Skip to content

mbcp.mp_math.function

说明: AAA

func cal_gradient_3vf(func: ThreeSingleVarsFunc, p: Point3, epsilon: float = EPSILON) -> Vector3

说明: 计算三元函数在某点的梯度向量。

TIP

已知一个函数f(x,y,z),则其在点(x0,y0,z0)处的梯度向量为: f(x0,y0,z0)=(fx,fy,fz)

参数:

  • func: 三元函数
  • p: 点
  • epsilon: 偏移量

返回: 梯度

源代码
python
def cal_gradient_3vf(func: ThreeSingleVarsFunc, p: Point3, epsilon: float=EPSILON) -> Vector3:
    """
    计算三元函数在某点的梯度向量。
    > [!tip]
    > 已知一个函数$f(x, y, z)$,则其在点$(x_0, y_0, z_0)$处的梯度向量为:
    $\\nabla f(x_0, y_0, z_0) = \\left(\\frac{\\partial f}{\\partial x}, \\frac{\\partial f}{\\partial y}, \\frac{\\partial f}{\\partial z}\\right)$
    Args:
        func: 三元函数
        p: 点
        epsilon: 偏移量
    Returns:
        梯度
    """
    dx = (func(p.x + epsilon, p.y, p.z) - func(p.x - epsilon, p.y, p.z)) / (2 * epsilon)
    dy = (func(p.x, p.y + epsilon, p.z) - func(p.x, p.y - epsilon, p.z)) / (2 * epsilon)
    dz = (func(p.x, p.y, p.z + epsilon) - func(p.x, p.y, p.z - epsilon)) / (2 * epsilon)
    return Vector3(dx, dy, dz)

文档由 VitePress 构建 | API引用由 litedoc 生成