--- title: mbcp.mp_math.plane --- ### ***class*** `Plane3` ### *def* `__init__(self, a: float, b: float, c: float, d: float)` 平面方程:ax + by + cz + d = 0 参数: - a: - b: - c: - d:
源码 ```python def __init__(self, a: float, b: float, c: float, d: float): """ 平面方程:ax + by + cz + d = 0 Args: a: b: c: d: """ self.a = a self.b = b self.c = c self.d = d ```
### *def* `approx(self, other: 'Plane3') -> bool` 判断两个平面是否近似相等。 参数: - other: 返回: - 是否近似相等
源码 ```python def approx(self, other: 'Plane3') -> bool: """ 判断两个平面是否近似相等。 Args: other: Returns: 是否近似相等 """ a = 3 if self.a != 0: k = other.a / self.a return approx(other.b, self.b * k) and approx(other.c, self.c * k) and approx(other.d, self.d * k) elif self.b != 0: k = other.b / self.b return approx(other.a, self.a * k) and approx(other.c, self.c * k) and approx(other.d, self.d * k) elif self.c != 0: k = other.c / self.c return approx(other.a, self.a * k) and approx(other.b, self.b * k) and approx(other.d, self.d * k) else: return False ```
### *def* `cal_angle(self, other: 'Line3 | Plane3') -> 'AnyAngle'` 计算平面与平面之间的夹角。 参数: - other: 另一个平面 返回: - 夹角弧度 引发: - TypeError 不支持的类型
源码 ```python def cal_angle(self, other: 'Line3 | Plane3') -> 'AnyAngle': """ 计算平面与平面之间的夹角。 Args: other: 另一个平面 Returns: 夹角弧度 Raises: TypeError: 不支持的类型 """ if isinstance(other, Line3): return self.normal.cal_angle(other.direction).complementary elif isinstance(other, Plane3): return AnyAngle(math.acos(self.normal @ other.normal / (self.normal.length * other.normal.length)), is_radian=True) else: raise TypeError(f'Unsupported type: {type(other)}') ```
### *def* `cal_distance(self, other: 'Plane3 | Point3') -> float` 计算平面与平面或点之间的距离。 参数: - other: 另一个平面或点 返回: - 距离 引发: - TypeError 不支持的类型
源码 ```python def cal_distance(self, other: 'Plane3 | Point3') -> float: """ 计算平面与平面或点之间的距离。 Args: other: 另一个平面或点 Returns: 距离 Raises: TypeError: 不支持的类型 """ if isinstance(other, Plane3): return 0 elif isinstance(other, Point3): return abs(self.a * other.x + self.b * other.y + self.c * other.z + self.d) / (self.a ** 2 + self.b ** 2 + self.c ** 2) ** 0.5 else: raise TypeError(f'Unsupported type: {type(other)}') ```
### *def* `cal_intersection_line3(self, other: 'Plane3') -> 'Line3'` 计算两平面的交线。该方法有问题,待修复。 参数: - other: 另一个平面 返回: - 交线
源码 ```python def cal_intersection_line3(self, other: 'Plane3') -> 'Line3': """ 计算两平面的交线。该方法有问题,待修复。 Args: other: 另一个平面 Returns: 交线 Raises: """ if self.normal.is_parallel(other.normal): raise ValueError('Planes are parallel and have no intersection.') direction = self.normal.cross(other.normal) x, y, z = (0, 0, 0) if self.a != 0 and other.a != 0: A = np.array([[self.b, self.c], [other.b, other.c]]) B = np.array([-self.d, -other.d]) y, z = np.linalg.solve(A, B) elif self.b != 0 and other.b != 0: A = np.array([[self.a, self.c], [other.a, other.c]]) B = np.array([-self.d, -other.d]) x, z = np.linalg.solve(A, B) elif self.c != 0 and other.c != 0: A = np.array([[self.a, self.b], [other.a, other.b]]) B = np.array([-self.d, -other.d]) x, y = np.linalg.solve(A, B) return Line3(Point3(x, y, z), direction) ```
### *def* `cal_intersection_point3(self, other: 'Line3') -> 'Point3'` 计算平面与直线的交点。 参数: - other: 不与平面平行或在平面上的直线 返回: - 交点 引发: - ValueError 平面与直线平行或重合
源码 ```python def cal_intersection_point3(self, other: 'Line3') -> 'Point3': """ 计算平面与直线的交点。 Args: other: 不与平面平行或在平面上的直线 Returns: 交点 Raises: ValueError: 平面与直线平行或重合 """ if self.normal @ other.direction == 0: raise ValueError('The plane and the line are parallel or coincident.') x, y, z = other.get_parametric_equations() t = -(self.a * other.point.x + self.b * other.point.y + self.c * other.point.z + self.d) / (self.a * other.direction.x + self.b * other.direction.y + self.c * other.direction.z) return Point3(x(t), y(t), z(t)) ```
### *def* `cal_parallel_plane3(self, point: 'Point3') -> 'Plane3'` 计算平行于该平面且过指定点的平面。 参数: - point: 指定点 返回: - 平面
源码 ```python def cal_parallel_plane3(self, point: 'Point3') -> 'Plane3': """ 计算平行于该平面且过指定点的平面。 Args: point: 指定点 Returns: 平面 """ return Plane3.from_point_and_normal(point, self.normal) ```
### *def* `is_parallel(self, other: 'Plane3') -> bool` 判断两个平面是否平行。 参数: - other: 另一个平面 返回: - 是否平行
源码 ```python def is_parallel(self, other: 'Plane3') -> bool: """ 判断两个平面是否平行。 Args: other: 另一个平面 Returns: 是否平行 """ return self.normal.is_parallel(other.normal) ```
### `@property` ### *def* `normal(self) -> 'Vector3'` 平面的法向量。 返回: - 法向量
源码 ```python @property def normal(self) -> 'Vector3': """ 平面的法向量。 Returns: 法向量 """ return Vector3(self.a, self.b, self.c) ```
### `@classmethod` ### *def* `from_point_and_normal(cls, point: 'Point3', normal: 'Vector3') -> 'Plane3'` 工厂函数 由点和法向量构造平面(点法式构造)。 参数: - point: 平面上的一点 - normal: 法向量 返回: - 平面
源码 ```python @classmethod def from_point_and_normal(cls, point: 'Point3', normal: 'Vector3') -> 'Plane3': """ 工厂函数 由点和法向量构造平面(点法式构造)。 Args: point: 平面上的一点 normal: 法向量 Returns: 平面 """ a, b, c = (normal.x, normal.y, normal.z) d = -a * point.x - b * point.y - c * point.z return cls(a, b, c, d) ```
### `@classmethod` ### *def* `from_three_points(cls, p1: 'Point3', p2: 'Point3', p3: 'Point3') -> 'Plane3'` 工厂函数 由三点构造平面。 参数: - p1: 点1 - p2: 点2 - p3: 点3 返回: - 平面
源码 ```python @classmethod def from_three_points(cls, p1: 'Point3', p2: 'Point3', p3: 'Point3') -> 'Plane3': """ 工厂函数 由三点构造平面。 Args: p1: 点1 p2: 点2 p3: 点3 Returns: 平面 """ v1 = p2 - p1 v2 = p3 - p1 normal = v1.cross(v2) return cls.from_point_and_normal(p1, normal) ```
### `@classmethod` ### *def* `from_two_lines(cls, l1: 'Line3', l2: 'Line3') -> 'Plane3'` 工厂函数 由两直线构造平面。 参数: - l1: 直线1 - l2: 直线2 返回: - 平面
源码 ```python @classmethod def from_two_lines(cls, l1: 'Line3', l2: 'Line3') -> 'Plane3': """ 工厂函数 由两直线构造平面。 Args: l1: 直线1 l2: 直线2 Returns: 平面 """ v1 = l1.direction v2 = l2.point - l1.point if v2 == zero_vector3: v2 = l2.get_point(1) - l1.point return cls.from_point_and_normal(l1.point, v1.cross(v2)) ```
### `@classmethod` ### *def* `from_point_and_line(cls, point: 'Point3', line: 'Line3') -> 'Plane3'` 工厂函数 由点和直线构造平面。 参数: - point: 面上一点 - line: 面上直线,不包含点 返回: - 平面
源码 ```python @classmethod def from_point_and_line(cls, point: 'Point3', line: 'Line3') -> 'Plane3': """ 工厂函数 由点和直线构造平面。 Args: point: 面上一点 line: 面上直线,不包含点 Returns: 平面 """ return cls.from_point_and_normal(point, line.direction) ```
### *def* `__repr__(self)`
源码 ```python def __repr__(self): return f'Plane3({self.a}, {self.b}, {self.c}, {self.d})' ```
### *def* `__str__(self)`
源码 ```python def __str__(self): s = 'Plane3: ' if self.a != 0: s += f'{sign(self.a, only_neg=True)}{abs(self.a)}x' if self.b != 0: s += f' {sign(self.b)} {abs(self.b)}y' if self.c != 0: s += f' {sign(self.c)} {abs(self.c)}z' if self.d != 0: s += f' {sign(self.d)} {abs(self.d)}' return s + ' = 0' ```
### `@overload` ### *def* `__and__(self, other: 'Line3') -> 'Point3 | None'`
源码 ```python @overload def __and__(self, other: 'Line3') -> 'Point3 | None': ... ```
### `@overload` ### *def* `__and__(self, other: 'Plane3') -> 'Line3 | None'`
源码 ```python @overload def __and__(self, other: 'Plane3') -> 'Line3 | None': ... ```
### *def* `__and__(self, other)` 取两平面的交集(人话:交线) 参数: - other: 返回: - 不平行平面的交线,平面平行返回None
源码 ```python def __and__(self, other): """ 取两平面的交集(人话:交线) Args: other: Returns: 不平行平面的交线,平面平行返回None """ if isinstance(other, Plane3): if self.normal.is_parallel(other.normal): return None return self.cal_intersection_line3(other) elif isinstance(other, Line3): if self.normal @ other.direction == 0: return None return self.cal_intersection_point3(other) else: raise TypeError(f"unsupported operand type(s) for &: 'Plane3' and '{type(other)}'") ```
### *def* `__eq__(self, other) -> bool`
源码 ```python def __eq__(self, other) -> bool: return self.approx(other) ```
### *def* `__rand__(self, other: 'Line3') -> 'Point3'`
源码 ```python def __rand__(self, other: 'Line3') -> 'Point3': return self.cal_intersection_point3(other) ```
### ***var*** `k = other.a / self.a` ### ***var*** `A = np.array([[self.b, self.c], [other.b, other.c]])` ### ***var*** `B = np.array([-self.d, -other.d])` ### ***var*** `v2 = l2.get_point(1) - l1.point` ### ***var*** `k = other.b / self.b` ### ***var*** `A = np.array([[self.a, self.c], [other.a, other.c]])` ### ***var*** `B = np.array([-self.d, -other.d])` ### ***var*** `k = other.c / self.c` ### ***var*** `A = np.array([[self.a, self.b], [other.a, other.b]])` ### ***var*** `B = np.array([-self.d, -other.d])`