mover",null,[s("mrow",null,[s("msub",null,[s("mi",null,"P"),s("mn",null,"1")]),s("msub",null,[s("mi",null,"P"),s("mn",null,"2")])]),s("mo",{stretchy:"false"},"→")])]),s("mo",null,"×"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mover",null,[s("mi",null,"v"),s("mo",{stretchy:"false"},"→")])]),s("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|")]),s("mrow",null,[s("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mover",null,[s("mi",null,"v"),s("mo",{stretchy:"false"},"→")])]),s("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|")])])])],-1),E={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Q={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.44ex",height:"1.885ex",role:"img",focusable:"false",viewBox:"0 -683 1078.6 833","aria-hidden":"true"},u=e('<g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g data-mml-node="math"><g data-mml-node="msub"><g data-mml-node="mi"><path data-c="1D443" d="M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z" style="stroke-width:3;"></path></g><g data-mml-node="mn" transform="translate(675,-150) scale(0.707)"><path data-c="31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z" style="stroke-width:3;"></path></g></g></g></g>',1),T=[u],b=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("msub",null,[s("mi",null,"P"),s("mn",null,"1")])])],-1),f={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},F={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.44ex",height:"1.885ex",role:"img",focusable:"false",viewBox:"0 -683 1078.6 833","aria-hidden":"true"},_=e('<g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g data-mml-node="math"><g data-mml-node="msub"><g data-mml-node="mi"><path data-c="1D443" d="M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z" style="stroke-width:3;"></path></g><g data-mml-node="mn" transform="translate(675,-150) scale(0.707)"><path data-c="32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z" style="stroke-width:3;"></path></g></g></g></g>',1),C=[_],x=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("msub",null,[s("mi",null,"P"),s("mn",null,"2")])])],-1),w={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},v={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.097ex",height:"1.939ex",role:"img",focusable:"false",viewBox:"0 -846 485 857","aria-hidden":"true"},D=e('<g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g data-mml-node="math"><g data-mml-node="TeXAtom" data-mjx-texclass="ORD"><g data-mml-node="mover"><g data-mml-node="mi"><path data-c="1D463" d="M173 380Q173 405 154 405Q130 405 104 376T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Q21 294 29 316T53 368T97 419T160 441Q202 441 225 417T249 361Q249 344 246 335Q246 329 231 291T200 202T182 113Q182 86 187 69Q200 26 250 26Q287 26 319 60T369 139T398 222T409 277Q409 300 401 317T383 343T365 361T357 383Q357 405 376 424T417 443Q436 443 451 425T467 367Q467 340 455 284T418 159T347 40T241 -11Q177 -11 139 22Q102 54 102 117Q102 148 110 181T151 298Q173 362 173 380Z" style="stroke-width:3;"></path></g><g data-mml-node="mo" transform="translate(270.3,32) translate(-250 0)"><path data-c="20D7" d="M377 694Q377 702 382 708T397 714Q404 714 409 709Q414 705 419 690Q429 653 460 633Q471 626 471 615Q471 606 468 603T454 594Q411 572 379 531Q377 529 374 525T369 519T364 517T357 516Q350 516 344 521T337 536Q337 555 384 595H213L42 596Q29 605 29 615Q29 622 42 635H401Q377 673 377 694Z" style="stroke-width:3;"></path></g></g></g></g></g>',1),A=[D],B=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mrow",{"data-mjx-texclass":"ORD"},[s("mover",null,[s("mi",null,"v"),s("mo",{stretchy:"false"},"→")])])])],-1),L={class:"tip custom-block"},H=s("p",{class:"custom-block-title"},"TIP",-1),V=s("p",null,"直线和点之间的距离计算公式:",-1),P={tabindex:"0",class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},q={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-2.388ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.256ex",height:"6.45ex",role:"img",focusable:"false",viewBox:"0 -1795.5 4533 2851","aria-hidden":"true"},M=e('<g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g data-mml-node="math"><g data-mml-node="mfrac"><g data-mml-node="mrow" transform="translate(220,709.5)"><g data-mml-node="mo" transform="translate(0 -0.5)"><path data-c="7C" d="M139 -249H137Q125 -249 119 -235V251L120 737Q130 750 139 750Q152 750 159 735V-235Q151 -249 141 -249H139Z" style="stroke-width:3;"></path></g><g data-mml-node="TeXAtom" data-mjx-texclass="ORD" transform="translate(278,0)"><g data-mml-node="mover"><g data-mml-node="mrow"><g data-mml-node="msub"><g data-mml-node="mi"><path data-c="1D443" d="M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z" style="stroke-width:3;"></path></g><g data-mml-node="mn" transform="translate(675,-150) scale(0.707)"><path data-c="31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z" style="stroke-width:3;"></path></g></g><g data-mml-node="mi" transform="translate(1078.6,0)"><path data-c="1D443" d="M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z" style="stroke-width:3;"></path></g></g><g data-mml-node="mo" transform="translate(914.8,272) translate(-250 0)"><path data-c="20D7" d="M377 694Q377 702 382 708T397 714Q404 714 409 709Q414 705 419 690Q429 653 460 633Q471 626 471 615Q471 606 468 603T454 594Q411 572 379 531Q377 529 374 525T369 519T364 517T357 516Q350 516 344 521T337 536Q337 555 384 595H213L42 596Q29 605 29 615Q29 622 42 635H401Q377 673 377 694Z" style="stroke-width:3;"></path></g></g></g><g data-mml-node="mo" transform="translate(2329.8,0)"><path data-c="D7" d="M630 29Q630 9 609 9Q604 9 587 25T493 118L389 222L284 117Q178 13 175 11Q171 9 168 9Q160 9 154 15T147 29Q147 36 161 51T255 146L359 250L255 354Q174 435 161 449T147 471Q147 480 153 485T168 490Q173 490 175 489Q178 487 284 383L389 278L493 382Q570 459 587 475T609 491Q630 491 630 471Q630 464 620 453T522 355L418 250L522 145Q606 61 618 48T630 29Z" style="stroke-width:3;"></path></g><g data-mml-node="TeXAtom" data-mjx-texclass="ORD" transform="translate(3330,0)"><g data-mml-node="mover"><g data-mml-node="mi"><path data-c="1D463" d="M173 380Q173 405 154 405Q130 405 104 376T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Q21 294 29 316T53 368T97 419T160 441Q202 441 225 417T249 361Q249 344 246 335Q246 329 231 291T200 202T182 113Q182 86 187 69Q200 26 250 26Q287 26 319 60T369 139T398 222T409 277Q409 300 401 317T383 343T365 361T357 383Q357 405 376 424T417 443Q436 443 451 425T467 367Q467 340 455 284T418 159T347 40T241 -11Q177 -11 139 22Q102 54 102 117Q102 148 110 181T151 298Q173 362 173 380Z" style="stroke-width:3;"></path></g><g data-mml-node="mo" transform="translate(270.3,32) translate(-250 0)"><path data-c="20D7" d="M377 694Q377 702 382 708T397 714Q404 714 409 709Q414 705 419 690Q429 653 460 633Q471 626 471 615Q471 606 468 603T454 594Q411 572 379 531Q377 529 374 525T369 519T364 517T357 516Q350 516 344 521T337 536Q337 555 384 595H213L42 596Q29 605 29 615Q29 622 42 635H401Q377 673 377 694Z" style="stroke-width:3;"></path></g></g></g><g data-mml-node="mo" transform="translate(3815,0) translate(0 -0.5)"><path data-c="7C" d="M139 -249H137Q125 -249 119 -235V251L120 737Q130 750 139 750Q152 750 159 735V-235Q151 -249 141 -249H139Z" style="stroke-width:3;"></path></g></g><g data-mml-node="mrow" transform="translate(1746,-806)"><g data-mml-node="mo" transform="translate(0 -0.5)"><path data-c="7C" d="M139 -249H137Q125 -249 119 -235V251L120 737Q130 750 139 750Q152 750 159 735V-235Q151 -249 141 -249H139Z" style="stroke-width:3;"></path></g><g data-mml-node="TeXAtom" data-mjx-texclass="ORD" transform="translate(278,0)"><g data-mml-node="mover"><g data-mml-node="mi"><path data-c="1D463" d="M173 380Q173 405 154 405Q130 405 104 376T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Q21 294 29 316T53 368T97 419T160 441Q202 441 225 417T249 361Q249 344 246 335Q246 329 231 291T200 202T182 113Q182 86 187 69Q200 26 250 26Q287 26 319 60T369 139T398 222T409 277Q409 300 401 317T383 343T365 361T357 383Q357 405 376 424T417 443Q436 443 451 425T467 367Q467 340 455 284T418 159T347 40T241 -11Q177 -11 139 22Q102 54 102 117Q102 148 110 181T151 298Q173 362 173 380Z" style="stroke-width:3;"></path></g><g data-mml-node="mo" transform="translate(270.3,32) translate(-250 0)"><path data-c="20D7" d="M377 694Q377 702 382 708T397 714Q404 714 409 709Q414 705 419 690Q429 653 460 633Q471 626 471 615Q471 606 468 603T454 594Q411 572 379 531Q377 529 374 525T369 519T364 517T357 516Q350 516 344 521T337 536Q337 555 384 595H213L42 596Q29 605 29 615Q29 622 42 635H401Q377 673 377 694Z" style="stroke-width:3;"></path></g></g></g><g data-mml-node="mo" transform="translate(763,0) translate(0 -0.5)"><path data-c="7C" d="M139 -249H137Q125 -249 119 -235V251L120 737Q130 750 139 750Q152 750 159 735V-235Q151 -249 141 -249H139Z" style="stroke-width:3;"></path></g></g><rect width="4293" height="60" x="120" y="220"></rect></g></g></g>',1),j=[M],S=s("mjx-assistive-mml",{unselectable:"on",display:"block",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",overflow:"hidden",width:"100%"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML",display:"block"},[s("mfrac",null,[s("mrow",null,[s("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mover",null,[s("mrow",null,[s("msub",null,[s("mi",null,"P"),s("mn",null,"1")]),s("mi",null,"P")]),s("mo",{stretchy:"false"},"→")])]),s("mo",null,"×"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mover",null,[s("mi",null,"v"),s("mo",{stretchy:"false"},"→")])]),s("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|")]),s("mrow",null,[s("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mover",null,[s("mi",null,"v"),s("mo",{stretchy:"false"},"→")])]),s("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|")])])])],-1),Z={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},O={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.44ex",height:"1.885ex",role:"img",focusable:"false",viewBox:"0 -683 1078.6 833","aria-hidden":"true"},R=e('<g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g data-mml-node="math"><g data-mml-node="msub"><g data-mml-node="mi"><path data-c="1D443" d="M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z" style="stroke-width:3;"></path></g><g data-mml-node="mn" transform="translate(675,-150) scale(0.707)"><path data-c="31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z" style="stroke-width:3;"></path></g></g></g></g>',1),G=[R],N=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("msub",null,[s("mi",null,"P"),s("mn",null,"1")])])],-1),I={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},z={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.699ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 751 683","aria-hidden":"true"},X=s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D443",d:"M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z",style:{"stroke-width":"3"}})])])],-1),J=[X],$=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"P")])],-1),U={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},K={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.097ex",height:"1.939ex",role:"img",focusable:"false",viewBox:"0 -846 485 857","aria-hidden":"true"},W=e('<g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g data-mml-node="math"><g data-mml-node="TeXAtom" data-mjx-texclass="ORD"><g data-mml-node="mover"><g data-mml-node="mi"><path data-c="1D463" d="M173 380Q173 405 154 405Q130 405 104 376T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Q21 294 29 316T53 368T97 419T160 441Q202 441 225 417T249 361Q249 344 246 335Q246 329 231 291T200 202T182 113Q182 86 187 69Q200 26 250 26Q287 26 319 60T369 139T398 222T409 277Q409 300 401 317T383 343T365 361T357 383Q357 405 376 424T417 443Q436 443 451 425T467 367Q467 340 455 284T418 159T347 40T241 -11Q177 -11 139 22Q102 54 102 117Q102 148 110 181T151 298Q173 362 173 380Z" style="stroke-width:3;"></path></g><g data-mml-node="mo" transform="translate(270.3,32) translate(-250 0)"><path data-c="20D7" d="M377 694Q377 702 382 708T397 714Q404 714 409 709Q414 705 419 690Q429 653 460 633Q471 626 471 615Q471 606 468 603T454 594Q411 572 379 531Q377 529 374 525T369 519T364 517T357 516Q350 516 344 521T337 536Q337 555 384 595H213L42 596Q29 605 29 615Q29 622 42 635H401Q377 673 377 694Z" style="stroke-width:3;"></path></g></g></g></g></g>',1),Y=[W],ss=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mrow",{"data-mjx-texclass":"ORD"},[s("mover",null,[s("mi",null,"v"),s("mo",{stretchy:"false"},"→")])])])],-1),is=e(`<p><strong>引数</strong>:</p><blockquote><ul><li>other (<a href="./line.html#class-line3"><code>Line3</code></a> | <a href="./point.html#class-point3"><code>Point3</code></a>): 另一条直线或点</li></ul></blockquote><p><strong>戻り値</strong>: <a href="https://docs.python.org/3/library/functions.html#float" target="_blank" rel="noreferrer"><code>float</code></a>: 距离</p><p><strong>例外</strong>:</p><blockquote><ul><li><a href="https://docs.python.org/3/library/exceptions.html#TypeError" target="_blank" rel="noreferrer"><code>TypeError</code></a> 不支持的类型</li></ul></blockquote><details><summary><b>ソースコード</b> または <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/line.py#L50" target="_blank">GitHubで表示</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> cal_distance</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, other: </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Line3 | Point3&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) -&gt; </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">float</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> if</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> isinstance</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(other, Line3):</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> if</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> ==</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> other:</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> 0</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> elif</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.is_parallel(other):</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> (other.point </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.point).cross(</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction).length </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">/</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction.length</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> elif</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> not</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.is_coplanar(other):</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> abs</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction.cross(other.direction) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">@</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> (</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.point </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> other.point) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">/</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction.cross(other.direction).length)</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> else</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> 0</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> elif</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> isinstance</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(other, Point3):</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> (other </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.point).cross(</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction).length </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">/</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction.length</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> else</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> raise</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> TypeError</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(</span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Unsupported type.&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">)</span></span></code></pre></div></details><hr><h4 id="method-cal-intersection-self-other-line3-point3" tabindex="-1"><em><strong>method</strong></em> <code>cal_intersection(self, other: Line3) -&gt; Point3</code> <a class="header-anchor" href="#method-cal-intersection-self-other-line3-point3" aria-label="Permalink to &quot;***method*** \`cal_intersection(self, other: Line3) -&gt; Point3\`&quot;"></a></h4><p><strong>説明</strong>: 计算两条直线的交点。</p><p><strong>引数</strong>:</p><blockquote><ul><li>other (<a href="./line.html#class-line3"><code>Line3</code></a>): 另一条直线</li></ul></blockquote><p><strong>戻り値</strong>: <a href="./point.html#class-point3"><code>Point3</code></a>: 交点</p><p><strong>例外</strong>:</p><blockquote><ul><li><a href="https://docs.python.org/3/library/exceptions.html#TypeError" target="_blank" rel="noreferrer"><code>ValueError</code></a> 直线平行</li><li><code>ValueError</code> 直线不共面</li></ul></blockquote><details><summary><b>ソースコード</b> または <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/line.py#L92" target="_blank">GitHubで表示</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> cal_intersection</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, other: </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Line3&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) -&gt; </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Point3&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> if</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.is_parallel(other):</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> raise</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> ValueError</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(</span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Lines are parallel and do not intersect.&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">)</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> if</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> not</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.is_coplanar(other):</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> raise</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> ValueError</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(</span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Lines are not coplanar and do not intersect.&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">)</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.point </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">+</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction.cross(other.direction) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">@</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> other.direction.cross(</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.point </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> other.point) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">/</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction.cross(other.direction).length </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">**</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> 2</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> *</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction</span></span></code></pre></div></details><hr><h4 id="method-cal-perpendicular-self-point-point3-line3" tabindex="-1"><em><strong>method</strong></em> <code>cal_perpendicular(self, point: Point3) -&gt; Line3</code> <a class="header-anchor" href="#method-cal-perpendicular-self-point-point3-line3" aria-label="Permalink to &quot;***method*** \`cal_perpendicular(self, point: Point3) -&gt; Line3\`&quot;"></a></h4><p><strong>説明</strong>: 计算直线经过指定点p的垂线。</p><p><strong>引数</strong>:</p><blockquote><ul><li>point (<a href="./point.html#class-point3"><code>Point3</code></a>): 指定点</li></ul></blockquote><p><strong>戻り値</strong>: <a href="./line.html#class-line3"><code>Line3</code></a>: 垂线</p><details><summary><b>ソースコード</b> または <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/line.py#L110" target="_blank">GitHubで表示</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> cal_perpendicular</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, point: </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Point3&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) -&gt; </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Line3&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> Line3(point, </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction.cross(point </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.point))</span></span></code></pre></div></details><hr><h4 id="method-get-point-self-t-realnumber-point3" tabindex="-1"><em><strong>method</strong></em> <code>get_point(self, t: RealNumber) -&gt; Point3</code> <a class="header-anchor" href="#method-get-point-self-t-realnumber-point3" aria-label="Permalink to &quot;***method*** \`get_point(self, t: RealNumber) -&gt; Point3\`&quot;"></a></h4><p><strong>説明</strong>: 获取直线上的点。同一条直线但起始点和方向向量不同则同一个t对应的点不同。</p><p><strong>引数</strong>:</p><blockquote><ul><li>t (<a href="./mp_math_typing.html#var-realnumber"><code>RealNumber</code></a>): 参数t</li></ul></blockquote><p><strong>戻り値</strong>: <a href="./point.html#class-point3"><code>Point3</code></a>: 点</p><details><summary><b>ソースコード</b> または <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/line.py#L120" target="_blank">GitHubで表示</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> get_point</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, t: RealNumber) -&gt; </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Point3&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.point </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">+</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> t </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction</span></span></code></pre></div></details><hr><h4 id="method-get-parametric-equations-self-tuple-onesinglevarfunc-onesinglevarfunc-onesinglevarfunc" tabindex="-1"><em><strong>method</strong></em> <code>get_parametric_equations(self) -&gt; tuple[OneSingleVarFunc, OneSingleVarFunc, OneSingleVarFunc]</code> <a class="header-anchor" href="#method-get-parametric-equations-self-tuple-onesinglevarfunc-onesinglevarfunc-onesinglevarfunc" aria-label="Permalink to &quot;***method*** \`get_parametric_equations(self) -&gt; tuple[OneSingleVarFunc, OneSingleVarFunc, OneSingleVarFunc]\`&quot;"></a></h4><p><strong>説明</strong>: 获取直线的参数方程。</p><p><strong>戻り値</strong>: <a href="https://docs.python.org/3/library/stdtypes.html#tuple" target="_blank" rel="noreferrer"><code>tuple</code></a>[<a href="./mp_math_typing.html#var-onesinglevarfunc"><code>OneSingleVarFunc</code></a>, <code>OneSingleVarFunc</code>, <code>OneSingleVarFunc</code>]: 参数方程</p><details><summary><b>ソースコード</b> または <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/line.py#L130" target="_blank">GitHubで表示</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> get_parametric_equations</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self) -&gt; tuple[OneSingleVarFunc, OneSingleVarFunc, OneSingleVarFunc]:</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> (</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">lambda</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> t: </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.point.x </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">+</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction.x </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> t, </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">lambda</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> t: </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.point.y </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">+</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction.y </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> t, </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">lambda</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> t: </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.point.z </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">+</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction.z </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> t)</span></span></code></pre></div></details><hr><h4 id="method-is-approx-parallel-self-other-line3-epsilon-float-1e-06-bool" tabindex="-1"><em><strong>method</strong></em> <code>is_approx_parallel(self, other: Line3, epsilon: float = 1e-06) -&gt; bool</code> <a class="header-anchor" href="#method-is-approx-parallel-self-other-line3-epsilon-float-1e-06-bool" aria-label="Permalink to &quot;***method*** \`is_approx_parallel(self, other: Line3, epsilon: float = 1e-06) -&gt; bool\`&quot;"></a></h4><p><strong>説明</strong>: 判断两条直线是否近似平行。</p><p><strong>引数</strong>:</p><blockquote><ul><li>other (<a href="./line.html#class-line3"><code>Line3</code></a>): 另一条直线</li><li>epsilon (<a href="https://docs.python.org/3/library/functions.html#float" target="_blank" rel="noreferrer"><code>float</code></a>): 误差</li></ul></blockquote><p><strong>戻り値</strong>: <a href="https://docs.python.org/3/library/functions.html#bool" target="_blank" rel="noreferrer"><code>bool</code></a>: 是否近似平行</p><details><summary><b>ソースコード</b> または <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/line.py#L140" target="_blank">GitHubで表示</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> is_approx_parallel</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, other: </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Line3&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">, epsilon: </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">float</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">1e-06</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) -&gt; </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">bool</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction.is_approx_parallel(other.direction, epsilon)</span></span></code></pre></div></details><hr><h4 id="method-is-parallel-self-other-line3-bool" tabindex="-1"><em><strong>method</strong></em> <code>is_parallel(self, other: Line3) -&gt; bool</code> <a class="header-anchor" href="#method-is-parallel-self-other-line3-bool" aria-label="Permalink to &quot;***method*** \`is_parallel(self, other: Line3) -&gt; bool\`&quot;"></a></h4><p><strong>説明</strong>: 判断两条直线是否平行。</p><p><strong>引数</strong>:</p><blockquote><ul><li>other (<a href="./line.html#class-line3"><code>Line3</code></a>): 另一</li></ul></blockquote><p><strong>戻り値</strong>: <a href="https://docs.python.org/3/library/functions.html#bool" target="_blank" rel="noreferrer"><code>bool</code></a>: 是否平行</p><details><summary><b>ソースコード</b> または <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/line.py#L151" target="_blank">GitHubで表示</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> is_parallel</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, other: </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Line3&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) -&gt; </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">bool</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction.is_parallel(other.direction)</span></span></code></pre></div></details><hr><h4 id="method-is-collinear-self-other-line3-bool" tabindex="-1"><em><strong>method</strong></em> <code>is_collinear(self, other: Line3) -&gt; bool</code> <a class="header-anchor" href="#method-is-collinear-self-other-line3-bool" aria-label="Permalink to &quot;***method*** \`is_collinear(self, other: Line3) -&gt; bool\`&quot;"></a></h4><p><strong>説明</strong>: 判断两条直线是否共线。</p><p><strong>引数</strong>:</p><blockquote><ul><li>other (<a href="./line.html#class-line3"><code>Line3</code></a>): 另一</li></ul></blockquote><p><strong>戻り値</strong>: <a href="https://docs.python.org/3/library/functions.html#bool" target="_blank" rel="noreferrer"><code>bool</code></a>: 是否共线</p><details><summary><b>ソースコード</b> または <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/line.py#L161" target="_blank">GitHubで表示</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> is_collinear</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, other: </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Line3&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) -&gt; </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">bool</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.is_parallel(other) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">and</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> (</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.point </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> other.point).is_parallel(</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction)</span></span></code></pre></div></details><hr><h4 id="method-is-point-on-self-point-point3-bool" tabindex="-1"><em><strong>method</strong></em> <code>is_point_on(self, point: Point3) -&gt; bool</code> <a class="header-anchor" href="#method-is-point-on-self-point-point3-bool" aria-label="Permalink to &quot;***method*** \`is_point_on(self, point: Point3) -&gt; bool\`&quot;"></a></h4><p><strong>説明</strong>: 判断点是否在直线上。</p><p><strong>引数</strong>:</p><blockquote><ul><li>point (<a href="./point.html#class-point3"><code>Point3</code></a>): 点</li></ul></blockquote><p><strong>戻り値</strong>: <a href="https://docs.python.org/3/library/functions.html#bool" target="_blank" rel="noreferrer"><code>bool</code></a>: 是否在直线上</p><details><summary><b>ソースコード</b> または <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/line.py#L171" target="_blank">GitHubで表示</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> is_point_on</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, point: </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Point3&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) -&gt; </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">bool</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> (point </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.point).is_parallel(</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction)</span></span></code></pre></div></details><hr><h4 id="method-is-coplanar-self-other-line3-bool" tabindex="-1"><em><strong>method</strong></em> <code>is_coplanar(self, other: Line3) -&gt; bool</code> <a class="header-anchor" href="#method-is-coplanar-self-other-line3-bool" aria-label="Permalink to &quot;***method*** \`is_coplanar(self, other: Line3) -&gt; bool\`&quot;"></a></h4><p><strong>説明</strong>: 判断两条直线是否共面。 充要条件两直线方向向量的叉乘与两直线上任意一点的向量的点积为0。</p><p><strong>引数</strong>:</p><blockquote><ul><li>other (<a href="./line.html#class-line3"><code>Line3</code></a>): 另一</li></ul></blockquote><p><strong>戻り値</strong>: <a href="https://docs.python.org/3/library/functions.html#bool" target="_blank" rel="noreferrer"><code>bool</code></a>: 是否共面</p><details><summary><b>ソースコード</b> または <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/line.py#L181" target="_blank">GitHubで表示</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> is_coplanar</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, other: </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Line3&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) -&gt; </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">bool</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction.cross(other.direction) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">@</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> (</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.point </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> other.point) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">==</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> 0</span></span></code></pre></div></details><hr><h4 id="method-simplify-self" tabindex="-1"><em><strong>method</strong></em> <code>simplify(self)</code> <a class="header-anchor" href="#method-simplify-self" aria-label="Permalink to &quot;***method*** \`simplify(self)\`&quot;"></a></h4><p><strong>説明</strong>: 简化直线方程,等价相等。 自体简化,不返回值。</p><p>按照可行性一次对x y z 化 0 处理,并对向量单位化</p><details><summary><b>ソースコード</b> または <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/line.py#L192" target="_blank">GitHubで表示</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> simplify</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self):</span></span>
<span class="line"><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction.normalize()</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> if</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction.x </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">==</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> 0</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.point.x </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> 0</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> if</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction.y </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">==</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> 0</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.point.y </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> 0</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> if</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction.z </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">==</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> 0</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.point.z </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> 0</span></span></code></pre></div></details><hr><p><a href="https://docs.python.org/3/library/functions.html#classmethod" target="_blank" rel="noreferrer"><code>@classmethod</code></a></p><h4 id="method-from-two-points-cls-p1-point3-p2-point3-line3" tabindex="-1"><em><strong>method</strong></em> <code>from_two_points(cls, p1: Point3, p2: Point3) -&gt; Line3</code> <a class="header-anchor" href="#method-from-two-points-cls-p1-point3-p2-point3-line3" aria-label="Permalink to &quot;***method*** \`from_two_points(cls, p1: Point3, p2: Point3) -&gt; Line3\`&quot;"></a></h4><p><strong>説明</strong>: 工厂函数 由两点构造直线。</p><p><strong>引数</strong>:</p><blockquote><ul><li>p1 (<a href="./point.html#class-point3"><code>Point3</code></a>): 点1</li><li>p2 (<a href="./point.html#class-point3"><code>Point3</code></a>): 点2</li></ul></blockquote><p><strong>戻り値</strong>: <a href="./line.html#class-line3"><code>Line3</code></a>: 直线</p><details><summary><b>ソースコード</b> または <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/line.py#L211" target="_blank">GitHubで表示</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;">@</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">classmethod</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> from_two_points</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(cls, p1: </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Point3&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">, p2: </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Point3&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) -&gt; </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Line3&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> direction </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> p2 </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> p1</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> cls</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(p1, direction)</span></span></code></pre></div></details><hr><h4 id="method-self-other-line3-line3-point3-none" tabindex="-1"><em><strong>method</strong></em> <code>self &amp; other: Line3 =&gt; Line3 | Point3 | None</code> <a class="header-anchor" href="#method-self-other-line3-line3-point3-none" aria-label="Permalink to &quot;***method*** \`self &amp; other: Line3 =&gt; Line3 | Point3 | None\`&quot;"></a></h4><p><strong>説明</strong>: 计算两条直线点集合的交集。重合线返回自身平行线返回None交线返回交点。</p><p><strong>引数</strong>:</p><blockquote><ul><li>other (<a href="./line.html#class-line3"><code>Line3</code></a>): 另一条直线</li></ul></blockquote><p><strong>戻り値</strong>: <a href="./line.html#class-line3"><code>Line3</code></a> | <a href="./point.html#class-point3"><code>Point3</code></a> | <a href="https://docs.python.org/3/library/constants.html#None" target="_blank" rel="noreferrer"><code>None</code></a>: 交集</p><details><summary><b>ソースコード</b> または <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/line.py#L223" target="_blank">GitHubで表示</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> __and__</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, other: </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Line3&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) -&gt; </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Line3 | Point3 | None&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> if</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.is_collinear(other):</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> elif</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.is_parallel(other) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">or</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> not</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.is_coplanar(other):</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> None</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> else</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.cal_intersection(other)</span></span></code></pre></div></details><hr><h4 id="method-self-other-bool" tabindex="-1"><em><strong>method</strong></em> <code>self == other =&gt; bool</code> <a class="header-anchor" href="#method-self-other-bool" aria-label="Permalink to &quot;***method*** \`self == other =&gt; bool\`&quot;"></a></h4><p><strong>説明</strong>: 判断两条直线是否等价。</p><p>v1 // v2 ∧ (p1 - p2) // v1</p><p><strong>引数</strong>:</p><blockquote><ul><li>other (<a href="./line.html#class-line3"><code>Line3</code></a>): 另一条直线</li></ul></blockquote><p><strong>戻り値</strong>: <a href="https://docs.python.org/3/library/functions.html#bool" target="_blank" rel="noreferrer"><code>bool</code></a>: 是否等价</p><details><summary><b>ソースコード</b> または <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/line.py#L238" target="_blank">GitHubで表示</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> __eq__</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, other) -&gt; </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">bool</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction.is_parallel(other.direction) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">and</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> (</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.point </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> other.point).is_parallel(</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction)</span></span></code></pre></div></details>`,97);function ts(as,es,ns,ls,hs,os){return a(),i("div",null,[h,s("div",o,[p,r,s("ul",null,[k,s("li",null,[t("平行/异面 = "),s("mjx-container",d,[(a(),i("svg",g,m)),y])]),s("li",null,[t("相交 = 0 其中,"),s("mjx-container",E,[(a(),i("svg",Q,T)),b]),t("和"),s("mjx-container",f,[(a(),i("svg",F,C)),x]),t("分别为两条直线上的点,"),s("mjx-container",w,[(a(),i("svg",v,A)),B]),t("为直线的方向向量。")])])]),s("div",L,[H,V,s("mjx-container",P,[(a(),i("svg",q,j)),S]),s("p",null,[t("其中,"),s("mjx-container",Z,[(a(),i("svg",O,G)),N]),t("为直线上的点,"),s("mjx-container",I,[(a(),i("svg",z,J)),$]),t("为点,"),s("mjx-container",U,[(a(),i("svg",K,Y)),ss]),t("为直线的方向向量。")])]),is])}const ks=n(l,[["render",ts]]);export{rs as __pageData,ks as default};