func get_partial_derivative_func(func: MultiVarsFunc = EPSILON) -> MultiVarsFunc
説明: 求N元函数一阶偏导函数。这玩意不太稳定,慎用。
WARNING
目前数学界对于数值微分的稳定性问题还没有很好的解决方案,因此这个函数的稳定性也不是很好。
變數説明:
- func: 函数
- var: 变量位置,可为整数(一阶偏导)或整数元组(高阶偏导)
- epsilon: 偏移量
返回: 偏导函数
抛出:
- ValueError 无效变量类型
源碼
python
def get_partial_derivative_func(func: MultiVarsFunc, var: int | tuple[int, ...], epsilon: Number=EPSILON) -> MultiVarsFunc:
"""
求N元函数一阶偏导函数。这玩意不太稳定,慎用。
> [!warning]
> 目前数学界对于数值微分的稳定性问题还没有很好的解决方案,因此这个函数的稳定性也不是很好。
Args:
func: 函数
var: 变量位置,可为整数(一阶偏导)或整数元组(高阶偏导)
epsilon: 偏移量
Returns:
偏导函数
Raises:
ValueError: 无效变量类型
"""
if isinstance(var, int):
def partial_derivative_func(*args: Var) -> Var:
"""
@litedoc-hide
Args:
*args:
Returns:
"""
args_list_plus = list(args)
args_list_plus[var] += epsilon
args_list_minus = list(args)
args_list_minus[var] -= epsilon
return (func(*args_list_plus) - func(*args_list_minus)) / (2 * epsilon)
return partial_derivative_func
elif isinstance(var, tuple):
def high_order_partial_derivative_func(*args: Var) -> Var:
"""@litedoc-hide"""
result_func = func
for v in var:
result_func = get_partial_derivative_func(result_func, v, epsilon)
return result_func(*args)
return high_order_partial_derivative_func
else:
raise ValueError('Invalid var type')
class CurveEquation
method __init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc)
説明: 曲线方程。
變數説明:
- x_func: x函数
- y_func: y函数
- z_func: z函数
源碼
python
def __init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc):
"""
曲线方程。
Args:
x_func: x函数
y_func: y函数
z_func: z函数
"""
self.x_func = x_func
self.y_func = y_func
self.z_func = z_func
method __call__(self) -> Point3 | tuple[Point3, ...]
説明: 计算曲线上的点。
變數説明:
- *t:
- 参数:
源碼
python
def __call__(self, *t: Var) -> Point3 | tuple[Point3, ...]:
"""
计算曲线上的点。
Args:
*t:
参数
Returns:
"""
if len(t) == 1:
return Point3(self.x_func(t[0]), self.y_func(t[0]), self.z_func(t[0]))
else:
return tuple([Point3(x, y, z) for x, y, z in zip(self.x_func(t), self.y_func(t), self.z_func(t))])