import{_ as s,c as i,o as a,a2 as l}from"./chunks/framework.BV61Qrc0.js";const g=JSON.parse('{"title":"mbcp.mp_math.vector","description":"","frontmatter":{"title":"mbcp.mp_math.vector"},"headers":[],"relativePath":"ja/api/mp_math/vector.md","filePath":"ja/api/mp_math/vector.md"}'),h={name:"ja/api/mp_math/vector.md"},n=l(`

var zero_vector3 = Vector3(0, 0, 0)

var x_axis = Vector3(1, 0, 0)

var y_axis = Vector3(0, 1, 0)

var z_axis = Vector3(0, 0, 1)

class Vector3

3维向量

引数:

x: x轴分量

y: y轴分量

z: z轴分量

ソースコード
python
def __init__(self, x: float, y: float, z: float):
    """
        3维向量
        Args:
            x: x轴分量
            y: y轴分量
            z: z轴分量
        """
    self.x = x
    self.y = y
    self.z = z

判断两个向量是否近似相等。

引数:

other:

epsilon:

ソースコード
python
def approx(self, other: 'Vector3', epsilon: float=APPROX) -> bool:
    """
        判断两个向量是否近似相等。
        Args:
            other:
            epsilon:

        Returns:
            是否近似相等
        """
    return all([abs(self.x - other.x) < epsilon, abs(self.y - other.y) < epsilon, abs(self.z - other.z) < epsilon])

计算两个向量之间的夹角。

引数:

other: 另一个向量

ソースコード
python
def cal_angle(self, other: 'Vector3') -> 'AnyAngle':
    """
        计算两个向量之间的夹角。
        Args:
            other: 另一个向量
        Returns:
            夹角
        """
    return AnyAngle(math.acos(self @ other / (self.length * other.length)), is_radian=True)

向量积 叉乘:v1 cross v2 -> v3

叉乘为0,则两向量平行。 其余结果的模为平行四边形的面积。

ソースコード
python
def cross(self, other: 'Vector3') -> 'Vector3':
    """
        向量积 叉乘:v1 cross v2 -> v3

        叉乘为0,则两向量平行。
        其余结果的模为平行四边形的面积。

        返回如下行列式的结果:

        \`\`i  j  k\`\`

        \`\`x1 y1 z1\`\`

        \`\`x2 y2 z2\`\`

        Args:
            other:
        Returns:
            行列式的结果
        """
    return Vector3(self.y * other.z - self.z * other.y, self.z * other.x - self.x * other.z, self.x * other.y - self.y * other.x)

判断两个向量是否近似平行。

引数:

other: 另一个向量

epsilon: 允许的误差

ソースコード
python
def is_approx_parallel(self, other: 'Vector3', epsilon: float=APPROX) -> bool:
    """
        判断两个向量是否近似平行。
        Args:
            other: 另一个向量
            epsilon: 允许的误差
        Returns:
            是否近似平行
        """
    return self.cross(other).length < epsilon

判断两个向量是否平行。

引数:

other: 另一个向量

ソースコード
python
def is_parallel(self, other: 'Vector3') -> bool:
    """
        判断两个向量是否平行。
        Args:
            other: 另一个向量
        Returns:
            是否平行
        """
    return self.cross(other).approx(zero_vector3)

将向量归一化。

自体归一化,不返回值。

ソースコード
python
def normalize(self):
    """
        将向量归一化。

        自体归一化,不返回值。
        """
    length = self.length
    self.x /= length
    self.y /= length
    self.z /= length
ソースコード
python
@property
def np_array(self) -> 'np.ndarray':
    """
        返回numpy数组
        Returns:
        """
    return np.array([self.x, self.y, self.z])

向量的模。

戻り値:

ソースコード
python
@property
def length(self) -> float:
    """
        向量的模。
        Returns:

        """
    return math.sqrt(self.x ** 2 + self.y ** 2 + self.z ** 2)

获取该向量的单位向量。

戻り値:

单位向量

ソースコード
python
@property
def unit(self) -> 'Vector3':
    """
        获取该向量的单位向量。
        Returns:
            单位向量
        """
    return self / self.length
ソースコード
python
def __abs__(self):
    return self.length
ソースコード
python
@overload
def __add__(self, other: 'Vector3') -> 'Vector3':
    ...
ソースコード
python
@overload
def __add__(self, other: 'Point3') -> 'Point3':
    ...

V + P -> P

V + V -> V

引数:

other:

ソースコード
python
def __add__(self, other):
    """
        V + P -> P

        V + V -> V
        Args:
            other:
        Returns:

        """
    if isinstance(other, Vector3):
        return Vector3(self.x + other.x, self.y + other.y, self.z + other.z)
    elif isinstance(other, Point3):
        return Point3(self.x + other.x, self.y + other.y, self.z + other.z)
    else:
        raise TypeError(f"unsupported operand type(s) for +: 'Vector3' and '{type(other)}'")

判断两个向量是否相等。

引数:

other:

ソースコード
python
def __eq__(self, other):
    """
        判断两个向量是否相等。
        Args:
            other:
        Returns:
            是否相等
        """
    return approx(self.x, other.x) and approx(self.y, other.y) and approx(self.z, other.z)

P + V -> P

别去点那边实现了。 :param other: :return:

ソースコード
python
def __radd__(self, other: 'Point3') -> 'Point3':
    """
        P + V -> P

        别去点那边实现了。
        :param other:
        :return:
        """
    return Point3(self.x + other.x, self.y + other.y, self.z + other.z)
ソースコード
python
@overload
def __sub__(self, other: 'Vector3') -> 'Vector3':
    ...
ソースコード
python
@overload
def __sub__(self, other: 'Point3') -> 'Point3':
    ...

V - P -> P

V - V -> V

引数:

other:

ソースコード
python
def __sub__(self, other):
    """
        V - P -> P

        V - V -> V
        Args:
            other:
        Returns:
        """
    if isinstance(other, Vector3):
        return Vector3(self.x - other.x, self.y - other.y, self.z - other.z)
    elif isinstance(other, Point3):
        return Point3(self.x - other.x, self.y - other.y, self.z - other.z)
    else:
        raise TypeError(f'unsupported operand type(s) for -: "Vector3" and "{type(other)}"')

P - V -> P

引数:

other:

ソースコード
python
def __rsub__(self, other: 'Point3'):
    """
        P - V -> P
        Args:
            other:
        Returns:

        """
    if isinstance(other, Point3):
        return Point3(other.x - self.x, other.y - self.y, other.z - self.z)
    else:
        raise TypeError(f"unsupported operand type(s) for -: '{type(other)}' and 'Vector3'")
ソースコード
python
@overload
def __mul__(self, other: 'Vector3') -> 'Vector3':
    ...
ソースコード
python
@overload
def __mul__(self, other: RealNumber) -> 'Vector3':
    ...

数组运算 非点乘。点乘使用@,叉乘使用cross。

引数:

other:

ソースコード
python
def __mul__(self, other: 'int | float | Vector3') -> 'Vector3':
    """
        数组运算 非点乘。点乘使用@,叉乘使用cross。
        Args:
            other:

        Returns:
        """
    if isinstance(other, Vector3):
        return Vector3(self.x * other.x, self.y * other.y, self.z * other.z)
    elif isinstance(other, (float, int)):
        return Vector3(self.x * other, self.y * other, self.z * other)
    else:
        raise TypeError(f"unsupported operand type(s) for *: 'Vector3' and '{type(other)}'")
ソースコード
python
def __rmul__(self, other: 'RealNumber') -> 'Vector3':
    return self.__mul__(other)

点乘。

引数:

other:

ソースコード
python
def __matmul__(self, other: 'Vector3') -> 'RealNumber':
    """
        点乘。
        Args:
            other:
        Returns:
        """
    return self.x * other.x + self.y * other.y + self.z * other.z
ソースコード
python
def __truediv__(self, other: RealNumber) -> 'Vector3':
    return Vector3(self.x / other, self.y / other, self.z / other)
ソースコード
python
def __neg__(self):
    return Vector3(-self.x, -self.y, -self.z)
ソースコード
python
def __repr__(self):
    return f'Vector3({self.x}, {self.y}, {self.z})'
ソースコード
python
def __str__(self):
    return f'Vector3({self.x}, {self.y}, {self.z})'
`,130),e=[n];function t(p,k,r,d,o,E){return a(),i("div",null,e)}const F=s(h,[["render",t]]);export{g as __pageData,F as default};