import{_ as n,c as s,j as t,a as Q,a4 as a,o as i}from"./chunks/framework.DpC1ZpOZ.js";const V=JSON.parse('{"title":"mbcp.mp_math.function","description":"","frontmatter":{"title":"mbcp.mp_math.function","lastUpdated":false},"headers":[],"relativePath":"zht/api/mp_math/function.md","filePath":"zht/api/mp_math/function.md"}'),T={name:"zht/api/mp_math/function.md"},e=a('
模組 mbcp.mp_math.function
AAA
func cal_gradient_3vf(func: ThreeSingleVarsFunc, p: Point3, epsilon: float = EPSILON) -> Vector3
説明 : 计算三元函数在某点的梯度向量。
',4),l={class:"tip custom-block github-alert"},h=t("p",{class:"custom-block-title"},"TIP",-1),r={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},d={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.471ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 3744.3 1000","aria-hidden":"true"},p=a(' ',1),o=[p],m=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"f"),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",null,","),t("mi",null,"y"),t("mo",null,","),t("mi",null,"z"),t("mo",{stretchy:"false"},")")])],-1),k={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},c={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.19ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 4504 1000","aria-hidden":"true"},g=a(' ',1),u=[g],y=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"x"),t("mn",null,"0")]),t("mo",null,","),t("msub",null,[t("mi",null,"y"),t("mn",null,"0")]),t("mo",null,","),t("msub",null,[t("mi",null,"z"),t("mn",null,"0")]),t("mo",{stretchy:"false"},")")])],-1),E={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},f={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-1.469ex"},xmlns:"http://www.w3.org/2000/svg",width:"29.427ex",height:"4.07ex",role:"img",focusable:"false",viewBox:"0 -1149.5 13006.8 1799","aria-hidden":"true"},_=a(' ',1),w=[_],x=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",{mathvariant:"normal"},"∇"),t("mi",null,"f"),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"x"),t("mn",null,"0")]),t("mo",null,","),t("msub",null,[t("mi",null,"y"),t("mn",null,"0")]),t("mo",null,","),t("msub",null,[t("mi",null,"z"),t("mn",null,"0")]),t("mo",{stretchy:"false"},")"),t("mo",null,"="),t("mrow",{"data-mjx-texclass":"INNER"},[t("mo",{"data-mjx-texclass":"OPEN"},"("),t("mfrac",null,[t("mrow",null,[t("mi",null,"∂"),t("mi",null,"f")]),t("mrow",null,[t("mi",null,"∂"),t("mi",null,"x")])]),t("mo",null,","),t("mfrac",null,[t("mrow",null,[t("mi",null,"∂"),t("mi",null,"f")]),t("mrow",null,[t("mi",null,"∂"),t("mi",null,"y")])]),t("mo",null,","),t("mfrac",null,[t("mrow",null,[t("mi",null,"∂"),t("mi",null,"f")]),t("mrow",null,[t("mi",null,"∂"),t("mi",null,"z")])]),t("mo",{"data-mjx-texclass":"CLOSE"},")")])])],-1),b=a(`變數説明 :
返回 : 梯度
源碼 或 於GitHub上查看 python def cal_gradient_3vf (func: ThreeSingleVarsFunc, p: Point3, epsilon: float = EPSILON ) -> Vector3:
dx = (func(p.x + epsilon, p.y, p.z) - func(p.x - epsilon, p.y, p.z)) / ( 2 * epsilon)
dy = (func(p.x, p.y + epsilon, p.z) - func(p.x, p.y - epsilon, p.z)) / ( 2 * epsilon)
dz = (func(p.x, p.y, p.z + epsilon) - func(p.x, p.y, p.z - epsilon)) / ( 2 * epsilon)
return Vector3(dx, dy, dz)
func curry(func: MultiVarsFunc, *args: Var) -> OneVarFunc
説明 : 对多参数函数进行柯里化。
變數説明 :
返回 : 柯里化后的函数
範例 :
python def add (a: int , b: int , c: int ) -> int :
return a + b + c
add_curried = curry(add, 1 , 2 )
add_curried( 3 ) # 6
源碼 或 於GitHub上查看 python def curry (func: MultiVarsFunc, * args: Var) -> OneVarFunc:
def curried_func ( * args2: Var) -> Var:
return func( * args, * args2)
return curried_func
`,13);function L(H,F,M,v,D,Z){return i(),s("div",null,[e,t("div",l,[h,t("p",null,[Q("已知一个函数"),t("mjx-container",r,[(i(),s("svg",d,o)),m]),Q(",则其在点"),t("mjx-container",k,[(i(),s("svg",c,u)),y]),Q("处的梯度向量为: "),t("mjx-container",E,[(i(),s("svg",f,w)),x])])]),b])}const A=n(T,[["render",L]]);export{V as __pageData,A as default};