import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math.equation","description":"","frontmatter":{"title":"mbcp.mp_math.equation","lastUpdated":false},"headers":[],"relativePath":"en/api/mp_math/equation.md","filePath":"en/api/mp_math/equation.md"}'),t={name:"en/api/mp_math/equation.md"},l=n(`
mbcp.mp_math.equation
本模块定义了方程相关的类和函数以及一些常用的数学函数
CurveEquation
__init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc)
Description: 曲线方程。
Arguments:
- x_func (
OneVarFunc
): x函数- y_func (
OneVarFunc
): y函数- z_func (
OneVarFunc
): z函数
def __init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc):
self.x_func = x_func
self.y_func = y_func
self.z_func = z_func
self () *t: Var => Point3 | tuple[Point3, ...]
Description: 计算曲线上的点。
Arguments:
- *t:
- 参数:
Return: 目标点
def __call__(self, *t: Var) -> Point3 | tuple[Point3, ...]:
if len(t) == 1:
return Point3(self.x_func(t[0]), self.y_func(t[0]), self.z_func(t[0]))
else:
return tuple([Point3(x, y, z) for x, y, z in zip(self.x_func(t), self.y_func(t), self.z_func(t))])
get_partial_derivative_func(func: MultiVarsFunc, var: int | tuple[int, ...], epsilon: Number = EPSILON) -> MultiVarsFunc
Description: 求N元函数一阶偏导函数。这玩意不太稳定,慎用。
WARNING
目前数学界对于一个函数的导函数并没有通解的说法,因此该函数的稳定性有待提升
Arguments:
- func (
MultiVarsFunc
): N元函数- var: 变量位置,可为整数(一阶偏导)或整数元组(高阶偏导)
- epsilon: 偏移量
Return: 偏导函数
Raises:
- ValueError 无效变量类型
def get_partial_derivative_func(func: MultiVarsFunc, var: int | tuple[int, ...], epsilon: Number=EPSILON) -> MultiVarsFunc:
if isinstance(var, int):
def partial_derivative_func(*args: Var) -> Var:
args_list_plus = list(args)
args_list_plus[var] += epsilon
args_list_minus = list(args)
args_list_minus[var] -= epsilon
return (func(*args_list_plus) - func(*args_list_minus)) / (2 * epsilon)
return partial_derivative_func
elif isinstance(var, tuple):
def high_order_partial_derivative_func(*args: Var) -> Var:
result_func = func
for v in var:
result_func = get_partial_derivative_func(result_func, v, epsilon)
return result_func(*args)
return high_order_partial_derivative_func
else:
raise ValueError('Invalid var type')