# -*- coding: utf-8 -*- """ 应用题测试集 """ from liteyuki.log import logger # type: ignore from mbcp.mp_math.line import Line3 from mbcp.mp_math.plane import Plane3 from mbcp.mp_math.point import Point3 from mbcp.mp_math.vector import Vector3 from .answer import output_ans, output_step_ans class TestWordProblem: def test_c8s4e4(self): """ 同济大学《高等数学》第八版 下册 第八章第四节例4 问题:求与两平面x-4z-3=0和2x-y-5z-1=0的交线平行且过点(-3, 2, 5)的直线方程。 """ question = "求与两平面x-4z-3=0和2x-y-5z-1=0的交线平行且过点(-3, 2, 5)的直线方程。" correct_ans = Line3(Point3(-3, 2, 5), Vector3(4, 3, 1)) pl1 = Plane3(1, 0, -4, -3) pl2 = Plane3(2, -1, -5, -1) p = Point3(-3, 2, 5) """解法1""" # 求直线方向向量s s = pl1.normal.cross(pl2.normal) actual_ans = Line3(p, s) output_ans(correct_ans, actual_ans, question=question) assert actual_ans == correct_ans """解法2""" # 过点p且与pl1平行的平面pl3 pl3 = pl1.cal_parallel_plane3(p) # 过点p且与pl2平行的平面pl4 pl4 = pl2.cal_parallel_plane3(p) # 求pl3和pl4的交线 actual_ans = pl3.cal_intersection_line3(pl4) output_ans(correct_ans, actual_ans, question=question) assert actual_ans == correct_ans def test_c8s4e5(self): """ 同济大学《高等数学》第八版 下册 第八章第四节例5 求直线(x-2)/1=(y-3)/1=(z-4)/2与平面2x+y+z-6=0的交点。 """ question = "求直线(x-2)/1=(y-3)/1=(z-4)/2与平面2x+y+z-6=0的交点。" """正确答案""" correct_ans = Point3(1, 2, 2) """题目已知量""" line = Line3(Point3(2, 3, 4), Vector3(1, 1, 2)) plane = Plane3(2, 1, 1, -6) """解""" actual_ans = plane & line output_ans(correct_ans, actual_ans, question=question) def test_c8s4e6(self): question = "求过点(2, 3, 1)且与直线(x+1)/3 = (y-1)/2 = z/-1垂直相交的直线的方程。" """正确答案""" correct_ans = Line3(Point3(2, 1, 3), Vector3(2, -1, 4)) """题目已知量""" point = Point3(2, 1, 3) line = Line3(Point3(-1, 1, 0), Vector3(3, 2, -1)) """解""" # 先作过点且垂直与已知直线的平面 s1_correct_ans = Plane3(3, 2, -1, -5) pl = Plane3.from_point_and_normal(point, line.direction) output_step_ans(s1_correct_ans, pl, question="作过点且垂直与已知直线的平面") # 求该平面与已知直线的交点 s2_correct_ans = Point3(2 / 7, 13 / 7, -3 / 7) s2_actual_ans = pl & line output_step_ans(s2_correct_ans, s2_actual_ans, s1_correct_ans.approx(s1_correct_ans), question="求该平面与已知直线的交点") # 求所求直线的方向向量 s3_correct_ans = (-6 / 7) * Vector3(2, -1, 4) dv = s2_correct_ans - point output_step_ans(s3_correct_ans, dv, condition=s3_correct_ans.unit.approx(dv.unit), question="求所求直线的方向向量") # 求所求直线的方程 actual_ans = Line3(point, dv) output_ans(correct_ans, actual_ans, correct_ans.approx(actual_ans), question=question)