import{_ as i,c as s,j as t,a as T,a2 as a,o as Q}from"./chunks/framework.C94oF1kp.js";const v=JSON.parse('{"title":"mbcp.mp_math.function","description":"","frontmatter":{"title":"mbcp.mp_math.function","editLink":false},"headers":[],"relativePath":"en/api/mp_math/function.md","filePath":"en/api/mp_math/function.md"}'),n={name:"en/api/mp_math/function.md"},l=a('

mbcp.mp_math.function

Description: AAA

def cal_gradient_3vf(func: ThreeSingleVarsFunc, p: Point3, epsilon: float = EPSILON) -> Vector3

Description: 计算三元函数在某点的梯度向量。

',4),e={class:"tip custom-block github-alert"},h=t("p",{class:"custom-block-title"},"TIP",-1),r={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},d={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.471ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 3744.3 1000","aria-hidden":"true"},p=a('',1),o=[p],m=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"f"),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",null,","),t("mi",null,"y"),t("mo",null,","),t("mi",null,"z"),t("mo",{stretchy:"false"},")")])],-1),k={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},g={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.19ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 4504 1000","aria-hidden":"true"},c=a('',1),y=[c],u=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"x"),t("mn",null,"0")]),t("mo",null,","),t("msub",null,[t("mi",null,"y"),t("mn",null,"0")]),t("mo",null,","),t("msub",null,[t("mi",null,"z"),t("mn",null,"0")]),t("mo",{stretchy:"false"},")")])],-1),f={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},E={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-1.469ex"},xmlns:"http://www.w3.org/2000/svg",width:"29.427ex",height:"4.07ex",role:"img",focusable:"false",viewBox:"0 -1149.5 13006.8 1799","aria-hidden":"true"},F=a('',1),_=[F],w=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",{mathvariant:"normal"},"∇"),t("mi",null,"f"),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"x"),t("mn",null,"0")]),t("mo",null,","),t("msub",null,[t("mi",null,"y"),t("mn",null,"0")]),t("mo",null,","),t("msub",null,[t("mi",null,"z"),t("mn",null,"0")]),t("mo",{stretchy:"false"},")"),t("mo",null,"="),t("mrow",{"data-mjx-texclass":"INNER"},[t("mo",{"data-mjx-texclass":"OPEN"},"("),t("mfrac",null,[t("mrow",null,[t("mi",null,"∂"),t("mi",null,"f")]),t("mrow",null,[t("mi",null,"∂"),t("mi",null,"x")])]),t("mo",null,","),t("mfrac",null,[t("mrow",null,[t("mi",null,"∂"),t("mi",null,"f")]),t("mrow",null,[t("mi",null,"∂"),t("mi",null,"y")])]),t("mo",null,","),t("mfrac",null,[t("mrow",null,[t("mi",null,"∂"),t("mi",null,"f")]),t("mrow",null,[t("mi",null,"∂"),t("mi",null,"z")])]),t("mo",{"data-mjx-texclass":"CLOSE"},")")])])],-1),x=a(`

Arguments:

Return: 梯度

Source code
python
def cal_gradient_3vf(func: ThreeSingleVarsFunc, p: Point3, epsilon: float=EPSILON) -> Vector3:
    """
    计算三元函数在某点的梯度向量。
    > [!tip]
    > 已知一个函数$f(x, y, z)$,则其在点$(x_0, y_0, z_0)$处的梯度向量为:
    $\\\\nabla f(x_0, y_0, z_0) = \\\\left(\\\\frac{\\\\partial f}{\\\\partial x}, \\\\frac{\\\\partial f}{\\\\partial y}, \\\\frac{\\\\partial f}{\\\\partial z}\\\\right)$
    Args:
        func: 三元函数
        p: 点
        epsilon: 偏移量
    Returns:
        梯度
    """
    dx = (func(p.x + epsilon, p.y, p.z) - func(p.x - epsilon, p.y, p.z)) / (2 * epsilon)
    dy = (func(p.x, p.y + epsilon, p.z) - func(p.x, p.y - epsilon, p.z)) / (2 * epsilon)
    dz = (func(p.x, p.y, p.z + epsilon) - func(p.x, p.y, p.z - epsilon)) / (2 * epsilon)
    return Vector3(dx, dy, dz)
`,4);function L(C,H,M,Z,b,D){return Q(),s("div",null,[l,t("div",e,[h,t("p",null,[T("已知一个函数"),t("mjx-container",r,[(Q(),s("svg",d,o)),m]),T(",则其在点"),t("mjx-container",k,[(Q(),s("svg",g,y)),u]),T("处的梯度向量为: "),t("mjx-container",f,[(Q(),s("svg",E,_)),w])])]),x])}const V=i(n,[["render",L]]);export{v as __pageData,V as default};