import{_ as l,c as a,j as s,a as e,a4 as t,o as i}from"./chunks/framework.DpC1ZpOZ.js";const o1=JSON.parse('{"title":"mbcp.mp_math.vector","description":"","frontmatter":{"title":"mbcp.mp_math.vector","lastUpdated":false},"headers":[],"relativePath":"ja/api/mp_math/vector.md","filePath":"ja/api/mp_math/vector.md"}'),n={name:"ja/api/mp_math/vector.md"},h=t('
モジュール mbcp.mp_math.vector
本模块定义了3维向量的类Vector3,以及一些常用的向量。
class Vector3
method __init__(self, x: float, y: float, z: float)
説明 : 3维向量
引数 :
x (float
): x轴分量 y (float
): y轴分量 z (float
): z轴分量 ソースコード または GitHubで表示 python def __init__ (self, x: float , y: float , z: float ): \n self .x = x \n self .y = y \n self .z = z
method approx(self, other: Vector3, epsilon: float = APPROX) -> bool
説明 : 判断两个向量是否近似相等。
引数 :
戻り値 : bool
: 是否近似相等
ソースコード または GitHubで表示 python def approx (self, other: 'Vector3' , epsilon: float = APPROX ) -> bool : \n return all ([ abs ( self .x - other.x) < epsilon, abs ( self .y - other.y) < epsilon, abs ( self .z - other.z) < epsilon])
method cal_angle(self, other: Vector3) -> AnyAngle
説明 : 计算两个向量之间的夹角。
',16),r={class:"tip custom-block"},o=s("p",{class:"custom-block-title"},"TIP",-1),p=s("p",null,"向量夹角计算公式:",-1),T={tabindex:"0",class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},d={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-2.17ex"},xmlns:"http://www.w3.org/2000/svg",width:"21.491ex",height:"5.206ex",role:"img",focusable:"false",viewBox:"0 -1342 9499 2301","aria-hidden":"true"},k=t(' ',1),Q=[k],m=s("mjx-assistive-mml",{unselectable:"on",display:"block",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",overflow:"hidden",width:"100%"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML",display:"block"},[s("mi",null,"θ"),s("mo",null,"="),s("mi",null,"arccos"),s("mo",{"data-mjx-texclass":"NONE"},""),s("mo",{stretchy:"false"},"("),s("mfrac",null,[s("mrow",null,[s("mi",null,"v"),s("mn",null,"1"),s("mo",null,"⋅"),s("mi",null,"v"),s("mn",null,"2")]),s("mrow",null,[s("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|"),s("mi",null,"v"),s("mn",null,"1"),s("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|"),s("mo",null,"⋅"),s("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|"),s("mi",null,"v"),s("mn",null,"2"),s("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|")])]),s("mo",{stretchy:"false"},")")])],-1),g=t('引数 :
戻り値 : AnyAngle
: 夹角
ソースコード または GitHubで表示 python def cal_angle (self, other: 'Vector3' ) -> 'AnyAngle' : \n return AnyAngle(math.acos( self @ other / ( self .length * other.length)), is_radian = True )
method cross(self, other: Vector3) -> Vector3
説明 : 向量积 叉乘:v1 x v2 -> v3
',6),c={class:"tip custom-block"},y=s("p",{class:"custom-block-title"},"TIP",-1),E=s("p",null,"叉乘运算法则为:",-1),u={tabindex:"0",class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},f={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.667ex"},xmlns:"http://www.w3.org/2000/svg",width:"70.883ex",height:"2.364ex",role:"img",focusable:"false",viewBox:"0 -750 31330.3 1045","aria-hidden":"true"},b=t(' ',1),F=[b],C=s("mjx-assistive-mml",{unselectable:"on",display:"block",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",overflow:"hidden",width:"100%"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML",display:"block"},[s("mi",null,"v"),s("mn",null,"1"),s("mo",null,"×"),s("mi",null,"v"),s("mn",null,"2"),s("mo",null,"="),s("mo",{stretchy:"false"},"("),s("mi",null,"v"),s("msub",null,[s("mn",null,"1"),s("mi",null,"y")]),s("mo",null,"⋅"),s("mi",null,"v"),s("msub",null,[s("mn",null,"2"),s("mi",null,"z")]),s("mo",null,"−"),s("mi",null,"v"),s("msub",null,[s("mn",null,"1"),s("mi",null,"z")]),s("mo",null,"⋅"),s("mi",null,"v"),s("msub",null,[s("mn",null,"2"),s("mi",null,"y")]),s("mo",null,","),s("mi",null,"v"),s("msub",null,[s("mn",null,"1"),s("mi",null,"z")]),s("mo",null,"⋅"),s("mi",null,"v"),s("msub",null,[s("mn",null,"2"),s("mi",null,"x")]),s("mo",null,"−"),s("mi",null,"v"),s("msub",null,[s("mn",null,"1"),s("mi",null,"x")]),s("mo",null,"⋅"),s("mi",null,"v"),s("msub",null,[s("mn",null,"2"),s("mi",null,"z")]),s("mo",null,","),s("mi",null,"v"),s("msub",null,[s("mn",null,"1"),s("mi",null,"x")]),s("mo",null,"⋅"),s("mi",null,"v"),s("msub",null,[s("mn",null,"2"),s("mi",null,"y")]),s("mo",null,"−"),s("mi",null,"v"),s("msub",null,[s("mn",null,"1"),s("mi",null,"y")]),s("mo",null,"⋅"),s("mi",null,"v"),s("msub",null,[s("mn",null,"2"),s("mi",null,"x")]),s("mo",{stretchy:"false"},")")])],-1),_=s("p",null,"转换为行列式形式:",-1),v={tabindex:"0",class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},x={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-3.835ex"},xmlns:"http://www.w3.org/2000/svg",width:"25.963ex",height:"8.801ex",role:"img",focusable:"false",viewBox:"0 -2195 11475.8 3889.9","aria-hidden":"true"},H=t(' ',1),V=[H],w=s("mjx-assistive-mml",{unselectable:"on",display:"block",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",overflow:"hidden",width:"100%"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML",display:"block"},[s("mi",null,"v"),s("mn",null,"1"),s("mo",null,"×"),s("mi",null,"v"),s("mn",null,"2"),s("mo",null,"="),s("mrow",{"data-mjx-texclass":"INNER"},[s("mo",{"data-mjx-texclass":"OPEN"},"|"),s("mtable",{columnspacing:"1em",rowspacing:"4pt"},[s("mtr",null,[s("mtd",null,[s("mi",null,"i")]),s("mtd",null,[s("mi",null,"j")]),s("mtd",null,[s("mi",null,"k")])]),s("mtr",null,[s("mtd",null,[s("mi",null,"v"),s("msub",null,[s("mn",null,"1"),s("mi",null,"x")])]),s("mtd",null,[s("mi",null,"v"),s("msub",null,[s("mn",null,"1"),s("mi",null,"y")])]),s("mtd",null,[s("mi",null,"v"),s("msub",null,[s("mn",null,"1"),s("mi",null,"z")])])]),s("mtr",null,[s("mtd",null,[s("mi",null,"v"),s("msub",null,[s("mn",null,"2"),s("mi",null,"x")])]),s("mtd",null,[s("mi",null,"v"),s("msub",null,[s("mn",null,"2"),s("mi",null,"y")])]),s("mtd",null,[s("mi",null,"v"),s("msub",null,[s("mn",null,"2"),s("mi",null,"z")])])])]),s("mo",{"data-mjx-texclass":"CLOSE"},"|")])])],-1),D=t('引数 :
戻り値 : Vector3
: 叉乘结果
ソースコード または GitHubで表示 python def cross (self, other: 'Vector3' ) -> 'Vector3' : \n return Vector3( self .y * other.z - self .z * other.y, self .z * other.x - self .x * other.z, self .x * other.y - self .y * other.x)
method is_approx_parallel(self, other: Vector3, epsilon: float = APPROX) -> bool
説明 : 判断两个向量是否近似平行。
引数 :
戻り値 : bool
: 是否近似平行
ソースコード または GitHubで表示 python def is_approx_parallel (self, other: 'Vector3' , epsilon: float = APPROX ) -> bool : \n return self .cross(other).length < epsilon
method is_parallel(self, other: Vector3) -> bool
説明 : 判断两个向量是否平行。
引数 :
戻り値 : bool
: 是否平行
ソースコード または GitHubで表示 python def is_parallel (self, other: 'Vector3' ) -> bool : \n return self .cross(other).approx(zero_vector3)
method normalize(self)
説明 : 将向量归一化。
自体归一化,不返回值。
ソースコード または GitHubで表示 python def normalize (self): \n length = self .length \n self .x /= length \n self .y /= length \n self .z /= length
method project(self, other: Vector3) -> Vector3
説明 : 计算自向量在另一个向量上的投影向量。
',22),L={class:"tip custom-block"},B=s("p",{class:"custom-block-title"},"TIP",-1),A={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},M={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.206ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 3626.9 1000","aria-hidden":"true"},Z=t(' ',1),P=[Z],q=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"p"),s("mi",null,"r"),s("mi",null,"o"),s("msub",null,[s("mi",null,"j"),s("mi",null,"v")]),s("mo",{stretchy:"false"},"("),s("mi",null,"u"),s("mo",{stretchy:"false"},")")])],-1),z={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},j={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.294ex",height:"1.025ex",role:"img",focusable:"false",viewBox:"0 -442 572 453","aria-hidden":"true"},S=s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D462",d:"M21 287Q21 295 30 318T55 370T99 420T158 442Q204 442 227 417T250 358Q250 340 216 246T182 105Q182 62 196 45T238 27T291 44T328 78L339 95Q341 99 377 247Q407 367 413 387T427 416Q444 431 463 431Q480 431 488 421T496 402L420 84Q419 79 419 68Q419 43 426 35T447 26Q469 29 482 57T512 145Q514 153 532 153Q551 153 551 144Q550 139 549 130T540 98T523 55T498 17T462 -8Q454 -10 438 -10Q372 -10 347 46Q345 45 336 36T318 21T296 6T267 -6T233 -11Q189 -11 155 7Q103 38 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z",style:{"stroke-width":"3"}})])])],-1),G=[S],R=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"u")])],-1),N={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},I={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.097ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 485 454","aria-hidden":"true"},O=s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D463",d:"M173 380Q173 405 154 405Q130 405 104 376T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Q21 294 29 316T53 368T97 419T160 441Q202 441 225 417T249 361Q249 344 246 335Q246 329 231 291T200 202T182 113Q182 86 187 69Q200 26 250 26Q287 26 319 60T369 139T398 222T409 277Q409 300 401 317T383 343T365 361T357 383Q357 405 376 424T417 443Q436 443 451 425T467 367Q467 340 455 284T418 159T347 40T241 -11Q177 -11 139 22Q102 54 102 117Q102 148 110 181T151 298Q173 362 173 380Z",style:{"stroke-width":"3"}})])])],-1),J=[O],X=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"v")])],-1),$={tabindex:"0",class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},U={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-2.193ex"},xmlns:"http://www.w3.org/2000/svg",width:"18.757ex",height:"4.725ex",role:"img",focusable:"false",viewBox:"0 -1119 8290.4 2088.4","aria-hidden":"true"},K=t(' ',1),W=[K],Y=s("mjx-assistive-mml",{unselectable:"on",display:"block",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",overflow:"hidden",width:"100%"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML",display:"block"},[s("msub",null,[s("mtext",null,"proj"),s("mi",null,"v")]),s("mo",{stretchy:"false"},"("),s("mi",null,"u"),s("mo",{stretchy:"false"},")"),s("mo",null,"="),s("mfrac",null,[s("mrow",null,[s("mi",null,"u"),s("mo",null,"⋅"),s("mi",null,"v")]),s("mrow",null,[s("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|"),s("mi",null,"v"),s("msup",null,[s("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|"),s("mn",null,"2")])])]),s("mo",null,"⋅"),s("mi",null,"v")])],-1),s1=t('引数 :
戻り値 : Vector3
: 投影向量
ソースコード または GitHubで表示 python def project (self, other: 'Vector3' ) -> 'Vector3' : \n return self @ other / other.length * other.unit
@property
method np_array(self) -> np.ndarray
戻り値 : np.ndarray
: numpy数组
ソースコード または GitHubで表示 python @ property \ndef np_array (self) -> 'np.ndarray' : \n return np.array([ self .x, self .y, self .z])
@property
method length(self) -> float
説明 : 向量的模。
戻り値 : float
: 模
ソースコード または GitHubで表示 python @ property \ndef length (self) -> float : \n return math.sqrt( self .x ** 2 + self .y ** 2 + self .z ** 2 )
@property
method unit(self) -> Vector3
説明 : 获取该向量的单位向量。
戻り値 : Vector3
: 单位向量
ソースコード または GitHubで表示 python @ property \ndef unit (self) -> 'Vector3' : \n return self / self .length
method __abs__(self)
ソースコード または GitHubで表示 python def __abs__ (self): \n return self .length
@overload
method self + other: Vector3 => Vector3
ソースコード または GitHubで表示 python @overload \ndef __add__ (self, other: 'Vector3' ) -> 'Vector3' : \n ...
@overload
method self + other: Point3 => Point3
ソースコード または GitHubで表示 python @overload \ndef __add__ (self, other: 'Point3' ) -> 'Point3' : \n ...
method self + other
説明 : V + P -> P
V + V -> V
引数 :
戻り値 : Vector3
| Point3
: 新的向量或点
ソースコード または GitHubで表示 python def __add__ (self, other): \n if isinstance (other, Vector3): \n return Vector3( self .x + other.x, self .y + other.y, self .z + other.z) \n elif isinstance (other, Point3): \n return Point3( self .x + other.x, self .y + other.y, self .z + other.z) \n else : \n raise TypeError ( f "unsupported operand type(s) for +: 'Vector3' and ' {type (other) } '" )
method self == other
説明 : 判断两个向量是否相等。
引数 :
戻り値 : bool
: 是否相等
ソースコード または GitHubで表示 python def __eq__ (self, other): \n return approx( self .x, other.x) and approx( self .y, other.y) and approx( self .z, other.z)
method self + other: Point3 => Point3
説明 : P + V -> P
别去点那边实现了。
引数 :
戻り値 : Point3
: 新的点
ソースコード または GitHubで表示 python def __radd__ (self, other: 'Point3' ) -> 'Point3' : \n return Point3( self .x + other.x, self .y + other.y, self .z + other.z)
@overload
method self - other: Vector3 => Vector3
ソースコード または GitHubで表示 python @overload \ndef __sub__ (self, other: 'Vector3' ) -> 'Vector3' : \n ...
@overload
method self - other: Point3 => Point3
ソースコード または GitHubで表示 python @overload \ndef __sub__ (self, other: 'Point3' ) -> 'Point3' : \n ...
method self - other
説明 : V - P -> P
V - V -> V
引数 :
戻り値 : Vector3
| Point3
: 新的向量
ソースコード または GitHubで表示 python def __sub__ (self, other): \n if isinstance (other, Vector3): \n return Vector3( self .x - other.x, self .y - other.y, self .z - other.z) \n elif isinstance (other, Point3): \n return Point3( self .x - other.x, self .y - other.y, self .z - other.z) \n else : \n raise TypeError ( f 'unsupported operand type(s) for -: "Vector3" and " {type (other) } "' )
method self - other: Point3
説明 : P - V -> P
引数 :
戻り値 : Point3
: 新的点
ソースコード または GitHubで表示 python def __rsub__ (self, other: 'Point3' ): \n if isinstance (other, Point3): \n return Point3(other.x - self .x, other.y - self .y, other.z - self .z) \n else : \n raise TypeError ( f "unsupported operand type(s) for -: ' {type (other) } ' and 'Vector3'" )
@overload
method self * other: Vector3 => Vector3
ソースコード または GitHubで表示 python @overload \ndef __mul__ (self, other: 'Vector3' ) -> 'Vector3' : \n ...
@overload
method self * other: RealNumber => Vector3
ソースコード または GitHubで表示 python @overload \ndef __mul__ (self, other: RealNumber) -> 'Vector3' : \n ...
method self * other: int | float | Vector3 => Vector3
説明 : 数组运算 非点乘。点乘使用@,叉乘使用cross。
引数 :
戻り値 : Vector3
: 数组运算结果
ソースコード または GitHubで表示 python def __mul__ (self, other: 'int | float | Vector3' ) -> 'Vector3' : \n if isinstance (other, Vector3): \n return Vector3( self .x * other.x, self .y * other.y, self .z * other.z) \n elif isinstance (other, ( float , int )): \n return Vector3( self .x * other, self .y * other, self .z * other) \n else : \n raise TypeError ( f "unsupported operand type(s) for *: 'Vector3' and ' {type (other) } '" )
method self * other: RealNumber => Vector3
ソースコード または GitHubで表示 python def __rmul__ (self, other: 'RealNumber' ) -> 'Vector3' : \n return self . __mul__ (other)
method self @ other: Vector3 => RealNumber
説明 : 点乘。
引数 :
戻り値 : float
: 点乘结果
ソースコード または GitHubで表示 python def __matmul__ (self, other: 'Vector3' ) -> 'RealNumber' : \n return self .x * other.x + self .y * other.y + self .z * other.z
method self / other: RealNumber => Vector3
ソースコード または GitHubで表示 python def __truediv__ (self, other: RealNumber) -> 'Vector3' : \n return Vector3( self .x / other, self .y / other, self .z / other)
method - self => Vector3
説明 : 取负。
戻り値 : Vector3
: 负向量
ソースコード または GitHubで表示 python def __neg__ (self) -> 'Vector3' : \n return Vector3( - self .x, - self .y, - self .z)
var zero_vector3
説明 : 零向量
タイプ : Vector3
デフォルト : Vector3(0, 0, 0)
var x_axis
説明 : x轴单位向量
タイプ : Vector3
デフォルト : Vector3(1, 0, 0)
var y_axis
説明 : y轴单位向量
タイプ : Vector3
デフォルト : Vector3(0, 1, 0)
var z_axis
説明 : z轴单位向量
タイプ : Vector3
デフォルト : Vector3(0, 0, 1)
',99);function t1(a1,i1,e1,l1,n1,h1){return i(),a("div",null,[h,s("div",r,[o,p,s("mjx-container",T,[(i(),a("svg",d,Q)),m])]),g,s("div",c,[y,E,s("mjx-container",u,[(i(),a("svg",f,F)),C]),_,s("mjx-container",v,[(i(),a("svg",x,V)),w])]),D,s("div",L,[B,s("p",null,[e("投影向量计算公式,"),s("mjx-container",A,[(i(),a("svg",M,P)),q]),e("表示向量"),s("mjx-container",z,[(i(),a("svg",j,G)),R]),e("在向量"),s("mjx-container",N,[(i(),a("svg",I,J)),X]),e("上的投影向量:")]),s("mjx-container",$,[(i(),a("svg",U,W)),Y])]),s1])}const p1=l(n,[["render",t1]]);export{o1 as __pageData,p1 as default};