add partial derivative

This commit is contained in:
远野千束(神羽) 2024-08-25 23:45:56 +08:00
parent 90fcee2ff9
commit cc06c34967
6 changed files with 204 additions and 15 deletions

19
mbcp/mp_math/const.py Normal file
View File

@ -0,0 +1,19 @@
# -*- coding: utf-8 -*-
"""
Copyright (C) 2020-2024 LiteyukiStudio. All Rights Reserved
@Time : 2024/8/25 下午9:45
@Author : snowykami
@Email : snowykami@outlook.com
@File : const.py
@Software: PyCharm
"""
import math
PI = math.pi
E = math.e
GOLDEN_RATIO = (1 + math.sqrt(5)) / 2
GAMMA = 0.57721566490153286060651209008240243104215933593992
EPSILON = 1e-8

View File

@ -8,13 +8,14 @@ Copyright (C) 2020-2024 LiteyukiStudio. All Rights Reserved
@File : equation.py
@Software: PyCharm
"""
import numpy as np
from .point import Point3
from .mp_math_typing import ONE_VARIABLE_FUNC, TWO_VARIABLES_FUNC, THREE_VARIABLES_FUNC
from mbcp.mp_math.mp_math_typing import OneVarFunc, Var, MultiVarFunc, Number
from mbcp.mp_math.point import Point3
from mbcp.mp_math.const import EPSILON
class CurveEquation:
def __init__(self, x_func: ONE_VARIABLE_FUNC, y_func: ONE_VARIABLE_FUNC, z_func: ONE_VARIABLE_FUNC):
def __init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc):
"""
曲线方程
:param x_func:
@ -25,14 +26,45 @@ class CurveEquation:
self.y_func = y_func
self.z_func = z_func
def __call__(self, *t: float) -> "Point3" | tuple["Point3"]:
def __call__(self, *t: Var) -> Point3 | tuple[Point3, ...]:
"""
计算曲线上的点
Args:
*t:
Returns:
"""
if len(t) == 1:
return Point3(self.x_func(t[0]), self.y_func(t[0]), self.z_func(t[0]))
else:
# np加速
...
return tuple([Point3(x, y, z) for x, y, z in zip(self.x_func(t), self.y_func(t), self.z_func(t))])
def __str__(self):
return "CurveEquation()"
def get_partial_derivative_func(func: MultiVarFunc, var: int | tuple[int, ...], epsilon: Number = EPSILON) -> MultiVarFunc:
"""
求N元函数偏导函数
Args:
func: 函数
var: 变量位置可为整数(一阶偏导)或整数元组(高阶偏导)
epsilon: 偏移量
Returns:
偏导函数
"""
if isinstance(var, int):
def partial_derivative_func(*args: Var) -> Var:
args_list_plus = list(args)
args_list_plus[var] += epsilon
args_list_minus = list(args)
args_list_minus[var] -= epsilon
return (func(*args_list_plus) - func(*args_list_minus)) / (2 * epsilon)
return partial_derivative_func
elif isinstance(var, tuple):
for i in var:
func = get_partial_derivative_func(func, i, epsilon)
return func
else:
raise ValueError("Invalid var type")

View File

@ -8,11 +8,26 @@ Copyright (C) 2020-2024 LiteyukiStudio. All Rights Reserved
@File : mp_math_typing.py
@Software: PyCharm
"""
from typing import Callable, Iterable, TypeAlias
from typing import Callable, Iterable, TypeAlias, TypeVar
"""自变量"""
VAR: TypeAlias = float | Iterable[float] # 为后期支持多维矢量化做准备
RealNumber: TypeAlias = int | float
Number: TypeAlias = RealNumber | complex
SingleVar = TypeVar("SingleVar", bound=Number)
ArrayVar = TypeVar("ArrayVar", bound=Iterable[Number])
Var: TypeAlias = SingleVar | ArrayVar
ONE_VARIABLE_FUNC: TypeAlias = Callable[[VAR], float]
TWO_VARIABLES_FUNC: TypeAlias = Callable[[VAR, VAR], float]
THREE_VARIABLES_FUNC: TypeAlias = Callable[[VAR, VAR, VAR], float]
OneSingleVarFunc: TypeAlias = Callable[[SingleVar], SingleVar]
OneArrayFunc: TypeAlias = Callable[[ArrayVar], ArrayVar]
OneVarFunc: TypeAlias = OneSingleVarFunc | OneArrayFunc
TwoSingleVarFunc: TypeAlias = Callable[[SingleVar, SingleVar], SingleVar]
TwoArrayFunc: TypeAlias = Callable[[ArrayVar, ArrayVar], ArrayVar]
TwoVarFunc: TypeAlias = TwoSingleVarFunc | TwoArrayFunc
ThreeSingleVarFunc: TypeAlias = Callable[[SingleVar, SingleVar, SingleVar], SingleVar]
ThreeArrayFunc: TypeAlias = Callable[[ArrayVar, ArrayVar, ArrayVar], ArrayVar]
ThreeVarFunc: TypeAlias = ThreeSingleVarFunc | ThreeArrayFunc
MultiSingleVarFunc: TypeAlias = Callable[..., SingleVar]
MultiArrayFunc: TypeAlias = Callable[..., ArrayVar]
MultiVarFunc: TypeAlias = MultiSingleVarFunc | MultiArrayFunc

View File

@ -8,6 +8,9 @@ Copyright (C) 2020-2024 LiteyukiStudio. All Rights Reserved
@File : utils.py
@Software: PyCharm
"""
from typing import overload
from mbcp.mp_math.mp_math_typing import RealNumber
def clamp(x: float, min_: float, max_: float) -> float:
@ -22,3 +25,34 @@ def clamp(x: float, min_: float, max_: float) -> float:
限制后的值
"""
return max(min(x, max_), min_)
class Approx(float):
"""
用于近似比较浮点数的类
"""
epsilon = 0.001
"""全局近似值。"""
def __new__(cls, x: RealNumber):
return super().__new__(cls, x)
def __eq__(self, other):
return abs(self - other) < Approx.epsilon
def __ne__(self, other):
return not self.__eq__(other)
def approx(x: float, y: float = 0.0, epsilon: float = 0.0001) -> bool:
"""
判断两个数是否近似相等或包装一个实数用于判断是否近似于0
Args:
x:
y:
epsilon:
Returns:
是否近似相等
"""
return abs(x - y) < epsilon

3
tests/pytest.ini Normal file
View File

@ -0,0 +1,3 @@
[pytest]
log_cli = true
log_level = INFO

View File

@ -0,0 +1,86 @@
# -*- coding: utf-8 -*-
"""
偏导测试
"""
import logging
from mbcp.mp_math.mp_math_typing import RealNumber
def three_var_func(x: RealNumber, y: RealNumber) -> RealNumber:
return x ** 3 * y ** 2 - 3 * x * y ** 3 - x * y + 1
class TestPartialDerivative:
# 样例来源:同济大学《高等数学》第八版下册 第九章第二节 例6
def test_2v_1o_1v(self):
"""测试二元函数关于第一个变量(x)的一阶偏导 df/dx"""
from mbcp.mp_math.utils import Approx
from mbcp.mp_math.equation import get_partial_derivative_func
partial_derivative_func = get_partial_derivative_func(three_var_func, (0,))
# assert partial_derivative_func(1, 2, 3) == 4.0
def df_dx(x, y):
"""原函数关于x的偏导"""
return 3 * (x ** 2) * (y ** 2) - 3 * (y ** 3) - y
logging.info(f"Expected: {df_dx(1, 2)}, Actual: {partial_derivative_func(1, 2)}")
assert Approx(partial_derivative_func(1, 2)) == df_dx(1, 2)
def test_2v_1o_2v(self):
"""测试二元函数关于第二个变量(y)的一阶偏导 df/dy"""
from mbcp.mp_math.utils import Approx
from mbcp.mp_math.equation import get_partial_derivative_func
partial_derivative_func = get_partial_derivative_func(three_var_func, 1)
def df_dy(x, y):
"""原函数关于y的偏导"""
return 2 * (x ** 3) * y - 9 * x * (y ** 2) - x
logging.info(f"Expected: {df_dy(1, 2)}, Actual: {partial_derivative_func(1, 2)}")
assert Approx(partial_derivative_func(1, 2)) == df_dy(1, 2)
def test_2v_2o_12v(self):
"""高阶偏导d^2f/(dxdy)"""
from mbcp.mp_math.utils import Approx
from mbcp.mp_math.equation import get_partial_derivative_func
partial_derivative_func = get_partial_derivative_func(three_var_func, (0, 1))
def df_dxdy(x, y):
"""原函数关于y和x的偏导"""
return 6 * x ** 2 * y - 9 * y ** 2 - 1
logging.info(f"Expected: {df_dxdy(1, 2)}, Actual: {partial_derivative_func(1, 2)}")
assert Approx(partial_derivative_func(1, 2)) == df_dxdy(1, 2)
def test_2v_2o_1v2(self):
"""二阶偏导d^2f/(dx^2)"""
from mbcp.mp_math.utils import Approx
from mbcp.mp_math.equation import get_partial_derivative_func
partial_derivative_func = get_partial_derivative_func(three_var_func, (0 , 0))
def df_dydx(x, y):
"""原函数关于x和y的偏导"""
return 6 * x * y ** 2
logging.info(f"Expected: {df_dydx(1, 2)}, Actual: {partial_derivative_func(1, 2)}")
assert Approx(partial_derivative_func(1, 2)) == df_dydx(1, 2)
def test_2v_3o_1v3(self):
"""高阶偏导d^3f/(dx^3)"""
from mbcp.mp_math.utils import Approx
from mbcp.mp_math.equation import get_partial_derivative_func
partial_derivative_func = get_partial_derivative_func(three_var_func, (0, 0, 0))
def d3f_dx3(x, y):
"""原函数关于x的三阶偏导"""
return 6 * (y ** 2)
logging.info(f"Expected: {d3f_dx3(1, 2)}, Actual: {partial_derivative_func(1, 2)}")
assert Approx(partial_derivative_func(1, 2)) == d3f_dx3(1, 2)