diff --git a/404.html b/404.html index 97141d1..d2a04b4 100644 --- a/404.html +++ b/404.html @@ -8,7 +8,7 @@ - + @@ -16,7 +16,7 @@
- + \ No newline at end of file diff --git a/api/api.html b/api/api.html index 1992976..42ca77a 100644 --- a/api/api.html +++ b/api/api.html @@ -8,18 +8,18 @@ - - + + - + -
Skip to content

mbcp

说明: 本模块塞了一些预设的粒子生成器

文档由 VitePress 构建 | API引用由 litedoc 生成

- +
Skip to content

mbcp

说明: 本模块塞了一些预设的粒子生成器

文档由 VitePress 构建 | API引用由 litedoc 生成

+ \ No newline at end of file diff --git a/api/index.html b/api/index.html index ce9db5a..93687a6 100644 --- a/api/index.html +++ b/api/index.html @@ -8,18 +8,18 @@ - - + + - + -
Skip to content

mbcp

说明: 本模块塞了一些预设的粒子生成器

文档由 VitePress 构建 | API引用由 litedoc 生成

- +
Skip to content

mbcp

说明: 本模块塞了一些预设的粒子生成器

文档由 VitePress 构建 | API引用由 litedoc 生成

+ \ No newline at end of file diff --git a/api/mp_math/angle.html b/api/mp_math/angle.html index 753cdbc..e337091 100644 --- a/api/mp_math/angle.html +++ b/api/mp_math/angle.html @@ -8,10 +8,10 @@ - - + + - + @@ -116,8 +116,8 @@ ...

def self / other

源代码在GitHub上查看
python
def __truediv__(self, other):
     if isinstance(other, AnyAngle):
         return self.radian / other.radian
-    return AnyAngle(self.radian / other, is_radian=True)
- + return AnyAngle(self.radian / other, is_radian=True) + \ No newline at end of file diff --git a/api/mp_math/const.html b/api/mp_math/const.html index 92a51ec..dff5806 100644 --- a/api/mp_math/const.html +++ b/api/mp_math/const.html @@ -8,18 +8,18 @@ - - + + - + -
Skip to content

mbcp.mp_math.const

说明: 本模块定义了一些常用的常量

var PI = math.pi

  • 说明: 常量 π

var E = math.e

  • 说明: 自然对数的底 exp(1)

var GOLDEN_RATIO = (1 + math.sqrt(5)) / 2

  • 说明: 黄金分割比

var GAMMA = 0.5772156649015329

  • 说明: 欧拉常数

var EPSILON = 0.0001

  • 说明: 精度误差

var APPROX = 0.001

  • 说明: 约等于判定误差

文档由 VitePress 构建 | API引用由 litedoc 生成

- +
Skip to content

mbcp.mp_math.const

说明: 本模块定义了一些常用的常量

var PI = math.pi

  • 说明: 常量 π

var E = math.e

  • 说明: 自然对数的底 exp(1)

var GOLDEN_RATIO = (1 + math.sqrt(5)) / 2

  • 说明: 黄金分割比

var GAMMA = 0.5772156649015329

  • 说明: 欧拉常数

var EPSILON = 0.0001

  • 说明: 精度误差

var APPROX = 0.001

  • 说明: 约等于判定误差

文档由 VitePress 构建 | API引用由 litedoc 生成

+ \ No newline at end of file diff --git a/api/mp_math/equation.html b/api/mp_math/equation.html index 3154d1c..99ec6a2 100644 --- a/api/mp_math/equation.html +++ b/api/mp_math/equation.html @@ -8,10 +8,10 @@ - - + + - + @@ -82,8 +82,8 @@ return result_func(*args) return high_order_partial_derivative_func else: - raise ValueError('Invalid var type') - + raise ValueError('Invalid var type') + \ No newline at end of file diff --git a/api/mp_math/function.html b/api/mp_math/function.html index deb91be..e4cca25 100644 --- a/api/mp_math/function.html +++ b/api/mp_math/function.html @@ -8,10 +8,10 @@ - - + + - + @@ -59,8 +59,8 @@ def curried_func(*args2: Var) -> Var: """@litedoc-hide""" return func(*args, *args2) - return curried_func - + return curried_func + \ No newline at end of file diff --git a/api/mp_math/index.html b/api/mp_math/index.html index 9753a5e..7652986 100644 --- a/api/mp_math/index.html +++ b/api/mp_math/index.html @@ -8,18 +8,18 @@ - - + + - + -
Skip to content

mbcp.mp_math

说明: 本包定义了一些常用的导入,可直接从mbcp.mp_math导入使用 导入的类有:

  • AnyAngle:任意角
  • CurveEquation:曲线方程
  • Line3:三维直线
  • Plane3:三维平面
  • Point3:三维点
  • Segment3:三维线段
  • Vector3:三维向量

文档由 VitePress 构建 | API引用由 litedoc 生成

- +
Skip to content

mbcp.mp_math

说明: 本包定义了一些常用的导入,可直接从mbcp.mp_math导入使用 导入的类有:

  • AnyAngle:任意角
  • CurveEquation:曲线方程
  • Line3:三维直线
  • Plane3:三维平面
  • Point3:三维点
  • Segment3:三维线段
  • Vector3:三维向量

文档由 VitePress 构建 | API引用由 litedoc 生成

+ \ No newline at end of file diff --git a/api/mp_math/line.html b/api/mp_math/line.html index b912464..bfec7b5 100644 --- a/api/mp_math/line.html +++ b/api/mp_math/line.html @@ -8,10 +8,10 @@ - - + + - + @@ -195,8 +195,8 @@ Returns: """ - return self.direction.is_parallel(other.direction) and (self.point - other.point).is_parallel(self.direction) - + return self.direction.is_parallel(other.direction) and (self.point - other.point).is_parallel(self.direction) + \ No newline at end of file diff --git a/api/mp_math/mp_math.html b/api/mp_math/mp_math.html index c7a91e9..6573ed9 100644 --- a/api/mp_math/mp_math.html +++ b/api/mp_math/mp_math.html @@ -8,18 +8,18 @@ - - + + - + -
Skip to content

mbcp.mp_math

说明: 本包定义了一些常用的导入,可直接从mbcp.mp_math导入使用 导入的类有:

  • AnyAngle:任意角
  • CurveEquation:曲线方程
  • Line3:三维直线
  • Plane3:三维平面
  • Point3:三维点
  • Segment3:三维线段
  • Vector3:三维向量

文档由 VitePress 构建 | API引用由 litedoc 生成

- +
Skip to content

mbcp.mp_math

说明: 本包定义了一些常用的导入,可直接从mbcp.mp_math导入使用 导入的类有:

  • AnyAngle:任意角
  • CurveEquation:曲线方程
  • Line3:三维直线
  • Plane3:三维平面
  • Point3:三维点
  • Segment3:三维线段
  • Vector3:三维向量

文档由 VitePress 构建 | API引用由 litedoc 生成

+ \ No newline at end of file diff --git a/api/mp_math/mp_math_typing.html b/api/mp_math/mp_math_typing.html index 2070e3e..efa98bd 100644 --- a/api/mp_math/mp_math_typing.html +++ b/api/mp_math/mp_math_typing.html @@ -8,18 +8,18 @@ - - + + - + -
Skip to content

mbcp.mp_math.mp_math_typing

说明: 本模块用于内部类型提示

var RealNumber = int | float

  • 类型: TypeAlias

  • 说明: 实数

var Number = RealNumber | complex

  • 类型: TypeAlias

  • 说明: 数

var SingleVar = TypeVar('SingleVar', bound=Number)

  • 说明: 单变量

var ArrayVar = TypeVar('ArrayVar', bound=Iterable[Number])

  • 说明: 数组变量

var Var = SingleVar | ArrayVar

  • 类型: TypeAlias

  • 说明: 变量

var OneSingleVarFunc = Callable[[SingleVar], SingleVar]

  • 类型: TypeAlias

  • 说明: 一元单变量函数

var OneArrayFunc = Callable[[ArrayVar], ArrayVar]

  • 类型: TypeAlias

  • 说明: 一元数组函数

var OneVarFunc = OneSingleVarFunc | OneArrayFunc

  • 类型: TypeAlias

  • 说明: 一元函数

var TwoSingleVarsFunc = Callable[[SingleVar, SingleVar], SingleVar]

  • 类型: TypeAlias

  • 说明: 二元单变量函数

var TwoArraysFunc = Callable[[ArrayVar, ArrayVar], ArrayVar]

  • 类型: TypeAlias

  • 说明: 二元数组函数

var TwoVarsFunc = TwoSingleVarsFunc | TwoArraysFunc

  • 类型: TypeAlias

  • 说明: 二元函数

var ThreeSingleVarsFunc = Callable[[SingleVar, SingleVar, SingleVar], SingleVar]

  • 类型: TypeAlias

  • 说明: 三元单变量函数

var ThreeArraysFunc = Callable[[ArrayVar, ArrayVar, ArrayVar], ArrayVar]

  • 类型: TypeAlias

  • 说明: 三元数组函数

var ThreeVarsFunc = ThreeSingleVarsFunc | ThreeArraysFunc

  • 类型: TypeAlias

  • 说明: 三元函数

var MultiSingleVarsFunc = Callable[..., SingleVar]

  • 类型: TypeAlias

  • 说明: 多元单变量函数

var MultiArraysFunc = Callable[..., ArrayVar]

  • 类型: TypeAlias

  • 说明: 多元数组函数

var MultiVarsFunc = MultiSingleVarsFunc | MultiArraysFunc

  • 类型: TypeAlias

  • 说明: 多元函数

文档由 VitePress 构建 | API引用由 litedoc 生成

- +
Skip to content

mbcp.mp_math.mp_math_typing

说明: 本模块用于内部类型提示

var RealNumber = int | float

  • 类型: TypeAlias

  • 说明: 实数

var Number = RealNumber | complex

  • 类型: TypeAlias

  • 说明: 数

var SingleVar = TypeVar('SingleVar', bound=Number)

  • 说明: 单变量

var ArrayVar = TypeVar('ArrayVar', bound=Iterable[Number])

  • 说明: 数组变量

var Var = SingleVar | ArrayVar

  • 类型: TypeAlias

  • 说明: 变量

var OneSingleVarFunc = Callable[[SingleVar], SingleVar]

  • 类型: TypeAlias

  • 说明: 一元单变量函数

var OneArrayFunc = Callable[[ArrayVar], ArrayVar]

  • 类型: TypeAlias

  • 说明: 一元数组函数

var OneVarFunc = OneSingleVarFunc | OneArrayFunc

  • 类型: TypeAlias

  • 说明: 一元函数

var TwoSingleVarsFunc = Callable[[SingleVar, SingleVar], SingleVar]

  • 类型: TypeAlias

  • 说明: 二元单变量函数

var TwoArraysFunc = Callable[[ArrayVar, ArrayVar], ArrayVar]

  • 类型: TypeAlias

  • 说明: 二元数组函数

var TwoVarsFunc = TwoSingleVarsFunc | TwoArraysFunc

  • 类型: TypeAlias

  • 说明: 二元函数

var ThreeSingleVarsFunc = Callable[[SingleVar, SingleVar, SingleVar], SingleVar]

  • 类型: TypeAlias

  • 说明: 三元单变量函数

var ThreeArraysFunc = Callable[[ArrayVar, ArrayVar, ArrayVar], ArrayVar]

  • 类型: TypeAlias

  • 说明: 三元数组函数

var ThreeVarsFunc = ThreeSingleVarsFunc | ThreeArraysFunc

  • 类型: TypeAlias

  • 说明: 三元函数

var MultiSingleVarsFunc = Callable[..., SingleVar]

  • 类型: TypeAlias

  • 说明: 多元单变量函数

var MultiArraysFunc = Callable[..., ArrayVar]

  • 类型: TypeAlias

  • 说明: 多元数组函数

var MultiVarsFunc = MultiSingleVarsFunc | MultiArraysFunc

  • 类型: TypeAlias

  • 说明: 多元函数

文档由 VitePress 构建 | API引用由 litedoc 生成

+ \ No newline at end of file diff --git a/api/mp_math/plane.html b/api/mp_math/plane.html index e4127e0..5a5ddf5 100644 --- a/api/mp_math/plane.html +++ b/api/mp_math/plane.html @@ -8,10 +8,10 @@ - - + + - + @@ -213,8 +213,8 @@ else: raise TypeError(f"unsupported operand type(s) for &: 'Plane3' and '{type(other)}'")

def __eq__(self, other) -> bool

源代码在GitHub上查看
python
def __eq__(self, other) -> bool:
     return self.approx(other)

def __rand__(self, other: Line3) -> Point3

源代码在GitHub上查看
python
def __rand__(self, other: 'Line3') -> 'Point3':
-    return self.cal_intersection_point3(other)
- + return self.cal_intersection_point3(other) + \ No newline at end of file diff --git a/api/mp_math/point.html b/api/mp_math/point.html index f161116..9c5983f 100644 --- a/api/mp_math/point.html +++ b/api/mp_math/point.html @@ -8,10 +8,10 @@ - - + + - + @@ -68,8 +68,8 @@ """ from .vector import Vector3 - return Vector3(self.x - other.x, self.y - other.y, self.z - other.z) - + return Vector3(self.x - other.x, self.y - other.y, self.z - other.z) + \ No newline at end of file diff --git a/api/mp_math/segment.html b/api/mp_math/segment.html index 232a078..730f193 100644 --- a/api/mp_math/segment.html +++ b/api/mp_math/segment.html @@ -8,10 +8,10 @@ - - + + - + @@ -31,8 +31,8 @@ '长度' self.length = self.direction.length '中心点' - self.midpoint = Point3((self.p1.x + self.p2.x) / 2, (self.p1.y + self.p2.y) / 2, (self.p1.z + self.p2.z) / 2) - + self.midpoint = Point3((self.p1.x + self.p2.x) / 2, (self.p1.y + self.p2.y) / 2, (self.p1.z + self.p2.z) / 2) + \ No newline at end of file diff --git a/api/mp_math/utils.html b/api/mp_math/utils.html index 69f1ac5..903b3e6 100644 --- a/api/mp_math/utils.html +++ b/api/mp_math/utils.html @@ -8,10 +8,10 @@ - - + + - + @@ -81,8 +81,8 @@ elif x < 0: return f'-{abs(x)}' else: - return '' - + return '' + \ No newline at end of file diff --git a/api/mp_math/vector.html b/api/mp_math/vector.html index 4efd7a1..6503fda 100644 --- a/api/mp_math/vector.html +++ b/api/mp_math/vector.html @@ -8,10 +8,10 @@ - - + + - + @@ -204,8 +204,8 @@ """ return self.x * other.x + self.y * other.y + self.z * other.z

def self / other: RealNumber => Vector3

源代码在GitHub上查看
python
def __truediv__(self, other: RealNumber) -> 'Vector3':
     return Vector3(self.x / other, self.y / other, self.z / other)

def - self

源代码在GitHub上查看
python
def __neg__(self):
-    return Vector3(-self.x, -self.y, -self.z)

var zero_vector3 = Vector3(0, 0, 0)

var x_axis = Vector3(1, 0, 0)

var y_axis = Vector3(0, 1, 0)

var z_axis = Vector3(0, 0, 1)

- + return Vector3(-self.x, -self.y, -self.z)

var zero_vector3 = Vector3(0, 0, 0)

var x_axis = Vector3(1, 0, 0)

var y_axis = Vector3(0, 1, 0)

var z_axis = Vector3(0, 0, 1)

+ \ No newline at end of file diff --git a/api/particle/index.html b/api/particle/index.html index e5ce989..38d4ab9 100644 --- a/api/particle/index.html +++ b/api/particle/index.html @@ -8,18 +8,18 @@ - - + + - + -
Skip to content

mbcp.particle

说明: 本模块定义了粒子生成相关的工具

文档由 VitePress 构建 | API引用由 litedoc 生成

- +
Skip to content

mbcp.particle

说明: 本模块定义了粒子生成相关的工具

文档由 VitePress 构建 | API引用由 litedoc 生成

+ \ No newline at end of file diff --git a/api/particle/particle.html b/api/particle/particle.html index 8344d08..0ff938e 100644 --- a/api/particle/particle.html +++ b/api/particle/particle.html @@ -8,18 +8,18 @@ - - + + - + -
Skip to content

mbcp.particle

说明: 本模块定义了粒子生成相关的工具

文档由 VitePress 构建 | API引用由 litedoc 生成

- +
Skip to content

mbcp.particle

说明: 本模块定义了粒子生成相关的工具

文档由 VitePress 构建 | API引用由 litedoc 生成

+ \ No newline at end of file diff --git a/api/presets/index.html b/api/presets/index.html index 0ad4031..0f337ed 100644 --- a/api/presets/index.html +++ b/api/presets/index.html @@ -8,18 +8,18 @@ - - + + - + -
Skip to content

mbcp.presets

说明: Copyright (C) 2020-2024 LiteyukiStudio. All Rights Reserved

@Time : 2024/8/12 下午9:12 @Author : snowykami @Email : snowykami@outlook.com @File : init.py @Software: PyCharm

文档由 VitePress 构建 | API引用由 litedoc 生成

- +
Skip to content

mbcp.presets

说明: Copyright (C) 2020-2024 LiteyukiStudio. All Rights Reserved

@Time : 2024/8/12 下午9:12 @Author : snowykami @Email : snowykami@outlook.com @File : init.py @Software: PyCharm

文档由 VitePress 构建 | API引用由 litedoc 生成

+ \ No newline at end of file diff --git a/api/presets/model/index.html b/api/presets/model/index.html index 68e14ad..ce60b5f 100644 --- a/api/presets/model/index.html +++ b/api/presets/model/index.html @@ -8,10 +8,10 @@ - - + + - + @@ -35,8 +35,8 @@ x_array = radius * np.sin(phi_list) * np.cos(theta_list) y_array = radius * np.sin(phi_list) * np.sin(theta_list) z_array = radius * np.cos(phi_list) - return [Point3(x_array[i], y_array[i], z_array[i]) for i in range(num)] - + return [Point3(x_array[i], y_array[i], z_array[i]) for i in range(num)] + \ No newline at end of file diff --git a/api/presets/model/model.html b/api/presets/model/model.html index 9e23cf9..229b55d 100644 --- a/api/presets/model/model.html +++ b/api/presets/model/model.html @@ -8,10 +8,10 @@ - - + + - + @@ -35,8 +35,8 @@ x_array = radius * np.sin(phi_list) * np.cos(theta_list) y_array = radius * np.sin(phi_list) * np.sin(theta_list) z_array = radius * np.cos(phi_list) - return [Point3(x_array[i], y_array[i], z_array[i]) for i in range(num)] - + return [Point3(x_array[i], y_array[i], z_array[i]) for i in range(num)] + \ No newline at end of file diff --git a/api/presets/presets.html b/api/presets/presets.html index b3d8700..b9e0262 100644 --- a/api/presets/presets.html +++ b/api/presets/presets.html @@ -8,18 +8,18 @@ - - + + - + -
Skip to content

mbcp.presets

说明: Copyright (C) 2020-2024 LiteyukiStudio. All Rights Reserved

@Time : 2024/8/12 下午9:12 @Author : snowykami @Email : snowykami@outlook.com @File : init.py @Software: PyCharm

文档由 VitePress 构建 | API引用由 litedoc 生成

- +
Skip to content

mbcp.presets

说明: Copyright (C) 2020-2024 LiteyukiStudio. All Rights Reserved

@Time : 2024/8/12 下午9:12 @Author : snowykami @Email : snowykami@outlook.com @File : init.py @Software: PyCharm

文档由 VitePress 构建 | API引用由 litedoc 生成

+ \ No newline at end of file diff --git a/assets/api_api.md.CMvAMn4b.js b/assets/api_api.md.CMvAMn4b.js deleted file mode 100644 index afb7a7f..0000000 --- a/assets/api_api.md.CMvAMn4b.js +++ /dev/null @@ -1 +0,0 @@ -import{_ as t,c as s,o as c,j as e,a}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp","description":"","frontmatter":{"title":"mbcp","editLink":false,"collapsed":true},"headers":[],"relativePath":"api/api.md","filePath":"zh/api/api.md","lastUpdated":null}'),o={name:"api/api.md"},i=e("h1",{id:"mbcp",tabindex:"-1"},[a("mbcp "),e("a",{class:"header-anchor",href:"#mbcp","aria-label":'Permalink to "mbcp"'},"​")],-1),n=e("p",null,[e("strong",null,"说明"),a(": 本模块塞了一些预设的粒子生成器")],-1),p=[i,n];function r(l,d,_,m,h,f){return c(),s("div",null,p)}const x=t(o,[["render",r]]);export{b as __pageData,x as default}; diff --git a/assets/api_api.md.CMvAMn4b.lean.js b/assets/api_api.md.CMvAMn4b.lean.js deleted file mode 100644 index afb7a7f..0000000 --- a/assets/api_api.md.CMvAMn4b.lean.js +++ /dev/null @@ -1 +0,0 @@ -import{_ as t,c as s,o as c,j as e,a}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp","description":"","frontmatter":{"title":"mbcp","editLink":false,"collapsed":true},"headers":[],"relativePath":"api/api.md","filePath":"zh/api/api.md","lastUpdated":null}'),o={name:"api/api.md"},i=e("h1",{id:"mbcp",tabindex:"-1"},[a("mbcp "),e("a",{class:"header-anchor",href:"#mbcp","aria-label":'Permalink to "mbcp"'},"​")],-1),n=e("p",null,[e("strong",null,"说明"),a(": 本模块塞了一些预设的粒子生成器")],-1),p=[i,n];function r(l,d,_,m,h,f){return c(),s("div",null,p)}const x=t(o,[["render",r]]);export{b as __pageData,x as default}; diff --git a/assets/api_api.md.DrpzHy2M.js b/assets/api_api.md.DrpzHy2M.js new file mode 100644 index 0000000..169f0d2 --- /dev/null +++ b/assets/api_api.md.DrpzHy2M.js @@ -0,0 +1 @@ +import{_ as t,c as s,o as c,j as e,a}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp","description":"","frontmatter":{"title":"mbcp","collapsed":true},"headers":[],"relativePath":"api/api.md","filePath":"zh/api/api.md","lastUpdated":null}'),o={name:"api/api.md"},p=e("h1",{id:"mbcp",tabindex:"-1"},[a("mbcp "),e("a",{class:"header-anchor",href:"#mbcp","aria-label":'Permalink to "mbcp"'},"​")],-1),r=e("p",null,[e("strong",null,"说明"),a(": 本模块塞了一些预设的粒子生成器")],-1),n=[p,r];function i(l,d,_,m,h,f){return c(),s("div",null,n)}const x=t(o,[["render",i]]);export{b as __pageData,x as default}; diff --git a/assets/api_api.md.DrpzHy2M.lean.js b/assets/api_api.md.DrpzHy2M.lean.js new file mode 100644 index 0000000..169f0d2 --- /dev/null +++ b/assets/api_api.md.DrpzHy2M.lean.js @@ -0,0 +1 @@ +import{_ as t,c as s,o as c,j as e,a}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp","description":"","frontmatter":{"title":"mbcp","collapsed":true},"headers":[],"relativePath":"api/api.md","filePath":"zh/api/api.md","lastUpdated":null}'),o={name:"api/api.md"},p=e("h1",{id:"mbcp",tabindex:"-1"},[a("mbcp "),e("a",{class:"header-anchor",href:"#mbcp","aria-label":'Permalink to "mbcp"'},"​")],-1),r=e("p",null,[e("strong",null,"说明"),a(": 本模块塞了一些预设的粒子生成器")],-1),n=[p,r];function i(l,d,_,m,h,f){return c(),s("div",null,n)}const x=t(o,[["render",i]]);export{b as __pageData,x as default}; diff --git a/assets/api_index.md.BYCWCWDw.js b/assets/api_index.md.BYCWCWDw.js deleted file mode 100644 index 83f5f26..0000000 --- a/assets/api_index.md.BYCWCWDw.js +++ /dev/null @@ -1 +0,0 @@ -import{_ as a,c as n,o as s,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const x=JSON.parse('{"title":"mbcp","description":"","frontmatter":{"title":"mbcp","editLink":false,"collapsed":true},"headers":[],"relativePath":"api/index.md","filePath":"zh/api/index.md","lastUpdated":null}'),c={name:"api/index.md"},o=e("h1",{id:"mbcp",tabindex:"-1"},[t("mbcp "),e("a",{class:"header-anchor",href:"#mbcp","aria-label":'Permalink to "mbcp"'},"​")],-1),i=e("p",null,[e("strong",null,"说明"),t(": 本模块塞了一些预设的粒子生成器")],-1),r=[o,i];function d(l,p,_,m,h,f){return s(),n("div",null,r)}const b=a(c,[["render",d]]);export{x as __pageData,b as default}; diff --git a/assets/api_index.md.BYCWCWDw.lean.js b/assets/api_index.md.BYCWCWDw.lean.js deleted file mode 100644 index 83f5f26..0000000 --- a/assets/api_index.md.BYCWCWDw.lean.js +++ /dev/null @@ -1 +0,0 @@ -import{_ as a,c as n,o as s,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const x=JSON.parse('{"title":"mbcp","description":"","frontmatter":{"title":"mbcp","editLink":false,"collapsed":true},"headers":[],"relativePath":"api/index.md","filePath":"zh/api/index.md","lastUpdated":null}'),c={name:"api/index.md"},o=e("h1",{id:"mbcp",tabindex:"-1"},[t("mbcp "),e("a",{class:"header-anchor",href:"#mbcp","aria-label":'Permalink to "mbcp"'},"​")],-1),i=e("p",null,[e("strong",null,"说明"),t(": 本模块塞了一些预设的粒子生成器")],-1),r=[o,i];function d(l,p,_,m,h,f){return s(),n("div",null,r)}const b=a(c,[["render",d]]);export{x as __pageData,b as default}; diff --git a/assets/api_index.md.Q9oDvH_6.js b/assets/api_index.md.Q9oDvH_6.js new file mode 100644 index 0000000..39dcaa4 --- /dev/null +++ b/assets/api_index.md.Q9oDvH_6.js @@ -0,0 +1 @@ +import{_ as a,c as n,o as s,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const x=JSON.parse('{"title":"mbcp","description":"","frontmatter":{"title":"mbcp","collapsed":true},"headers":[],"relativePath":"api/index.md","filePath":"zh/api/index.md","lastUpdated":null}'),c={name:"api/index.md"},o=e("h1",{id:"mbcp",tabindex:"-1"},[t("mbcp "),e("a",{class:"header-anchor",href:"#mbcp","aria-label":'Permalink to "mbcp"'},"​")],-1),r=e("p",null,[e("strong",null,"说明"),t(": 本模块塞了一些预设的粒子生成器")],-1),d=[o,r];function i(l,p,_,m,h,f){return s(),n("div",null,d)}const b=a(c,[["render",i]]);export{x as __pageData,b as default}; diff --git a/assets/api_index.md.Q9oDvH_6.lean.js b/assets/api_index.md.Q9oDvH_6.lean.js new file mode 100644 index 0000000..39dcaa4 --- /dev/null +++ b/assets/api_index.md.Q9oDvH_6.lean.js @@ -0,0 +1 @@ +import{_ as a,c as n,o as s,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const x=JSON.parse('{"title":"mbcp","description":"","frontmatter":{"title":"mbcp","collapsed":true},"headers":[],"relativePath":"api/index.md","filePath":"zh/api/index.md","lastUpdated":null}'),c={name:"api/index.md"},o=e("h1",{id:"mbcp",tabindex:"-1"},[t("mbcp "),e("a",{class:"header-anchor",href:"#mbcp","aria-label":'Permalink to "mbcp"'},"​")],-1),r=e("p",null,[e("strong",null,"说明"),t(": 本模块塞了一些预设的粒子生成器")],-1),d=[o,r];function i(l,p,_,m,h,f){return s(),n("div",null,d)}const b=a(c,[["render",i]]);export{x as __pageData,b as default}; diff --git a/assets/api_mp_math_angle.md.ZHQLVZi6.js b/assets/api_mp_math_angle.md.BC8mLT9V.js similarity index 94% rename from assets/api_mp_math_angle.md.ZHQLVZi6.js rename to assets/api_mp_math_angle.md.BC8mLT9V.js index c08a4c6..fe31d6c 100644 --- a/assets/api_mp_math_angle.md.ZHQLVZi6.js +++ b/assets/api_mp_math_angle.md.BC8mLT9V.js @@ -1,4 +1,4 @@ -import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const c=JSON.parse('{"title":"mbcp.mp_math.angle","description":"","frontmatter":{"title":"mbcp.mp_math.angle","editLink":false},"headers":[],"relativePath":"api/mp_math/angle.md","filePath":"zh/api/mp_math/angle.md","lastUpdated":null}'),t={name:"api/mp_math/angle.md"},e=n(`

mbcp.mp_math.angle

说明: 本模块定义了角度相关的类

class Angle

class AnyAngle(Angle)

def __init__(self, value: float, is_radian: bool = False)

说明: 任意角度。

参数:

源代码在GitHub上查看
python
def __init__(self, value: float, is_radian: bool=False):
+import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const c=JSON.parse('{"title":"mbcp.mp_math.angle","description":"","frontmatter":{"title":"mbcp.mp_math.angle"},"headers":[],"relativePath":"api/mp_math/angle.md","filePath":"zh/api/mp_math/angle.md","lastUpdated":null}'),t={name:"api/mp_math/angle.md"},e=n(`

mbcp.mp_math.angle

说明: 本模块定义了角度相关的类

class Angle

class AnyAngle(Angle)

def __init__(self, value: float, is_radian: bool = False)

说明: 任意角度。

参数:

  • value: 角度或弧度值
  • is_radian: 是否为弧度,默认为否
源代码在GitHub上查看
python
def __init__(self, value: float, is_radian: bool=False):
     """
         任意角度。
         Args:
diff --git a/assets/api_mp_math_angle.md.BC8mLT9V.lean.js b/assets/api_mp_math_angle.md.BC8mLT9V.lean.js
new file mode 100644
index 0000000..5df289d
--- /dev/null
+++ b/assets/api_mp_math_angle.md.BC8mLT9V.lean.js
@@ -0,0 +1 @@
+import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const c=JSON.parse('{"title":"mbcp.mp_math.angle","description":"","frontmatter":{"title":"mbcp.mp_math.angle"},"headers":[],"relativePath":"api/mp_math/angle.md","filePath":"zh/api/mp_math/angle.md","lastUpdated":null}'),t={name:"api/mp_math/angle.md"},e=n("",80),l=[e];function h(p,k,r,d,g,o){return a(),i("div",null,l)}const F=s(t,[["render",h]]);export{c as __pageData,F as default};
diff --git a/assets/api_mp_math_angle.md.ZHQLVZi6.lean.js b/assets/api_mp_math_angle.md.ZHQLVZi6.lean.js
deleted file mode 100644
index 7cc4e60..0000000
--- a/assets/api_mp_math_angle.md.ZHQLVZi6.lean.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const c=JSON.parse('{"title":"mbcp.mp_math.angle","description":"","frontmatter":{"title":"mbcp.mp_math.angle","editLink":false},"headers":[],"relativePath":"api/mp_math/angle.md","filePath":"zh/api/mp_math/angle.md","lastUpdated":null}'),t={name:"api/mp_math/angle.md"},e=n("",80),l=[e];function h(p,k,r,d,g,o){return a(),i("div",null,l)}const F=s(t,[["render",h]]);export{c as __pageData,F as default};
diff --git a/assets/api_mp_math_const.md.CzjBJIjC.js b/assets/api_mp_math_const.md.CzjBJIjC.js
new file mode 100644
index 0000000..e362957
--- /dev/null
+++ b/assets/api_mp_math_const.md.CzjBJIjC.js
@@ -0,0 +1 @@
+import{_ as a,c as t,o as e,a4 as o}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math.const","description":"","frontmatter":{"title":"mbcp.mp_math.const"},"headers":[],"relativePath":"api/mp_math/const.md","filePath":"zh/api/mp_math/const.md","lastUpdated":null}'),r={name:"api/mp_math/const.md"},c=o('

mbcp.mp_math.const

说明: 本模块定义了一些常用的常量

var PI = math.pi

  • 说明: 常量 π

var E = math.e

  • 说明: 自然对数的底 exp(1)

var GOLDEN_RATIO = (1 + math.sqrt(5)) / 2

  • 说明: 黄金分割比

var GAMMA = 0.5772156649015329

  • 说明: 欧拉常数

var EPSILON = 0.0001

  • 说明: 精度误差

var APPROX = 0.001

  • 说明: 约等于判定误差
',14),l=[c];function n(i,s,h,d,m,p){return e(),t("div",null,l)}const v=a(r,[["render",n]]);export{u as __pageData,v as default}; diff --git a/assets/api_mp_math_const.md.CzjBJIjC.lean.js b/assets/api_mp_math_const.md.CzjBJIjC.lean.js new file mode 100644 index 0000000..a948fbe --- /dev/null +++ b/assets/api_mp_math_const.md.CzjBJIjC.lean.js @@ -0,0 +1 @@ +import{_ as a,c as t,o as e,a4 as o}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math.const","description":"","frontmatter":{"title":"mbcp.mp_math.const"},"headers":[],"relativePath":"api/mp_math/const.md","filePath":"zh/api/mp_math/const.md","lastUpdated":null}'),r={name:"api/mp_math/const.md"},c=o("",14),l=[c];function n(i,s,h,d,m,p){return e(),t("div",null,l)}const v=a(r,[["render",n]]);export{u as __pageData,v as default}; diff --git a/assets/api_mp_math_const.md.DPfWDlOC.js b/assets/api_mp_math_const.md.DPfWDlOC.js deleted file mode 100644 index 293703d..0000000 --- a/assets/api_mp_math_const.md.DPfWDlOC.js +++ /dev/null @@ -1 +0,0 @@ -import{_ as a,c as t,o as e,a4 as o}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math.const","description":"","frontmatter":{"title":"mbcp.mp_math.const","editLink":false},"headers":[],"relativePath":"api/mp_math/const.md","filePath":"zh/api/mp_math/const.md","lastUpdated":null}'),r={name:"api/mp_math/const.md"},c=o('

mbcp.mp_math.const

说明: 本模块定义了一些常用的常量

var PI = math.pi

  • 说明: 常量 π

var E = math.e

  • 说明: 自然对数的底 exp(1)

var GOLDEN_RATIO = (1 + math.sqrt(5)) / 2

  • 说明: 黄金分割比

var GAMMA = 0.5772156649015329

  • 说明: 欧拉常数

var EPSILON = 0.0001

  • 说明: 精度误差

var APPROX = 0.001

  • 说明: 约等于判定误差
',14),l=[c];function i(n,s,d,h,m,p){return e(),t("div",null,l)}const v=a(r,[["render",i]]);export{u as __pageData,v as default}; diff --git a/assets/api_mp_math_const.md.DPfWDlOC.lean.js b/assets/api_mp_math_const.md.DPfWDlOC.lean.js deleted file mode 100644 index ddc9352..0000000 --- a/assets/api_mp_math_const.md.DPfWDlOC.lean.js +++ /dev/null @@ -1 +0,0 @@ -import{_ as a,c as t,o as e,a4 as o}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math.const","description":"","frontmatter":{"title":"mbcp.mp_math.const","editLink":false},"headers":[],"relativePath":"api/mp_math/const.md","filePath":"zh/api/mp_math/const.md","lastUpdated":null}'),r={name:"api/mp_math/const.md"},c=o("",14),l=[c];function i(n,s,d,h,m,p){return e(),t("div",null,l)}const v=a(r,[["render",i]]);export{u as __pageData,v as default}; diff --git a/assets/api_mp_math_equation.md.DNL3RhRT.js b/assets/api_mp_math_equation.md.DEwnqiM5.js similarity index 89% rename from assets/api_mp_math_equation.md.DNL3RhRT.js rename to assets/api_mp_math_equation.md.DEwnqiM5.js index 0aa453d..3cd5dfc 100644 --- a/assets/api_mp_math_equation.md.DNL3RhRT.js +++ b/assets/api_mp_math_equation.md.DEwnqiM5.js @@ -1,4 +1,4 @@ -import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math.equation","description":"","frontmatter":{"title":"mbcp.mp_math.equation","editLink":false},"headers":[],"relativePath":"api/mp_math/equation.md","filePath":"zh/api/mp_math/equation.md","lastUpdated":null}'),t={name:"api/mp_math/equation.md"},l=n(`

mbcp.mp_math.equation

说明: 本模块定义了方程相关的类和函数以及一些常用的数学函数

class CurveEquation

def __init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc)

说明: 曲线方程。

参数:

  • x_func: x函数
  • y_func: y函数
  • z_func: z函数
源代码在GitHub上查看
python
def __init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc):
+import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math.equation","description":"","frontmatter":{"title":"mbcp.mp_math.equation"},"headers":[],"relativePath":"api/mp_math/equation.md","filePath":"zh/api/mp_math/equation.md","lastUpdated":null}'),t={name:"api/mp_math/equation.md"},l=n(`

mbcp.mp_math.equation

说明: 本模块定义了方程相关的类和函数以及一些常用的数学函数

class CurveEquation

def __init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc)

说明: 曲线方程。

参数:

  • x_func: x函数
  • y_func: y函数
  • z_func: z函数
源代码在GitHub上查看
python
def __init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc):
     """
         曲线方程。
         Args:
diff --git a/assets/api_mp_math_equation.md.DEwnqiM5.lean.js b/assets/api_mp_math_equation.md.DEwnqiM5.lean.js
new file mode 100644
index 0000000..09441d6
--- /dev/null
+++ b/assets/api_mp_math_equation.md.DEwnqiM5.lean.js
@@ -0,0 +1 @@
+import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math.equation","description":"","frontmatter":{"title":"mbcp.mp_math.equation"},"headers":[],"relativePath":"api/mp_math/equation.md","filePath":"zh/api/mp_math/equation.md","lastUpdated":null}'),t={name:"api/mp_math/equation.md"},l=n("",23),p=[l];function h(k,e,r,E,d,g){return a(),i("div",null,p)}const F=s(t,[["render",h]]);export{u as __pageData,F as default};
diff --git a/assets/api_mp_math_equation.md.DNL3RhRT.lean.js b/assets/api_mp_math_equation.md.DNL3RhRT.lean.js
deleted file mode 100644
index 5aab233..0000000
--- a/assets/api_mp_math_equation.md.DNL3RhRT.lean.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math.equation","description":"","frontmatter":{"title":"mbcp.mp_math.equation","editLink":false},"headers":[],"relativePath":"api/mp_math/equation.md","filePath":"zh/api/mp_math/equation.md","lastUpdated":null}'),t={name:"api/mp_math/equation.md"},l=n("",23),p=[l];function h(k,e,r,E,d,g){return a(),i("div",null,p)}const F=s(t,[["render",h]]);export{u as __pageData,F as default};
diff --git a/assets/api_mp_math_function.md.BOcZ-k7E.js b/assets/api_mp_math_function.md.BOcZ-k7E.js
new file mode 100644
index 0000000..d33798b
--- /dev/null
+++ b/assets/api_mp_math_function.md.BOcZ-k7E.js
@@ -0,0 +1,42 @@
+import{_ as l,c as t,j as s,a as n,a4 as a,o as i}from"./chunks/framework.DpC1ZpOZ.js";const Z=JSON.parse('{"title":"mbcp.mp_math.function","description":"","frontmatter":{"title":"mbcp.mp_math.function"},"headers":[],"relativePath":"api/mp_math/function.md","filePath":"zh/api/mp_math/function.md","lastUpdated":null}'),e={name:"api/mp_math/function.md"},Q=a('

mbcp.mp_math.function

说明: AAA

def cal_gradient_3vf(func: ThreeSingleVarsFunc, p: Point3, epsilon: float = EPSILON) -> Vector3

说明: 计算三元函数在某点的梯度向量。

',4),T={class:"tip custom-block github-alert"},h=s("p",{class:"custom-block-title"},"TIP",-1),p={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},r={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.471ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 3744.3 1000","aria-hidden":"true"},d=a('',1),k=[d],o=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"f"),s("mo",{stretchy:"false"},"("),s("mi",null,"x"),s("mo",null,","),s("mi",null,"y"),s("mo",null,","),s("mi",null,"z"),s("mo",{stretchy:"false"},")")])],-1),m={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},g={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.19ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 4504 1000","aria-hidden":"true"},c=a('',1),y=[c],u=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mo",{stretchy:"false"},"("),s("msub",null,[s("mi",null,"x"),s("mn",null,"0")]),s("mo",null,","),s("msub",null,[s("mi",null,"y"),s("mn",null,"0")]),s("mo",null,","),s("msub",null,[s("mi",null,"z"),s("mn",null,"0")]),s("mo",{stretchy:"false"},")")])],-1),E={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},F={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-1.469ex"},xmlns:"http://www.w3.org/2000/svg",width:"29.427ex",height:"4.07ex",role:"img",focusable:"false",viewBox:"0 -1149.5 13006.8 1799","aria-hidden":"true"},f=a('',1),_=[f],C=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",{mathvariant:"normal"},"∇"),s("mi",null,"f"),s("mo",{stretchy:"false"},"("),s("msub",null,[s("mi",null,"x"),s("mn",null,"0")]),s("mo",null,","),s("msub",null,[s("mi",null,"y"),s("mn",null,"0")]),s("mo",null,","),s("msub",null,[s("mi",null,"z"),s("mn",null,"0")]),s("mo",{stretchy:"false"},")"),s("mo",null,"="),s("mrow",{"data-mjx-texclass":"INNER"},[s("mo",{"data-mjx-texclass":"OPEN"},"("),s("mfrac",null,[s("mrow",null,[s("mi",null,"∂"),s("mi",null,"f")]),s("mrow",null,[s("mi",null,"∂"),s("mi",null,"x")])]),s("mo",null,","),s("mfrac",null,[s("mrow",null,[s("mi",null,"∂"),s("mi",null,"f")]),s("mrow",null,[s("mi",null,"∂"),s("mi",null,"y")])]),s("mo",null,","),s("mfrac",null,[s("mrow",null,[s("mi",null,"∂"),s("mi",null,"f")]),s("mrow",null,[s("mi",null,"∂"),s("mi",null,"z")])]),s("mo",{"data-mjx-texclass":"CLOSE"},")")])])],-1),w=a(`

参数:

  • func: 三元函数
  • p: 点
  • epsilon: 偏移量

返回: 梯度

源代码在GitHub上查看
python
def cal_gradient_3vf(func: ThreeSingleVarsFunc, p: Point3, epsilon: float=EPSILON) -> Vector3:
+    """
+    计算三元函数在某点的梯度向量。
+    > [!tip]
+    > 已知一个函数$f(x, y, z)$,则其在点$(x_0, y_0, z_0)$处的梯度向量为:
+    $\\\\nabla f(x_0, y_0, z_0) = \\\\left(\\\\frac{\\\\partial f}{\\\\partial x}, \\\\frac{\\\\partial f}{\\\\partial y}, \\\\frac{\\\\partial f}{\\\\partial z}\\\\right)$
+    Args:
+        func: 三元函数
+        p: 点
+        epsilon: 偏移量
+    Returns:
+        梯度
+    """
+    dx = (func(p.x + epsilon, p.y, p.z) - func(p.x - epsilon, p.y, p.z)) / (2 * epsilon)
+    dy = (func(p.x, p.y + epsilon, p.z) - func(p.x, p.y - epsilon, p.z)) / (2 * epsilon)
+    dz = (func(p.x, p.y, p.z + epsilon) - func(p.x, p.y, p.z - epsilon)) / (2 * epsilon)
+    return Vector3(dx, dy, dz)

def curry(func: MultiVarsFunc, *args: Var) -> OneVarFunc

说明: 对多参数函数进行柯里化。

TIP

有关函数柯里化,可参考函数式编程--柯理化(Currying)

参数:

  • func: 函数
  • *args: 参数

返回: 柯里化后的函数

示例:

python
def add(a: int, b: int, c: int) -> int:
+    return a + b + c
+add_curried = curry(add, 1, 2)
+add_curried(3)  # 6
源代码在GitHub上查看
python
def curry(func: MultiVarsFunc, *args: Var) -> OneVarFunc:
+    """
+    对多参数函数进行柯里化。
+    > [!tip]
+    > 有关函数柯里化,可参考[函数式编程--柯理化(Currying)](https://zhuanlan.zhihu.com/p/355859667)
+    Args:
+        func: 函数
+        *args: 参数
+    Returns:
+        柯里化后的函数
+    Examples:
+        \`\`\`python
+        def add(a: int, b: int, c: int) -> int:
+            return a + b + c
+        add_curried = curry(add, 1, 2)
+        add_curried(3)  # 6
+        \`\`\`
+    """
+
+    def curried_func(*args2: Var) -> Var:
+        """@litedoc-hide"""
+        return func(*args, *args2)
+    return curried_func
`,13);function x(b,L,H,B,M,D){return i(),t("div",null,[Q,s("div",T,[h,s("p",null,[n("已知一个函数"),s("mjx-container",p,[(i(),t("svg",r,k)),o]),n(",则其在点"),s("mjx-container",m,[(i(),t("svg",g,y)),u]),n("处的梯度向量为: "),s("mjx-container",E,[(i(),t("svg",F,_)),C])])]),w])}const A=l(e,[["render",x]]);export{Z as __pageData,A as default}; diff --git a/assets/api_mp_math_function.md.BOcZ-k7E.lean.js b/assets/api_mp_math_function.md.BOcZ-k7E.lean.js new file mode 100644 index 0000000..c31d908 --- /dev/null +++ b/assets/api_mp_math_function.md.BOcZ-k7E.lean.js @@ -0,0 +1 @@ +import{_ as l,c as t,j as s,a as n,a4 as a,o as i}from"./chunks/framework.DpC1ZpOZ.js";const Z=JSON.parse('{"title":"mbcp.mp_math.function","description":"","frontmatter":{"title":"mbcp.mp_math.function"},"headers":[],"relativePath":"api/mp_math/function.md","filePath":"zh/api/mp_math/function.md","lastUpdated":null}'),e={name:"api/mp_math/function.md"},Q=a("",4),T={class:"tip custom-block github-alert"},h=s("p",{class:"custom-block-title"},"TIP",-1),p={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},r={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.471ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 3744.3 1000","aria-hidden":"true"},d=a("",1),k=[d],o=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"f"),s("mo",{stretchy:"false"},"("),s("mi",null,"x"),s("mo",null,","),s("mi",null,"y"),s("mo",null,","),s("mi",null,"z"),s("mo",{stretchy:"false"},")")])],-1),m={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},g={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.19ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 4504 1000","aria-hidden":"true"},c=a("",1),y=[c],u=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mo",{stretchy:"false"},"("),s("msub",null,[s("mi",null,"x"),s("mn",null,"0")]),s("mo",null,","),s("msub",null,[s("mi",null,"y"),s("mn",null,"0")]),s("mo",null,","),s("msub",null,[s("mi",null,"z"),s("mn",null,"0")]),s("mo",{stretchy:"false"},")")])],-1),E={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},F={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-1.469ex"},xmlns:"http://www.w3.org/2000/svg",width:"29.427ex",height:"4.07ex",role:"img",focusable:"false",viewBox:"0 -1149.5 13006.8 1799","aria-hidden":"true"},f=a("",1),_=[f],C=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",{mathvariant:"normal"},"∇"),s("mi",null,"f"),s("mo",{stretchy:"false"},"("),s("msub",null,[s("mi",null,"x"),s("mn",null,"0")]),s("mo",null,","),s("msub",null,[s("mi",null,"y"),s("mn",null,"0")]),s("mo",null,","),s("msub",null,[s("mi",null,"z"),s("mn",null,"0")]),s("mo",{stretchy:"false"},")"),s("mo",null,"="),s("mrow",{"data-mjx-texclass":"INNER"},[s("mo",{"data-mjx-texclass":"OPEN"},"("),s("mfrac",null,[s("mrow",null,[s("mi",null,"∂"),s("mi",null,"f")]),s("mrow",null,[s("mi",null,"∂"),s("mi",null,"x")])]),s("mo",null,","),s("mfrac",null,[s("mrow",null,[s("mi",null,"∂"),s("mi",null,"f")]),s("mrow",null,[s("mi",null,"∂"),s("mi",null,"y")])]),s("mo",null,","),s("mfrac",null,[s("mrow",null,[s("mi",null,"∂"),s("mi",null,"f")]),s("mrow",null,[s("mi",null,"∂"),s("mi",null,"z")])]),s("mo",{"data-mjx-texclass":"CLOSE"},")")])])],-1),w=a("",13);function x(b,L,H,B,M,D){return i(),t("div",null,[Q,s("div",T,[h,s("p",null,[n("已知一个函数"),s("mjx-container",p,[(i(),t("svg",r,k)),o]),n(",则其在点"),s("mjx-container",m,[(i(),t("svg",g,y)),u]),n("处的梯度向量为: "),s("mjx-container",E,[(i(),t("svg",F,_)),C])])]),w])}const A=l(e,[["render",x]]);export{Z as __pageData,A as default}; diff --git a/assets/api_mp_math_function.md.lFd1gudy.js b/assets/api_mp_math_function.md.lFd1gudy.js deleted file mode 100644 index 0886915..0000000 --- a/assets/api_mp_math_function.md.lFd1gudy.js +++ /dev/null @@ -1,42 +0,0 @@ -import{_ as l,c as t,j as s,a as n,a4 as a,o as i}from"./chunks/framework.DpC1ZpOZ.js";const Z=JSON.parse('{"title":"mbcp.mp_math.function","description":"","frontmatter":{"title":"mbcp.mp_math.function","editLink":false},"headers":[],"relativePath":"api/mp_math/function.md","filePath":"zh/api/mp_math/function.md","lastUpdated":null}'),e={name:"api/mp_math/function.md"},Q=a('

mbcp.mp_math.function

说明: AAA

def cal_gradient_3vf(func: ThreeSingleVarsFunc, p: Point3, epsilon: float = EPSILON) -> Vector3

说明: 计算三元函数在某点的梯度向量。

',4),T={class:"tip custom-block github-alert"},h=s("p",{class:"custom-block-title"},"TIP",-1),p={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},r={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.471ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 3744.3 1000","aria-hidden":"true"},d=a('',1),k=[d],o=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"f"),s("mo",{stretchy:"false"},"("),s("mi",null,"x"),s("mo",null,","),s("mi",null,"y"),s("mo",null,","),s("mi",null,"z"),s("mo",{stretchy:"false"},")")])],-1),m={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},g={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.19ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 4504 1000","aria-hidden":"true"},c=a('',1),y=[c],u=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mo",{stretchy:"false"},"("),s("msub",null,[s("mi",null,"x"),s("mn",null,"0")]),s("mo",null,","),s("msub",null,[s("mi",null,"y"),s("mn",null,"0")]),s("mo",null,","),s("msub",null,[s("mi",null,"z"),s("mn",null,"0")]),s("mo",{stretchy:"false"},")")])],-1),E={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},F={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-1.469ex"},xmlns:"http://www.w3.org/2000/svg",width:"29.427ex",height:"4.07ex",role:"img",focusable:"false",viewBox:"0 -1149.5 13006.8 1799","aria-hidden":"true"},f=a('',1),_=[f],C=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",{mathvariant:"normal"},"∇"),s("mi",null,"f"),s("mo",{stretchy:"false"},"("),s("msub",null,[s("mi",null,"x"),s("mn",null,"0")]),s("mo",null,","),s("msub",null,[s("mi",null,"y"),s("mn",null,"0")]),s("mo",null,","),s("msub",null,[s("mi",null,"z"),s("mn",null,"0")]),s("mo",{stretchy:"false"},")"),s("mo",null,"="),s("mrow",{"data-mjx-texclass":"INNER"},[s("mo",{"data-mjx-texclass":"OPEN"},"("),s("mfrac",null,[s("mrow",null,[s("mi",null,"∂"),s("mi",null,"f")]),s("mrow",null,[s("mi",null,"∂"),s("mi",null,"x")])]),s("mo",null,","),s("mfrac",null,[s("mrow",null,[s("mi",null,"∂"),s("mi",null,"f")]),s("mrow",null,[s("mi",null,"∂"),s("mi",null,"y")])]),s("mo",null,","),s("mfrac",null,[s("mrow",null,[s("mi",null,"∂"),s("mi",null,"f")]),s("mrow",null,[s("mi",null,"∂"),s("mi",null,"z")])]),s("mo",{"data-mjx-texclass":"CLOSE"},")")])])],-1),w=a(`

参数:

  • func: 三元函数
  • p: 点
  • epsilon: 偏移量

返回: 梯度

源代码在GitHub上查看
python
def cal_gradient_3vf(func: ThreeSingleVarsFunc, p: Point3, epsilon: float=EPSILON) -> Vector3:
-    """
-    计算三元函数在某点的梯度向量。
-    > [!tip]
-    > 已知一个函数$f(x, y, z)$,则其在点$(x_0, y_0, z_0)$处的梯度向量为:
-    $\\\\nabla f(x_0, y_0, z_0) = \\\\left(\\\\frac{\\\\partial f}{\\\\partial x}, \\\\frac{\\\\partial f}{\\\\partial y}, \\\\frac{\\\\partial f}{\\\\partial z}\\\\right)$
-    Args:
-        func: 三元函数
-        p: 点
-        epsilon: 偏移量
-    Returns:
-        梯度
-    """
-    dx = (func(p.x + epsilon, p.y, p.z) - func(p.x - epsilon, p.y, p.z)) / (2 * epsilon)
-    dy = (func(p.x, p.y + epsilon, p.z) - func(p.x, p.y - epsilon, p.z)) / (2 * epsilon)
-    dz = (func(p.x, p.y, p.z + epsilon) - func(p.x, p.y, p.z - epsilon)) / (2 * epsilon)
-    return Vector3(dx, dy, dz)

def curry(func: MultiVarsFunc, *args: Var) -> OneVarFunc

说明: 对多参数函数进行柯里化。

TIP

有关函数柯里化,可参考函数式编程--柯理化(Currying)

参数:

  • func: 函数
  • *args: 参数

返回: 柯里化后的函数

示例:

python
def add(a: int, b: int, c: int) -> int:
-    return a + b + c
-add_curried = curry(add, 1, 2)
-add_curried(3)  # 6
源代码在GitHub上查看
python
def curry(func: MultiVarsFunc, *args: Var) -> OneVarFunc:
-    """
-    对多参数函数进行柯里化。
-    > [!tip]
-    > 有关函数柯里化,可参考[函数式编程--柯理化(Currying)](https://zhuanlan.zhihu.com/p/355859667)
-    Args:
-        func: 函数
-        *args: 参数
-    Returns:
-        柯里化后的函数
-    Examples:
-        \`\`\`python
-        def add(a: int, b: int, c: int) -> int:
-            return a + b + c
-        add_curried = curry(add, 1, 2)
-        add_curried(3)  # 6
-        \`\`\`
-    """
-
-    def curried_func(*args2: Var) -> Var:
-        """@litedoc-hide"""
-        return func(*args, *args2)
-    return curried_func
`,13);function x(b,L,H,B,M,D){return i(),t("div",null,[Q,s("div",T,[h,s("p",null,[n("已知一个函数"),s("mjx-container",p,[(i(),t("svg",r,k)),o]),n(",则其在点"),s("mjx-container",m,[(i(),t("svg",g,y)),u]),n("处的梯度向量为: "),s("mjx-container",E,[(i(),t("svg",F,_)),C])])]),w])}const A=l(e,[["render",x]]);export{Z as __pageData,A as default}; diff --git a/assets/api_mp_math_function.md.lFd1gudy.lean.js b/assets/api_mp_math_function.md.lFd1gudy.lean.js deleted file mode 100644 index 14234fc..0000000 --- a/assets/api_mp_math_function.md.lFd1gudy.lean.js +++ /dev/null @@ -1 +0,0 @@ -import{_ as l,c as t,j as s,a as n,a4 as a,o as i}from"./chunks/framework.DpC1ZpOZ.js";const Z=JSON.parse('{"title":"mbcp.mp_math.function","description":"","frontmatter":{"title":"mbcp.mp_math.function","editLink":false},"headers":[],"relativePath":"api/mp_math/function.md","filePath":"zh/api/mp_math/function.md","lastUpdated":null}'),e={name:"api/mp_math/function.md"},Q=a("",4),T={class:"tip custom-block github-alert"},h=s("p",{class:"custom-block-title"},"TIP",-1),p={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},r={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.471ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 3744.3 1000","aria-hidden":"true"},d=a("",1),k=[d],o=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"f"),s("mo",{stretchy:"false"},"("),s("mi",null,"x"),s("mo",null,","),s("mi",null,"y"),s("mo",null,","),s("mi",null,"z"),s("mo",{stretchy:"false"},")")])],-1),m={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},g={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.19ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 4504 1000","aria-hidden":"true"},c=a("",1),y=[c],u=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mo",{stretchy:"false"},"("),s("msub",null,[s("mi",null,"x"),s("mn",null,"0")]),s("mo",null,","),s("msub",null,[s("mi",null,"y"),s("mn",null,"0")]),s("mo",null,","),s("msub",null,[s("mi",null,"z"),s("mn",null,"0")]),s("mo",{stretchy:"false"},")")])],-1),E={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},F={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-1.469ex"},xmlns:"http://www.w3.org/2000/svg",width:"29.427ex",height:"4.07ex",role:"img",focusable:"false",viewBox:"0 -1149.5 13006.8 1799","aria-hidden":"true"},f=a("",1),_=[f],C=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",{mathvariant:"normal"},"∇"),s("mi",null,"f"),s("mo",{stretchy:"false"},"("),s("msub",null,[s("mi",null,"x"),s("mn",null,"0")]),s("mo",null,","),s("msub",null,[s("mi",null,"y"),s("mn",null,"0")]),s("mo",null,","),s("msub",null,[s("mi",null,"z"),s("mn",null,"0")]),s("mo",{stretchy:"false"},")"),s("mo",null,"="),s("mrow",{"data-mjx-texclass":"INNER"},[s("mo",{"data-mjx-texclass":"OPEN"},"("),s("mfrac",null,[s("mrow",null,[s("mi",null,"∂"),s("mi",null,"f")]),s("mrow",null,[s("mi",null,"∂"),s("mi",null,"x")])]),s("mo",null,","),s("mfrac",null,[s("mrow",null,[s("mi",null,"∂"),s("mi",null,"f")]),s("mrow",null,[s("mi",null,"∂"),s("mi",null,"y")])]),s("mo",null,","),s("mfrac",null,[s("mrow",null,[s("mi",null,"∂"),s("mi",null,"f")]),s("mrow",null,[s("mi",null,"∂"),s("mi",null,"z")])]),s("mo",{"data-mjx-texclass":"CLOSE"},")")])])],-1),w=a("",13);function x(b,L,H,B,M,D){return i(),t("div",null,[Q,s("div",T,[h,s("p",null,[n("已知一个函数"),s("mjx-container",p,[(i(),t("svg",r,k)),o]),n(",则其在点"),s("mjx-container",m,[(i(),t("svg",g,y)),u]),n("处的梯度向量为: "),s("mjx-container",E,[(i(),t("svg",F,_)),C])])]),w])}const A=l(e,[["render",x]]);export{Z as __pageData,A as default}; diff --git a/assets/api_mp_math_index.md.CBaWj2TG.js b/assets/api_mp_math_index.md.CBaWj2TG.js deleted file mode 100644 index c900e68..0000000 --- a/assets/api_mp_math_index.md.CBaWj2TG.js +++ /dev/null @@ -1 +0,0 @@ -import{_ as e,c as t,o as a,a4 as o}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math","description":"","frontmatter":{"title":"mbcp.mp_math","editLink":false,"collapsed":true},"headers":[],"relativePath":"api/mp_math/index.md","filePath":"zh/api/mp_math/index.md","lastUpdated":null}'),c={name:"api/mp_math/index.md"},i=o('

mbcp.mp_math

说明: 本包定义了一些常用的导入,可直接从mbcp.mp_math导入使用 导入的类有:

  • AnyAngle:任意角
  • CurveEquation:曲线方程
  • Line3:三维直线
  • Plane3:三维平面
  • Point3:三维点
  • Segment3:三维线段
  • Vector3:三维向量
',3),d=[i];function l(m,n,p,_,r,s){return a(),t("div",null,d)}const f=e(c,[["render",l]]);export{u as __pageData,f as default}; diff --git a/assets/api_mp_math_index.md.CBaWj2TG.lean.js b/assets/api_mp_math_index.md.CBaWj2TG.lean.js deleted file mode 100644 index 78cf3cb..0000000 --- a/assets/api_mp_math_index.md.CBaWj2TG.lean.js +++ /dev/null @@ -1 +0,0 @@ -import{_ as e,c as t,o as a,a4 as o}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math","description":"","frontmatter":{"title":"mbcp.mp_math","editLink":false,"collapsed":true},"headers":[],"relativePath":"api/mp_math/index.md","filePath":"zh/api/mp_math/index.md","lastUpdated":null}'),c={name:"api/mp_math/index.md"},i=o("",3),d=[i];function l(m,n,p,_,r,s){return a(),t("div",null,d)}const f=e(c,[["render",l]]);export{u as __pageData,f as default}; diff --git a/assets/api_mp_math_index.md.CgPZqWk2.js b/assets/api_mp_math_index.md.CgPZqWk2.js new file mode 100644 index 0000000..6d07a31 --- /dev/null +++ b/assets/api_mp_math_index.md.CgPZqWk2.js @@ -0,0 +1 @@ +import{_ as e,c as t,o as a,a4 as o}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math","description":"","frontmatter":{"title":"mbcp.mp_math","collapsed":true},"headers":[],"relativePath":"api/mp_math/index.md","filePath":"zh/api/mp_math/index.md","lastUpdated":null}'),c={name:"api/mp_math/index.md"},i=o('

mbcp.mp_math

说明: 本包定义了一些常用的导入,可直接从mbcp.mp_math导入使用 导入的类有:

  • AnyAngle:任意角
  • CurveEquation:曲线方程
  • Line3:三维直线
  • Plane3:三维平面
  • Point3:三维点
  • Segment3:三维线段
  • Vector3:三维向量
',3),d=[i];function m(l,n,p,_,r,s){return a(),t("div",null,d)}const b=e(c,[["render",m]]);export{u as __pageData,b as default}; diff --git a/assets/api_mp_math_index.md.CgPZqWk2.lean.js b/assets/api_mp_math_index.md.CgPZqWk2.lean.js new file mode 100644 index 0000000..77da7d9 --- /dev/null +++ b/assets/api_mp_math_index.md.CgPZqWk2.lean.js @@ -0,0 +1 @@ +import{_ as e,c as t,o as a,a4 as o}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math","description":"","frontmatter":{"title":"mbcp.mp_math","collapsed":true},"headers":[],"relativePath":"api/mp_math/index.md","filePath":"zh/api/mp_math/index.md","lastUpdated":null}'),c={name:"api/mp_math/index.md"},i=o("",3),d=[i];function m(l,n,p,_,r,s){return a(),t("div",null,d)}const b=e(c,[["render",m]]);export{u as __pageData,b as default}; diff --git a/assets/api_mp_math_line.md.DjfQ-B5i.js b/assets/api_mp_math_line.md.B9prk9Kj.js similarity index 96% rename from assets/api_mp_math_line.md.DjfQ-B5i.js rename to assets/api_mp_math_line.md.B9prk9Kj.js index 6c7056a..493c783 100644 --- a/assets/api_mp_math_line.md.DjfQ-B5i.js +++ b/assets/api_mp_math_line.md.B9prk9Kj.js @@ -1,4 +1,4 @@ -import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const E=JSON.parse('{"title":"mbcp.mp_math.line","description":"","frontmatter":{"title":"mbcp.mp_math.line","editLink":false},"headers":[],"relativePath":"api/mp_math/line.md","filePath":"zh/api/mp_math/line.md","lastUpdated":null}'),t={name:"api/mp_math/line.md"},l=n(`

mbcp.mp_math.line

说明: 本模块定义了三维空间中的直线类

class Line3

def __init__(self, point: Point3, direction: Vector3)

说明: 三维空间中的直线。由一个点和一个方向向量确定。

参数:

  • point: 直线上的一点
  • direction: 直线的方向向量
源代码在GitHub上查看
python
def __init__(self, point: 'Point3', direction: 'Vector3'):
+import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const E=JSON.parse('{"title":"mbcp.mp_math.line","description":"","frontmatter":{"title":"mbcp.mp_math.line"},"headers":[],"relativePath":"api/mp_math/line.md","filePath":"zh/api/mp_math/line.md","lastUpdated":null}'),t={name:"api/mp_math/line.md"},l=n(`

mbcp.mp_math.line

说明: 本模块定义了三维空间中的直线类

class Line3

def __init__(self, point: Point3, direction: Vector3)

说明: 三维空间中的直线。由一个点和一个方向向量确定。

参数:

  • point: 直线上的一点
  • direction: 直线的方向向量
源代码在GitHub上查看
python
def __init__(self, point: 'Point3', direction: 'Vector3'):
     """
         三维空间中的直线。由一个点和一个方向向量确定。
         Args:
diff --git a/assets/api_mp_math_line.md.B9prk9Kj.lean.js b/assets/api_mp_math_line.md.B9prk9Kj.lean.js
new file mode 100644
index 0000000..b19e31c
--- /dev/null
+++ b/assets/api_mp_math_line.md.B9prk9Kj.lean.js
@@ -0,0 +1 @@
+import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const E=JSON.parse('{"title":"mbcp.mp_math.line","description":"","frontmatter":{"title":"mbcp.mp_math.line"},"headers":[],"relativePath":"api/mp_math/line.md","filePath":"zh/api/mp_math/line.md","lastUpdated":null}'),t={name:"api/mp_math/line.md"},l=n("",107),p=[l];function e(h,k,r,o,d,g){return a(),i("div",null,p)}const y=s(t,[["render",e]]);export{E as __pageData,y as default};
diff --git a/assets/api_mp_math_line.md.DjfQ-B5i.lean.js b/assets/api_mp_math_line.md.DjfQ-B5i.lean.js
deleted file mode 100644
index 6d9b8e9..0000000
--- a/assets/api_mp_math_line.md.DjfQ-B5i.lean.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const E=JSON.parse('{"title":"mbcp.mp_math.line","description":"","frontmatter":{"title":"mbcp.mp_math.line","editLink":false},"headers":[],"relativePath":"api/mp_math/line.md","filePath":"zh/api/mp_math/line.md","lastUpdated":null}'),t={name:"api/mp_math/line.md"},l=n("",107),p=[l];function e(h,k,r,o,d,g){return a(),i("div",null,p)}const y=s(t,[["render",e]]);export{E as __pageData,y as default};
diff --git a/assets/api_mp_math_mp_math.md.BMEFqLKu.js b/assets/api_mp_math_mp_math.md.BMEFqLKu.js
new file mode 100644
index 0000000..c00950b
--- /dev/null
+++ b/assets/api_mp_math_mp_math.md.BMEFqLKu.js
@@ -0,0 +1 @@
+import{_ as e,c as t,o as a,a4 as o}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math","description":"","frontmatter":{"title":"mbcp.mp_math","collapsed":true},"headers":[],"relativePath":"api/mp_math/mp_math.md","filePath":"zh/api/mp_math/mp_math.md","lastUpdated":null}'),c={name:"api/mp_math/mp_math.md"},m=o('

mbcp.mp_math

说明: 本包定义了一些常用的导入,可直接从mbcp.mp_math导入使用 导入的类有:

  • AnyAngle:任意角
  • CurveEquation:曲线方程
  • Line3:三维直线
  • Plane3:三维平面
  • Point3:三维点
  • Segment3:三维线段
  • Vector3:三维向量
',3),p=[m];function _(i,l,d,n,r,s){return a(),t("div",null,p)}const b=e(c,[["render",_]]);export{u as __pageData,b as default}; diff --git a/assets/api_mp_math_mp_math.md.BMEFqLKu.lean.js b/assets/api_mp_math_mp_math.md.BMEFqLKu.lean.js new file mode 100644 index 0000000..3065233 --- /dev/null +++ b/assets/api_mp_math_mp_math.md.BMEFqLKu.lean.js @@ -0,0 +1 @@ +import{_ as e,c as t,o as a,a4 as o}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math","description":"","frontmatter":{"title":"mbcp.mp_math","collapsed":true},"headers":[],"relativePath":"api/mp_math/mp_math.md","filePath":"zh/api/mp_math/mp_math.md","lastUpdated":null}'),c={name:"api/mp_math/mp_math.md"},m=o("",3),p=[m];function _(i,l,d,n,r,s){return a(),t("div",null,p)}const b=e(c,[["render",_]]);export{u as __pageData,b as default}; diff --git a/assets/api_mp_math_mp_math.md.CpQngdPn.js b/assets/api_mp_math_mp_math.md.CpQngdPn.js deleted file mode 100644 index 4f42fc7..0000000 --- a/assets/api_mp_math_mp_math.md.CpQngdPn.js +++ /dev/null @@ -1 +0,0 @@ -import{_ as e,c as t,o as a,a4 as o}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math","description":"","frontmatter":{"title":"mbcp.mp_math","editLink":false,"collapsed":true},"headers":[],"relativePath":"api/mp_math/mp_math.md","filePath":"zh/api/mp_math/mp_math.md","lastUpdated":null}'),c={name:"api/mp_math/mp_math.md"},m=o('

mbcp.mp_math

说明: 本包定义了一些常用的导入,可直接从mbcp.mp_math导入使用 导入的类有:

  • AnyAngle:任意角
  • CurveEquation:曲线方程
  • Line3:三维直线
  • Plane3:三维平面
  • Point3:三维点
  • Segment3:三维线段
  • Vector3:三维向量
',3),i=[m];function p(_,l,d,n,r,s){return a(),t("div",null,i)}const f=e(c,[["render",p]]);export{u as __pageData,f as default}; diff --git a/assets/api_mp_math_mp_math.md.CpQngdPn.lean.js b/assets/api_mp_math_mp_math.md.CpQngdPn.lean.js deleted file mode 100644 index 3489dcf..0000000 --- a/assets/api_mp_math_mp_math.md.CpQngdPn.lean.js +++ /dev/null @@ -1 +0,0 @@ -import{_ as e,c as t,o as a,a4 as o}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math","description":"","frontmatter":{"title":"mbcp.mp_math","editLink":false,"collapsed":true},"headers":[],"relativePath":"api/mp_math/mp_math.md","filePath":"zh/api/mp_math/mp_math.md","lastUpdated":null}'),c={name:"api/mp_math/mp_math.md"},m=o("",3),i=[m];function p(_,l,d,n,r,s){return a(),t("div",null,i)}const f=e(c,[["render",p]]);export{u as __pageData,f as default}; diff --git a/assets/api_mp_math_mp_math_typing.md.CKmrvjJE.js b/assets/api_mp_math_mp_math_typing.md.CKmrvjJE.js new file mode 100644 index 0000000..4d9bb71 --- /dev/null +++ b/assets/api_mp_math_mp_math_typing.md.CKmrvjJE.js @@ -0,0 +1 @@ +import{_ as a,c as r,o as e,a4 as l}from"./chunks/framework.DpC1ZpOZ.js";const h=JSON.parse('{"title":"mbcp.mp_math.mp_math_typing","description":"","frontmatter":{"title":"mbcp.mp_math.mp_math_typing"},"headers":[],"relativePath":"api/mp_math/mp_math_typing.md","filePath":"zh/api/mp_math/mp_math_typing.md","lastUpdated":null}'),n={name:"api/mp_math/mp_math_typing.md"},o=l('

mbcp.mp_math.mp_math_typing

说明: 本模块用于内部类型提示

var RealNumber = int | float

  • 类型: TypeAlias

  • 说明: 实数

var Number = RealNumber | complex

  • 类型: TypeAlias

  • 说明: 数

var SingleVar = TypeVar('SingleVar', bound=Number)

  • 说明: 单变量

var ArrayVar = TypeVar('ArrayVar', bound=Iterable[Number])

  • 说明: 数组变量

var Var = SingleVar | ArrayVar

  • 类型: TypeAlias

  • 说明: 变量

var OneSingleVarFunc = Callable[[SingleVar], SingleVar]

  • 类型: TypeAlias

  • 说明: 一元单变量函数

var OneArrayFunc = Callable[[ArrayVar], ArrayVar]

  • 类型: TypeAlias

  • 说明: 一元数组函数

var OneVarFunc = OneSingleVarFunc | OneArrayFunc

  • 类型: TypeAlias

  • 说明: 一元函数

var TwoSingleVarsFunc = Callable[[SingleVar, SingleVar], SingleVar]

  • 类型: TypeAlias

  • 说明: 二元单变量函数

var TwoArraysFunc = Callable[[ArrayVar, ArrayVar], ArrayVar]

  • 类型: TypeAlias

  • 说明: 二元数组函数

var TwoVarsFunc = TwoSingleVarsFunc | TwoArraysFunc

  • 类型: TypeAlias

  • 说明: 二元函数

var ThreeSingleVarsFunc = Callable[[SingleVar, SingleVar, SingleVar], SingleVar]

  • 类型: TypeAlias

  • 说明: 三元单变量函数

var ThreeArraysFunc = Callable[[ArrayVar, ArrayVar, ArrayVar], ArrayVar]

  • 类型: TypeAlias

  • 说明: 三元数组函数

var ThreeVarsFunc = ThreeSingleVarsFunc | ThreeArraysFunc

  • 类型: TypeAlias

  • 说明: 三元函数

var MultiSingleVarsFunc = Callable[..., SingleVar]

  • 类型: TypeAlias

  • 说明: 多元单变量函数

var MultiArraysFunc = Callable[..., ArrayVar]

  • 类型: TypeAlias

  • 说明: 多元数组函数

var MultiVarsFunc = MultiSingleVarsFunc | MultiArraysFunc

  • 类型: TypeAlias

  • 说明: 多元函数

',36),i=[o];function c(t,s,u,d,g,v){return e(),r("div",null,i)}const y=a(n,[["render",c]]);export{h as __pageData,y as default}; diff --git a/assets/api_mp_math_mp_math_typing.md.CKmrvjJE.lean.js b/assets/api_mp_math_mp_math_typing.md.CKmrvjJE.lean.js new file mode 100644 index 0000000..75e1b46 --- /dev/null +++ b/assets/api_mp_math_mp_math_typing.md.CKmrvjJE.lean.js @@ -0,0 +1 @@ +import{_ as a,c as r,o as e,a4 as l}from"./chunks/framework.DpC1ZpOZ.js";const h=JSON.parse('{"title":"mbcp.mp_math.mp_math_typing","description":"","frontmatter":{"title":"mbcp.mp_math.mp_math_typing"},"headers":[],"relativePath":"api/mp_math/mp_math_typing.md","filePath":"zh/api/mp_math/mp_math_typing.md","lastUpdated":null}'),n={name:"api/mp_math/mp_math_typing.md"},o=l("",36),i=[o];function c(t,s,u,d,g,v){return e(),r("div",null,i)}const y=a(n,[["render",c]]);export{h as __pageData,y as default}; diff --git a/assets/api_mp_math_mp_math_typing.md.ueXwUe7x.js b/assets/api_mp_math_mp_math_typing.md.ueXwUe7x.js deleted file mode 100644 index c64ef9e..0000000 --- a/assets/api_mp_math_mp_math_typing.md.ueXwUe7x.js +++ /dev/null @@ -1 +0,0 @@ -import{_ as a,c as r,o as e,a4 as l}from"./chunks/framework.DpC1ZpOZ.js";const h=JSON.parse('{"title":"mbcp.mp_math.mp_math_typing","description":"","frontmatter":{"title":"mbcp.mp_math.mp_math_typing","editLink":false},"headers":[],"relativePath":"api/mp_math/mp_math_typing.md","filePath":"zh/api/mp_math/mp_math_typing.md","lastUpdated":null}'),n={name:"api/mp_math/mp_math_typing.md"},o=l('

mbcp.mp_math.mp_math_typing

说明: 本模块用于内部类型提示

var RealNumber = int | float

  • 类型: TypeAlias

  • 说明: 实数

var Number = RealNumber | complex

  • 类型: TypeAlias

  • 说明: 数

var SingleVar = TypeVar('SingleVar', bound=Number)

  • 说明: 单变量

var ArrayVar = TypeVar('ArrayVar', bound=Iterable[Number])

  • 说明: 数组变量

var Var = SingleVar | ArrayVar

  • 类型: TypeAlias

  • 说明: 变量

var OneSingleVarFunc = Callable[[SingleVar], SingleVar]

  • 类型: TypeAlias

  • 说明: 一元单变量函数

var OneArrayFunc = Callable[[ArrayVar], ArrayVar]

  • 类型: TypeAlias

  • 说明: 一元数组函数

var OneVarFunc = OneSingleVarFunc | OneArrayFunc

  • 类型: TypeAlias

  • 说明: 一元函数

var TwoSingleVarsFunc = Callable[[SingleVar, SingleVar], SingleVar]

  • 类型: TypeAlias

  • 说明: 二元单变量函数

var TwoArraysFunc = Callable[[ArrayVar, ArrayVar], ArrayVar]

  • 类型: TypeAlias

  • 说明: 二元数组函数

var TwoVarsFunc = TwoSingleVarsFunc | TwoArraysFunc

  • 类型: TypeAlias

  • 说明: 二元函数

var ThreeSingleVarsFunc = Callable[[SingleVar, SingleVar, SingleVar], SingleVar]

  • 类型: TypeAlias

  • 说明: 三元单变量函数

var ThreeArraysFunc = Callable[[ArrayVar, ArrayVar, ArrayVar], ArrayVar]

  • 类型: TypeAlias

  • 说明: 三元数组函数

var ThreeVarsFunc = ThreeSingleVarsFunc | ThreeArraysFunc

  • 类型: TypeAlias

  • 说明: 三元函数

var MultiSingleVarsFunc = Callable[..., SingleVar]

  • 类型: TypeAlias

  • 说明: 多元单变量函数

var MultiArraysFunc = Callable[..., ArrayVar]

  • 类型: TypeAlias

  • 说明: 多元数组函数

var MultiVarsFunc = MultiSingleVarsFunc | MultiArraysFunc

  • 类型: TypeAlias

  • 说明: 多元函数

',36),i=[o];function t(c,s,u,d,g,v){return e(),r("div",null,i)}const y=a(n,[["render",t]]);export{h as __pageData,y as default}; diff --git a/assets/api_mp_math_mp_math_typing.md.ueXwUe7x.lean.js b/assets/api_mp_math_mp_math_typing.md.ueXwUe7x.lean.js deleted file mode 100644 index a24391c..0000000 --- a/assets/api_mp_math_mp_math_typing.md.ueXwUe7x.lean.js +++ /dev/null @@ -1 +0,0 @@ -import{_ as a,c as r,o as e,a4 as l}from"./chunks/framework.DpC1ZpOZ.js";const h=JSON.parse('{"title":"mbcp.mp_math.mp_math_typing","description":"","frontmatter":{"title":"mbcp.mp_math.mp_math_typing","editLink":false},"headers":[],"relativePath":"api/mp_math/mp_math_typing.md","filePath":"zh/api/mp_math/mp_math_typing.md","lastUpdated":null}'),n={name:"api/mp_math/mp_math_typing.md"},o=l("",36),i=[o];function t(c,s,u,d,g,v){return e(),r("div",null,i)}const y=a(n,[["render",t]]);export{h as __pageData,y as default}; diff --git a/assets/api_mp_math_plane.md.CXpU2f7r.js b/assets/api_mp_math_plane.md.CUvZ7jG1.js similarity index 96% rename from assets/api_mp_math_plane.md.CXpU2f7r.js rename to assets/api_mp_math_plane.md.CUvZ7jG1.js index fa51ad5..c442004 100644 --- a/assets/api_mp_math_plane.md.CXpU2f7r.js +++ b/assets/api_mp_math_plane.md.CUvZ7jG1.js @@ -1,4 +1,4 @@ -import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const y=JSON.parse('{"title":"mbcp.mp_math.plane","description":"","frontmatter":{"title":"mbcp.mp_math.plane","editLink":false},"headers":[],"relativePath":"api/mp_math/plane.md","filePath":"zh/api/mp_math/plane.md","lastUpdated":null}'),l={name:"api/mp_math/plane.md"},t=n(`

mbcp.mp_math.plane

说明: 本模块定义了三维空间中的平面类

class Plane3

def __init__(self, a: float, b: float, c: float, d: float)

说明: 平面方程:ax + by + cz + d = 0

参数:

  • a: x系数
  • b: y系数
  • c: z系数
  • d: 常数项
源代码在GitHub上查看
python
def __init__(self, a: float, b: float, c: float, d: float):
+import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const y=JSON.parse('{"title":"mbcp.mp_math.plane","description":"","frontmatter":{"title":"mbcp.mp_math.plane"},"headers":[],"relativePath":"api/mp_math/plane.md","filePath":"zh/api/mp_math/plane.md","lastUpdated":null}'),l={name:"api/mp_math/plane.md"},t=n(`

mbcp.mp_math.plane

说明: 本模块定义了三维空间中的平面类

class Plane3

def __init__(self, a: float, b: float, c: float, d: float)

说明: 平面方程:ax + by + cz + d = 0

参数:

  • a: x系数
  • b: y系数
  • c: z系数
  • d: 常数项
源代码在GitHub上查看
python
def __init__(self, a: float, b: float, c: float, d: float):
     """
         平面方程:ax + by + cz + d = 0
         Args:
diff --git a/assets/api_mp_math_plane.md.CUvZ7jG1.lean.js b/assets/api_mp_math_plane.md.CUvZ7jG1.lean.js
new file mode 100644
index 0000000..f093a48
--- /dev/null
+++ b/assets/api_mp_math_plane.md.CUvZ7jG1.lean.js
@@ -0,0 +1 @@
+import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const y=JSON.parse('{"title":"mbcp.mp_math.plane","description":"","frontmatter":{"title":"mbcp.mp_math.plane"},"headers":[],"relativePath":"api/mp_math/plane.md","filePath":"zh/api/mp_math/plane.md","lastUpdated":null}'),l={name:"api/mp_math/plane.md"},t=n("",105),h=[t];function p(k,e,r,d,E,o){return a(),i("div",null,h)}const F=s(l,[["render",p]]);export{y as __pageData,F as default};
diff --git a/assets/api_mp_math_plane.md.CXpU2f7r.lean.js b/assets/api_mp_math_plane.md.CXpU2f7r.lean.js
deleted file mode 100644
index 41a2528..0000000
--- a/assets/api_mp_math_plane.md.CXpU2f7r.lean.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const y=JSON.parse('{"title":"mbcp.mp_math.plane","description":"","frontmatter":{"title":"mbcp.mp_math.plane","editLink":false},"headers":[],"relativePath":"api/mp_math/plane.md","filePath":"zh/api/mp_math/plane.md","lastUpdated":null}'),l={name:"api/mp_math/plane.md"},t=n("",105),h=[t];function p(k,e,r,d,E,o){return a(),i("div",null,h)}const F=s(l,[["render",p]]);export{y as __pageData,F as default};
diff --git a/assets/api_mp_math_point.md.JbQs_Fqs.js b/assets/api_mp_math_point.md.BWtm0p2C.js
similarity index 89%
rename from assets/api_mp_math_point.md.JbQs_Fqs.js
rename to assets/api_mp_math_point.md.BWtm0p2C.js
index 6ae065f..5a9e763 100644
--- a/assets/api_mp_math_point.md.JbQs_Fqs.js
+++ b/assets/api_mp_math_point.md.BWtm0p2C.js
@@ -1,4 +1,4 @@
-import{_ as s,c as i,o as a,a4 as t}from"./chunks/framework.DpC1ZpOZ.js";const y=JSON.parse('{"title":"mbcp.mp_math.point","description":"","frontmatter":{"title":"mbcp.mp_math.point","editLink":false},"headers":[],"relativePath":"api/mp_math/point.md","filePath":"zh/api/mp_math/point.md","lastUpdated":null}'),n={name:"api/mp_math/point.md"},l=t(`

mbcp.mp_math.point

说明: 本模块定义了三维空间中点的类。

class Point3

def __init__(self, x: float, y: float, z: float)

说明: 笛卡尔坐标系中的点。

参数:

  • x: x 坐标
  • y: y 坐标
  • z: z 坐标
源代码在GitHub上查看
python
def __init__(self, x: float, y: float, z: float):
+import{_ as s,c as i,o as a,a4 as t}from"./chunks/framework.DpC1ZpOZ.js";const y=JSON.parse('{"title":"mbcp.mp_math.point","description":"","frontmatter":{"title":"mbcp.mp_math.point"},"headers":[],"relativePath":"api/mp_math/point.md","filePath":"zh/api/mp_math/point.md","lastUpdated":null}'),n={name:"api/mp_math/point.md"},l=t(`

mbcp.mp_math.point

说明: 本模块定义了三维空间中点的类。

class Point3

def __init__(self, x: float, y: float, z: float)

说明: 笛卡尔坐标系中的点。

参数:

  • x: x 坐标
  • y: y 坐标
  • z: z 坐标
源代码在GitHub上查看
python
def __init__(self, x: float, y: float, z: float):
     """
         笛卡尔坐标系中的点。
         Args:
diff --git a/assets/api_mp_math_point.md.BWtm0p2C.lean.js b/assets/api_mp_math_point.md.BWtm0p2C.lean.js
new file mode 100644
index 0000000..838f0ba
--- /dev/null
+++ b/assets/api_mp_math_point.md.BWtm0p2C.lean.js
@@ -0,0 +1 @@
+import{_ as s,c as i,o as a,a4 as t}from"./chunks/framework.DpC1ZpOZ.js";const y=JSON.parse('{"title":"mbcp.mp_math.point","description":"","frontmatter":{"title":"mbcp.mp_math.point"},"headers":[],"relativePath":"api/mp_math/point.md","filePath":"zh/api/mp_math/point.md","lastUpdated":null}'),n={name:"api/mp_math/point.md"},l=t("",36),h=[l];function p(e,k,r,o,d,g){return a(),i("div",null,h)}const c=s(n,[["render",p]]);export{y as __pageData,c as default};
diff --git a/assets/api_mp_math_point.md.JbQs_Fqs.lean.js b/assets/api_mp_math_point.md.JbQs_Fqs.lean.js
deleted file mode 100644
index 49c4530..0000000
--- a/assets/api_mp_math_point.md.JbQs_Fqs.lean.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as s,c as i,o as a,a4 as t}from"./chunks/framework.DpC1ZpOZ.js";const y=JSON.parse('{"title":"mbcp.mp_math.point","description":"","frontmatter":{"title":"mbcp.mp_math.point","editLink":false},"headers":[],"relativePath":"api/mp_math/point.md","filePath":"zh/api/mp_math/point.md","lastUpdated":null}'),n={name:"api/mp_math/point.md"},l=t("",36),h=[l];function p(e,k,r,o,d,g){return a(),i("div",null,h)}const c=s(n,[["render",p]]);export{y as __pageData,c as default};
diff --git a/assets/api_mp_math_segment.md.BkjsiFZK.lean.js b/assets/api_mp_math_segment.md.BkjsiFZK.lean.js
deleted file mode 100644
index 00f3cbb..0000000
--- a/assets/api_mp_math_segment.md.BkjsiFZK.lean.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const o=JSON.parse('{"title":"mbcp.mp_math.segment","description":"","frontmatter":{"title":"mbcp.mp_math.segment","editLink":false},"headers":[],"relativePath":"api/mp_math/segment.md","filePath":"zh/api/mp_math/segment.md","lastUpdated":null}'),t={name:"api/mp_math/segment.md"},p=n("",6),h=[p];function l(e,k,r,d,E,g){return a(),i("div",null,h)}const y=s(t,[["render",l]]);export{o as __pageData,y as default};
diff --git a/assets/api_mp_math_segment.md.BkjsiFZK.js b/assets/api_mp_math_segment.md.Ce2Drjt_.js
similarity index 70%
rename from assets/api_mp_math_segment.md.BkjsiFZK.js
rename to assets/api_mp_math_segment.md.Ce2Drjt_.js
index 87b0c19..24f904b 100644
--- a/assets/api_mp_math_segment.md.BkjsiFZK.js
+++ b/assets/api_mp_math_segment.md.Ce2Drjt_.js
@@ -1,4 +1,4 @@
-import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const o=JSON.parse('{"title":"mbcp.mp_math.segment","description":"","frontmatter":{"title":"mbcp.mp_math.segment","editLink":false},"headers":[],"relativePath":"api/mp_math/segment.md","filePath":"zh/api/mp_math/segment.md","lastUpdated":null}'),t={name:"api/mp_math/segment.md"},p=n(`

mbcp.mp_math.segment

说明: 本模块定义了三维空间中的线段类

class Segment3

def __init__(self, p1: Point3, p2: Point3)

说明: 三维空间中的线段。 :param p1: :param p2:

源代码在GitHub上查看
python
def __init__(self, p1: 'Point3', p2: 'Point3'):
+import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const o=JSON.parse('{"title":"mbcp.mp_math.segment","description":"","frontmatter":{"title":"mbcp.mp_math.segment"},"headers":[],"relativePath":"api/mp_math/segment.md","filePath":"zh/api/mp_math/segment.md","lastUpdated":null}'),t={name:"api/mp_math/segment.md"},p=n(`

mbcp.mp_math.segment

说明: 本模块定义了三维空间中的线段类

class Segment3

def __init__(self, p1: Point3, p2: Point3)

说明: 三维空间中的线段。 :param p1: :param p2:

源代码在GitHub上查看
python
def __init__(self, p1: 'Point3', p2: 'Point3'):
     """
         三维空间中的线段。
         :param p1:
diff --git a/assets/api_mp_math_segment.md.Ce2Drjt_.lean.js b/assets/api_mp_math_segment.md.Ce2Drjt_.lean.js
new file mode 100644
index 0000000..c52741b
--- /dev/null
+++ b/assets/api_mp_math_segment.md.Ce2Drjt_.lean.js
@@ -0,0 +1 @@
+import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const o=JSON.parse('{"title":"mbcp.mp_math.segment","description":"","frontmatter":{"title":"mbcp.mp_math.segment"},"headers":[],"relativePath":"api/mp_math/segment.md","filePath":"zh/api/mp_math/segment.md","lastUpdated":null}'),t={name:"api/mp_math/segment.md"},p=n("",6),h=[p];function l(e,k,r,d,E,g){return a(),i("div",null,h)}const y=s(t,[["render",l]]);export{o as __pageData,y as default};
diff --git a/assets/api_mp_math_utils.md.C-Gf-q7v.js b/assets/api_mp_math_utils.md.BLAIQYJV.js
similarity index 91%
rename from assets/api_mp_math_utils.md.C-Gf-q7v.js
rename to assets/api_mp_math_utils.md.BLAIQYJV.js
index 11927a9..3be20fa 100644
--- a/assets/api_mp_math_utils.md.C-Gf-q7v.js
+++ b/assets/api_mp_math_utils.md.BLAIQYJV.js
@@ -1,4 +1,4 @@
-import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const F=JSON.parse('{"title":"mbcp.mp_math.utils","description":"","frontmatter":{"title":"mbcp.mp_math.utils","editLink":false},"headers":[],"relativePath":"api/mp_math/utils.md","filePath":"zh/api/mp_math/utils.md","lastUpdated":null}'),t={name:"api/mp_math/utils.md"},l=n(`

mbcp.mp_math.utils

说明: 本模块定义了一些常用的工具函数

def clamp(x: float, min_: float, max_: float) -> float

说明: 区间限定函数

参数:

  • x: 待限定的值
  • min_: 最小值
  • max_: 最大值

返回: 限制后的值

源代码在GitHub上查看
python
def clamp(x: float, min_: float, max_: float) -> float:
+import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const F=JSON.parse('{"title":"mbcp.mp_math.utils","description":"","frontmatter":{"title":"mbcp.mp_math.utils"},"headers":[],"relativePath":"api/mp_math/utils.md","filePath":"zh/api/mp_math/utils.md","lastUpdated":null}'),t={name:"api/mp_math/utils.md"},l=n(`

mbcp.mp_math.utils

说明: 本模块定义了一些常用的工具函数

def clamp(x: float, min_: float, max_: float) -> float

说明: 区间限定函数

参数:

  • x: 待限定的值
  • min_: 最小值
  • max_: 最大值

返回: 限制后的值

源代码在GitHub上查看
python
def clamp(x: float, min_: float, max_: float) -> float:
     """
     区间限定函数
     Args:
diff --git a/assets/api_mp_math_utils.md.BLAIQYJV.lean.js b/assets/api_mp_math_utils.md.BLAIQYJV.lean.js
new file mode 100644
index 0000000..8fd5ec8
--- /dev/null
+++ b/assets/api_mp_math_utils.md.BLAIQYJV.lean.js
@@ -0,0 +1 @@
+import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const F=JSON.parse('{"title":"mbcp.mp_math.utils","description":"","frontmatter":{"title":"mbcp.mp_math.utils"},"headers":[],"relativePath":"api/mp_math/utils.md","filePath":"zh/api/mp_math/utils.md","lastUpdated":null}'),t={name:"api/mp_math/utils.md"},l=n("",35),h=[l];function p(e,k,r,d,o,g){return a(),i("div",null,h)}const E=s(t,[["render",p]]);export{F as __pageData,E as default};
diff --git a/assets/api_mp_math_utils.md.C-Gf-q7v.lean.js b/assets/api_mp_math_utils.md.C-Gf-q7v.lean.js
deleted file mode 100644
index eb7e6c0..0000000
--- a/assets/api_mp_math_utils.md.C-Gf-q7v.lean.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const F=JSON.parse('{"title":"mbcp.mp_math.utils","description":"","frontmatter":{"title":"mbcp.mp_math.utils","editLink":false},"headers":[],"relativePath":"api/mp_math/utils.md","filePath":"zh/api/mp_math/utils.md","lastUpdated":null}'),t={name:"api/mp_math/utils.md"},l=n("",35),h=[l];function p(e,k,r,d,o,g){return a(),i("div",null,h)}const E=s(t,[["render",p]]);export{F as __pageData,E as default};
diff --git a/assets/api_mp_math_vector.md.Bmeqjm-R.js b/assets/api_mp_math_vector.md.BCYHQW5q.js
similarity index 97%
rename from assets/api_mp_math_vector.md.Bmeqjm-R.js
rename to assets/api_mp_math_vector.md.BCYHQW5q.js
index eff7b51..6f671c6 100644
--- a/assets/api_mp_math_vector.md.Bmeqjm-R.js
+++ b/assets/api_mp_math_vector.md.BCYHQW5q.js
@@ -1,4 +1,4 @@
-import{_ as s,c as i,o as a,a4 as t}from"./chunks/framework.DpC1ZpOZ.js";const y=JSON.parse('{"title":"mbcp.mp_math.vector","description":"","frontmatter":{"title":"mbcp.mp_math.vector","editLink":false},"headers":[],"relativePath":"api/mp_math/vector.md","filePath":"zh/api/mp_math/vector.md","lastUpdated":null}'),n={name:"api/mp_math/vector.md"},h=t(`

mbcp.mp_math.vector

说明: 本模块定义了3维向量的类Vector3,以及一些常用的向量。

class Vector3

def __init__(self, x: float, y: float, z: float)

说明: 3维向量

参数:

  • x: x轴分量
  • y: y轴分量
  • z: z轴分量
源代码在GitHub上查看
python
def __init__(self, x: float, y: float, z: float):
+import{_ as s,c as i,o as a,a4 as t}from"./chunks/framework.DpC1ZpOZ.js";const y=JSON.parse('{"title":"mbcp.mp_math.vector","description":"","frontmatter":{"title":"mbcp.mp_math.vector"},"headers":[],"relativePath":"api/mp_math/vector.md","filePath":"zh/api/mp_math/vector.md","lastUpdated":null}'),n={name:"api/mp_math/vector.md"},h=t(`

mbcp.mp_math.vector

说明: 本模块定义了3维向量的类Vector3,以及一些常用的向量。

class Vector3

def __init__(self, x: float, y: float, z: float)

说明: 3维向量

参数:

  • x: x轴分量
  • y: y轴分量
  • z: z轴分量
源代码在GitHub上查看
python
def __init__(self, x: float, y: float, z: float):
     """
         3维向量
         Args:
diff --git a/assets/api_mp_math_vector.md.BCYHQW5q.lean.js b/assets/api_mp_math_vector.md.BCYHQW5q.lean.js
new file mode 100644
index 0000000..8357f85
--- /dev/null
+++ b/assets/api_mp_math_vector.md.BCYHQW5q.lean.js
@@ -0,0 +1 @@
+import{_ as s,c as i,o as a,a4 as t}from"./chunks/framework.DpC1ZpOZ.js";const y=JSON.parse('{"title":"mbcp.mp_math.vector","description":"","frontmatter":{"title":"mbcp.mp_math.vector"},"headers":[],"relativePath":"api/mp_math/vector.md","filePath":"zh/api/mp_math/vector.md","lastUpdated":null}'),n={name:"api/mp_math/vector.md"},h=t("",127),e=[h];function l(p,k,r,o,d,g){return a(),i("div",null,e)}const c=s(n,[["render",l]]);export{y as __pageData,c as default};
diff --git a/assets/api_mp_math_vector.md.Bmeqjm-R.lean.js b/assets/api_mp_math_vector.md.Bmeqjm-R.lean.js
deleted file mode 100644
index 51674d7..0000000
--- a/assets/api_mp_math_vector.md.Bmeqjm-R.lean.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as s,c as i,o as a,a4 as t}from"./chunks/framework.DpC1ZpOZ.js";const y=JSON.parse('{"title":"mbcp.mp_math.vector","description":"","frontmatter":{"title":"mbcp.mp_math.vector","editLink":false},"headers":[],"relativePath":"api/mp_math/vector.md","filePath":"zh/api/mp_math/vector.md","lastUpdated":null}'),n={name:"api/mp_math/vector.md"},h=t("",127),e=[h];function l(p,k,r,o,d,g){return a(),i("div",null,e)}const c=s(n,[["render",l]]);export{y as __pageData,c as default};
diff --git a/assets/api_particle_index.md.DpbhbZuY.js b/assets/api_particle_index.md.DpbhbZuY.js
new file mode 100644
index 0000000..a1345aa
--- /dev/null
+++ b/assets/api_particle_index.md.DpbhbZuY.js
@@ -0,0 +1 @@
+import{_ as a,c,o as r,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const x=JSON.parse('{"title":"mbcp.particle","description":"","frontmatter":{"title":"mbcp.particle","collapsed":true},"headers":[],"relativePath":"api/particle/index.md","filePath":"zh/api/particle/index.md","lastUpdated":null}'),i={name:"api/particle/index.md"},l=e("h1",{id:"mbcp-particle",tabindex:"-1"},[t("mbcp.particle "),e("a",{class:"header-anchor",href:"#mbcp-particle","aria-label":'Permalink to "mbcp.particle"'},"​")],-1),p=e("p",null,[e("strong",null,"说明"),t(": 本模块定义了粒子生成相关的工具")],-1),n=[l,p];function s(o,d,_,m,h,f){return r(),c("div",null,n)}const b=a(i,[["render",s]]);export{x as __pageData,b as default};
diff --git a/assets/api_particle_index.md.DpbhbZuY.lean.js b/assets/api_particle_index.md.DpbhbZuY.lean.js
new file mode 100644
index 0000000..a1345aa
--- /dev/null
+++ b/assets/api_particle_index.md.DpbhbZuY.lean.js
@@ -0,0 +1 @@
+import{_ as a,c,o as r,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const x=JSON.parse('{"title":"mbcp.particle","description":"","frontmatter":{"title":"mbcp.particle","collapsed":true},"headers":[],"relativePath":"api/particle/index.md","filePath":"zh/api/particle/index.md","lastUpdated":null}'),i={name:"api/particle/index.md"},l=e("h1",{id:"mbcp-particle",tabindex:"-1"},[t("mbcp.particle "),e("a",{class:"header-anchor",href:"#mbcp-particle","aria-label":'Permalink to "mbcp.particle"'},"​")],-1),p=e("p",null,[e("strong",null,"说明"),t(": 本模块定义了粒子生成相关的工具")],-1),n=[l,p];function s(o,d,_,m,h,f){return r(),c("div",null,n)}const b=a(i,[["render",s]]);export{x as __pageData,b as default};
diff --git a/assets/api_particle_index.md.elMkn6tv.js b/assets/api_particle_index.md.elMkn6tv.js
deleted file mode 100644
index 8d7e4fd..0000000
--- a/assets/api_particle_index.md.elMkn6tv.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as a,c,o as i,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const x=JSON.parse('{"title":"mbcp.particle","description":"","frontmatter":{"title":"mbcp.particle","editLink":false,"collapsed":true},"headers":[],"relativePath":"api/particle/index.md","filePath":"zh/api/particle/index.md","lastUpdated":null}'),r={name:"api/particle/index.md"},l=e("h1",{id:"mbcp-particle",tabindex:"-1"},[t("mbcp.particle "),e("a",{class:"header-anchor",href:"#mbcp-particle","aria-label":'Permalink to "mbcp.particle"'},"​")],-1),p=e("p",null,[e("strong",null,"说明"),t(": 本模块定义了粒子生成相关的工具")],-1),n=[l,p];function s(o,d,_,m,h,f){return i(),c("div",null,n)}const b=a(r,[["render",s]]);export{x as __pageData,b as default};
diff --git a/assets/api_particle_index.md.elMkn6tv.lean.js b/assets/api_particle_index.md.elMkn6tv.lean.js
deleted file mode 100644
index 8d7e4fd..0000000
--- a/assets/api_particle_index.md.elMkn6tv.lean.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as a,c,o as i,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const x=JSON.parse('{"title":"mbcp.particle","description":"","frontmatter":{"title":"mbcp.particle","editLink":false,"collapsed":true},"headers":[],"relativePath":"api/particle/index.md","filePath":"zh/api/particle/index.md","lastUpdated":null}'),r={name:"api/particle/index.md"},l=e("h1",{id:"mbcp-particle",tabindex:"-1"},[t("mbcp.particle "),e("a",{class:"header-anchor",href:"#mbcp-particle","aria-label":'Permalink to "mbcp.particle"'},"​")],-1),p=e("p",null,[e("strong",null,"说明"),t(": 本模块定义了粒子生成相关的工具")],-1),n=[l,p];function s(o,d,_,m,h,f){return i(),c("div",null,n)}const b=a(r,[["render",s]]);export{x as __pageData,b as default};
diff --git a/assets/api_particle_particle.md.Bpw0MV0e.js b/assets/api_particle_particle.md.Bpw0MV0e.js
new file mode 100644
index 0000000..c90b66a
--- /dev/null
+++ b/assets/api_particle_particle.md.Bpw0MV0e.js
@@ -0,0 +1 @@
+import{_ as a,c,o as r,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp.particle","description":"","frontmatter":{"title":"mbcp.particle","collapsed":true},"headers":[],"relativePath":"api/particle/particle.md","filePath":"zh/api/particle/particle.md","lastUpdated":null}'),l={name:"api/particle/particle.md"},p=e("h1",{id:"mbcp-particle",tabindex:"-1"},[t("mbcp.particle "),e("a",{class:"header-anchor",href:"#mbcp-particle","aria-label":'Permalink to "mbcp.particle"'},"​")],-1),i=e("p",null,[e("strong",null,"说明"),t(": 本模块定义了粒子生成相关的工具")],-1),s=[p,i];function o(n,d,_,m,h,f){return r(),c("div",null,s)}const x=a(l,[["render",o]]);export{b as __pageData,x as default};
diff --git a/assets/api_particle_particle.md.Bpw0MV0e.lean.js b/assets/api_particle_particle.md.Bpw0MV0e.lean.js
new file mode 100644
index 0000000..c90b66a
--- /dev/null
+++ b/assets/api_particle_particle.md.Bpw0MV0e.lean.js
@@ -0,0 +1 @@
+import{_ as a,c,o as r,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp.particle","description":"","frontmatter":{"title":"mbcp.particle","collapsed":true},"headers":[],"relativePath":"api/particle/particle.md","filePath":"zh/api/particle/particle.md","lastUpdated":null}'),l={name:"api/particle/particle.md"},p=e("h1",{id:"mbcp-particle",tabindex:"-1"},[t("mbcp.particle "),e("a",{class:"header-anchor",href:"#mbcp-particle","aria-label":'Permalink to "mbcp.particle"'},"​")],-1),i=e("p",null,[e("strong",null,"说明"),t(": 本模块定义了粒子生成相关的工具")],-1),s=[p,i];function o(n,d,_,m,h,f){return r(),c("div",null,s)}const x=a(l,[["render",o]]);export{b as __pageData,x as default};
diff --git a/assets/api_particle_particle.md.jeindv3k.js b/assets/api_particle_particle.md.jeindv3k.js
deleted file mode 100644
index 95b79bc..0000000
--- a/assets/api_particle_particle.md.jeindv3k.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as a,c,o as r,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp.particle","description":"","frontmatter":{"title":"mbcp.particle","editLink":false,"collapsed":true},"headers":[],"relativePath":"api/particle/particle.md","filePath":"zh/api/particle/particle.md","lastUpdated":null}'),l={name:"api/particle/particle.md"},i=e("h1",{id:"mbcp-particle",tabindex:"-1"},[t("mbcp.particle "),e("a",{class:"header-anchor",href:"#mbcp-particle","aria-label":'Permalink to "mbcp.particle"'},"​")],-1),p=e("p",null,[e("strong",null,"说明"),t(": 本模块定义了粒子生成相关的工具")],-1),s=[i,p];function o(n,d,_,m,h,f){return r(),c("div",null,s)}const x=a(l,[["render",o]]);export{b as __pageData,x as default};
diff --git a/assets/api_particle_particle.md.jeindv3k.lean.js b/assets/api_particle_particle.md.jeindv3k.lean.js
deleted file mode 100644
index 95b79bc..0000000
--- a/assets/api_particle_particle.md.jeindv3k.lean.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as a,c,o as r,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp.particle","description":"","frontmatter":{"title":"mbcp.particle","editLink":false,"collapsed":true},"headers":[],"relativePath":"api/particle/particle.md","filePath":"zh/api/particle/particle.md","lastUpdated":null}'),l={name:"api/particle/particle.md"},i=e("h1",{id:"mbcp-particle",tabindex:"-1"},[t("mbcp.particle "),e("a",{class:"header-anchor",href:"#mbcp-particle","aria-label":'Permalink to "mbcp.particle"'},"​")],-1),p=e("p",null,[e("strong",null,"说明"),t(": 本模块定义了粒子生成相关的工具")],-1),s=[i,p];function o(n,d,_,m,h,f){return r(),c("div",null,s)}const x=a(l,[["render",o]]);export{b as __pageData,x as default};
diff --git a/assets/api_presets_index.md.CrTHQDyB.js b/assets/api_presets_index.md.CrTHQDyB.js
new file mode 100644
index 0000000..3c2d063
--- /dev/null
+++ b/assets/api_presets_index.md.CrTHQDyB.js
@@ -0,0 +1 @@
+import{_ as s,c as a,o,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp.presets","description":"","frontmatter":{"title":"mbcp.presets","collapsed":true},"headers":[],"relativePath":"api/presets/index.md","filePath":"zh/api/presets/index.md","lastUpdated":null}'),r={name:"api/presets/index.md"},i=e("h1",{id:"mbcp-presets",tabindex:"-1"},[t("mbcp.presets "),e("a",{class:"header-anchor",href:"#mbcp-presets","aria-label":'Permalink to "mbcp.presets"'},"​")],-1),n=e("p",null,[e("strong",null,"说明"),t(": Copyright (C) 2020-2024 LiteyukiStudio. All Rights Reserved")],-1),l=e("p",null,[t("@Time : 2024/8/12 下午9:12 @Author : snowykami @Email : "),e("a",{href:"mailto:snowykami@outlook.com",target:"_blank",rel:"noreferrer"},"snowykami@outlook.com"),t(" @File : "),e("strong",null,"init"),t(".py @Software: PyCharm")],-1),p=[i,n,l];function c(d,m,_,h,u,f){return o(),a("div",null,p)}const x=s(r,[["render",c]]);export{b as __pageData,x as default};
diff --git a/assets/api_presets_index.md.CrTHQDyB.lean.js b/assets/api_presets_index.md.CrTHQDyB.lean.js
new file mode 100644
index 0000000..3c2d063
--- /dev/null
+++ b/assets/api_presets_index.md.CrTHQDyB.lean.js
@@ -0,0 +1 @@
+import{_ as s,c as a,o,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp.presets","description":"","frontmatter":{"title":"mbcp.presets","collapsed":true},"headers":[],"relativePath":"api/presets/index.md","filePath":"zh/api/presets/index.md","lastUpdated":null}'),r={name:"api/presets/index.md"},i=e("h1",{id:"mbcp-presets",tabindex:"-1"},[t("mbcp.presets "),e("a",{class:"header-anchor",href:"#mbcp-presets","aria-label":'Permalink to "mbcp.presets"'},"​")],-1),n=e("p",null,[e("strong",null,"说明"),t(": Copyright (C) 2020-2024 LiteyukiStudio. All Rights Reserved")],-1),l=e("p",null,[t("@Time : 2024/8/12 下午9:12 @Author : snowykami @Email : "),e("a",{href:"mailto:snowykami@outlook.com",target:"_blank",rel:"noreferrer"},"snowykami@outlook.com"),t(" @File : "),e("strong",null,"init"),t(".py @Software: PyCharm")],-1),p=[i,n,l];function c(d,m,_,h,u,f){return o(),a("div",null,p)}const x=s(r,[["render",c]]);export{b as __pageData,x as default};
diff --git a/assets/api_presets_index.md.DAns7uVy.js b/assets/api_presets_index.md.DAns7uVy.js
deleted file mode 100644
index d15e749..0000000
--- a/assets/api_presets_index.md.DAns7uVy.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as s,c as a,o,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp.presets","description":"","frontmatter":{"title":"mbcp.presets","editLink":false,"collapsed":true},"headers":[],"relativePath":"api/presets/index.md","filePath":"zh/api/presets/index.md","lastUpdated":null}'),r={name:"api/presets/index.md"},i=e("h1",{id:"mbcp-presets",tabindex:"-1"},[t("mbcp.presets "),e("a",{class:"header-anchor",href:"#mbcp-presets","aria-label":'Permalink to "mbcp.presets"'},"​")],-1),n=e("p",null,[e("strong",null,"说明"),t(": Copyright (C) 2020-2024 LiteyukiStudio. All Rights Reserved")],-1),l=e("p",null,[t("@Time : 2024/8/12 下午9:12 @Author : snowykami @Email : "),e("a",{href:"mailto:snowykami@outlook.com",target:"_blank",rel:"noreferrer"},"snowykami@outlook.com"),t(" @File : "),e("strong",null,"init"),t(".py @Software: PyCharm")],-1),p=[i,n,l];function c(d,m,_,h,u,f){return o(),a("div",null,p)}const x=s(r,[["render",c]]);export{b as __pageData,x as default};
diff --git a/assets/api_presets_index.md.DAns7uVy.lean.js b/assets/api_presets_index.md.DAns7uVy.lean.js
deleted file mode 100644
index d15e749..0000000
--- a/assets/api_presets_index.md.DAns7uVy.lean.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as s,c as a,o,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp.presets","description":"","frontmatter":{"title":"mbcp.presets","editLink":false,"collapsed":true},"headers":[],"relativePath":"api/presets/index.md","filePath":"zh/api/presets/index.md","lastUpdated":null}'),r={name:"api/presets/index.md"},i=e("h1",{id:"mbcp-presets",tabindex:"-1"},[t("mbcp.presets "),e("a",{class:"header-anchor",href:"#mbcp-presets","aria-label":'Permalink to "mbcp.presets"'},"​")],-1),n=e("p",null,[e("strong",null,"说明"),t(": Copyright (C) 2020-2024 LiteyukiStudio. All Rights Reserved")],-1),l=e("p",null,[t("@Time : 2024/8/12 下午9:12 @Author : snowykami @Email : "),e("a",{href:"mailto:snowykami@outlook.com",target:"_blank",rel:"noreferrer"},"snowykami@outlook.com"),t(" @File : "),e("strong",null,"init"),t(".py @Software: PyCharm")],-1),p=[i,n,l];function c(d,m,_,h,u,f){return o(),a("div",null,p)}const x=s(r,[["render",c]]);export{b as __pageData,x as default};
diff --git a/assets/api_presets_model_index.md.BV3cglvI.lean.js b/assets/api_presets_model_index.md.BV3cglvI.lean.js
deleted file mode 100644
index 31abb05..0000000
--- a/assets/api_presets_model_index.md.BV3cglvI.lean.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const o=JSON.parse('{"title":"mbcp.presets.model","description":"","frontmatter":{"title":"mbcp.presets.model","editLink":false,"collapsed":true},"headers":[],"relativePath":"api/presets/model/index.md","filePath":"zh/api/presets/model/index.md","lastUpdated":null}'),t={name:"api/presets/model/index.md"},h=n("",10),l=[h];function p(k,e,r,d,E,g){return a(),i("div",null,l)}const c=s(t,[["render",p]]);export{o as __pageData,c as default};
diff --git a/assets/api_presets_model_index.md.BV3cglvI.js b/assets/api_presets_model_index.md.DYX4VzQJ.js
similarity index 79%
rename from assets/api_presets_model_index.md.BV3cglvI.js
rename to assets/api_presets_model_index.md.DYX4VzQJ.js
index 588a83e..1008c0f 100644
--- a/assets/api_presets_model_index.md.BV3cglvI.js
+++ b/assets/api_presets_model_index.md.DYX4VzQJ.js
@@ -1,4 +1,4 @@
-import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const o=JSON.parse('{"title":"mbcp.presets.model","description":"","frontmatter":{"title":"mbcp.presets.model","editLink":false,"collapsed":true},"headers":[],"relativePath":"api/presets/model/index.md","filePath":"zh/api/presets/model/index.md","lastUpdated":null}'),t={name:"api/presets/model/index.md"},h=n(`

mbcp.presets.model

说明: 几何模型点集

class GeometricModels

@staticmethod

def sphere(radius: float, density: float)

说明: 生成球体上的点集。

参数:

  • radius:
  • density:

返回: List[Point3]: 球体上的点集。

源代码在GitHub上查看
python
@staticmethod
+import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const o=JSON.parse('{"title":"mbcp.presets.model","description":"","frontmatter":{"title":"mbcp.presets.model","collapsed":true},"headers":[],"relativePath":"api/presets/model/index.md","filePath":"zh/api/presets/model/index.md","lastUpdated":null}'),t={name:"api/presets/model/index.md"},h=n(`

mbcp.presets.model

说明: 几何模型点集

class GeometricModels

@staticmethod

def sphere(radius: float, density: float)

说明: 生成球体上的点集。

参数:

  • radius:
  • density:

返回: List[Point3]: 球体上的点集。

源代码在GitHub上查看
python
@staticmethod
 def sphere(radius: float, density: float):
     """
         生成球体上的点集。
diff --git a/assets/api_presets_model_index.md.DYX4VzQJ.lean.js b/assets/api_presets_model_index.md.DYX4VzQJ.lean.js
new file mode 100644
index 0000000..8b68b1c
--- /dev/null
+++ b/assets/api_presets_model_index.md.DYX4VzQJ.lean.js
@@ -0,0 +1 @@
+import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const o=JSON.parse('{"title":"mbcp.presets.model","description":"","frontmatter":{"title":"mbcp.presets.model","collapsed":true},"headers":[],"relativePath":"api/presets/model/index.md","filePath":"zh/api/presets/model/index.md","lastUpdated":null}'),t={name:"api/presets/model/index.md"},h=n("",10),l=[h];function p(k,e,r,d,E,g){return a(),i("div",null,l)}const c=s(t,[["render",p]]);export{o as __pageData,c as default};
diff --git a/assets/api_presets_model_model.md.CkT5A2Vx.lean.js b/assets/api_presets_model_model.md.CkT5A2Vx.lean.js
deleted file mode 100644
index 4c97064..0000000
--- a/assets/api_presets_model_model.md.CkT5A2Vx.lean.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const y=JSON.parse('{"title":"mbcp.presets.model","description":"","frontmatter":{"title":"mbcp.presets.model","editLink":false,"collapsed":true},"headers":[],"relativePath":"api/presets/model/model.md","filePath":"zh/api/presets/model/model.md","lastUpdated":null}'),t={name:"api/presets/model/model.md"},h=n("",10),l=[h];function p(k,e,r,d,E,o){return a(),i("div",null,l)}const c=s(t,[["render",p]]);export{y as __pageData,c as default};
diff --git a/assets/api_presets_model_model.md.CkT5A2Vx.js b/assets/api_presets_model_model.md.DNXALr2n.js
similarity index 79%
rename from assets/api_presets_model_model.md.CkT5A2Vx.js
rename to assets/api_presets_model_model.md.DNXALr2n.js
index 5813416..a68a3e7 100644
--- a/assets/api_presets_model_model.md.CkT5A2Vx.js
+++ b/assets/api_presets_model_model.md.DNXALr2n.js
@@ -1,4 +1,4 @@
-import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const y=JSON.parse('{"title":"mbcp.presets.model","description":"","frontmatter":{"title":"mbcp.presets.model","editLink":false,"collapsed":true},"headers":[],"relativePath":"api/presets/model/model.md","filePath":"zh/api/presets/model/model.md","lastUpdated":null}'),t={name:"api/presets/model/model.md"},h=n(`

mbcp.presets.model

说明: 几何模型点集

class GeometricModels

@staticmethod

def sphere(radius: float, density: float)

说明: 生成球体上的点集。

参数:

  • radius:
  • density:

返回: List[Point3]: 球体上的点集。

源代码在GitHub上查看
python
@staticmethod
+import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const y=JSON.parse('{"title":"mbcp.presets.model","description":"","frontmatter":{"title":"mbcp.presets.model","collapsed":true},"headers":[],"relativePath":"api/presets/model/model.md","filePath":"zh/api/presets/model/model.md","lastUpdated":null}'),t={name:"api/presets/model/model.md"},h=n(`

mbcp.presets.model

说明: 几何模型点集

class GeometricModels

@staticmethod

def sphere(radius: float, density: float)

说明: 生成球体上的点集。

参数:

  • radius:
  • density:

返回: List[Point3]: 球体上的点集。

源代码在GitHub上查看
python
@staticmethod
 def sphere(radius: float, density: float):
     """
         生成球体上的点集。
diff --git a/assets/api_presets_model_model.md.DNXALr2n.lean.js b/assets/api_presets_model_model.md.DNXALr2n.lean.js
new file mode 100644
index 0000000..82c5281
--- /dev/null
+++ b/assets/api_presets_model_model.md.DNXALr2n.lean.js
@@ -0,0 +1 @@
+import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const y=JSON.parse('{"title":"mbcp.presets.model","description":"","frontmatter":{"title":"mbcp.presets.model","collapsed":true},"headers":[],"relativePath":"api/presets/model/model.md","filePath":"zh/api/presets/model/model.md","lastUpdated":null}'),t={name:"api/presets/model/model.md"},h=n("",10),l=[h];function p(k,e,r,d,E,o){return a(),i("div",null,l)}const c=s(t,[["render",p]]);export{y as __pageData,c as default};
diff --git a/assets/api_presets_presets.md.D3vtk8sc.js b/assets/api_presets_presets.md.D3vtk8sc.js
new file mode 100644
index 0000000..0e1cccb
--- /dev/null
+++ b/assets/api_presets_presets.md.D3vtk8sc.js
@@ -0,0 +1 @@
+import{_ as s,c as r,o as a,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp.presets","description":"","frontmatter":{"title":"mbcp.presets","collapsed":true},"headers":[],"relativePath":"api/presets/presets.md","filePath":"zh/api/presets/presets.md","lastUpdated":null}'),o={name:"api/presets/presets.md"},p=e("h1",{id:"mbcp-presets",tabindex:"-1"},[t("mbcp.presets "),e("a",{class:"header-anchor",href:"#mbcp-presets","aria-label":'Permalink to "mbcp.presets"'},"​")],-1),i=e("p",null,[e("strong",null,"说明"),t(": Copyright (C) 2020-2024 LiteyukiStudio. All Rights Reserved")],-1),l=e("p",null,[t("@Time : 2024/8/12 下午9:12 @Author : snowykami @Email : "),e("a",{href:"mailto:snowykami@outlook.com",target:"_blank",rel:"noreferrer"},"snowykami@outlook.com"),t(" @File : "),e("strong",null,"init"),t(".py @Software: PyCharm")],-1),n=[p,i,l];function c(m,d,_,h,u,f){return a(),r("div",null,n)}const y=s(o,[["render",c]]);export{b as __pageData,y as default};
diff --git a/assets/api_presets_presets.md.D3vtk8sc.lean.js b/assets/api_presets_presets.md.D3vtk8sc.lean.js
new file mode 100644
index 0000000..0e1cccb
--- /dev/null
+++ b/assets/api_presets_presets.md.D3vtk8sc.lean.js
@@ -0,0 +1 @@
+import{_ as s,c as r,o as a,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp.presets","description":"","frontmatter":{"title":"mbcp.presets","collapsed":true},"headers":[],"relativePath":"api/presets/presets.md","filePath":"zh/api/presets/presets.md","lastUpdated":null}'),o={name:"api/presets/presets.md"},p=e("h1",{id:"mbcp-presets",tabindex:"-1"},[t("mbcp.presets "),e("a",{class:"header-anchor",href:"#mbcp-presets","aria-label":'Permalink to "mbcp.presets"'},"​")],-1),i=e("p",null,[e("strong",null,"说明"),t(": Copyright (C) 2020-2024 LiteyukiStudio. All Rights Reserved")],-1),l=e("p",null,[t("@Time : 2024/8/12 下午9:12 @Author : snowykami @Email : "),e("a",{href:"mailto:snowykami@outlook.com",target:"_blank",rel:"noreferrer"},"snowykami@outlook.com"),t(" @File : "),e("strong",null,"init"),t(".py @Software: PyCharm")],-1),n=[p,i,l];function c(m,d,_,h,u,f){return a(),r("div",null,n)}const y=s(o,[["render",c]]);export{b as __pageData,y as default};
diff --git a/assets/api_presets_presets.md.DKvfMdjr.js b/assets/api_presets_presets.md.DKvfMdjr.js
deleted file mode 100644
index c73b945..0000000
--- a/assets/api_presets_presets.md.DKvfMdjr.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as s,c as r,o as a,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp.presets","description":"","frontmatter":{"title":"mbcp.presets","editLink":false,"collapsed":true},"headers":[],"relativePath":"api/presets/presets.md","filePath":"zh/api/presets/presets.md","lastUpdated":null}'),o={name:"api/presets/presets.md"},p=e("h1",{id:"mbcp-presets",tabindex:"-1"},[t("mbcp.presets "),e("a",{class:"header-anchor",href:"#mbcp-presets","aria-label":'Permalink to "mbcp.presets"'},"​")],-1),i=e("p",null,[e("strong",null,"说明"),t(": Copyright (C) 2020-2024 LiteyukiStudio. All Rights Reserved")],-1),l=e("p",null,[t("@Time : 2024/8/12 下午9:12 @Author : snowykami @Email : "),e("a",{href:"mailto:snowykami@outlook.com",target:"_blank",rel:"noreferrer"},"snowykami@outlook.com"),t(" @File : "),e("strong",null,"init"),t(".py @Software: PyCharm")],-1),n=[p,i,l];function c(d,m,_,h,u,f){return a(),r("div",null,n)}const y=s(o,[["render",c]]);export{b as __pageData,y as default};
diff --git a/assets/api_presets_presets.md.DKvfMdjr.lean.js b/assets/api_presets_presets.md.DKvfMdjr.lean.js
deleted file mode 100644
index c73b945..0000000
--- a/assets/api_presets_presets.md.DKvfMdjr.lean.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as s,c as r,o as a,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp.presets","description":"","frontmatter":{"title":"mbcp.presets","editLink":false,"collapsed":true},"headers":[],"relativePath":"api/presets/presets.md","filePath":"zh/api/presets/presets.md","lastUpdated":null}'),o={name:"api/presets/presets.md"},p=e("h1",{id:"mbcp-presets",tabindex:"-1"},[t("mbcp.presets "),e("a",{class:"header-anchor",href:"#mbcp-presets","aria-label":'Permalink to "mbcp.presets"'},"​")],-1),i=e("p",null,[e("strong",null,"说明"),t(": Copyright (C) 2020-2024 LiteyukiStudio. All Rights Reserved")],-1),l=e("p",null,[t("@Time : 2024/8/12 下午9:12 @Author : snowykami @Email : "),e("a",{href:"mailto:snowykami@outlook.com",target:"_blank",rel:"noreferrer"},"snowykami@outlook.com"),t(" @File : "),e("strong",null,"init"),t(".py @Software: PyCharm")],-1),n=[p,i,l];function c(d,m,_,h,u,f){return a(),r("div",null,n)}const y=s(o,[["render",c]]);export{b as __pageData,y as default};
diff --git a/assets/app.Cz-vVA-m.js b/assets/app.CHPdwxJh.js
similarity index 95%
rename from assets/app.Cz-vVA-m.js
rename to assets/app.CHPdwxJh.js
index 238b874..363d004 100644
--- a/assets/app.Cz-vVA-m.js
+++ b/assets/app.CHPdwxJh.js
@@ -1 +1 @@
-import{t as p}from"./chunks/theme.BH7CkR6t.js";import{U as o,a5 as u,a6 as c,a7 as l,a8 as f,a9 as d,aa as m,ab as h,ac as g,ad as A,ae as y,d as P,u as v,y as C,x as b,af as w,ag as E,ah as R,ai as S}from"./chunks/framework.DpC1ZpOZ.js";function i(e){if(e.extends){const a=i(e.extends);return{...a,...e,async enhanceApp(t){a.enhanceApp&&await a.enhanceApp(t),e.enhanceApp&&await e.enhanceApp(t)}}}return e}const s=i(p),T=P({name:"VitePressApp",setup(){const{site:e,lang:a,dir:t}=v();return C(()=>{b(()=>{document.documentElement.lang=a.value,document.documentElement.dir=t.value})}),e.value.router.prefetchLinks&&w(),E(),R(),s.setup&&s.setup(),()=>S(s.Layout)}});async function x(){globalThis.__VITEPRESS__=!0;const e=_(),a=D();a.provide(c,e);const t=l(e.route);return a.provide(f,t),a.component("Content",d),a.component("ClientOnly",m),Object.defineProperties(a.config.globalProperties,{$frontmatter:{get(){return t.frontmatter.value}},$params:{get(){return t.page.value.params}}}),s.enhanceApp&&await s.enhanceApp({app:a,router:e,siteData:h}),{app:a,router:e,data:t}}function D(){return g(T)}function _(){let e=o,a;return A(t=>{let n=y(t),r=null;return n&&(e&&(a=n),(e||a===n)&&(n=n.replace(/\.js$/,".lean.js")),r=import(n)),o&&(e=!1),r},s.NotFound)}o&&x().then(({app:e,router:a,data:t})=>{a.go().then(()=>{u(a.route,t.site),e.mount("#app")})});export{x as createApp};
+import{t as p}from"./chunks/theme.B1OYTEE9.js";import{U as o,a5 as u,a6 as c,a7 as l,a8 as f,a9 as d,aa as m,ab as h,ac as g,ad as A,ae as y,d as P,u as v,y as C,x as b,af as w,ag as E,ah as R,ai as S}from"./chunks/framework.DpC1ZpOZ.js";function i(e){if(e.extends){const a=i(e.extends);return{...a,...e,async enhanceApp(t){a.enhanceApp&&await a.enhanceApp(t),e.enhanceApp&&await e.enhanceApp(t)}}}return e}const s=i(p),T=P({name:"VitePressApp",setup(){const{site:e,lang:a,dir:t}=v();return C(()=>{b(()=>{document.documentElement.lang=a.value,document.documentElement.dir=t.value})}),e.value.router.prefetchLinks&&w(),E(),R(),s.setup&&s.setup(),()=>S(s.Layout)}});async function x(){globalThis.__VITEPRESS__=!0;const e=_(),a=D();a.provide(c,e);const t=l(e.route);return a.provide(f,t),a.component("Content",d),a.component("ClientOnly",m),Object.defineProperties(a.config.globalProperties,{$frontmatter:{get(){return t.frontmatter.value}},$params:{get(){return t.page.value.params}}}),s.enhanceApp&&await s.enhanceApp({app:a,router:e,siteData:h}),{app:a,router:e,data:t}}function D(){return g(T)}function _(){let e=o,a;return A(t=>{let n=y(t),r=null;return n&&(e&&(a=n),(e||a===n)&&(n=n.replace(/\.js$/,".lean.js")),r=import(n)),o&&(e=!1),r},s.NotFound)}o&&x().then(({app:e,router:a,data:t})=>{a.go().then(()=>{u(a.route,t.site),e.mount("#app")})});export{x as createApp};
diff --git a/assets/chunks/@localSearchIndexen.BxNVpPSn.js b/assets/chunks/@localSearchIndexen.BxNVpPSn.js
new file mode 100644
index 0000000..5bb9cb3
--- /dev/null
+++ b/assets/chunks/@localSearchIndexen.BxNVpPSn.js
@@ -0,0 +1 @@
+const t='{"documentCount":165,"nextId":165,"documentIds":{"0":"/en/api/api.html#mbcp","1":"/en/api/#mbcp","2":"/en/api/mp_math/angle.html#mbcp-mp-math-angle","3":"/en/api/mp_math/angle.html#class-angle","4":"/en/api/mp_math/angle.html#class-anyangle-angle","5":"/en/api/mp_math/angle.html#def-init-self-value-float-is-radian-bool-false","6":"/en/api/mp_math/angle.html#def-complementary-self-anyangle","7":"/en/api/mp_math/angle.html#def-supplementary-self-anyangle","8":"/en/api/mp_math/angle.html#def-degree-self-float","9":"/en/api/mp_math/angle.html#def-minimum-positive-self-anyangle","10":"/en/api/mp_math/angle.html#def-maximum-negative-self-anyangle","11":"/en/api/mp_math/angle.html#def-sin-self-float","12":"/en/api/mp_math/angle.html#def-cos-self-float","13":"/en/api/mp_math/angle.html#def-tan-self-float","14":"/en/api/mp_math/angle.html#def-cot-self-float","15":"/en/api/mp_math/angle.html#def-sec-self-float","16":"/en/api/mp_math/angle.html#def-csc-self-float","17":"/en/api/mp_math/angle.html#def-self-other-anyangle-anyangle","18":"/en/api/mp_math/angle.html#def-eq-self-other","19":"/en/api/mp_math/angle.html#def-self-other-anyangle-anyangle-1","20":"/en/api/mp_math/angle.html#def-self-other-float-anyangle","21":"/en/api/mp_math/angle.html#def-self-other-float-anyangle-1","22":"/en/api/mp_math/angle.html#def-self-other-anyangle-float","23":"/en/api/mp_math/angle.html#def-self-other","24":"/en/api/mp_math/const.html#mbcp-mp-math-const","25":"/en/api/mp_math/const.html#var-pi-math-pi","26":"/en/api/mp_math/const.html#var-e-math-e","27":"/en/api/mp_math/const.html#var-golden-ratio-1-math-sqrt-5-2","28":"/en/api/mp_math/const.html#var-gamma-0-5772156649015329","29":"/en/api/mp_math/const.html#var-epsilon-0-0001","30":"/en/api/mp_math/const.html#var-approx-0-001","31":"/en/api/mp_math/equation.html#mbcp-mp-math-equation","32":"/en/api/mp_math/equation.html#class-curveequation","33":"/en/api/mp_math/equation.html#def-init-self-x-func-onevarfunc-y-func-onevarfunc-z-func-onevarfunc","34":"/en/api/mp_math/equation.html#def-call-self-t-var-point3-tuple-point3","35":"/en/api/mp_math/equation.html#def-get-partial-derivative-func-func-multivarsfunc-var-int-tuple-int-epsilon-number-epsilon-multivarsfunc","36":"/en/api/mp_math/function.html#mbcp-mp-math-function","37":"/en/api/mp_math/function.html#def-cal-gradient-3vf-func-threesinglevarsfunc-p-point3-epsilon-float-epsilon-vector3","38":"/en/api/mp_math/function.html#def-curry-func-multivarsfunc-args-var-onevarfunc","39":"/en/api/mp_math/#mbcp-mp-math","40":"/en/api/mp_math/line.html#mbcp-mp-math-line","41":"/en/api/mp_math/line.html#class-line3","42":"/en/api/mp_math/line.html#def-init-self-point-point3-direction-vector3","43":"/en/api/mp_math/line.html#def-approx-self-other-line3-epsilon-float-approx-bool","44":"/en/api/mp_math/line.html#def-cal-angle-self-other-line3-anyangle","45":"/en/api/mp_math/line.html#def-cal-distance-self-other-line3-point3-float","46":"/en/api/mp_math/line.html#def-cal-intersection-self-other-line3-point3","47":"/en/api/mp_math/line.html#def-cal-perpendicular-self-point-point3-line3","48":"/en/api/mp_math/line.html#def-get-point-self-t-realnumber-point3","49":"/en/api/mp_math/line.html#def-get-parametric-equations-self-tuple-onesinglevarfunc-onesinglevarfunc-onesinglevarfunc","50":"/en/api/mp_math/line.html#def-is-approx-parallel-self-other-line3-epsilon-float-1e-06-bool","51":"/en/api/mp_math/line.html#def-is-parallel-self-other-line3-bool","52":"/en/api/mp_math/line.html#def-is-collinear-self-other-line3-bool","53":"/en/api/mp_math/line.html#def-is-point-on-self-point-point3-bool","54":"/en/api/mp_math/line.html#def-is-coplanar-self-other-line3-bool","55":"/en/api/mp_math/line.html#def-simplify-self","56":"/en/api/mp_math/line.html#def-from-two-points-cls-p1-point3-p2-point3-line3","57":"/en/api/mp_math/line.html#def-and-self-other-line3-line3-point3-none","58":"/en/api/mp_math/line.html#def-eq-self-other-bool","59":"/en/api/mp_math/mp_math.html#mbcp-mp-math","60":"/en/api/mp_math/mp_math_typing.html#mbcp-mp-math-mp-math-typing","61":"/en/api/mp_math/mp_math_typing.html#var-realnumber-int-float","62":"/en/api/mp_math/mp_math_typing.html#var-number-realnumber-complex","63":"/en/api/mp_math/mp_math_typing.html#var-singlevar-typevar-singlevar-bound-number","64":"/en/api/mp_math/mp_math_typing.html#var-arrayvar-typevar-arrayvar-bound-iterable-number","65":"/en/api/mp_math/mp_math_typing.html#var-var-singlevar-arrayvar","66":"/en/api/mp_math/mp_math_typing.html#var-onesinglevarfunc-callable-singlevar-singlevar","67":"/en/api/mp_math/mp_math_typing.html#var-onearrayfunc-callable-arrayvar-arrayvar","68":"/en/api/mp_math/mp_math_typing.html#var-onevarfunc-onesinglevarfunc-onearrayfunc","69":"/en/api/mp_math/mp_math_typing.html#var-twosinglevarsfunc-callable-singlevar-singlevar-singlevar","70":"/en/api/mp_math/mp_math_typing.html#var-twoarraysfunc-callable-arrayvar-arrayvar-arrayvar","71":"/en/api/mp_math/mp_math_typing.html#var-twovarsfunc-twosinglevarsfunc-twoarraysfunc","72":"/en/api/mp_math/mp_math_typing.html#var-threesinglevarsfunc-callable-singlevar-singlevar-singlevar-singlevar","73":"/en/api/mp_math/mp_math_typing.html#var-threearraysfunc-callable-arrayvar-arrayvar-arrayvar-arrayvar","74":"/en/api/mp_math/mp_math_typing.html#var-threevarsfunc-threesinglevarsfunc-threearraysfunc","75":"/en/api/mp_math/mp_math_typing.html#var-multisinglevarsfunc-callable-singlevar","76":"/en/api/mp_math/mp_math_typing.html#var-multiarraysfunc-callable-arrayvar","77":"/en/api/mp_math/mp_math_typing.html#var-multivarsfunc-multisinglevarsfunc-multiarraysfunc","78":"/en/api/mp_math/plane.html#mbcp-mp-math-plane","79":"/en/api/mp_math/plane.html#class-plane3","80":"/en/api/mp_math/plane.html#def-init-self-a-float-b-float-c-float-d-float","81":"/en/api/mp_math/plane.html#def-approx-self-other-plane3-bool","82":"/en/api/mp_math/plane.html#def-cal-angle-self-other-line3-plane3-anyangle","83":"/en/api/mp_math/plane.html#def-cal-distance-self-other-plane3-point3-float","84":"/en/api/mp_math/plane.html#def-cal-intersection-line3-self-other-plane3-line3","85":"/en/api/mp_math/plane.html#def-cal-intersection-point3-self-other-line3-point3","86":"/en/api/mp_math/plane.html#def-cal-parallel-plane3-self-point-point3-plane3","87":"/en/api/mp_math/plane.html#def-is-parallel-self-other-plane3-bool","88":"/en/api/mp_math/plane.html#def-normal-self-vector3","89":"/en/api/mp_math/plane.html#def-from-point-and-normal-cls-point-point3-normal-vector3-plane3","90":"/en/api/mp_math/plane.html#def-from-three-points-cls-p1-point3-p2-point3-p3-point3-plane3","91":"/en/api/mp_math/plane.html#def-from-two-lines-cls-l1-line3-l2-line3-plane3","92":"/en/api/mp_math/plane.html#def-from-point-and-line-cls-point-point3-line-line3-plane3","93":"/en/api/mp_math/plane.html#def-and-self-other-line3-point3-none","94":"/en/api/mp_math/plane.html#def-and-self-other-plane3-line3-none","95":"/en/api/mp_math/plane.html#def-and-self-other","96":"/en/api/mp_math/plane.html#def-eq-self-other-bool","97":"/en/api/mp_math/plane.html#def-rand-self-other-line3-point3","98":"/en/api/mp_math/point.html#mbcp-mp-math-point","99":"/en/api/mp_math/point.html#class-point3","100":"/en/api/mp_math/point.html#def-init-self-x-float-y-float-z-float","101":"/en/api/mp_math/point.html#def-approx-self-other-point3-epsilon-float-approx-bool","102":"/en/api/mp_math/point.html#def-self-other-vector3-point3","103":"/en/api/mp_math/point.html#def-self-other-point3-point3","104":"/en/api/mp_math/point.html#def-self-other","105":"/en/api/mp_math/point.html#def-eq-self-other","106":"/en/api/mp_math/point.html#def-self-other-point3-vector3","107":"/en/api/mp_math/segment.html#mbcp-mp-math-segment","108":"/en/api/mp_math/segment.html#class-segment3","109":"/en/api/mp_math/segment.html#def-init-self-p1-point3-p2-point3","110":"/en/api/mp_math/utils.html#mbcp-mp-math-utils","111":"/en/api/mp_math/utils.html#def-clamp-x-float-min-float-max-float-float","112":"/en/api/mp_math/utils.html#class-approx","113":"/en/api/mp_math/utils.html#def-init-self-value-realnumber","114":"/en/api/mp_math/utils.html#def-eq-self-other","115":"/en/api/mp_math/utils.html#def-raise-type-error-self-other","116":"/en/api/mp_math/utils.html#def-ne-self-other","117":"/en/api/mp_math/utils.html#def-approx-x-float-y-float-0-0-epsilon-float-approx-bool","118":"/en/api/mp_math/utils.html#def-sign-x-float-only-neg-bool-false-str","119":"/en/api/mp_math/utils.html#def-sign-format-x-float-only-neg-bool-false-str","120":"/en/api/particle/#mbcp-particle","121":"/en/api/mp_math/vector.html#mbcp-mp-math-vector","122":"/en/api/mp_math/vector.html#class-vector3","123":"/en/api/mp_math/vector.html#def-init-self-x-float-y-float-z-float","124":"/en/api/mp_math/vector.html#def-approx-self-other-vector3-epsilon-float-approx-bool","125":"/en/api/mp_math/vector.html#def-cal-angle-self-other-vector3-anyangle","126":"/en/api/mp_math/vector.html#def-cross-self-other-vector3-vector3","127":"/en/api/mp_math/vector.html#def-is-approx-parallel-self-other-vector3-epsilon-float-approx-bool","128":"/en/api/mp_math/vector.html#def-is-parallel-self-other-vector3-bool","129":"/en/api/mp_math/vector.html#def-normalize-self","130":"/en/api/mp_math/vector.html#def-np-array-self-np-ndarray","131":"/en/api/mp_math/vector.html#def-length-self-float","132":"/en/api/mp_math/vector.html#def-unit-self-vector3","133":"/en/api/mp_math/vector.html#def-abs-self","134":"/en/api/mp_math/vector.html#def-self-other-vector3-vector3","135":"/en/api/mp_math/vector.html#def-self-other-point3-point3","136":"/en/api/mp_math/vector.html#def-self-other","137":"/en/api/mp_math/vector.html#def-eq-self-other","138":"/en/api/mp_math/vector.html#def-self-other-point3-point3-1","139":"/en/api/mp_math/vector.html#def-self-other-vector3-vector3-1","140":"/en/api/mp_math/vector.html#def-self-other-point3-point3-2","141":"/en/api/mp_math/vector.html#def-self-other-1","142":"/en/api/mp_math/vector.html#def-self-other-point3","143":"/en/api/mp_math/vector.html#def-self-other-vector3-vector3-2","144":"/en/api/mp_math/vector.html#def-self-other-realnumber-vector3","145":"/en/api/mp_math/vector.html#def-self-other-int-float-vector3-vector3","146":"/en/api/mp_math/vector.html#def-self-other-realnumber-vector3-1","147":"/en/api/mp_math/vector.html#def-self-other-vector3-realnumber","148":"/en/api/mp_math/vector.html#def-self-other-realnumber-vector3-2","149":"/en/api/mp_math/vector.html#def-self","150":"/en/api/mp_math/vector.html#var-zero-vector3-vector3-0-0-0","151":"/en/api/mp_math/vector.html#var-x-axis-vector3-1-0-0","152":"/en/api/mp_math/vector.html#var-y-axis-vector3-0-1-0","153":"/en/api/mp_math/vector.html#var-z-axis-vector3-0-0-1","154":"/en/api/particle/particle.html#mbcp-particle","155":"/en/api/presets/#mbcp-presets","156":"/en/api/presets/model/#mbcp-presets-model","157":"/en/api/presets/model/#class-geometricmodels","158":"/en/api/presets/model/#def-sphere-radius-float-density-float","159":"/en/api/presets/model/model.html#mbcp-presets-model","160":"/en/api/presets/model/model.html#class-geometricmodels","161":"/en/api/presets/model/model.html#def-sphere-radius-float-density-float","162":"/en/api/presets/presets.html#mbcp-presets","163":"/en/guide/#开始不了一点","164":"/en/refer/#reference"},"fieldIds":{"title":0,"titles":1,"text":2},"fieldLength":{"0":[1,1,3],"1":[1,1,3],"2":[4,1,3],"3":[2,4,1],"4":[4,4,1],"5":[11,8,28],"6":[5,8,27],"7":[5,8,26],"8":[5,8,23],"9":[6,8,24],"10":[6,8,26],"11":[5,8,21],"12":[5,8,21],"13":[5,8,21],"14":[5,8,23],"15":[5,8,23],"16":[5,8,23],"17":[7,8,18],"18":[5,8,14],"19":[6,8,17],"20":[7,8,19],"21":[7,8,16],"22":[7,8,16],"23":[3,8,18],"24":[4,1,3],"25":[5,4,4],"26":[5,4,5],"27":[10,4,3],"28":[5,4,3],"29":[5,4,3],"30":[5,4,3],"31":[4,1,3],"32":[2,4,1],"33":[9,6,23],"34":[10,6,38],"35":[15,4,71],"36":[4,1,3],"37":[14,4,62],"38":[8,4,58],"39":[3,1,21],"40":[4,1,3],"41":[2,4,1],"42":[8,6,22],"43":[11,6,31],"44":[8,6,28],"45":[10,6,47],"46":[8,6,45],"47":[8,6,26],"48":[8,6,29],"49":[9,6,28],"50":[14,6,30],"51":[8,6,25],"52":[8,6,28],"53":[8,6,25],"54":[8,6,31],"55":[4,6,30],"56":[10,6,32],"57":[9,6,38],"58":[6,6,29],"59":[3,1,21],"60":[4,1,3],"61":[6,4,5],"62":[6,4,5],"63":[6,4,3],"64":[7,4,3],"65":[6,4,5],"66":[6,4,5],"67":[6,4,5],"68":[6,4,5],"69":[6,4,5],"70":[6,4,5],"71":[6,4,5],"72":[6,4,5],"73":[6,4,5],"74":[6,4,5],"75":[6,4,5],"76":[6,4,5],"77":[6,4,5],"78":[4,1,3],"79":[2,4,1],"80":[9,6,29],"81":[7,6,35],"82":[10,6,45],"83":[10,6,49],"84":[9,6,56],"85":[9,6,56],"86":[9,6,28],"87":[8,6,26],"88":[5,6,24],"89":[10,6,39],"90":[11,6,39],"91":[10,6,44],"92":[10,6,34],"93":[9,6,18],"94":[9,6,18],"95":[5,6,48],"96":[6,6,15],"97":[7,6,18],"98":[4,1,3],"99":[2,4,1],"100":[8,6,20],"101":[11,6,31],"102":[8,6,16],"103":[7,6,15],"104":[4,6,25],"105":[5,6,22],"106":[7,6,32],"107":[4,1,3],"108":[2,4,1],"109":[7,6,28],"110":[4,1,3],"111":[7,4,25],"112":[2,4,1],"113":[6,6,13],"114":[5,6,34],"115":[7,6,18],"116":[5,6,14],"117":[11,4,33],"118":[11,4,34],"119":[12,4,40],"120":[2,1,3],"121":[4,1,4],"122":[2,4,1],"123":[8,6,22],"124":[11,6,30],"125":[8,6,29],"126":[6,6,42],"127":[13,6,31],"128":[8,6,28],"129":[4,6,20],"130":[6,6,21],"131":[5,6,27],"132":[5,6,21],"133":[4,6,13],"134":[7,6,15],"135":[7,6,15],"136":[4,6,39],"137":[5,6,24],"138":[7,6,25],"139":[6,6,15],"140":[6,6,15],"141":[3,6,38],"142":[4,6,38],"143":[6,6,15],"144":[7,6,16],"145":[9,6,41],"146":[7,6,16],"147":[7,6,24],"148":[7,6,18],"149":[2,6,15],"150":[7,4,5],"151":[8,4,5],"152":[8,4,5],"153":[8,4,5],"154":[2,1,3],"155":[2,1,24],"156":[3,1,3],"157":[2,3,2],"158":[6,5,51],"159":[3,1,3],"160":[2,3,2],"161":[6,5,51],"162":[2,1,24],"163":[1,1,2],"164":[1,1,7]},"averageFieldLength":[6.242424242424242,4.963636363636361,19.648484848484856],"storedFields":{"0":{"title":"mbcp","titles":[]},"1":{"title":"mbcp","titles":[]},"2":{"title":"mbcp.mp_math.angle","titles":[]},"3":{"title":"class Angle","titles":["mbcp.mp_math.angle"]},"4":{"title":"class AnyAngle(Angle)","titles":["mbcp.mp_math.angle"]},"5":{"title":"def __init__(self, value: float, is_radian: bool = False)","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"6":{"title":"def complementary(self) -> AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"7":{"title":"def supplementary(self) -> AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"8":{"title":"def degree(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"9":{"title":"def minimum_positive(self) -> AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"10":{"title":"def maximum_negative(self) -> AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"11":{"title":"def sin(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"12":{"title":"def cos(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"13":{"title":"def tan(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"14":{"title":"def cot(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"15":{"title":"def sec(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"16":{"title":"def csc(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"17":{"title":"def self + other: AnyAngle => AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"18":{"title":"def __eq__(self, other)","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"19":{"title":"def self - other: AnyAngle => AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"20":{"title":"def self * other: float => AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"21":{"title":"def self / other: float => AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"22":{"title":"def self / other: AnyAngle => float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"23":{"title":"def self / other","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"24":{"title":"mbcp.mp_math.const","titles":[]},"25":{"title":"var PI = math.pi","titles":["mbcp.mp_math.const"]},"26":{"title":"var E = math.e","titles":["mbcp.mp_math.const"]},"27":{"title":"var GOLDEN_RATIO = (1 + math.sqrt(5)) / 2","titles":["mbcp.mp_math.const"]},"28":{"title":"var GAMMA = 0.5772156649015329","titles":["mbcp.mp_math.const"]},"29":{"title":"var EPSILON = 0.0001","titles":["mbcp.mp_math.const"]},"30":{"title":"var APPROX = 0.001","titles":["mbcp.mp_math.const"]},"31":{"title":"mbcp.mp_math.equation","titles":[]},"32":{"title":"class CurveEquation","titles":["mbcp.mp_math.equation"]},"33":{"title":"def __init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc)","titles":["mbcp.mp_math.equation","class CurveEquation"]},"34":{"title":"def __call__(self, *t: Var) -> Point3 | tuple[Point3, ...]","titles":["mbcp.mp_math.equation","class CurveEquation"]},"35":{"title":"def get_partial_derivative_func(func: MultiVarsFunc, var: int | tuple[int, ...], epsilon: Number = EPSILON) -> MultiVarsFunc","titles":["mbcp.mp_math.equation"]},"36":{"title":"mbcp.mp_math.function","titles":[]},"37":{"title":"def cal_gradient_3vf(func: ThreeSingleVarsFunc, p: Point3, epsilon: float = EPSILON) -> Vector3","titles":["mbcp.mp_math.function"]},"38":{"title":"def curry(func: MultiVarsFunc, *args: Var) -> OneVarFunc","titles":["mbcp.mp_math.function"]},"39":{"title":"mbcp.mp_math","titles":[]},"40":{"title":"mbcp.mp_math.line","titles":[]},"41":{"title":"class Line3","titles":["mbcp.mp_math.line"]},"42":{"title":"def __init__(self, point: Point3, direction: Vector3)","titles":["mbcp.mp_math.line","class Line3"]},"43":{"title":"def approx(self, other: Line3, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"44":{"title":"def cal_angle(self, other: Line3) -> AnyAngle","titles":["mbcp.mp_math.line","class Line3"]},"45":{"title":"def cal_distance(self, other: Line3 | Point3) -> float","titles":["mbcp.mp_math.line","class Line3"]},"46":{"title":"def cal_intersection(self, other: Line3) -> Point3","titles":["mbcp.mp_math.line","class Line3"]},"47":{"title":"def cal_perpendicular(self, point: Point3) -> Line3","titles":["mbcp.mp_math.line","class Line3"]},"48":{"title":"def get_point(self, t: RealNumber) -> Point3","titles":["mbcp.mp_math.line","class Line3"]},"49":{"title":"def get_parametric_equations(self) -> tuple[OneSingleVarFunc, OneSingleVarFunc, OneSingleVarFunc]","titles":["mbcp.mp_math.line","class Line3"]},"50":{"title":"def is_approx_parallel(self, other: Line3, epsilon: float = 1e-06) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"51":{"title":"def is_parallel(self, other: Line3) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"52":{"title":"def is_collinear(self, other: Line3) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"53":{"title":"def is_point_on(self, point: Point3) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"54":{"title":"def is_coplanar(self, other: Line3) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"55":{"title":"def simplify(self)","titles":["mbcp.mp_math.line","class Line3"]},"56":{"title":"def from_two_points(cls, p1: Point3, p2: Point3) -> Line3","titles":["mbcp.mp_math.line","class Line3"]},"57":{"title":"def __and__(self, other: Line3) -> Line3 | Point3 | None","titles":["mbcp.mp_math.line","class Line3"]},"58":{"title":"def __eq__(self, other) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"59":{"title":"mbcp.mp_math","titles":[]},"60":{"title":"mbcp.mp_math.mp_math_typing","titles":[]},"61":{"title":"var RealNumber = int | float","titles":["mbcp.mp_math.mp_math_typing"]},"62":{"title":"var Number = RealNumber | complex","titles":["mbcp.mp_math.mp_math_typing"]},"63":{"title":"var SingleVar = TypeVar(\'SingleVar\', bound=Number)","titles":["mbcp.mp_math.mp_math_typing"]},"64":{"title":"var ArrayVar = TypeVar(\'ArrayVar\', bound=Iterable[Number])","titles":["mbcp.mp_math.mp_math_typing"]},"65":{"title":"var Var = SingleVar | ArrayVar","titles":["mbcp.mp_math.mp_math_typing"]},"66":{"title":"var OneSingleVarFunc = Callable[[SingleVar], SingleVar]","titles":["mbcp.mp_math.mp_math_typing"]},"67":{"title":"var OneArrayFunc = Callable[[ArrayVar], ArrayVar]","titles":["mbcp.mp_math.mp_math_typing"]},"68":{"title":"var OneVarFunc = OneSingleVarFunc | OneArrayFunc","titles":["mbcp.mp_math.mp_math_typing"]},"69":{"title":"var TwoSingleVarsFunc = Callable[[SingleVar, SingleVar], SingleVar]","titles":["mbcp.mp_math.mp_math_typing"]},"70":{"title":"var TwoArraysFunc = Callable[[ArrayVar, ArrayVar], ArrayVar]","titles":["mbcp.mp_math.mp_math_typing"]},"71":{"title":"var TwoVarsFunc = TwoSingleVarsFunc | TwoArraysFunc","titles":["mbcp.mp_math.mp_math_typing"]},"72":{"title":"var ThreeSingleVarsFunc = Callable[[SingleVar, SingleVar, SingleVar], SingleVar]","titles":["mbcp.mp_math.mp_math_typing"]},"73":{"title":"var ThreeArraysFunc = Callable[[ArrayVar, ArrayVar, ArrayVar], ArrayVar]","titles":["mbcp.mp_math.mp_math_typing"]},"74":{"title":"var ThreeVarsFunc = ThreeSingleVarsFunc | ThreeArraysFunc","titles":["mbcp.mp_math.mp_math_typing"]},"75":{"title":"var MultiSingleVarsFunc = Callable[..., SingleVar]","titles":["mbcp.mp_math.mp_math_typing"]},"76":{"title":"var MultiArraysFunc = Callable[..., ArrayVar]","titles":["mbcp.mp_math.mp_math_typing"]},"77":{"title":"var MultiVarsFunc = MultiSingleVarsFunc | MultiArraysFunc","titles":["mbcp.mp_math.mp_math_typing"]},"78":{"title":"mbcp.mp_math.plane","titles":[]},"79":{"title":"class Plane3","titles":["mbcp.mp_math.plane"]},"80":{"title":"def __init__(self, a: float, b: float, c: float, d: float)","titles":["mbcp.mp_math.plane","class Plane3"]},"81":{"title":"def approx(self, other: Plane3) -> bool","titles":["mbcp.mp_math.plane","class Plane3"]},"82":{"title":"def cal_angle(self, other: Line3 | Plane3) -> AnyAngle","titles":["mbcp.mp_math.plane","class Plane3"]},"83":{"title":"def cal_distance(self, other: Plane3 | Point3) -> float","titles":["mbcp.mp_math.plane","class Plane3"]},"84":{"title":"def cal_intersection_line3(self, other: Plane3) -> Line3","titles":["mbcp.mp_math.plane","class Plane3"]},"85":{"title":"def cal_intersection_point3(self, other: Line3) -> Point3","titles":["mbcp.mp_math.plane","class Plane3"]},"86":{"title":"def cal_parallel_plane3(self, point: Point3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"87":{"title":"def is_parallel(self, other: Plane3) -> bool","titles":["mbcp.mp_math.plane","class Plane3"]},"88":{"title":"def normal(self) -> Vector3","titles":["mbcp.mp_math.plane","class Plane3"]},"89":{"title":"def from_point_and_normal(cls, point: Point3, normal: Vector3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"90":{"title":"def from_three_points(cls, p1: Point3, p2: Point3, p3: Point3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"91":{"title":"def from_two_lines(cls, l1: Line3, l2: Line3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"92":{"title":"def from_point_and_line(cls, point: Point3, line: Line3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"93":{"title":"def __and__(self, other: Line3) -> Point3 | None","titles":["mbcp.mp_math.plane","class Plane3"]},"94":{"title":"def __and__(self, other: Plane3) -> Line3 | None","titles":["mbcp.mp_math.plane","class Plane3"]},"95":{"title":"def __and__(self, other)","titles":["mbcp.mp_math.plane","class Plane3"]},"96":{"title":"def __eq__(self, other) -> bool","titles":["mbcp.mp_math.plane","class Plane3"]},"97":{"title":"def __rand__(self, other: Line3) -> Point3","titles":["mbcp.mp_math.plane","class Plane3"]},"98":{"title":"mbcp.mp_math.point","titles":[]},"99":{"title":"class Point3","titles":["mbcp.mp_math.point"]},"100":{"title":"def __init__(self, x: float, y: float, z: float)","titles":["mbcp.mp_math.point","class Point3"]},"101":{"title":"def approx(self, other: Point3, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.point","class Point3"]},"102":{"title":"def self + other: Vector3 => Point3","titles":["mbcp.mp_math.point","class Point3"]},"103":{"title":"def self + other: Point3 => Point3","titles":["mbcp.mp_math.point","class Point3"]},"104":{"title":"def self + other","titles":["mbcp.mp_math.point","class Point3"]},"105":{"title":"def __eq__(self, other)","titles":["mbcp.mp_math.point","class Point3"]},"106":{"title":"def self - other: Point3 => Vector3","titles":["mbcp.mp_math.point","class Point3"]},"107":{"title":"mbcp.mp_math.segment","titles":[]},"108":{"title":"class Segment3","titles":["mbcp.mp_math.segment"]},"109":{"title":"def __init__(self, p1: Point3, p2: Point3)","titles":["mbcp.mp_math.segment","class Segment3"]},"110":{"title":"mbcp.mp_math.utils","titles":[]},"111":{"title":"def clamp(x: float, min_: float, max_: float) -> float","titles":["mbcp.mp_math.utils"]},"112":{"title":"class Approx","titles":["mbcp.mp_math.utils"]},"113":{"title":"def __init__(self, value: RealNumber)","titles":["mbcp.mp_math.utils","class Approx"]},"114":{"title":"def __eq__(self, other)","titles":["mbcp.mp_math.utils","class Approx"]},"115":{"title":"def raise_type_error(self, other)","titles":["mbcp.mp_math.utils","class Approx"]},"116":{"title":"def __ne__(self, other)","titles":["mbcp.mp_math.utils","class Approx"]},"117":{"title":"def approx(x: float, y: float = 0.0, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.utils"]},"118":{"title":"def sign(x: float, only_neg: bool = False) -> str","titles":["mbcp.mp_math.utils"]},"119":{"title":"def sign_format(x: float, only_neg: bool = False) -> str","titles":["mbcp.mp_math.utils"]},"120":{"title":"mbcp.particle","titles":[]},"121":{"title":"mbcp.mp_math.vector","titles":[]},"122":{"title":"class Vector3","titles":["mbcp.mp_math.vector"]},"123":{"title":"def __init__(self, x: float, y: float, z: float)","titles":["mbcp.mp_math.vector","class Vector3"]},"124":{"title":"def approx(self, other: Vector3, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.vector","class Vector3"]},"125":{"title":"def cal_angle(self, other: Vector3) -> AnyAngle","titles":["mbcp.mp_math.vector","class Vector3"]},"126":{"title":"def cross(self, other: Vector3) -> Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"127":{"title":"def is_approx_parallel(self, other: Vector3, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.vector","class Vector3"]},"128":{"title":"def is_parallel(self, other: Vector3) -> bool","titles":["mbcp.mp_math.vector","class Vector3"]},"129":{"title":"def normalize(self)","titles":["mbcp.mp_math.vector","class Vector3"]},"130":{"title":"def np_array(self) -> np.ndarray","titles":["mbcp.mp_math.vector","class Vector3"]},"131":{"title":"def length(self) -> float","titles":["mbcp.mp_math.vector","class Vector3"]},"132":{"title":"def unit(self) -> Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"133":{"title":"def __abs__(self)","titles":["mbcp.mp_math.vector","class Vector3"]},"134":{"title":"def self + other: Vector3 => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"135":{"title":"def self + other: Point3 => Point3","titles":["mbcp.mp_math.vector","class Vector3"]},"136":{"title":"def self + other","titles":["mbcp.mp_math.vector","class Vector3"]},"137":{"title":"def __eq__(self, other)","titles":["mbcp.mp_math.vector","class Vector3"]},"138":{"title":"def self + other: Point3 => Point3","titles":["mbcp.mp_math.vector","class Vector3"]},"139":{"title":"def self - other: Vector3 => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"140":{"title":"def self - other: Point3 => Point3","titles":["mbcp.mp_math.vector","class Vector3"]},"141":{"title":"def self - other","titles":["mbcp.mp_math.vector","class Vector3"]},"142":{"title":"def self - other: Point3","titles":["mbcp.mp_math.vector","class Vector3"]},"143":{"title":"def self * other: Vector3 => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"144":{"title":"def self * other: RealNumber => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"145":{"title":"def self * other: int | float | Vector3 => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"146":{"title":"def self * other: RealNumber => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"147":{"title":"def self @ other: Vector3 => RealNumber","titles":["mbcp.mp_math.vector","class Vector3"]},"148":{"title":"def self / other: RealNumber => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"149":{"title":"def - self","titles":["mbcp.mp_math.vector","class Vector3"]},"150":{"title":"var zero_vector3 = Vector3(0, 0, 0)","titles":["mbcp.mp_math.vector"]},"151":{"title":"var x_axis = Vector3(1, 0, 0)","titles":["mbcp.mp_math.vector"]},"152":{"title":"var y_axis = Vector3(0, 1, 0)","titles":["mbcp.mp_math.vector"]},"153":{"title":"var z_axis = Vector3(0, 0, 1)","titles":["mbcp.mp_math.vector"]},"154":{"title":"mbcp.particle","titles":[]},"155":{"title":"mbcp.presets","titles":[]},"156":{"title":"mbcp.presets.model","titles":[]},"157":{"title":"class GeometricModels","titles":["mbcp.presets.model"]},"158":{"title":"def sphere(radius: float, density: float)","titles":["mbcp.presets.model","class GeometricModels"]},"159":{"title":"mbcp.presets.model","titles":[]},"160":{"title":"class GeometricModels","titles":["mbcp.presets.model"]},"161":{"title":"def sphere(radius: float, density: float)","titles":["mbcp.presets.model","class GeometricModels"]},"162":{"title":"mbcp.presets","titles":[]},"163":{"title":"开始不了一点","titles":[]},"164":{"title":"Reference","titles":[]}},"dirtCount":0,"index":[["∫12x111",{"2":{"163":1}}],["开始不了一点",{"0":{"163":1}}],["4",{"2":{"158":1,"161":1}}],["球体上的点集",{"2":{"158":2,"161":2}}],["生成球体上的点集",{"2":{"158":2,"161":2}}],["几何模型点集",{"2":{"156":1,"159":1}}],["下午9",{"2":{"155":1,"162":1}}],["8",{"2":{"155":1,"162":1}}],["零向量",{"2":{"150":1}}],["非点乘",{"2":{"145":2}}],["别去点那边实现了",{"2":{"138":2}}],["单位向量",{"2":{"132":2}}],["单变量",{"2":{"63":1}}],["模",{"2":{"131":2}}],["向量的模",{"2":{"131":2}}],["向量积",{"2":{"126":2}}],["返回numpy数组",{"2":{"130":1}}],["返回如下行列式的结果",{"2":{"126":1}}],["将向量归一化",{"2":{"129":2}}],["允许的误差",{"2":{"127":2}}],["j",{"2":{"126":1}}],["行列式的结果",{"2":{"126":2}}],["其余结果的模为平行四边形的面积",{"2":{"126":2}}],["叉乘使用cross",{"2":{"145":2}}],["叉乘为0",{"2":{"126":2}}],["叉乘",{"2":{"126":2}}],["夹角",{"2":{"125":2}}],["夹角弧度",{"2":{"44":2,"82":2}}],["以及一些常用的向量",{"2":{"121":1}}],["格式化符号数",{"2":{"119":2}}],["quot",{"2":{"118":2,"119":4}}],["符号",{"2":{"118":2,"119":2}}],["获取该向量的单位向量",{"2":{"132":2}}],["获取数的符号",{"2":{"118":2}}],["获取直线的参数方程",{"2":{"49":2}}],["获取直线上的点",{"2":{"48":2}}],["用于判断是否近似于0",{"2":{"117":2}}],["或包装一个实数",{"2":{"117":2}}],["或整数元组",{"2":{"35":2}}],["限制后的值",{"2":{"111":2}}],["待限定的值",{"2":{"111":2}}],["区间限定函数",{"2":{"111":2}}],["us",{"2":{"164":1}}],["unit",{"0":{"132":1},"2":{"132":1}}],["unsupported",{"2":{"45":1,"82":1,"83":1,"95":1,"115":1,"136":1,"141":1,"142":1,"145":1}}],["utils",{"0":{"110":1},"1":{"111":1,"112":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1}}],["中心点",{"2":{"109":1}}],["中实现",{"2":{"106":2}}],["长度",{"2":{"109":1}}],["方向向量",{"2":{"109":1}}],["``x2",{"2":{"126":1}}],["``x1",{"2":{"126":1}}],["``i",{"2":{"126":1}}],["```",{"2":{"38":1}}],["```python",{"2":{"38":1}}],["`vector3`",{"2":{"106":1}}],["已在",{"2":{"106":2}}],["已知一个函数$f",{"2":{"37":1}}],["已知一个函数f",{"2":{"37":1}}],["坐标",{"2":{"100":6}}],["笛卡尔坐标系中的点",{"2":{"100":2}}],["人话",{"2":{"95":2}}],["取两平面的交集",{"2":{"95":2}}],["面上直线",{"2":{"92":2}}],["面上一点",{"2":{"92":2}}],["法向量",{"2":{"88":2,"89":2}}],["所求平面",{"2":{"86":2}}],["k``",{"2":{"126":1}}],["k",{"2":{"81":12}}],["另一个向量",{"2":{"125":2,"127":2,"128":2}}],["另一个平面或点",{"2":{"83":2}}],["另一个平面",{"2":{"81":2,"82":2,"84":2,"87":2}}],["另一条直线",{"2":{"43":2,"44":2,"46":2,"50":2,"51":2,"52":2,"54":2,"57":2}}],["常数项",{"2":{"80":2}}],["常量",{"2":{"25":1}}],["平面平行返回none",{"2":{"95":2}}],["平面",{"2":{"89":2,"90":2,"91":2,"92":2}}],["平面上的一点",{"2":{"89":2}}],["平面的法向量",{"2":{"88":2}}],["平面与直线平行或重合",{"2":{"85":2}}],["平面方程",{"2":{"80":2}}],["平行线返回none",{"2":{"57":2}}],["平行直线或点",{"2":{"45":2}}],["多元函数",{"2":{"77":1}}],["多元数组函数",{"2":{"76":1}}],["多元单变量函数",{"2":{"75":1}}],["二元函数",{"2":{"71":1}}],["二元数组函数",{"2":{"70":1}}],["二元单变量函数",{"2":{"69":1}}],["一元函数",{"2":{"68":1}}],["一元数组函数",{"2":{"67":1}}],["一元单变量函数",{"2":{"66":1}}],["一阶偏导",{"2":{"35":2}}],["变量",{"2":{"65":1}}],["变量位置",{"2":{"35":2}}],["数组运算",{"2":{"145":2}}],["数组变量",{"2":{"64":1}}],["数2",{"2":{"117":2}}],["数1",{"2":{"117":2}}],["数",{"2":{"62":1,"118":2,"119":2}}],["实数",{"2":{"61":1}}],["∧",{"2":{"58":2}}],["交线",{"2":{"95":2}}],["交线返回交点",{"2":{"57":2}}],["交点",{"2":{"46":2,"57":2,"85":2}}],["重合线返回自身",{"2":{"57":2}}],["由点和直线构造平面",{"2":{"92":2}}],["由点和法向量构造平面",{"2":{"89":2}}],["由两直线构造平面",{"2":{"91":2}}],["由两点构造直线",{"2":{"56":2}}],["由三点构造平面",{"2":{"90":2}}],["由一个点和一个方向向量确定",{"2":{"42":2}}],["工厂函数",{"2":{"56":2,"89":2,"90":2,"91":2,"92":2}}],["并对向量单位化",{"2":{"55":2}}],["处理",{"2":{"55":2}}],["处的梯度向量为",{"2":{"37":1}}],["化",{"2":{"55":2}}],["按照可行性一次对x",{"2":{"55":2}}],["不平行平面的交线",{"2":{"95":2}}],["不包含点",{"2":{"92":2}}],["不与平面平行或在平面上的直线",{"2":{"85":2}}],["不返回值",{"2":{"55":2,"129":2}}],["不支持的类型",{"2":{"44":2,"45":2,"82":2,"83":2}}],["自体归一化",{"2":{"129":2}}],["自体简化",{"2":{"55":2}}],["自然对数的底",{"2":{"26":1}}],["等价相等",{"2":{"55":2}}],["简化直线方程",{"2":{"55":2}}],["两平面的交线",{"2":{"84":2}}],["两直线方向向量的叉乘与两直线上任意一点的向量的点积为0",{"2":{"54":2}}],["两角的和为180°",{"2":{"7":2}}],["两角的和为90°",{"2":{"6":2}}],["充要条件",{"2":{"54":2}}],["判断两个向量是否相等",{"2":{"137":2}}],["判断两个向量是否平行",{"2":{"128":2}}],["判断两个向量是否近似平行",{"2":{"127":2}}],["判断两个向量是否近似相等",{"2":{"124":2}}],["判断两个数是否近似相等",{"2":{"117":2}}],["判断两个点是否相等",{"2":{"105":2}}],["判断两个点是否近似相等",{"2":{"101":2}}],["判断两个平面是否平行",{"2":{"87":2}}],["判断两个平面是否近似相等",{"2":{"81":2}}],["判断两条直线是否等价",{"2":{"58":2}}],["判断两条直线是否共面",{"2":{"54":2}}],["判断两条直线是否共线",{"2":{"52":2}}],["判断两条直线是否平行",{"2":{"51":2}}],["判断两条直线是否近似平行",{"2":{"50":2}}],["判断两条直线是否近似相等",{"2":{"43":2}}],["判断点是否在直线上",{"2":{"53":2}}],["则两向量平行",{"2":{"126":2}}],["则同一个t对应的点不同",{"2":{"48":2}}],["则其在点$",{"2":{"37":1}}],["则其在点",{"2":{"37":1}}],["但起始点和方向向量不同",{"2":{"48":2}}],["同一条直线",{"2":{"48":2}}],["垂线",{"2":{"47":2}}],["指定点",{"2":{"47":2,"86":2}}],["距离",{"2":{"45":2,"83":2}}],["是否相等",{"2":{"137":2}}],["是否只返回负数的符号",{"2":{"118":2,"119":2}}],["是否共面",{"2":{"54":2}}],["是否共线",{"2":{"52":2}}],["是否在直线上",{"2":{"53":2}}],["是否平行",{"2":{"51":2,"87":2,"128":2}}],["是否近似平行",{"2":{"50":2,"127":2}}],["是否近似相等",{"2":{"43":2,"81":2,"101":2,"117":2,"124":2}}],["是否为弧度",{"2":{"5":2}}],["误差",{"2":{"43":2,"50":2,"117":2}}],["直线2",{"2":{"91":2}}],["直线1",{"2":{"91":2}}],["直线",{"2":{"56":2}}],["直线不共面",{"2":{"46":2}}],["直线平行",{"2":{"46":2}}],["直线的方向向量",{"2":{"42":2}}],["直线上的一点",{"2":{"42":2}}],["三元数组函数",{"2":{"73":1}}],["三元单变量函数",{"2":{"72":1}}],["三元函数",{"2":{"37":2,"74":1}}],["三维空间中的线段",{"2":{"109":2}}],["三维空间中的直线",{"2":{"42":2}}],["三维向量",{"2":{"39":1,"59":1}}],["三维线段",{"2":{"39":1,"59":1}}],["三维点",{"2":{"39":1,"59":1}}],["三维平面",{"2":{"39":1,"59":1}}],["三维直线",{"2":{"39":1,"59":1}}],["任意角",{"2":{"39":1,"59":1}}],["任意角度",{"2":{"5":2}}],["导入的类有",{"2":{"39":1,"59":1}}],["本包定义了一些常用的导入",{"2":{"39":1,"59":1}}],["本模块用于内部类型提示",{"2":{"60":1}}],["本模块定义了3维向量的类vector3",{"2":{"121":1}}],["本模块定义了粒子生成相关的工具",{"2":{"120":1,"154":1}}],["本模块定义了一些常用的工具函数",{"2":{"110":1}}],["本模块定义了一些常用的常量",{"2":{"24":1}}],["本模块定义了三维空间中点的类",{"2":{"98":1}}],["本模块定义了三维空间中的线段类",{"2":{"107":1}}],["本模块定义了三维空间中的平面类",{"2":{"78":1}}],["本模块定义了三维空间中的直线类",{"2":{"40":1}}],["本模块定义了方程相关的类和函数以及一些常用的数学函数",{"2":{"31":1}}],["本模块定义了角度相关的类",{"2":{"2":1}}],["本模块塞了一些预设的粒子生成器",{"2":{"0":1,"1":1}}],["help",{"2":{"164":1}}],["have",{"2":{"84":1}}],["https",{"2":{"38":1}}],["high",{"2":{"35":2}}],["hide",{"2":{"35":2,"38":1}}],["6",{"2":{"38":2}}],["3维向量",{"2":{"123":2}}],["355859667",{"2":{"38":1}}],["3",{"2":{"38":2}}],["3vf",{"0":{"37":1},"2":{"37":1}}],["by",{"2":{"80":2}}],["bound=iterable",{"0":{"64":1}}],["bound=number",{"0":{"63":1}}],["bool=false",{"2":{"5":1,"118":1,"119":1}}],["bool",{"0":{"5":1,"43":1,"50":1,"51":1,"52":1,"53":1,"54":1,"58":1,"81":1,"87":1,"96":1,"101":1,"117":1,"118":1,"119":1,"124":1,"127":1,"128":1},"2":{"43":1,"50":1,"51":1,"52":1,"53":1,"54":1,"58":1,"81":1,"87":1,"96":1,"101":1,"117":1,"124":1,"127":1,"128":1}}],["b",{"0":{"80":1},"2":{"38":4,"80":5,"81":7,"83":2,"84":12,"85":2,"88":1,"89":3}}],["柯里化后的函数",{"2":{"38":2}}],["柯理化",{"2":{"38":2}}],["可直接从mbcp",{"2":{"39":1,"59":1}}],["可参考",{"2":{"38":1}}],["可参考函数式编程",{"2":{"38":1}}],["可为整数",{"2":{"35":2}}],["有关函数柯里化",{"2":{"38":2}}],["对多参数函数进行柯里化",{"2":{"38":2}}],["d",{"0":{"80":1},"2":{"80":7,"81":6,"83":1,"84":6,"85":1,"89":2}}],["documentation",{"2":{"164":1}}],["do",{"2":{"46":2}}],["distance",{"0":{"45":1,"83":1},"2":{"45":1,"83":1}}],["direction",{"0":{"42":1},"2":{"42":5,"43":1,"44":2,"45":8,"46":6,"47":1,"48":1,"49":3,"50":2,"51":2,"52":1,"53":1,"54":2,"55":4,"56":2,"58":3,"82":1,"84":2,"85":4,"91":1,"92":1,"95":1,"109":2}}],["dz",{"2":{"37":2}}],["dy",{"2":{"37":2}}],["dx",{"2":{"37":2}}],["density",{"0":{"158":1,"161":1},"2":{"158":4,"161":4}}],["derivative",{"0":{"35":1},"2":{"35":6}}],["degree",{"0":{"8":1},"2":{"8":1}}],["def",{"0":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"158":1,"161":1},"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"21":1,"22":1,"35":2,"38":2,"56":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"102":1,"103":1,"130":1,"131":1,"132":1,"134":1,"135":1,"139":1,"140":1,"143":1,"144":1,"158":1,"161":1}}],["description",{"2":{"0":1,"1":1,"2":1,"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"24":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"31":1,"33":1,"34":1,"35":1,"36":1,"37":1,"38":1,"39":1,"40":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"59":1,"60":1,"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"78":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"95":1,"98":1,"100":1,"101":1,"104":1,"105":1,"106":1,"107":1,"109":1,"110":1,"111":1,"117":1,"118":1,"119":1,"120":1,"121":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"131":1,"132":1,"136":1,"137":1,"138":1,"141":1,"142":1,"145":1,"147":1,"150":1,"151":1,"152":1,"153":1,"154":1,"155":1,"156":1,"158":1,"159":1,"161":1,"162":1}}],["$处的梯度向量为",{"2":{"37":1}}],["$",{"2":{"37":3}}],["梯度",{"2":{"37":2}}],["点乘",{"2":{"147":2}}],["点乘使用",{"2":{"145":2}}],["点3",{"2":{"90":2}}],["点法式构造",{"2":{"89":2}}],["点2",{"2":{"56":2,"90":2}}],["点1",{"2":{"56":2,"90":2}}],["点",{"2":{"37":2,"48":2,"53":2}}],["∂f∂z",{"2":{"37":1}}],["∂f∂y",{"2":{"37":1}}],["∂f∂x",{"2":{"37":1}}],["∇f",{"2":{"37":1}}],["计算平行于该平面且过指定点的平面",{"2":{"86":2}}],["计算平面与直线的交点",{"2":{"85":2}}],["计算平面与平面或点之间的距离",{"2":{"83":2}}],["计算平面与平面之间的夹角",{"2":{"82":2}}],["计算两个向量之间的夹角",{"2":{"125":2}}],["计算两平面的交线",{"2":{"84":2}}],["计算两条直线点集合的交集",{"2":{"57":2}}],["计算两条直线的交点",{"2":{"46":2}}],["计算直线经过指定点p的垂线",{"2":{"47":2}}],["计算直线和直线或点之间的距离",{"2":{"45":2}}],["计算直线和直线之间的夹角",{"2":{"44":2}}],["计算三元函数在某点的梯度向量",{"2":{"37":2}}],["计算曲线上的点",{"2":{"34":2}}],["求高阶偏导函数",{"2":{"35":1}}],["求n元函数一阶偏导函数",{"2":{"35":2}}],["l2",{"0":{"91":1},"2":{"91":5}}],["l1",{"0":{"91":1},"2":{"91":7}}],["lambda",{"2":{"49":3}}],["left",{"2":{"37":1}}],["length",{"0":{"131":1},"2":{"45":5,"46":1,"82":2,"109":2,"125":2,"127":1,"129":5,"131":1,"132":1,"133":1}}],["len",{"2":{"34":1}}],["liteyukistudio",{"2":{"155":1,"162":1}}],["litedoc",{"2":{"35":2,"38":1}}],["linalg",{"2":{"84":3}}],["lines",{"0":{"91":1},"2":{"46":2,"91":1}}],["line",{"0":{"40":1,"92":2},"1":{"41":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1},"2":{"85":1,"92":5}}],["line3",{"0":{"41":1,"43":1,"44":1,"45":1,"46":1,"47":1,"50":1,"51":1,"52":1,"54":1,"56":1,"57":2,"82":1,"84":2,"85":1,"91":2,"92":1,"93":1,"94":1,"97":1},"1":{"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1},"2":{"39":1,"43":1,"44":1,"45":2,"46":1,"47":2,"50":1,"51":1,"52":1,"54":1,"56":1,"57":2,"59":1,"82":2,"84":3,"85":1,"91":2,"92":1,"93":1,"94":1,"95":2,"97":1,"114":1}}],["list",{"2":{"35":8,"158":10,"161":10}}],["无效变量类型",{"2":{"35":2}}],["偏导函数",{"2":{"35":2}}],["偏移量",{"2":{"35":2,"37":2}}],["高阶偏导数值",{"2":{"35":1}}],["高阶偏导",{"2":{"35":2}}],["函数式编程",{"2":{"38":1}}],["函数",{"2":{"35":2,"38":2}}],["因此该函数的稳定性有待提升",{"2":{"35":2}}],["目前数学界对于一个函数的导函数并没有通解的说法",{"2":{"35":2}}],["目标点",{"2":{"34":2}}],["warning",{"2":{"35":2}}],["慎用",{"2":{"35":2}}],["这玩意不太稳定",{"2":{"35":2}}],["num",{"2":{"158":5,"161":5}}],["number=epsilon",{"2":{"35":1}}],["number",{"0":{"35":1,"62":1,"64":1}}],["ndarray",{"0":{"130":1},"2":{"130":1}}],["neg",{"0":{"118":1,"119":1},"2":{"118":4,"119":4,"149":1}}],["negative",{"0":{"10":1},"2":{"10":1}}],["ne",{"0":{"116":1},"2":{"116":1}}],["np",{"0":{"130":2},"2":{"84":9,"130":3,"158":9,"161":9}}],["no",{"2":{"84":1}}],["normal",{"0":{"88":1,"89":2},"2":{"82":5,"84":4,"85":1,"86":2,"87":2,"88":1,"89":7,"90":3,"91":1,"92":1,"95":3}}],["normalize",{"0":{"129":1},"2":{"55":1,"129":1}}],["none",{"0":{"57":1,"93":1,"94":1},"2":{"57":2,"93":1,"94":1,"95":2}}],["not",{"2":{"45":1,"46":4,"57":1,"116":1,"118":1,"119":1}}],["nabla",{"2":{"37":1}}],["参数t",{"2":{"48":2}}],["参数",{"2":{"34":2,"35":1,"38":2}}],["|",{"0":{"34":1,"35":1,"45":1,"57":2,"61":1,"62":1,"65":1,"68":1,"71":1,"74":1,"77":1,"82":1,"83":1,"93":1,"94":1,"145":2},"2":{"34":1,"35":1,"45":1,"57":2,"82":1,"83":1,"93":1,"94":1,"145":2}}],["曲线方程",{"2":{"33":2,"39":1,"59":1}}],["z轴单位向量",{"2":{"153":1}}],["z轴分量",{"2":{"123":2}}],["z2``",{"2":{"126":1}}],["z1``",{"2":{"126":1}}],["zero",{"0":{"150":1},"2":{"91":1,"128":1}}],["z系数",{"2":{"80":2}}],["zhihu",{"2":{"38":1}}],["zhuanlan",{"2":{"38":1}}],["z0",{"2":{"37":2}}],["zip",{"2":{"34":1}}],["z函数",{"2":{"33":2}}],["z",{"0":{"33":1,"100":1,"123":1,"153":1},"2":{"33":5,"34":4,"37":11,"49":4,"55":4,"83":1,"84":4,"85":4,"89":2,"100":7,"101":2,"104":2,"105":2,"106":2,"109":2,"114":2,"123":5,"124":2,"126":4,"129":1,"130":1,"131":1,"136":4,"137":2,"138":2,"141":4,"142":2,"145":3,"147":2,"148":1,"149":1,"158":2,"161":2}}],["y轴单位向量",{"2":{"152":1}}],["y轴分量",{"2":{"123":2}}],["y2",{"2":{"126":1}}],["y1",{"2":{"126":1}}],["y系数",{"2":{"80":2}}],["y0",{"2":{"37":2}}],["y函数",{"2":{"33":2}}],["y",{"0":{"33":1,"100":1,"117":1,"123":1,"152":1},"2":{"33":5,"34":4,"37":11,"49":4,"55":4,"83":1,"84":4,"85":4,"89":2,"100":7,"101":2,"104":2,"105":2,"106":2,"109":2,"114":2,"117":4,"123":5,"124":2,"126":4,"129":1,"130":1,"131":1,"136":4,"137":2,"138":2,"141":4,"142":2,"145":3,"147":2,"148":1,"149":1,"158":2,"161":2}}],["x轴单位向量",{"2":{"151":1}}],["x轴分量",{"2":{"123":2}}],["x3c",{"2":{"101":3,"114":1,"117":1,"118":1,"119":1,"124":3,"127":1}}],["x26",{"2":{"95":1}}],["x系数",{"2":{"80":2}}],["x0",{"2":{"37":2}}],["x函数",{"2":{"33":2}}],["x",{"0":{"33":1,"100":1,"111":1,"117":1,"118":1,"119":1,"123":1,"151":1},"2":{"33":5,"34":4,"37":11,"49":4,"55":2,"83":1,"84":4,"85":4,"89":2,"100":7,"101":2,"104":2,"105":2,"106":2,"109":2,"111":4,"114":2,"117":4,"118":5,"119":8,"123":5,"124":2,"126":4,"129":1,"130":1,"131":1,"136":4,"137":2,"138":2,"141":4,"142":2,"145":3,"147":2,"148":1,"149":1,"158":2,"161":2}}],["约等于判定误差",{"2":{"30":1}}],["精度误差",{"2":{"29":1}}],["欧拉常数",{"2":{"28":1}}],["06",{"0":{"50":1},"2":{"50":1}}],["001",{"0":{"30":1}}],["0001",{"0":{"29":1}}],["0",{"0":{"28":1,"29":1,"30":1,"117":2,"150":3,"151":2,"152":2,"153":2},"2":{"34":3,"37":6,"45":2,"54":1,"55":8,"80":2,"81":3,"83":2,"84":9,"85":1,"95":1,"117":1,"118":2,"119":4,"158":2,"161":2}}],["黄金分割比",{"2":{"27":1}}],["5772156649015329",{"0":{"28":1}}],["5",{"0":{"27":1},"2":{"83":1}}],["π",{"2":{"25":1}}],["to",{"2":{"164":1}}],["time",{"2":{"155":1,"162":1}}],["tip",{"2":{"37":2,"38":2}}],["theta",{"2":{"158":3,"161":3}}],["the",{"2":{"85":2,"164":1}}],["three",{"0":{"90":1},"2":{"90":1}}],["threevarsfunc",{"0":{"74":1}}],["threearraysfunc",{"0":{"73":1,"74":1}}],["threesinglevarsfunc",{"0":{"37":1,"72":1,"74":1},"2":{"37":1}}],["typing",{"0":{"60":1},"1":{"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1}}],["typevar",{"0":{"63":1,"64":1}}],["typealias",{"2":{"61":1,"62":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1}}],["typeerror",{"2":{"44":2,"45":3,"82":3,"83":3,"95":1,"115":1,"136":1,"141":1,"142":1,"145":1}}],["type",{"0":{"115":1},"2":{"35":1,"45":1,"61":1,"62":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"82":2,"83":2,"95":2,"114":2,"115":4,"136":2,"141":2,"142":2,"145":2,"150":1,"151":1,"152":1,"153":1}}],["twovarsfunc",{"0":{"71":1}}],["twoarraysfunc",{"0":{"70":1,"71":1}}],["twosinglevarsfunc",{"0":{"69":1,"71":1}}],["two",{"0":{"56":1,"91":1},"2":{"56":1,"91":1}}],["tuple",{"0":{"34":1,"35":1,"49":1},"2":{"34":2,"35":2,"49":1}}],["t",{"0":{"34":1,"48":1},"2":{"34":10,"48":4,"49":12,"85":4}}],["truediv",{"2":{"21":1,"22":1,"23":1,"148":1}}],["tan",{"0":{"13":1},"2":{"13":2,"14":1}}],["email",{"2":{"155":1,"162":1}}],["error",{"0":{"115":1},"2":{"114":2,"115":1}}],["examples",{"2":{"38":2}}],["exp",{"2":{"26":1}}],["elif",{"2":{"35":1,"45":3,"57":1,"81":2,"82":1,"83":1,"84":2,"95":1,"114":1,"118":1,"119":1,"136":1,"141":1,"145":1}}],["else",{"2":{"5":1,"34":1,"35":1,"45":2,"57":1,"81":1,"82":1,"83":1,"95":1,"114":2,"118":2,"119":2,"136":1,"141":1,"142":1,"145":1}}],["epsilon",{"0":{"29":1,"35":2,"37":2,"43":1,"50":1,"101":1,"117":1,"124":1,"127":1},"2":{"35":7,"37":12,"43":5,"50":4,"101":6,"117":4,"124":6,"127":4}}],["e",{"0":{"26":2}}],["equations",{"0":{"49":1},"2":{"49":1,"85":1}}],["equation",{"0":{"31":1},"1":{"32":1,"33":1,"34":1,"35":1}}],["eq",{"0":{"18":1,"58":1,"96":1,"105":1,"114":1,"137":1},"2":{"18":1,"58":1,"96":1,"105":1,"114":1,"116":1,"137":1}}],["+1",{"2":{"119":2}}],["+=",{"2":{"35":1}}],["+",{"0":{"17":1,"27":1,"102":1,"103":1,"104":1,"134":1,"135":1,"136":1,"138":1},"2":{"17":1,"37":3,"38":4,"46":1,"48":1,"49":3,"80":6,"83":5,"85":5,"104":7,"109":3,"118":3,"119":3,"131":2,"136":11,"138":5,"147":2,"158":1,"161":1}}],["12",{"2":{"155":2,"162":2}}],["1e",{"0":{"50":1}}],["1",{"0":{"27":1,"151":1,"152":1,"153":1},"2":{"14":1,"15":1,"16":1,"26":1,"34":1,"38":2,"91":1,"119":6,"158":4,"161":4}}],["180",{"2":{"5":1,"8":1}}],["正割值",{"2":{"15":4}}],["正切值",{"2":{"13":4}}],["正弦值",{"2":{"11":4}}],["余割值",{"2":{"16":4}}],["余切值",{"2":{"14":4}}],["余弦值",{"2":{"12":4}}],["余角",{"2":{"6":4}}],["最大值",{"2":{"111":2}}],["最大负角度",{"2":{"10":2}}],["最大负角",{"2":{"10":2}}],["最小值",{"2":{"111":2}}],["最小正角度",{"2":{"9":2}}],["最小正角",{"2":{"9":2}}],["弧度",{"2":{"8":2}}],["角度",{"2":{"8":2}}],["角度或弧度值",{"2":{"5":2}}],["补角",{"2":{"7":4}}],["2024",{"2":{"155":2,"162":2}}],["2020",{"2":{"155":1,"162":1}}],["2",{"0":{"27":1},"2":{"6":1,"9":1,"10":1,"35":1,"37":3,"38":2,"46":1,"83":3,"109":3,"131":3,"158":2,"161":2}}],[">",{"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"19":1,"20":1,"21":1,"22":1,"34":1,"35":5,"37":3,"38":6,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"96":1,"97":1,"101":1,"102":1,"103":1,"104":2,"106":3,"111":1,"117":1,"118":2,"119":5,"124":1,"125":1,"126":2,"127":1,"128":1,"130":1,"131":1,"132":1,"134":1,"135":1,"136":2,"138":2,"139":1,"140":1,"141":2,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1}}],["rmul",{"2":{"146":1}}],["rsub",{"2":{"142":1}}],["rights",{"2":{"155":1,"162":1}}],["right",{"2":{"37":1}}],["reference",{"0":{"164":1}}],["reserved",{"2":{"155":1,"162":1}}],["result",{"2":{"35":4}}],["realnumber",{"0":{"48":1,"61":1,"62":1,"113":1,"144":1,"146":1,"147":1,"148":1},"2":{"48":1,"113":1,"144":1,"146":1,"147":1,"148":1}}],["returns",{"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"34":1,"35":2,"37":1,"38":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"95":1,"101":1,"104":1,"105":1,"106":1,"111":1,"117":1,"118":1,"119":1,"124":1,"125":1,"126":1,"127":1,"128":1,"130":1,"131":1,"132":1,"136":1,"137":1,"141":1,"142":1,"145":1,"147":1,"158":1,"161":1}}],["return",{"2":{"6":2,"7":2,"8":2,"9":2,"10":2,"11":2,"12":2,"13":2,"14":2,"15":2,"16":2,"17":1,"18":1,"19":1,"20":1,"23":2,"34":3,"35":5,"37":2,"38":5,"43":2,"44":2,"45":6,"46":2,"47":2,"48":2,"49":2,"50":2,"51":2,"52":2,"53":2,"54":2,"56":2,"57":4,"58":1,"81":5,"82":3,"83":3,"84":2,"85":2,"86":2,"87":2,"88":2,"89":2,"90":2,"91":2,"92":2,"95":5,"96":1,"97":1,"101":2,"104":1,"105":1,"106":1,"111":2,"114":2,"116":1,"117":2,"118":4,"119":4,"124":2,"125":2,"126":2,"127":2,"128":2,"130":1,"131":2,"132":2,"133":1,"136":2,"137":2,"138":3,"141":2,"142":1,"145":2,"146":1,"147":1,"148":1,"149":1,"158":2,"161":2}}],["range",{"2":{"158":2,"161":2}}],["rand",{"0":{"97":1},"2":{"97":1}}],["radius",{"0":{"158":1,"161":1},"2":{"158":7,"161":7}}],["radian=true",{"2":{"6":1,"7":1,"10":1,"17":1,"19":1,"20":1,"23":1,"82":1,"125":1}}],["radian",{"0":{"5":1},"2":{"5":6,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":2,"18":2,"19":2,"20":1,"23":3}}],["radd",{"2":{"138":1}}],["raise",{"0":{"115":1},"2":{"35":1,"45":1,"46":2,"82":1,"83":1,"84":1,"85":1,"95":1,"114":2,"115":2,"136":1,"141":1,"142":1,"145":1}}],["raises",{"2":{"35":2,"44":2,"45":2,"46":2,"82":2,"83":2,"84":1,"85":2}}],["ratio",{"0":{"27":1}}],["geometricmodels",{"0":{"157":1,"160":1},"1":{"158":1,"161":1}}],["get",{"0":{"35":1,"48":1,"49":1},"2":{"35":2,"48":1,"49":1,"85":1,"91":1}}],["gradient",{"0":{"37":1},"2":{"37":1}}],["gamma",{"0":{"28":1}}],["golden",{"0":{"27":1}}],["gt",{"0":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"19":1,"20":1,"21":1,"22":1,"34":1,"35":1,"37":1,"38":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"96":1,"97":1,"101":1,"102":1,"103":1,"106":1,"111":1,"117":1,"118":1,"119":1,"124":1,"125":1,"126":1,"127":1,"128":1,"130":1,"131":1,"132":1,"134":1,"135":1,"138":1,"139":1,"140":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1},"2":{"104":2,"106":2,"119":3,"126":1,"136":2,"138":1,"141":2,"142":1}}],["github",{"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"158":1,"161":1}}],["phi",{"2":{"158":5,"161":5}}],["pycharm",{"2":{"155":1,"162":1}}],["py",{"2":{"155":1,"162":1}}],["python",{"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"21":1,"22":1,"56":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"102":1,"103":1,"130":1,"131":1,"132":1,"134":1,"135":1,"139":1,"140":1,"143":1,"144":1,"158":1,"161":1}}],["pythondef",{"2":{"5":1,"17":1,"18":1,"19":1,"20":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":2,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"95":1,"96":1,"97":1,"100":1,"101":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"133":1,"136":1,"137":1,"138":1,"141":1,"142":1,"145":1,"146":1,"147":1,"148":1,"149":1}}],["presets",{"0":{"155":1,"156":1,"159":1,"162":1},"1":{"157":1,"158":1,"160":1,"161":1}}],["property",{"2":{"5":1,"6":2,"7":2,"8":2,"9":2,"10":2,"11":2,"12":2,"13":2,"14":2,"15":2,"16":1,"87":1,"88":1,"129":1,"130":2,"131":2,"132":1}}],["p3",{"0":{"90":1},"2":{"90":4}}],["p2",{"0":{"56":1,"90":1,"109":1},"2":{"56":4,"58":2,"90":4,"109":9}}],["p1",{"0":{"56":1,"90":1,"109":1},"2":{"56":5,"58":2,"90":6,"109":9}}],["perpendicular",{"0":{"47":1},"2":{"47":1}}],["particle",{"0":{"120":1,"154":1}}],["partial",{"0":{"35":1},"2":{"35":6,"37":6}}],["param",{"2":{"109":4,"138":2}}],["parametric",{"0":{"49":1},"2":{"49":1,"85":1}}],["parallel",{"0":{"50":1,"51":1,"86":1,"87":1,"127":1,"128":1},"2":{"43":2,"45":1,"46":2,"50":2,"51":2,"52":2,"53":1,"57":1,"58":2,"84":2,"85":1,"86":1,"87":2,"95":1,"127":1,"128":1}}],["planes",{"2":{"84":1}}],["plane",{"0":{"78":1},"1":{"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1},"2":{"85":1}}],["plane3",{"0":{"79":1,"81":1,"82":1,"83":1,"84":1,"86":2,"87":1,"89":1,"90":1,"91":1,"92":1,"94":1},"1":{"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1},"2":{"39":1,"59":1,"81":1,"82":2,"83":2,"84":1,"86":3,"87":1,"89":1,"90":1,"91":1,"92":1,"94":1,"95":2,"114":1}}],["plus",{"2":{"35":3}}],["p",{"0":{"37":1},"2":{"37":21,"38":1,"104":10,"106":8,"136":4,"138":4,"141":4,"142":4}}],["points",{"0":{"56":1,"90":1},"2":{"56":1,"90":1}}],["point",{"0":{"42":1,"47":1,"48":1,"53":2,"86":1,"89":2,"92":2,"98":1},"1":{"99":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1},"2":{"42":5,"43":2,"45":5,"46":3,"47":6,"48":2,"49":3,"52":2,"53":6,"54":2,"55":3,"58":2,"85":3,"86":5,"89":7,"90":1,"91":6,"92":6}}],["point3",{"0":{"34":2,"37":1,"42":1,"45":1,"46":1,"47":1,"48":1,"53":1,"56":2,"57":1,"83":1,"85":2,"86":1,"89":1,"90":3,"92":1,"93":1,"97":1,"99":1,"101":1,"102":1,"103":2,"106":1,"109":2,"135":2,"138":2,"140":2,"142":1},"1":{"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1},"2":{"34":4,"37":1,"39":1,"42":1,"45":2,"46":1,"47":1,"48":1,"53":1,"56":2,"57":1,"59":1,"83":2,"84":1,"85":3,"86":1,"89":1,"90":3,"92":1,"93":1,"95":1,"97":2,"101":1,"102":1,"103":2,"104":1,"106":1,"109":3,"114":1,"135":2,"136":2,"138":3,"140":2,"141":2,"142":3,"158":3,"161":3}}],["positive",{"0":{"9":1},"2":{"6":1,"7":1,"9":1}}],["pi",{"0":{"25":2},"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"158":2,"161":2}}],["outlook",{"2":{"155":1,"162":1}}],["operand",{"2":{"95":1,"136":1,"141":1,"142":1,"145":1}}],["overload",{"2":{"20":1,"21":2,"22":1,"92":1,"93":2,"94":1,"101":1,"102":2,"103":1,"133":1,"134":2,"135":1,"138":1,"139":2,"140":1,"142":1,"143":2,"144":1}}],["other",{"0":{"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"43":1,"44":1,"45":1,"46":1,"50":1,"51":1,"52":1,"54":1,"57":1,"58":1,"81":1,"82":1,"83":1,"84":1,"85":1,"87":1,"93":1,"94":1,"95":1,"96":1,"97":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"114":1,"115":1,"116":1,"124":1,"125":1,"126":1,"127":1,"128":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1},"2":{"17":2,"18":2,"19":2,"20":2,"21":1,"22":1,"23":4,"43":5,"44":4,"45":13,"46":9,"50":4,"51":4,"52":5,"54":5,"57":7,"58":5,"81":15,"82":9,"83":9,"84":17,"85":11,"87":4,"93":1,"94":1,"95":10,"96":2,"97":2,"101":6,"102":1,"103":1,"104":6,"105":6,"106":6,"114":9,"115":2,"116":2,"124":6,"125":5,"126":9,"127":4,"128":4,"134":1,"135":1,"136":12,"137":6,"138":6,"139":1,"140":1,"141":12,"142":8,"143":1,"144":1,"145":12,"146":2,"147":6,"148":4}}],["only",{"0":{"118":1,"119":1},"2":{"118":4,"119":4}}],["onearrayfunc",{"0":{"67":1,"68":1}}],["onesinglevarfunc",{"0":{"49":3,"66":1,"68":1},"2":{"49":3}}],["onevarfunc",{"0":{"33":3,"38":1,"68":1},"2":{"33":3,"38":1}}],["on",{"0":{"53":1},"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":2,"54":1,"55":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"158":1,"161":1}}],["order",{"2":{"35":2}}],["or",{"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":2,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":2,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"158":1,"161":1}}],["v3",{"2":{"126":2}}],["vector",{"0":{"121":1},"1":{"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"150":1,"151":1,"152":1,"153":1},"2":{"106":1}}],["vector3",{"0":{"37":1,"42":1,"88":1,"89":1,"102":1,"106":1,"122":1,"124":1,"125":1,"126":2,"127":1,"128":1,"132":1,"134":2,"139":2,"143":2,"144":1,"145":2,"146":1,"147":1,"148":1,"150":2,"151":1,"152":1,"153":1},"1":{"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1},"2":{"37":2,"39":1,"42":1,"59":1,"88":2,"89":1,"91":1,"102":1,"106":4,"114":2,"124":1,"125":1,"126":3,"127":1,"128":2,"132":1,"134":2,"136":3,"139":2,"141":3,"142":1,"143":2,"144":1,"145":6,"146":1,"147":1,"148":2,"149":1,"150":1,"151":1,"152":1,"153":1}}],["v2",{"2":{"58":2,"90":2,"91":4,"126":2}}],["v1",{"2":{"58":4,"90":2,"91":2,"126":2}}],["v",{"2":{"35":2,"104":2,"106":4,"136":8,"138":2,"141":8,"142":2}}],["var",{"0":{"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"34":1,"35":1,"38":1,"61":1,"62":1,"63":1,"64":1,"65":2,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"150":1,"151":1,"152":1,"153":1},"2":{"34":1,"35":13,"38":3}}],["valueerror",{"2":{"35":3,"46":6,"84":1,"85":3}}],["value",{"0":{"5":1,"113":1},"2":{"5":5,"113":3,"114":6,"115":1}}],["view",{"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"158":1,"161":1}}],["cz",{"2":{"80":2}}],["clamp",{"0":{"111":1},"2":{"111":1,"158":1,"161":1}}],["classmethod",{"2":{"55":1,"56":1,"88":1,"89":2,"90":2,"91":2,"92":1}}],["class",{"0":{"3":1,"4":1,"32":1,"41":1,"79":1,"99":1,"108":1,"112":1,"122":1,"157":1,"160":1},"1":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"113":1,"114":1,"115":1,"116":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"158":1,"161":1},"2":{"106":2}}],["cls",{"0":{"56":1,"89":1,"90":1,"91":1,"92":1},"2":{"56":2,"89":2,"90":2,"91":2,"92":2}}],["cross",{"0":{"126":1},"2":{"45":4,"46":3,"47":1,"54":1,"84":1,"90":1,"91":1,"126":3,"127":1,"128":1}}],["c",{"0":{"80":1},"2":{"38":4,"80":5,"81":7,"83":2,"84":6,"85":2,"88":1,"89":3,"155":1,"162":1}}],["curried",{"2":{"38":6}}],["currying",{"2":{"38":2}}],["curry",{"0":{"38":1},"2":{"38":3}}],["curveequation",{"0":{"32":1},"1":{"33":1,"34":1},"2":{"39":1,"59":1}}],["cal",{"0":{"37":1,"44":1,"45":1,"46":1,"47":1,"82":1,"83":1,"84":1,"85":1,"86":1,"125":1},"2":{"37":1,"44":2,"45":1,"46":1,"47":1,"57":1,"82":2,"83":1,"84":1,"85":1,"86":1,"95":2,"97":1,"125":1}}],["callable",{"0":{"66":1,"67":1,"69":1,"70":1,"72":1,"73":1,"75":1,"76":1}}],["call",{"0":{"34":1},"2":{"34":1}}],["csc",{"0":{"16":1},"2":{"16":1}}],["copyright",{"2":{"155":1,"162":1}}],["coplanar",{"0":{"54":1},"2":{"45":1,"46":2,"54":1,"57":1}}],["coincident",{"2":{"85":1}}],["collinear",{"0":{"52":1},"2":{"52":1,"57":1}}],["complex",{"0":{"62":1}}],["complementary",{"0":{"6":1},"2":{"6":1,"82":1}}],["com",{"2":{"38":1,"155":1,"162":1}}],["const",{"0":{"24":1},"1":{"25":1,"26":1,"27":1,"28":1,"29":1,"30":1}}],["cot",{"0":{"14":1},"2":{"14":1}}],["cos",{"0":{"12":1},"2":{"12":2,"15":1,"158":2,"161":2}}],["code",{"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"158":1,"161":1}}],["sphere",{"0":{"158":1,"161":1},"2":{"158":1,"161":1}}],["staticmethod",{"2":{"157":1,"158":1,"160":1,"161":1}}],["str",{"0":{"118":1,"119":1},"2":{"118":1,"119":1}}],["snowykami",{"2":{"155":2,"162":2}}],["s",{"2":{"95":1,"136":1,"141":1,"142":1,"145":1}}],["software",{"2":{"155":1,"162":1}}],["solve",{"2":{"84":3}}],["source",{"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"158":1,"161":1}}],["sign",{"0":{"118":1,"119":1},"2":{"118":1,"119":1}}],["simplify",{"0":{"55":1},"2":{"55":1}}],["singlevar",{"0":{"63":2,"65":1,"66":2,"69":3,"72":4,"75":1}}],["sin",{"0":{"11":1},"2":{"11":2,"16":1,"158":3,"161":3}}],["sqrt",{"0":{"27":1},"2":{"131":1,"158":1,"161":1}}],["sub",{"2":{"19":1,"106":1,"139":1,"140":1,"141":1}}],["supplementary",{"0":{"7":1},"2":{"7":1}}],["segment",{"0":{"107":1},"1":{"108":1,"109":1}}],["segment3",{"0":{"108":1},"1":{"109":1},"2":{"39":1,"59":1}}],["sec",{"0":{"15":1},"2":{"15":1}}],["self",{"0":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"113":1,"114":1,"115":1,"116":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1},"2":{"5":3,"6":2,"7":2,"8":2,"9":2,"10":2,"11":2,"12":2,"13":2,"14":2,"15":2,"16":2,"17":2,"18":2,"19":2,"20":2,"21":1,"22":1,"23":3,"33":4,"34":7,"42":3,"43":4,"44":2,"45":13,"46":8,"47":3,"48":3,"49":7,"50":2,"51":2,"52":4,"53":3,"54":3,"55":8,"57":6,"58":4,"80":5,"81":16,"82":4,"83":8,"84":15,"85":9,"86":2,"87":2,"88":4,"93":1,"94":1,"95":5,"96":2,"97":2,"100":4,"101":4,"102":1,"103":1,"104":4,"105":4,"106":4,"109":15,"113":2,"114":9,"115":2,"116":2,"123":4,"124":4,"125":3,"126":7,"127":2,"128":2,"129":5,"130":4,"131":4,"132":3,"133":2,"134":1,"135":1,"136":7,"137":4,"138":4,"139":1,"140":1,"141":7,"142":4,"143":1,"144":1,"145":7,"146":2,"147":4,"148":4,"149":4}}],["默认为否",{"2":{"5":2}}],["author",{"2":{"155":1,"162":1}}],["all",{"2":{"101":1,"114":1,"124":1,"155":1,"162":1}}],["acos",{"2":{"82":1,"125":1}}],["axis",{"0":{"151":1,"152":1,"153":1}}],["ax",{"2":{"80":2}}],["arccos",{"2":{"158":1,"161":1}}],["array",{"0":{"130":1},"2":{"84":6,"130":2,"158":6,"161":6}}],["arrayvar",{"0":{"64":2,"65":1,"67":2,"70":3,"73":4,"76":1}}],["area",{"2":{"158":2,"161":2}}],["are",{"2":{"46":2,"84":1,"85":1}}],["args2",{"2":{"38":2}}],["args",{"0":{"38":1},"2":{"5":1,"33":1,"34":1,"35":14,"37":1,"38":5,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"89":1,"90":1,"91":1,"92":1,"95":1,"100":1,"101":1,"104":1,"105":1,"106":1,"111":1,"117":1,"118":1,"119":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"136":1,"137":1,"141":1,"142":1,"145":1,"147":1,"158":1,"161":1}}],["arguments",{"2":{"5":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"89":1,"90":1,"91":1,"92":1,"95":1,"100":1,"101":1,"104":1,"105":1,"106":1,"111":1,"117":1,"118":1,"119":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"136":1,"137":1,"141":1,"142":1,"145":1,"147":1,"158":1,"161":1}}],["abs",{"0":{"133":1},"2":{"45":1,"83":1,"101":3,"114":1,"117":1,"119":1,"124":3,"133":1}}],["a",{"0":{"80":1},"2":{"38":4,"80":5,"81":7,"83":2,"84":12,"85":2,"88":1,"89":3}}],["aaa",{"2":{"36":1}}],["approx",{"0":{"30":1,"43":2,"50":1,"81":1,"101":2,"112":1,"117":2,"124":2,"127":2},"1":{"113":1,"114":1,"115":1,"116":1},"2":{"18":1,"43":3,"50":2,"81":10,"96":1,"101":1,"105":3,"114":4,"117":1,"124":1,"127":1,"128":1,"137":3}}],["add",{"2":{"17":1,"38":8,"102":1,"103":1,"104":1,"134":1,"135":1,"136":1}}],["and",{"0":{"57":1,"89":1,"92":1,"93":1,"94":1,"95":1},"2":{"43":1,"46":2,"52":1,"57":1,"58":1,"81":6,"84":4,"85":1,"86":1,"89":1,"90":1,"91":1,"92":2,"93":1,"94":1,"95":2,"105":2,"115":1,"136":1,"137":2,"141":1,"142":1,"145":1}}],["anyangle",{"0":{"4":1,"6":1,"7":1,"9":1,"10":1,"17":2,"19":2,"20":1,"21":1,"22":1,"44":1,"82":1,"125":1},"1":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1},"2":{"6":2,"7":2,"9":2,"10":2,"17":3,"19":3,"20":2,"21":1,"22":1,"23":2,"39":1,"44":1,"59":1,"82":2,"125":2}}],["angle",{"0":{"2":1,"3":1,"4":1,"44":1,"82":1,"125":1},"1":{"3":1,"4":1,"5":2,"6":2,"7":2,"8":2,"9":2,"10":2,"11":2,"12":2,"13":2,"14":2,"15":2,"16":2,"17":2,"18":2,"19":2,"20":2,"21":2,"22":2,"23":2},"2":{"44":2,"82":2,"125":1}}],["file",{"2":{"155":1,"162":1}}],["from",{"0":{"56":1,"89":1,"90":1,"91":1,"92":1},"2":{"56":1,"86":1,"89":1,"90":2,"91":2,"92":2,"106":1}}],["frac",{"2":{"37":3}}],["f",{"2":{"37":4,"82":1,"83":1,"95":1,"115":1,"119":3,"136":1,"141":1,"142":1,"145":1}}],["format",{"0":{"119":1},"2":{"119":1}}],["for",{"2":{"34":1,"35":1,"95":1,"136":1,"141":1,"142":1,"145":1,"158":2,"161":2}}],["function",{"0":{"36":1},"1":{"37":1,"38":1}}],["func",{"0":{"33":3,"35":2,"37":1,"38":1},"2":{"33":15,"34":6,"35":16,"37":9,"38":6}}],["false",{"0":{"5":1,"118":1,"119":1},"2":{"81":1}}],["float=0",{"2":{"117":1}}],["float=1e",{"2":{"50":1}}],["float=approx",{"2":{"43":1,"101":1,"117":1,"124":1,"127":1}}],["float=epsilon",{"2":{"37":1}}],["float",{"0":{"5":1,"8":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"20":1,"21":1,"22":1,"37":1,"43":1,"45":1,"50":1,"61":1,"80":4,"83":1,"100":3,"101":1,"111":4,"117":3,"118":1,"119":1,"123":3,"124":1,"127":1,"131":1,"145":1,"158":2,"161":2},"2":{"5":1,"8":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"20":1,"21":1,"22":1,"45":1,"80":4,"83":1,"100":3,"111":4,"114":2,"117":1,"118":1,"119":1,"123":3,"131":1,"145":2,"158":2,"161":2}}],["==",{"2":{"34":1,"45":1,"54":1,"55":3,"85":1,"91":1,"95":1}}],["=",{"0":{"5":1,"17":1,"19":1,"20":1,"21":1,"22":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"35":1,"37":1,"43":1,"50":1,"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"101":1,"102":1,"103":1,"106":1,"117":2,"118":1,"119":1,"124":1,"127":1,"134":1,"135":1,"138":1,"139":1,"140":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"150":1,"151":1,"152":1,"153":1},"2":{"5":2,"33":3,"35":5,"37":5,"38":2,"42":2,"55":3,"56":1,"80":6,"81":6,"84":17,"85":2,"89":2,"90":3,"91":3,"100":3,"109":5,"113":1,"123":3,"129":4,"158":7,"161":7}}],["improve",{"2":{"164":1}}],["import",{"2":{"106":1}}],["i",{"2":{"158":4,"161":4}}],["invalid",{"2":{"35":1}}],["intersect",{"2":{"46":2}}],["intersection",{"0":{"46":1,"84":1,"85":1},"2":{"46":1,"57":1,"84":2,"85":1,"95":2,"97":1}}],["int",{"0":{"35":2,"61":1,"145":1},"2":{"35":3,"38":8,"114":2,"145":2,"158":1,"161":1}}],["in",{"2":{"34":1,"35":1,"158":2,"161":2}}],["init",{"0":{"5":1,"33":1,"42":1,"80":1,"100":1,"109":1,"113":1,"123":1},"2":{"5":1,"33":1,"42":1,"80":1,"100":1,"109":1,"113":1,"123":1,"155":1,"162":1}}],["if",{"2":{"5":1,"23":1,"34":1,"35":1,"45":2,"46":2,"55":3,"57":1,"81":1,"82":1,"83":1,"84":2,"85":1,"91":1,"95":3,"114":3,"118":2,"119":2,"136":1,"141":1,"142":1,"145":1}}],["isinstance",{"2":{"23":1,"35":2,"45":2,"82":2,"83":2,"95":2,"114":4,"136":2,"141":2,"142":1,"145":2}}],["is",{"0":{"5":1,"50":1,"51":1,"52":1,"53":1,"54":1,"87":1,"127":1,"128":1},"2":{"5":4,"6":1,"7":1,"10":1,"17":1,"19":1,"20":1,"23":1,"43":2,"45":2,"46":2,"50":2,"51":2,"52":3,"53":2,"54":1,"57":3,"58":2,"82":1,"84":1,"87":2,"95":1,"125":1,"127":1,"128":1}}],["model",{"0":{"156":1,"159":1},"1":{"157":1,"158":1,"160":1,"161":1}}],["midpoint",{"2":{"109":1}}],["min",{"0":{"111":1},"2":{"111":5}}],["minus",{"2":{"35":3}}],["minimum",{"0":{"9":1},"2":{"6":1,"7":1,"9":1}}],["multiarraysfunc",{"0":{"76":1,"77":1}}],["multisinglevarsfunc",{"0":{"75":1,"77":1}}],["multivarsfunc",{"0":{"35":2,"38":1,"77":1},"2":{"35":2,"38":1}}],["mul",{"2":{"20":1,"143":1,"144":1,"145":1,"146":1}}],["matmul",{"2":{"147":1}}],["math导入使用",{"2":{"39":1,"59":1}}],["math",{"0":{"2":1,"24":1,"25":1,"26":1,"27":1,"31":1,"36":1,"39":1,"40":1,"59":1,"60":2,"78":1,"98":1,"107":1,"110":1,"121":1},"1":{"3":1,"4":1,"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"32":1,"33":1,"34":1,"35":1,"37":1,"38":1,"41":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"61":2,"62":2,"63":2,"64":2,"65":2,"66":2,"67":2,"68":2,"69":2,"70":2,"71":2,"72":2,"73":2,"74":2,"75":2,"76":2,"77":2,"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"99":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"108":1,"109":1,"111":1,"112":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"150":1,"151":1,"152":1,"153":1},"2":{"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"82":1,"125":1,"131":1}}],["max",{"0":{"111":1},"2":{"111":5}}],["maximum",{"0":{"10":1},"2":{"10":1}}],["mp",{"0":{"2":1,"24":1,"31":1,"36":1,"39":1,"40":1,"59":1,"60":2,"78":1,"98":1,"107":1,"110":1,"121":1},"1":{"3":1,"4":1,"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"32":1,"33":1,"34":1,"35":1,"37":1,"38":1,"41":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"61":2,"62":2,"63":2,"64":2,"65":2,"66":2,"67":2,"68":2,"69":2,"70":2,"71":2,"72":2,"73":2,"74":2,"75":2,"76":2,"77":2,"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"99":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"108":1,"109":1,"111":1,"112":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"150":1,"151":1,"152":1,"153":1},"2":{"39":1,"59":1}}],["mbcp",{"0":{"0":1,"1":1,"2":1,"24":1,"31":1,"36":1,"39":1,"40":1,"59":1,"60":1,"78":1,"98":1,"107":1,"110":1,"120":1,"121":1,"154":1,"155":1,"156":1,"159":1,"162":1},"1":{"3":1,"4":1,"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"32":1,"33":1,"34":1,"35":1,"37":1,"38":1,"41":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"99":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"108":1,"109":1,"111":1,"112":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"150":1,"151":1,"152":1,"153":1,"157":1,"158":1,"160":1,"161":1}}]],"serializationVersion":2}';export{t as default};
diff --git a/assets/chunks/@localSearchIndexen.Zti5Hkmr.js b/assets/chunks/@localSearchIndexen.Zti5Hkmr.js
deleted file mode 100644
index 57fd526..0000000
--- a/assets/chunks/@localSearchIndexen.Zti5Hkmr.js
+++ /dev/null
@@ -1 +0,0 @@
-const t='{"documentCount":165,"nextId":165,"documentIds":{"0":"/en/api/api.html#mbcp","1":"/en/api/#mbcp","2":"/en/api/mp_math/angle.html#mbcp-mp-math-angle","3":"/en/api/mp_math/angle.html#class-angle","4":"/en/api/mp_math/angle.html#class-anyangle-angle","5":"/en/api/mp_math/angle.html#def-init-self-value-float-is-radian-bool-false","6":"/en/api/mp_math/angle.html#def-complementary-self-anyangle","7":"/en/api/mp_math/angle.html#def-supplementary-self-anyangle","8":"/en/api/mp_math/angle.html#def-degree-self-float","9":"/en/api/mp_math/angle.html#def-minimum-positive-self-anyangle","10":"/en/api/mp_math/angle.html#def-maximum-negative-self-anyangle","11":"/en/api/mp_math/angle.html#def-sin-self-float","12":"/en/api/mp_math/angle.html#def-cos-self-float","13":"/en/api/mp_math/angle.html#def-tan-self-float","14":"/en/api/mp_math/angle.html#def-cot-self-float","15":"/en/api/mp_math/angle.html#def-sec-self-float","16":"/en/api/mp_math/angle.html#def-csc-self-float","17":"/en/api/mp_math/angle.html#def-self-other-anyangle-anyangle","18":"/en/api/mp_math/angle.html#def-eq-self-other","19":"/en/api/mp_math/angle.html#def-self-other-anyangle-anyangle-1","20":"/en/api/mp_math/angle.html#def-self-other-float-anyangle","21":"/en/api/mp_math/angle.html#def-self-other-float-anyangle-1","22":"/en/api/mp_math/angle.html#def-self-other-anyangle-float","23":"/en/api/mp_math/angle.html#def-self-other","24":"/en/api/mp_math/const.html#mbcp-mp-math-const","25":"/en/api/mp_math/const.html#var-pi-math-pi","26":"/en/api/mp_math/const.html#var-e-math-e","27":"/en/api/mp_math/const.html#var-golden-ratio-1-math-sqrt-5-2","28":"/en/api/mp_math/const.html#var-gamma-0-5772156649015329","29":"/en/api/mp_math/const.html#var-epsilon-0-0001","30":"/en/api/mp_math/const.html#var-approx-0-001","31":"/en/api/mp_math/equation.html#mbcp-mp-math-equation","32":"/en/api/mp_math/equation.html#class-curveequation","33":"/en/api/mp_math/equation.html#def-init-self-x-func-onevarfunc-y-func-onevarfunc-z-func-onevarfunc","34":"/en/api/mp_math/equation.html#def-call-self-t-var-point3-tuple-point3","35":"/en/api/mp_math/equation.html#def-get-partial-derivative-func-func-multivarsfunc-var-int-tuple-int-epsilon-number-epsilon-multivarsfunc","36":"/en/api/mp_math/function.html#mbcp-mp-math-function","37":"/en/api/mp_math/function.html#def-cal-gradient-3vf-func-threesinglevarsfunc-p-point3-epsilon-float-epsilon-vector3","38":"/en/api/mp_math/function.html#def-curry-func-multivarsfunc-args-var-onevarfunc","39":"/en/api/mp_math/#mbcp-mp-math","40":"/en/api/mp_math/mp_math.html#mbcp-mp-math","41":"/en/api/mp_math/line.html#mbcp-mp-math-line","42":"/en/api/mp_math/line.html#class-line3","43":"/en/api/mp_math/line.html#def-init-self-point-point3-direction-vector3","44":"/en/api/mp_math/line.html#def-approx-self-other-line3-epsilon-float-approx-bool","45":"/en/api/mp_math/line.html#def-cal-angle-self-other-line3-anyangle","46":"/en/api/mp_math/line.html#def-cal-distance-self-other-line3-point3-float","47":"/en/api/mp_math/line.html#def-cal-intersection-self-other-line3-point3","48":"/en/api/mp_math/line.html#def-cal-perpendicular-self-point-point3-line3","49":"/en/api/mp_math/line.html#def-get-point-self-t-realnumber-point3","50":"/en/api/mp_math/line.html#def-get-parametric-equations-self-tuple-onesinglevarfunc-onesinglevarfunc-onesinglevarfunc","51":"/en/api/mp_math/line.html#def-is-approx-parallel-self-other-line3-epsilon-float-1e-06-bool","52":"/en/api/mp_math/line.html#def-is-parallel-self-other-line3-bool","53":"/en/api/mp_math/line.html#def-is-collinear-self-other-line3-bool","54":"/en/api/mp_math/line.html#def-is-point-on-self-point-point3-bool","55":"/en/api/mp_math/line.html#def-is-coplanar-self-other-line3-bool","56":"/en/api/mp_math/line.html#def-simplify-self","57":"/en/api/mp_math/line.html#def-from-two-points-cls-p1-point3-p2-point3-line3","58":"/en/api/mp_math/line.html#def-and-self-other-line3-line3-point3-none","59":"/en/api/mp_math/line.html#def-eq-self-other-bool","60":"/en/api/mp_math/mp_math_typing.html#mbcp-mp-math-mp-math-typing","61":"/en/api/mp_math/mp_math_typing.html#var-realnumber-int-float","62":"/en/api/mp_math/mp_math_typing.html#var-number-realnumber-complex","63":"/en/api/mp_math/mp_math_typing.html#var-singlevar-typevar-singlevar-bound-number","64":"/en/api/mp_math/mp_math_typing.html#var-arrayvar-typevar-arrayvar-bound-iterable-number","65":"/en/api/mp_math/mp_math_typing.html#var-var-singlevar-arrayvar","66":"/en/api/mp_math/mp_math_typing.html#var-onesinglevarfunc-callable-singlevar-singlevar","67":"/en/api/mp_math/mp_math_typing.html#var-onearrayfunc-callable-arrayvar-arrayvar","68":"/en/api/mp_math/mp_math_typing.html#var-onevarfunc-onesinglevarfunc-onearrayfunc","69":"/en/api/mp_math/mp_math_typing.html#var-twosinglevarsfunc-callable-singlevar-singlevar-singlevar","70":"/en/api/mp_math/mp_math_typing.html#var-twoarraysfunc-callable-arrayvar-arrayvar-arrayvar","71":"/en/api/mp_math/mp_math_typing.html#var-twovarsfunc-twosinglevarsfunc-twoarraysfunc","72":"/en/api/mp_math/mp_math_typing.html#var-threesinglevarsfunc-callable-singlevar-singlevar-singlevar-singlevar","73":"/en/api/mp_math/mp_math_typing.html#var-threearraysfunc-callable-arrayvar-arrayvar-arrayvar-arrayvar","74":"/en/api/mp_math/mp_math_typing.html#var-threevarsfunc-threesinglevarsfunc-threearraysfunc","75":"/en/api/mp_math/mp_math_typing.html#var-multisinglevarsfunc-callable-singlevar","76":"/en/api/mp_math/mp_math_typing.html#var-multiarraysfunc-callable-arrayvar","77":"/en/api/mp_math/mp_math_typing.html#var-multivarsfunc-multisinglevarsfunc-multiarraysfunc","78":"/en/api/mp_math/plane.html#mbcp-mp-math-plane","79":"/en/api/mp_math/plane.html#class-plane3","80":"/en/api/mp_math/plane.html#def-init-self-a-float-b-float-c-float-d-float","81":"/en/api/mp_math/plane.html#def-approx-self-other-plane3-bool","82":"/en/api/mp_math/plane.html#def-cal-angle-self-other-line3-plane3-anyangle","83":"/en/api/mp_math/plane.html#def-cal-distance-self-other-plane3-point3-float","84":"/en/api/mp_math/plane.html#def-cal-intersection-line3-self-other-plane3-line3","85":"/en/api/mp_math/plane.html#def-cal-intersection-point3-self-other-line3-point3","86":"/en/api/mp_math/plane.html#def-cal-parallel-plane3-self-point-point3-plane3","87":"/en/api/mp_math/plane.html#def-is-parallel-self-other-plane3-bool","88":"/en/api/mp_math/plane.html#def-normal-self-vector3","89":"/en/api/mp_math/plane.html#def-from-point-and-normal-cls-point-point3-normal-vector3-plane3","90":"/en/api/mp_math/plane.html#def-from-three-points-cls-p1-point3-p2-point3-p3-point3-plane3","91":"/en/api/mp_math/plane.html#def-from-two-lines-cls-l1-line3-l2-line3-plane3","92":"/en/api/mp_math/plane.html#def-from-point-and-line-cls-point-point3-line-line3-plane3","93":"/en/api/mp_math/plane.html#def-and-self-other-line3-point3-none","94":"/en/api/mp_math/plane.html#def-and-self-other-plane3-line3-none","95":"/en/api/mp_math/plane.html#def-and-self-other","96":"/en/api/mp_math/plane.html#def-eq-self-other-bool","97":"/en/api/mp_math/plane.html#def-rand-self-other-line3-point3","98":"/en/api/mp_math/point.html#mbcp-mp-math-point","99":"/en/api/mp_math/point.html#class-point3","100":"/en/api/mp_math/point.html#def-init-self-x-float-y-float-z-float","101":"/en/api/mp_math/point.html#def-approx-self-other-point3-epsilon-float-approx-bool","102":"/en/api/mp_math/point.html#def-self-other-vector3-point3","103":"/en/api/mp_math/point.html#def-self-other-point3-point3","104":"/en/api/mp_math/point.html#def-self-other","105":"/en/api/mp_math/point.html#def-eq-self-other","106":"/en/api/mp_math/point.html#def-self-other-point3-vector3","107":"/en/api/mp_math/segment.html#mbcp-mp-math-segment","108":"/en/api/mp_math/segment.html#class-segment3","109":"/en/api/mp_math/segment.html#def-init-self-p1-point3-p2-point3","110":"/en/api/mp_math/utils.html#mbcp-mp-math-utils","111":"/en/api/mp_math/utils.html#def-clamp-x-float-min-float-max-float-float","112":"/en/api/mp_math/utils.html#class-approx","113":"/en/api/mp_math/utils.html#def-init-self-value-realnumber","114":"/en/api/mp_math/utils.html#def-eq-self-other","115":"/en/api/mp_math/utils.html#def-raise-type-error-self-other","116":"/en/api/mp_math/utils.html#def-ne-self-other","117":"/en/api/mp_math/utils.html#def-approx-x-float-y-float-0-0-epsilon-float-approx-bool","118":"/en/api/mp_math/utils.html#def-sign-x-float-only-neg-bool-false-str","119":"/en/api/mp_math/utils.html#def-sign-format-x-float-only-neg-bool-false-str","120":"/en/api/mp_math/vector.html#mbcp-mp-math-vector","121":"/en/api/mp_math/vector.html#class-vector3","122":"/en/api/mp_math/vector.html#def-init-self-x-float-y-float-z-float","123":"/en/api/mp_math/vector.html#def-approx-self-other-vector3-epsilon-float-approx-bool","124":"/en/api/mp_math/vector.html#def-cal-angle-self-other-vector3-anyangle","125":"/en/api/mp_math/vector.html#def-cross-self-other-vector3-vector3","126":"/en/api/mp_math/vector.html#def-is-approx-parallel-self-other-vector3-epsilon-float-approx-bool","127":"/en/api/mp_math/vector.html#def-is-parallel-self-other-vector3-bool","128":"/en/api/mp_math/vector.html#def-normalize-self","129":"/en/api/mp_math/vector.html#def-np-array-self-np-ndarray","130":"/en/api/mp_math/vector.html#def-length-self-float","131":"/en/api/mp_math/vector.html#def-unit-self-vector3","132":"/en/api/mp_math/vector.html#def-abs-self","133":"/en/api/mp_math/vector.html#def-self-other-vector3-vector3","134":"/en/api/mp_math/vector.html#def-self-other-point3-point3","135":"/en/api/mp_math/vector.html#def-self-other","136":"/en/api/mp_math/vector.html#def-eq-self-other","137":"/en/api/mp_math/vector.html#def-self-other-point3-point3-1","138":"/en/api/mp_math/vector.html#def-self-other-vector3-vector3-1","139":"/en/api/mp_math/vector.html#def-self-other-point3-point3-2","140":"/en/api/mp_math/vector.html#def-self-other-1","141":"/en/api/mp_math/vector.html#def-self-other-point3","142":"/en/api/mp_math/vector.html#def-self-other-vector3-vector3-2","143":"/en/api/mp_math/vector.html#def-self-other-realnumber-vector3","144":"/en/api/mp_math/vector.html#def-self-other-int-float-vector3-vector3","145":"/en/api/mp_math/vector.html#def-self-other-realnumber-vector3-1","146":"/en/api/mp_math/vector.html#def-self-other-vector3-realnumber","147":"/en/api/mp_math/vector.html#def-self-other-realnumber-vector3-2","148":"/en/api/mp_math/vector.html#def-self","149":"/en/api/mp_math/vector.html#var-zero-vector3-vector3-0-0-0","150":"/en/api/mp_math/vector.html#var-x-axis-vector3-1-0-0","151":"/en/api/mp_math/vector.html#var-y-axis-vector3-0-1-0","152":"/en/api/mp_math/vector.html#var-z-axis-vector3-0-0-1","153":"/en/api/particle/#mbcp-particle","154":"/en/api/particle/particle.html#mbcp-particle","155":"/en/api/presets/#mbcp-presets","156":"/en/api/presets/model/#mbcp-presets-model","157":"/en/api/presets/model/#class-geometricmodels","158":"/en/api/presets/model/#def-sphere-radius-float-density-float","159":"/en/api/presets/model/model.html#mbcp-presets-model","160":"/en/api/presets/model/model.html#class-geometricmodels","161":"/en/api/presets/model/model.html#def-sphere-radius-float-density-float","162":"/en/api/presets/presets.html#mbcp-presets","163":"/en/guide/#开始不了一点","164":"/en/refer/#reference"},"fieldIds":{"title":0,"titles":1,"text":2},"fieldLength":{"0":[1,1,3],"1":[1,1,3],"2":[4,1,3],"3":[2,4,1],"4":[4,4,1],"5":[11,8,28],"6":[5,8,27],"7":[5,8,26],"8":[5,8,23],"9":[6,8,24],"10":[6,8,26],"11":[5,8,21],"12":[5,8,21],"13":[5,8,21],"14":[5,8,23],"15":[5,8,23],"16":[5,8,23],"17":[7,8,18],"18":[5,8,14],"19":[6,8,17],"20":[7,8,19],"21":[7,8,16],"22":[7,8,16],"23":[3,8,18],"24":[4,1,3],"25":[5,4,4],"26":[5,4,5],"27":[10,4,3],"28":[5,4,3],"29":[5,4,3],"30":[5,4,3],"31":[4,1,3],"32":[2,4,1],"33":[9,6,23],"34":[10,6,38],"35":[15,4,71],"36":[4,1,3],"37":[14,4,62],"38":[8,4,58],"39":[3,1,21],"40":[3,1,21],"41":[4,1,3],"42":[2,4,1],"43":[8,6,22],"44":[11,6,31],"45":[8,6,28],"46":[10,6,47],"47":[8,6,45],"48":[8,6,26],"49":[8,6,29],"50":[9,6,28],"51":[14,6,30],"52":[8,6,25],"53":[8,6,28],"54":[8,6,25],"55":[8,6,31],"56":[4,6,30],"57":[10,6,32],"58":[9,6,38],"59":[6,6,29],"60":[4,1,3],"61":[6,4,5],"62":[6,4,5],"63":[6,4,3],"64":[7,4,3],"65":[6,4,5],"66":[6,4,5],"67":[6,4,5],"68":[6,4,5],"69":[6,4,5],"70":[6,4,5],"71":[6,4,5],"72":[6,4,5],"73":[6,4,5],"74":[6,4,5],"75":[6,4,5],"76":[6,4,5],"77":[6,4,5],"78":[4,1,3],"79":[2,4,1],"80":[9,6,29],"81":[7,6,35],"82":[10,6,45],"83":[10,6,49],"84":[9,6,56],"85":[9,6,56],"86":[9,6,28],"87":[8,6,26],"88":[5,6,24],"89":[10,6,39],"90":[11,6,39],"91":[10,6,44],"92":[10,6,34],"93":[9,6,18],"94":[9,6,18],"95":[5,6,48],"96":[6,6,15],"97":[7,6,18],"98":[4,1,3],"99":[2,4,1],"100":[8,6,20],"101":[11,6,31],"102":[8,6,16],"103":[7,6,15],"104":[4,6,25],"105":[5,6,22],"106":[7,6,32],"107":[4,1,3],"108":[2,4,1],"109":[7,6,28],"110":[4,1,3],"111":[7,4,25],"112":[2,4,1],"113":[6,6,13],"114":[5,6,34],"115":[7,6,18],"116":[5,6,14],"117":[11,4,33],"118":[11,4,34],"119":[12,4,40],"120":[4,1,4],"121":[2,4,1],"122":[8,6,22],"123":[11,6,30],"124":[8,6,29],"125":[6,6,42],"126":[13,6,31],"127":[8,6,28],"128":[4,6,20],"129":[6,6,21],"130":[5,6,27],"131":[5,6,21],"132":[4,6,13],"133":[7,6,15],"134":[7,6,15],"135":[4,6,39],"136":[5,6,24],"137":[7,6,25],"138":[6,6,15],"139":[6,6,15],"140":[3,6,38],"141":[4,6,38],"142":[6,6,15],"143":[7,6,16],"144":[9,6,41],"145":[7,6,16],"146":[7,6,24],"147":[7,6,18],"148":[2,6,15],"149":[7,4,5],"150":[8,4,5],"151":[8,4,5],"152":[8,4,5],"153":[2,1,3],"154":[2,1,3],"155":[2,1,24],"156":[3,1,3],"157":[2,3,2],"158":[6,5,51],"159":[3,1,3],"160":[2,3,2],"161":[6,5,51],"162":[2,1,24],"163":[1,1,2],"164":[1,1,7]},"averageFieldLength":[6.242424242424242,4.963636363636361,19.64848484848484],"storedFields":{"0":{"title":"mbcp","titles":[]},"1":{"title":"mbcp","titles":[]},"2":{"title":"mbcp.mp_math.angle","titles":[]},"3":{"title":"class Angle","titles":["mbcp.mp_math.angle"]},"4":{"title":"class AnyAngle(Angle)","titles":["mbcp.mp_math.angle"]},"5":{"title":"def __init__(self, value: float, is_radian: bool = False)","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"6":{"title":"def complementary(self) -> AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"7":{"title":"def supplementary(self) -> AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"8":{"title":"def degree(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"9":{"title":"def minimum_positive(self) -> AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"10":{"title":"def maximum_negative(self) -> AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"11":{"title":"def sin(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"12":{"title":"def cos(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"13":{"title":"def tan(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"14":{"title":"def cot(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"15":{"title":"def sec(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"16":{"title":"def csc(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"17":{"title":"def self + other: AnyAngle => AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"18":{"title":"def __eq__(self, other)","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"19":{"title":"def self - other: AnyAngle => AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"20":{"title":"def self * other: float => AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"21":{"title":"def self / other: float => AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"22":{"title":"def self / other: AnyAngle => float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"23":{"title":"def self / other","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"24":{"title":"mbcp.mp_math.const","titles":[]},"25":{"title":"var PI = math.pi","titles":["mbcp.mp_math.const"]},"26":{"title":"var E = math.e","titles":["mbcp.mp_math.const"]},"27":{"title":"var GOLDEN_RATIO = (1 + math.sqrt(5)) / 2","titles":["mbcp.mp_math.const"]},"28":{"title":"var GAMMA = 0.5772156649015329","titles":["mbcp.mp_math.const"]},"29":{"title":"var EPSILON = 0.0001","titles":["mbcp.mp_math.const"]},"30":{"title":"var APPROX = 0.001","titles":["mbcp.mp_math.const"]},"31":{"title":"mbcp.mp_math.equation","titles":[]},"32":{"title":"class CurveEquation","titles":["mbcp.mp_math.equation"]},"33":{"title":"def __init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc)","titles":["mbcp.mp_math.equation","class CurveEquation"]},"34":{"title":"def __call__(self, *t: Var) -> Point3 | tuple[Point3, ...]","titles":["mbcp.mp_math.equation","class CurveEquation"]},"35":{"title":"def get_partial_derivative_func(func: MultiVarsFunc, var: int | tuple[int, ...], epsilon: Number = EPSILON) -> MultiVarsFunc","titles":["mbcp.mp_math.equation"]},"36":{"title":"mbcp.mp_math.function","titles":[]},"37":{"title":"def cal_gradient_3vf(func: ThreeSingleVarsFunc, p: Point3, epsilon: float = EPSILON) -> Vector3","titles":["mbcp.mp_math.function"]},"38":{"title":"def curry(func: MultiVarsFunc, *args: Var) -> OneVarFunc","titles":["mbcp.mp_math.function"]},"39":{"title":"mbcp.mp_math","titles":[]},"40":{"title":"mbcp.mp_math","titles":[]},"41":{"title":"mbcp.mp_math.line","titles":[]},"42":{"title":"class Line3","titles":["mbcp.mp_math.line"]},"43":{"title":"def __init__(self, point: Point3, direction: Vector3)","titles":["mbcp.mp_math.line","class Line3"]},"44":{"title":"def approx(self, other: Line3, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"45":{"title":"def cal_angle(self, other: Line3) -> AnyAngle","titles":["mbcp.mp_math.line","class Line3"]},"46":{"title":"def cal_distance(self, other: Line3 | Point3) -> float","titles":["mbcp.mp_math.line","class Line3"]},"47":{"title":"def cal_intersection(self, other: Line3) -> Point3","titles":["mbcp.mp_math.line","class Line3"]},"48":{"title":"def cal_perpendicular(self, point: Point3) -> Line3","titles":["mbcp.mp_math.line","class Line3"]},"49":{"title":"def get_point(self, t: RealNumber) -> Point3","titles":["mbcp.mp_math.line","class Line3"]},"50":{"title":"def get_parametric_equations(self) -> tuple[OneSingleVarFunc, OneSingleVarFunc, OneSingleVarFunc]","titles":["mbcp.mp_math.line","class Line3"]},"51":{"title":"def is_approx_parallel(self, other: Line3, epsilon: float = 1e-06) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"52":{"title":"def is_parallel(self, other: Line3) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"53":{"title":"def is_collinear(self, other: Line3) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"54":{"title":"def is_point_on(self, point: Point3) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"55":{"title":"def is_coplanar(self, other: Line3) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"56":{"title":"def simplify(self)","titles":["mbcp.mp_math.line","class Line3"]},"57":{"title":"def from_two_points(cls, p1: Point3, p2: Point3) -> Line3","titles":["mbcp.mp_math.line","class Line3"]},"58":{"title":"def __and__(self, other: Line3) -> Line3 | Point3 | None","titles":["mbcp.mp_math.line","class Line3"]},"59":{"title":"def __eq__(self, other) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"60":{"title":"mbcp.mp_math.mp_math_typing","titles":[]},"61":{"title":"var RealNumber = int | float","titles":["mbcp.mp_math.mp_math_typing"]},"62":{"title":"var Number = RealNumber | complex","titles":["mbcp.mp_math.mp_math_typing"]},"63":{"title":"var SingleVar = TypeVar(\'SingleVar\', bound=Number)","titles":["mbcp.mp_math.mp_math_typing"]},"64":{"title":"var ArrayVar = TypeVar(\'ArrayVar\', bound=Iterable[Number])","titles":["mbcp.mp_math.mp_math_typing"]},"65":{"title":"var Var = SingleVar | ArrayVar","titles":["mbcp.mp_math.mp_math_typing"]},"66":{"title":"var OneSingleVarFunc = Callable[[SingleVar], SingleVar]","titles":["mbcp.mp_math.mp_math_typing"]},"67":{"title":"var OneArrayFunc = Callable[[ArrayVar], ArrayVar]","titles":["mbcp.mp_math.mp_math_typing"]},"68":{"title":"var OneVarFunc = OneSingleVarFunc | OneArrayFunc","titles":["mbcp.mp_math.mp_math_typing"]},"69":{"title":"var TwoSingleVarsFunc = Callable[[SingleVar, SingleVar], SingleVar]","titles":["mbcp.mp_math.mp_math_typing"]},"70":{"title":"var TwoArraysFunc = Callable[[ArrayVar, ArrayVar], ArrayVar]","titles":["mbcp.mp_math.mp_math_typing"]},"71":{"title":"var TwoVarsFunc = TwoSingleVarsFunc | TwoArraysFunc","titles":["mbcp.mp_math.mp_math_typing"]},"72":{"title":"var ThreeSingleVarsFunc = Callable[[SingleVar, SingleVar, SingleVar], SingleVar]","titles":["mbcp.mp_math.mp_math_typing"]},"73":{"title":"var ThreeArraysFunc = Callable[[ArrayVar, ArrayVar, ArrayVar], ArrayVar]","titles":["mbcp.mp_math.mp_math_typing"]},"74":{"title":"var ThreeVarsFunc = ThreeSingleVarsFunc | ThreeArraysFunc","titles":["mbcp.mp_math.mp_math_typing"]},"75":{"title":"var MultiSingleVarsFunc = Callable[..., SingleVar]","titles":["mbcp.mp_math.mp_math_typing"]},"76":{"title":"var MultiArraysFunc = Callable[..., ArrayVar]","titles":["mbcp.mp_math.mp_math_typing"]},"77":{"title":"var MultiVarsFunc = MultiSingleVarsFunc | MultiArraysFunc","titles":["mbcp.mp_math.mp_math_typing"]},"78":{"title":"mbcp.mp_math.plane","titles":[]},"79":{"title":"class Plane3","titles":["mbcp.mp_math.plane"]},"80":{"title":"def __init__(self, a: float, b: float, c: float, d: float)","titles":["mbcp.mp_math.plane","class Plane3"]},"81":{"title":"def approx(self, other: Plane3) -> bool","titles":["mbcp.mp_math.plane","class Plane3"]},"82":{"title":"def cal_angle(self, other: Line3 | Plane3) -> AnyAngle","titles":["mbcp.mp_math.plane","class Plane3"]},"83":{"title":"def cal_distance(self, other: Plane3 | Point3) -> float","titles":["mbcp.mp_math.plane","class Plane3"]},"84":{"title":"def cal_intersection_line3(self, other: Plane3) -> Line3","titles":["mbcp.mp_math.plane","class Plane3"]},"85":{"title":"def cal_intersection_point3(self, other: Line3) -> Point3","titles":["mbcp.mp_math.plane","class Plane3"]},"86":{"title":"def cal_parallel_plane3(self, point: Point3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"87":{"title":"def is_parallel(self, other: Plane3) -> bool","titles":["mbcp.mp_math.plane","class Plane3"]},"88":{"title":"def normal(self) -> Vector3","titles":["mbcp.mp_math.plane","class Plane3"]},"89":{"title":"def from_point_and_normal(cls, point: Point3, normal: Vector3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"90":{"title":"def from_three_points(cls, p1: Point3, p2: Point3, p3: Point3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"91":{"title":"def from_two_lines(cls, l1: Line3, l2: Line3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"92":{"title":"def from_point_and_line(cls, point: Point3, line: Line3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"93":{"title":"def __and__(self, other: Line3) -> Point3 | None","titles":["mbcp.mp_math.plane","class Plane3"]},"94":{"title":"def __and__(self, other: Plane3) -> Line3 | None","titles":["mbcp.mp_math.plane","class Plane3"]},"95":{"title":"def __and__(self, other)","titles":["mbcp.mp_math.plane","class Plane3"]},"96":{"title":"def __eq__(self, other) -> bool","titles":["mbcp.mp_math.plane","class Plane3"]},"97":{"title":"def __rand__(self, other: Line3) -> Point3","titles":["mbcp.mp_math.plane","class Plane3"]},"98":{"title":"mbcp.mp_math.point","titles":[]},"99":{"title":"class Point3","titles":["mbcp.mp_math.point"]},"100":{"title":"def __init__(self, x: float, y: float, z: float)","titles":["mbcp.mp_math.point","class Point3"]},"101":{"title":"def approx(self, other: Point3, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.point","class Point3"]},"102":{"title":"def self + other: Vector3 => Point3","titles":["mbcp.mp_math.point","class Point3"]},"103":{"title":"def self + other: Point3 => Point3","titles":["mbcp.mp_math.point","class Point3"]},"104":{"title":"def self + other","titles":["mbcp.mp_math.point","class Point3"]},"105":{"title":"def __eq__(self, other)","titles":["mbcp.mp_math.point","class Point3"]},"106":{"title":"def self - other: Point3 => Vector3","titles":["mbcp.mp_math.point","class Point3"]},"107":{"title":"mbcp.mp_math.segment","titles":[]},"108":{"title":"class Segment3","titles":["mbcp.mp_math.segment"]},"109":{"title":"def __init__(self, p1: Point3, p2: Point3)","titles":["mbcp.mp_math.segment","class Segment3"]},"110":{"title":"mbcp.mp_math.utils","titles":[]},"111":{"title":"def clamp(x: float, min_: float, max_: float) -> float","titles":["mbcp.mp_math.utils"]},"112":{"title":"class Approx","titles":["mbcp.mp_math.utils"]},"113":{"title":"def __init__(self, value: RealNumber)","titles":["mbcp.mp_math.utils","class Approx"]},"114":{"title":"def __eq__(self, other)","titles":["mbcp.mp_math.utils","class Approx"]},"115":{"title":"def raise_type_error(self, other)","titles":["mbcp.mp_math.utils","class Approx"]},"116":{"title":"def __ne__(self, other)","titles":["mbcp.mp_math.utils","class Approx"]},"117":{"title":"def approx(x: float, y: float = 0.0, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.utils"]},"118":{"title":"def sign(x: float, only_neg: bool = False) -> str","titles":["mbcp.mp_math.utils"]},"119":{"title":"def sign_format(x: float, only_neg: bool = False) -> str","titles":["mbcp.mp_math.utils"]},"120":{"title":"mbcp.mp_math.vector","titles":[]},"121":{"title":"class Vector3","titles":["mbcp.mp_math.vector"]},"122":{"title":"def __init__(self, x: float, y: float, z: float)","titles":["mbcp.mp_math.vector","class Vector3"]},"123":{"title":"def approx(self, other: Vector3, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.vector","class Vector3"]},"124":{"title":"def cal_angle(self, other: Vector3) -> AnyAngle","titles":["mbcp.mp_math.vector","class Vector3"]},"125":{"title":"def cross(self, other: Vector3) -> Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"126":{"title":"def is_approx_parallel(self, other: Vector3, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.vector","class Vector3"]},"127":{"title":"def is_parallel(self, other: Vector3) -> bool","titles":["mbcp.mp_math.vector","class Vector3"]},"128":{"title":"def normalize(self)","titles":["mbcp.mp_math.vector","class Vector3"]},"129":{"title":"def np_array(self) -> np.ndarray","titles":["mbcp.mp_math.vector","class Vector3"]},"130":{"title":"def length(self) -> float","titles":["mbcp.mp_math.vector","class Vector3"]},"131":{"title":"def unit(self) -> Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"132":{"title":"def __abs__(self)","titles":["mbcp.mp_math.vector","class Vector3"]},"133":{"title":"def self + other: Vector3 => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"134":{"title":"def self + other: Point3 => Point3","titles":["mbcp.mp_math.vector","class Vector3"]},"135":{"title":"def self + other","titles":["mbcp.mp_math.vector","class Vector3"]},"136":{"title":"def __eq__(self, other)","titles":["mbcp.mp_math.vector","class Vector3"]},"137":{"title":"def self + other: Point3 => Point3","titles":["mbcp.mp_math.vector","class Vector3"]},"138":{"title":"def self - other: Vector3 => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"139":{"title":"def self - other: Point3 => Point3","titles":["mbcp.mp_math.vector","class Vector3"]},"140":{"title":"def self - other","titles":["mbcp.mp_math.vector","class Vector3"]},"141":{"title":"def self - other: Point3","titles":["mbcp.mp_math.vector","class Vector3"]},"142":{"title":"def self * other: Vector3 => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"143":{"title":"def self * other: RealNumber => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"144":{"title":"def self * other: int | float | Vector3 => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"145":{"title":"def self * other: RealNumber => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"146":{"title":"def self @ other: Vector3 => RealNumber","titles":["mbcp.mp_math.vector","class Vector3"]},"147":{"title":"def self / other: RealNumber => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"148":{"title":"def - self","titles":["mbcp.mp_math.vector","class Vector3"]},"149":{"title":"var zero_vector3 = Vector3(0, 0, 0)","titles":["mbcp.mp_math.vector"]},"150":{"title":"var x_axis = Vector3(1, 0, 0)","titles":["mbcp.mp_math.vector"]},"151":{"title":"var y_axis = Vector3(0, 1, 0)","titles":["mbcp.mp_math.vector"]},"152":{"title":"var z_axis = Vector3(0, 0, 1)","titles":["mbcp.mp_math.vector"]},"153":{"title":"mbcp.particle","titles":[]},"154":{"title":"mbcp.particle","titles":[]},"155":{"title":"mbcp.presets","titles":[]},"156":{"title":"mbcp.presets.model","titles":[]},"157":{"title":"class GeometricModels","titles":["mbcp.presets.model"]},"158":{"title":"def sphere(radius: float, density: float)","titles":["mbcp.presets.model","class GeometricModels"]},"159":{"title":"mbcp.presets.model","titles":[]},"160":{"title":"class GeometricModels","titles":["mbcp.presets.model"]},"161":{"title":"def sphere(radius: float, density: float)","titles":["mbcp.presets.model","class GeometricModels"]},"162":{"title":"mbcp.presets","titles":[]},"163":{"title":"开始不了一点","titles":[]},"164":{"title":"Reference","titles":[]}},"dirtCount":0,"index":[["∫12x111",{"2":{"163":1}}],["开始不了一点",{"0":{"163":1}}],["4",{"2":{"158":1,"161":1}}],["球体上的点集",{"2":{"158":2,"161":2}}],["生成球体上的点集",{"2":{"158":2,"161":2}}],["几何模型点集",{"2":{"156":1,"159":1}}],["下午9",{"2":{"155":1,"162":1}}],["8",{"2":{"155":1,"162":1}}],["零向量",{"2":{"149":1}}],["非点乘",{"2":{"144":2}}],["别去点那边实现了",{"2":{"137":2}}],["单位向量",{"2":{"131":2}}],["单变量",{"2":{"63":1}}],["模",{"2":{"130":2}}],["向量的模",{"2":{"130":2}}],["向量积",{"2":{"125":2}}],["返回numpy数组",{"2":{"129":1}}],["返回如下行列式的结果",{"2":{"125":1}}],["将向量归一化",{"2":{"128":2}}],["允许的误差",{"2":{"126":2}}],["j",{"2":{"125":1}}],["行列式的结果",{"2":{"125":2}}],["其余结果的模为平行四边形的面积",{"2":{"125":2}}],["叉乘使用cross",{"2":{"144":2}}],["叉乘为0",{"2":{"125":2}}],["叉乘",{"2":{"125":2}}],["夹角",{"2":{"124":2}}],["夹角弧度",{"2":{"45":2,"82":2}}],["以及一些常用的向量",{"2":{"120":1}}],["格式化符号数",{"2":{"119":2}}],["quot",{"2":{"118":2,"119":4}}],["符号",{"2":{"118":2,"119":2}}],["获取该向量的单位向量",{"2":{"131":2}}],["获取数的符号",{"2":{"118":2}}],["获取直线的参数方程",{"2":{"50":2}}],["获取直线上的点",{"2":{"49":2}}],["用于判断是否近似于0",{"2":{"117":2}}],["或包装一个实数",{"2":{"117":2}}],["或整数元组",{"2":{"35":2}}],["限制后的值",{"2":{"111":2}}],["待限定的值",{"2":{"111":2}}],["区间限定函数",{"2":{"111":2}}],["us",{"2":{"164":1}}],["unit",{"0":{"131":1},"2":{"131":1}}],["unsupported",{"2":{"46":1,"82":1,"83":1,"95":1,"115":1,"135":1,"140":1,"141":1,"144":1}}],["utils",{"0":{"110":1},"1":{"111":1,"112":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1}}],["中心点",{"2":{"109":1}}],["中实现",{"2":{"106":2}}],["长度",{"2":{"109":1}}],["方向向量",{"2":{"109":1}}],["``x2",{"2":{"125":1}}],["``x1",{"2":{"125":1}}],["``i",{"2":{"125":1}}],["```",{"2":{"38":1}}],["```python",{"2":{"38":1}}],["`vector3`",{"2":{"106":1}}],["已在",{"2":{"106":2}}],["已知一个函数$f",{"2":{"37":1}}],["已知一个函数f",{"2":{"37":1}}],["坐标",{"2":{"100":6}}],["笛卡尔坐标系中的点",{"2":{"100":2}}],["人话",{"2":{"95":2}}],["取两平面的交集",{"2":{"95":2}}],["面上直线",{"2":{"92":2}}],["面上一点",{"2":{"92":2}}],["法向量",{"2":{"88":2,"89":2}}],["所求平面",{"2":{"86":2}}],["k``",{"2":{"125":1}}],["k",{"2":{"81":12}}],["另一个向量",{"2":{"124":2,"126":2,"127":2}}],["另一个平面或点",{"2":{"83":2}}],["另一个平面",{"2":{"81":2,"82":2,"84":2,"87":2}}],["另一条直线",{"2":{"44":2,"45":2,"47":2,"51":2,"52":2,"53":2,"55":2,"58":2}}],["常数项",{"2":{"80":2}}],["常量",{"2":{"25":1}}],["平面平行返回none",{"2":{"95":2}}],["平面",{"2":{"89":2,"90":2,"91":2,"92":2}}],["平面上的一点",{"2":{"89":2}}],["平面的法向量",{"2":{"88":2}}],["平面与直线平行或重合",{"2":{"85":2}}],["平面方程",{"2":{"80":2}}],["平行线返回none",{"2":{"58":2}}],["平行直线或点",{"2":{"46":2}}],["多元函数",{"2":{"77":1}}],["多元数组函数",{"2":{"76":1}}],["多元单变量函数",{"2":{"75":1}}],["二元函数",{"2":{"71":1}}],["二元数组函数",{"2":{"70":1}}],["二元单变量函数",{"2":{"69":1}}],["一元函数",{"2":{"68":1}}],["一元数组函数",{"2":{"67":1}}],["一元单变量函数",{"2":{"66":1}}],["一阶偏导",{"2":{"35":2}}],["变量",{"2":{"65":1}}],["变量位置",{"2":{"35":2}}],["数组运算",{"2":{"144":2}}],["数组变量",{"2":{"64":1}}],["数2",{"2":{"117":2}}],["数1",{"2":{"117":2}}],["数",{"2":{"62":1,"118":2,"119":2}}],["实数",{"2":{"61":1}}],["∧",{"2":{"59":2}}],["交线",{"2":{"95":2}}],["交线返回交点",{"2":{"58":2}}],["交点",{"2":{"47":2,"58":2,"85":2}}],["重合线返回自身",{"2":{"58":2}}],["由点和直线构造平面",{"2":{"92":2}}],["由点和法向量构造平面",{"2":{"89":2}}],["由两直线构造平面",{"2":{"91":2}}],["由两点构造直线",{"2":{"57":2}}],["由三点构造平面",{"2":{"90":2}}],["由一个点和一个方向向量确定",{"2":{"43":2}}],["工厂函数",{"2":{"57":2,"89":2,"90":2,"91":2,"92":2}}],["并对向量单位化",{"2":{"56":2}}],["处理",{"2":{"56":2}}],["处的梯度向量为",{"2":{"37":1}}],["化",{"2":{"56":2}}],["按照可行性一次对x",{"2":{"56":2}}],["不平行平面的交线",{"2":{"95":2}}],["不包含点",{"2":{"92":2}}],["不与平面平行或在平面上的直线",{"2":{"85":2}}],["不返回值",{"2":{"56":2,"128":2}}],["不支持的类型",{"2":{"45":2,"46":2,"82":2,"83":2}}],["自体归一化",{"2":{"128":2}}],["自体简化",{"2":{"56":2}}],["自然对数的底",{"2":{"26":1}}],["等价相等",{"2":{"56":2}}],["简化直线方程",{"2":{"56":2}}],["两平面的交线",{"2":{"84":2}}],["两直线方向向量的叉乘与两直线上任意一点的向量的点积为0",{"2":{"55":2}}],["两角的和为180°",{"2":{"7":2}}],["两角的和为90°",{"2":{"6":2}}],["充要条件",{"2":{"55":2}}],["判断两个向量是否相等",{"2":{"136":2}}],["判断两个向量是否平行",{"2":{"127":2}}],["判断两个向量是否近似平行",{"2":{"126":2}}],["判断两个向量是否近似相等",{"2":{"123":2}}],["判断两个数是否近似相等",{"2":{"117":2}}],["判断两个点是否相等",{"2":{"105":2}}],["判断两个点是否近似相等",{"2":{"101":2}}],["判断两个平面是否平行",{"2":{"87":2}}],["判断两个平面是否近似相等",{"2":{"81":2}}],["判断两条直线是否等价",{"2":{"59":2}}],["判断两条直线是否共面",{"2":{"55":2}}],["判断两条直线是否共线",{"2":{"53":2}}],["判断两条直线是否平行",{"2":{"52":2}}],["判断两条直线是否近似平行",{"2":{"51":2}}],["判断两条直线是否近似相等",{"2":{"44":2}}],["判断点是否在直线上",{"2":{"54":2}}],["则两向量平行",{"2":{"125":2}}],["则同一个t对应的点不同",{"2":{"49":2}}],["则其在点$",{"2":{"37":1}}],["则其在点",{"2":{"37":1}}],["但起始点和方向向量不同",{"2":{"49":2}}],["同一条直线",{"2":{"49":2}}],["垂线",{"2":{"48":2}}],["指定点",{"2":{"48":2,"86":2}}],["距离",{"2":{"46":2,"83":2}}],["是否相等",{"2":{"136":2}}],["是否只返回负数的符号",{"2":{"118":2,"119":2}}],["是否共面",{"2":{"55":2}}],["是否共线",{"2":{"53":2}}],["是否在直线上",{"2":{"54":2}}],["是否平行",{"2":{"52":2,"87":2,"127":2}}],["是否近似平行",{"2":{"51":2,"126":2}}],["是否近似相等",{"2":{"44":2,"81":2,"101":2,"117":2,"123":2}}],["是否为弧度",{"2":{"5":2}}],["误差",{"2":{"44":2,"51":2,"117":2}}],["直线2",{"2":{"91":2}}],["直线1",{"2":{"91":2}}],["直线",{"2":{"57":2}}],["直线不共面",{"2":{"47":2}}],["直线平行",{"2":{"47":2}}],["直线的方向向量",{"2":{"43":2}}],["直线上的一点",{"2":{"43":2}}],["三元数组函数",{"2":{"73":1}}],["三元单变量函数",{"2":{"72":1}}],["三元函数",{"2":{"37":2,"74":1}}],["三维空间中的线段",{"2":{"109":2}}],["三维空间中的直线",{"2":{"43":2}}],["三维向量",{"2":{"39":1,"40":1}}],["三维线段",{"2":{"39":1,"40":1}}],["三维点",{"2":{"39":1,"40":1}}],["三维平面",{"2":{"39":1,"40":1}}],["三维直线",{"2":{"39":1,"40":1}}],["任意角",{"2":{"39":1,"40":1}}],["任意角度",{"2":{"5":2}}],["导入的类有",{"2":{"39":1,"40":1}}],["本包定义了一些常用的导入",{"2":{"39":1,"40":1}}],["本模块用于内部类型提示",{"2":{"60":1}}],["本模块定义了粒子生成相关的工具",{"2":{"153":1,"154":1}}],["本模块定义了3维向量的类vector3",{"2":{"120":1}}],["本模块定义了一些常用的工具函数",{"2":{"110":1}}],["本模块定义了一些常用的常量",{"2":{"24":1}}],["本模块定义了三维空间中点的类",{"2":{"98":1}}],["本模块定义了三维空间中的线段类",{"2":{"107":1}}],["本模块定义了三维空间中的平面类",{"2":{"78":1}}],["本模块定义了三维空间中的直线类",{"2":{"41":1}}],["本模块定义了方程相关的类和函数以及一些常用的数学函数",{"2":{"31":1}}],["本模块定义了角度相关的类",{"2":{"2":1}}],["本模块塞了一些预设的粒子生成器",{"2":{"0":1,"1":1}}],["help",{"2":{"164":1}}],["have",{"2":{"84":1}}],["https",{"2":{"38":1}}],["high",{"2":{"35":2}}],["hide",{"2":{"35":2,"38":1}}],["6",{"2":{"38":2}}],["3维向量",{"2":{"122":2}}],["355859667",{"2":{"38":1}}],["3",{"2":{"38":2}}],["3vf",{"0":{"37":1},"2":{"37":1}}],["by",{"2":{"80":2}}],["bound=iterable",{"0":{"64":1}}],["bound=number",{"0":{"63":1}}],["bool=false",{"2":{"5":1,"118":1,"119":1}}],["bool",{"0":{"5":1,"44":1,"51":1,"52":1,"53":1,"54":1,"55":1,"59":1,"81":1,"87":1,"96":1,"101":1,"117":1,"118":1,"119":1,"123":1,"126":1,"127":1},"2":{"44":1,"51":1,"52":1,"53":1,"54":1,"55":1,"59":1,"81":1,"87":1,"96":1,"101":1,"117":1,"123":1,"126":1,"127":1}}],["b",{"0":{"80":1},"2":{"38":4,"80":5,"81":7,"83":2,"84":12,"85":2,"88":1,"89":3}}],["柯里化后的函数",{"2":{"38":2}}],["柯理化",{"2":{"38":2}}],["可直接从mbcp",{"2":{"39":1,"40":1}}],["可参考",{"2":{"38":1}}],["可参考函数式编程",{"2":{"38":1}}],["可为整数",{"2":{"35":2}}],["有关函数柯里化",{"2":{"38":2}}],["对多参数函数进行柯里化",{"2":{"38":2}}],["d",{"0":{"80":1},"2":{"80":7,"81":6,"83":1,"84":6,"85":1,"89":2}}],["documentation",{"2":{"164":1}}],["do",{"2":{"47":2}}],["distance",{"0":{"46":1,"83":1},"2":{"46":1,"83":1}}],["direction",{"0":{"43":1},"2":{"43":5,"44":1,"45":2,"46":8,"47":6,"48":1,"49":1,"50":3,"51":2,"52":2,"53":1,"54":1,"55":2,"56":4,"57":2,"59":3,"82":1,"84":2,"85":4,"91":1,"92":1,"95":1,"109":2}}],["dz",{"2":{"37":2}}],["dy",{"2":{"37":2}}],["dx",{"2":{"37":2}}],["density",{"0":{"158":1,"161":1},"2":{"158":4,"161":4}}],["derivative",{"0":{"35":1},"2":{"35":6}}],["degree",{"0":{"8":1},"2":{"8":1}}],["def",{"0":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"59":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1},"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"21":1,"22":1,"35":2,"38":2,"57":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"102":1,"103":1,"129":1,"130":1,"131":1,"133":1,"134":1,"138":1,"139":1,"142":1,"143":1,"158":1,"161":1}}],["description",{"2":{"0":1,"1":1,"2":1,"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"24":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"31":1,"33":1,"34":1,"35":1,"36":1,"37":1,"38":1,"39":1,"40":1,"41":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"59":1,"60":1,"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"78":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"95":1,"98":1,"100":1,"101":1,"104":1,"105":1,"106":1,"107":1,"109":1,"110":1,"111":1,"117":1,"118":1,"119":1,"120":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"130":1,"131":1,"135":1,"136":1,"137":1,"140":1,"141":1,"144":1,"146":1,"149":1,"150":1,"151":1,"152":1,"153":1,"154":1,"155":1,"156":1,"158":1,"159":1,"161":1,"162":1}}],["$处的梯度向量为",{"2":{"37":1}}],["$",{"2":{"37":3}}],["梯度",{"2":{"37":2}}],["点乘",{"2":{"146":2}}],["点乘使用",{"2":{"144":2}}],["点3",{"2":{"90":2}}],["点法式构造",{"2":{"89":2}}],["点2",{"2":{"57":2,"90":2}}],["点1",{"2":{"57":2,"90":2}}],["点",{"2":{"37":2,"49":2,"54":2}}],["∂f∂z",{"2":{"37":1}}],["∂f∂y",{"2":{"37":1}}],["∂f∂x",{"2":{"37":1}}],["∇f",{"2":{"37":1}}],["计算平行于该平面且过指定点的平面",{"2":{"86":2}}],["计算平面与直线的交点",{"2":{"85":2}}],["计算平面与平面或点之间的距离",{"2":{"83":2}}],["计算平面与平面之间的夹角",{"2":{"82":2}}],["计算两个向量之间的夹角",{"2":{"124":2}}],["计算两平面的交线",{"2":{"84":2}}],["计算两条直线点集合的交集",{"2":{"58":2}}],["计算两条直线的交点",{"2":{"47":2}}],["计算直线经过指定点p的垂线",{"2":{"48":2}}],["计算直线和直线或点之间的距离",{"2":{"46":2}}],["计算直线和直线之间的夹角",{"2":{"45":2}}],["计算三元函数在某点的梯度向量",{"2":{"37":2}}],["计算曲线上的点",{"2":{"34":2}}],["求高阶偏导函数",{"2":{"35":1}}],["求n元函数一阶偏导函数",{"2":{"35":2}}],["l2",{"0":{"91":1},"2":{"91":5}}],["l1",{"0":{"91":1},"2":{"91":7}}],["lambda",{"2":{"50":3}}],["left",{"2":{"37":1}}],["length",{"0":{"130":1},"2":{"46":5,"47":1,"82":2,"109":2,"124":2,"126":1,"128":5,"130":1,"131":1,"132":1}}],["len",{"2":{"34":1}}],["liteyukistudio",{"2":{"155":1,"162":1}}],["litedoc",{"2":{"35":2,"38":1}}],["linalg",{"2":{"84":3}}],["lines",{"0":{"91":1},"2":{"47":2,"91":1}}],["line",{"0":{"41":1,"92":2},"1":{"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"59":1},"2":{"85":1,"92":5}}],["line3",{"0":{"42":1,"44":1,"45":1,"46":1,"47":1,"48":1,"51":1,"52":1,"53":1,"55":1,"57":1,"58":2,"82":1,"84":2,"85":1,"91":2,"92":1,"93":1,"94":1,"97":1},"1":{"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"59":1},"2":{"39":1,"40":1,"44":1,"45":1,"46":2,"47":1,"48":2,"51":1,"52":1,"53":1,"55":1,"57":1,"58":2,"82":2,"84":3,"85":1,"91":2,"92":1,"93":1,"94":1,"95":2,"97":1,"114":1}}],["list",{"2":{"35":8,"158":10,"161":10}}],["无效变量类型",{"2":{"35":2}}],["偏导函数",{"2":{"35":2}}],["偏移量",{"2":{"35":2,"37":2}}],["高阶偏导数值",{"2":{"35":1}}],["高阶偏导",{"2":{"35":2}}],["函数式编程",{"2":{"38":1}}],["函数",{"2":{"35":2,"38":2}}],["因此该函数的稳定性有待提升",{"2":{"35":2}}],["目前数学界对于一个函数的导函数并没有通解的说法",{"2":{"35":2}}],["目标点",{"2":{"34":2}}],["warning",{"2":{"35":2}}],["慎用",{"2":{"35":2}}],["这玩意不太稳定",{"2":{"35":2}}],["num",{"2":{"158":5,"161":5}}],["number=epsilon",{"2":{"35":1}}],["number",{"0":{"35":1,"62":1,"64":1}}],["ndarray",{"0":{"129":1},"2":{"129":1}}],["neg",{"0":{"118":1,"119":1},"2":{"118":4,"119":4,"148":1}}],["negative",{"0":{"10":1},"2":{"10":1}}],["ne",{"0":{"116":1},"2":{"116":1}}],["np",{"0":{"129":2},"2":{"84":9,"129":3,"158":9,"161":9}}],["no",{"2":{"84":1}}],["normal",{"0":{"88":1,"89":2},"2":{"82":5,"84":4,"85":1,"86":2,"87":2,"88":1,"89":7,"90":3,"91":1,"92":1,"95":3}}],["normalize",{"0":{"128":1},"2":{"56":1,"128":1}}],["none",{"0":{"58":1,"93":1,"94":1},"2":{"58":2,"93":1,"94":1,"95":2}}],["not",{"2":{"46":1,"47":4,"58":1,"116":1,"118":1,"119":1}}],["nabla",{"2":{"37":1}}],["参数t",{"2":{"49":2}}],["参数",{"2":{"34":2,"35":1,"38":2}}],["|",{"0":{"34":1,"35":1,"46":1,"58":2,"61":1,"62":1,"65":1,"68":1,"71":1,"74":1,"77":1,"82":1,"83":1,"93":1,"94":1,"144":2},"2":{"34":1,"35":1,"46":1,"58":2,"82":1,"83":1,"93":1,"94":1,"144":2}}],["曲线方程",{"2":{"33":2,"39":1,"40":1}}],["z轴单位向量",{"2":{"152":1}}],["z轴分量",{"2":{"122":2}}],["z2``",{"2":{"125":1}}],["z1``",{"2":{"125":1}}],["zero",{"0":{"149":1},"2":{"91":1,"127":1}}],["z系数",{"2":{"80":2}}],["zhihu",{"2":{"38":1}}],["zhuanlan",{"2":{"38":1}}],["z0",{"2":{"37":2}}],["zip",{"2":{"34":1}}],["z函数",{"2":{"33":2}}],["z",{"0":{"33":1,"100":1,"122":1,"152":1},"2":{"33":5,"34":4,"37":11,"50":4,"56":4,"83":1,"84":4,"85":4,"89":2,"100":7,"101":2,"104":2,"105":2,"106":2,"109":2,"114":2,"122":5,"123":2,"125":4,"128":1,"129":1,"130":1,"135":4,"136":2,"137":2,"140":4,"141":2,"144":3,"146":2,"147":1,"148":1,"158":2,"161":2}}],["y轴单位向量",{"2":{"151":1}}],["y轴分量",{"2":{"122":2}}],["y2",{"2":{"125":1}}],["y1",{"2":{"125":1}}],["y系数",{"2":{"80":2}}],["y0",{"2":{"37":2}}],["y函数",{"2":{"33":2}}],["y",{"0":{"33":1,"100":1,"117":1,"122":1,"151":1},"2":{"33":5,"34":4,"37":11,"50":4,"56":4,"83":1,"84":4,"85":4,"89":2,"100":7,"101":2,"104":2,"105":2,"106":2,"109":2,"114":2,"117":4,"122":5,"123":2,"125":4,"128":1,"129":1,"130":1,"135":4,"136":2,"137":2,"140":4,"141":2,"144":3,"146":2,"147":1,"148":1,"158":2,"161":2}}],["x轴单位向量",{"2":{"150":1}}],["x轴分量",{"2":{"122":2}}],["x3c",{"2":{"101":3,"114":1,"117":1,"118":1,"119":1,"123":3,"126":1}}],["x26",{"2":{"95":1}}],["x系数",{"2":{"80":2}}],["x0",{"2":{"37":2}}],["x函数",{"2":{"33":2}}],["x",{"0":{"33":1,"100":1,"111":1,"117":1,"118":1,"119":1,"122":1,"150":1},"2":{"33":5,"34":4,"37":11,"50":4,"56":2,"83":1,"84":4,"85":4,"89":2,"100":7,"101":2,"104":2,"105":2,"106":2,"109":2,"111":4,"114":2,"117":4,"118":5,"119":8,"122":5,"123":2,"125":4,"128":1,"129":1,"130":1,"135":4,"136":2,"137":2,"140":4,"141":2,"144":3,"146":2,"147":1,"148":1,"158":2,"161":2}}],["约等于判定误差",{"2":{"30":1}}],["精度误差",{"2":{"29":1}}],["欧拉常数",{"2":{"28":1}}],["06",{"0":{"51":1},"2":{"51":1}}],["001",{"0":{"30":1}}],["0001",{"0":{"29":1}}],["0",{"0":{"28":1,"29":1,"30":1,"117":2,"149":3,"150":2,"151":2,"152":2},"2":{"34":3,"37":6,"46":2,"55":1,"56":8,"80":2,"81":3,"83":2,"84":9,"85":1,"95":1,"117":1,"118":2,"119":4,"158":2,"161":2}}],["黄金分割比",{"2":{"27":1}}],["5772156649015329",{"0":{"28":1}}],["5",{"0":{"27":1},"2":{"83":1}}],["π",{"2":{"25":1}}],["to",{"2":{"164":1}}],["time",{"2":{"155":1,"162":1}}],["tip",{"2":{"37":2,"38":2}}],["theta",{"2":{"158":3,"161":3}}],["the",{"2":{"85":2,"164":1}}],["three",{"0":{"90":1},"2":{"90":1}}],["threevarsfunc",{"0":{"74":1}}],["threearraysfunc",{"0":{"73":1,"74":1}}],["threesinglevarsfunc",{"0":{"37":1,"72":1,"74":1},"2":{"37":1}}],["typing",{"0":{"60":1},"1":{"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1}}],["typevar",{"0":{"63":1,"64":1}}],["typealias",{"2":{"61":1,"62":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1}}],["typeerror",{"2":{"45":2,"46":3,"82":3,"83":3,"95":1,"115":1,"135":1,"140":1,"141":1,"144":1}}],["type",{"0":{"115":1},"2":{"35":1,"46":1,"61":1,"62":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"82":2,"83":2,"95":2,"114":2,"115":4,"135":2,"140":2,"141":2,"144":2,"149":1,"150":1,"151":1,"152":1}}],["twovarsfunc",{"0":{"71":1}}],["twoarraysfunc",{"0":{"70":1,"71":1}}],["twosinglevarsfunc",{"0":{"69":1,"71":1}}],["two",{"0":{"57":1,"91":1},"2":{"57":1,"91":1}}],["tuple",{"0":{"34":1,"35":1,"50":1},"2":{"34":2,"35":2,"50":1}}],["t",{"0":{"34":1,"49":1},"2":{"34":10,"49":4,"50":12,"85":4}}],["truediv",{"2":{"21":1,"22":1,"23":1,"147":1}}],["tan",{"0":{"13":1},"2":{"13":2,"14":1}}],["email",{"2":{"155":1,"162":1}}],["error",{"0":{"115":1},"2":{"114":2,"115":1}}],["examples",{"2":{"38":2}}],["exp",{"2":{"26":1}}],["elif",{"2":{"35":1,"46":3,"58":1,"81":2,"82":1,"83":1,"84":2,"95":1,"114":1,"118":1,"119":1,"135":1,"140":1,"144":1}}],["else",{"2":{"5":1,"34":1,"35":1,"46":2,"58":1,"81":1,"82":1,"83":1,"95":1,"114":2,"118":2,"119":2,"135":1,"140":1,"141":1,"144":1}}],["epsilon",{"0":{"29":1,"35":2,"37":2,"44":1,"51":1,"101":1,"117":1,"123":1,"126":1},"2":{"35":7,"37":12,"44":5,"51":4,"101":6,"117":4,"123":6,"126":4}}],["e",{"0":{"26":2}}],["equations",{"0":{"50":1},"2":{"50":1,"85":1}}],["equation",{"0":{"31":1},"1":{"32":1,"33":1,"34":1,"35":1}}],["eq",{"0":{"18":1,"59":1,"96":1,"105":1,"114":1,"136":1},"2":{"18":1,"59":1,"96":1,"105":1,"114":1,"116":1,"136":1}}],["+1",{"2":{"119":2}}],["+=",{"2":{"35":1}}],["+",{"0":{"17":1,"27":1,"102":1,"103":1,"104":1,"133":1,"134":1,"135":1,"137":1},"2":{"17":1,"37":3,"38":4,"47":1,"49":1,"50":3,"80":6,"83":5,"85":5,"104":7,"109":3,"118":3,"119":3,"130":2,"135":11,"137":5,"146":2,"158":1,"161":1}}],["12",{"2":{"155":2,"162":2}}],["1e",{"0":{"51":1}}],["1",{"0":{"27":1,"150":1,"151":1,"152":1},"2":{"14":1,"15":1,"16":1,"26":1,"34":1,"38":2,"91":1,"119":6,"158":4,"161":4}}],["180",{"2":{"5":1,"8":1}}],["正割值",{"2":{"15":4}}],["正切值",{"2":{"13":4}}],["正弦值",{"2":{"11":4}}],["余割值",{"2":{"16":4}}],["余切值",{"2":{"14":4}}],["余弦值",{"2":{"12":4}}],["余角",{"2":{"6":4}}],["最大值",{"2":{"111":2}}],["最大负角度",{"2":{"10":2}}],["最大负角",{"2":{"10":2}}],["最小值",{"2":{"111":2}}],["最小正角度",{"2":{"9":2}}],["最小正角",{"2":{"9":2}}],["弧度",{"2":{"8":2}}],["角度",{"2":{"8":2}}],["角度或弧度值",{"2":{"5":2}}],["补角",{"2":{"7":4}}],["2024",{"2":{"155":2,"162":2}}],["2020",{"2":{"155":1,"162":1}}],["2",{"0":{"27":1},"2":{"6":1,"9":1,"10":1,"35":1,"37":3,"38":2,"47":1,"83":3,"109":3,"130":3,"158":2,"161":2}}],[">",{"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"19":1,"20":1,"21":1,"22":1,"34":1,"35":5,"37":3,"38":6,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"57":1,"58":1,"59":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"96":1,"97":1,"101":1,"102":1,"103":1,"104":2,"106":3,"111":1,"117":1,"118":2,"119":5,"123":1,"124":1,"125":2,"126":1,"127":1,"129":1,"130":1,"131":1,"133":1,"134":1,"135":2,"137":2,"138":1,"139":1,"140":2,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1}}],["rmul",{"2":{"145":1}}],["rsub",{"2":{"141":1}}],["rights",{"2":{"155":1,"162":1}}],["right",{"2":{"37":1}}],["reference",{"0":{"164":1}}],["reserved",{"2":{"155":1,"162":1}}],["result",{"2":{"35":4}}],["realnumber",{"0":{"49":1,"61":1,"62":1,"113":1,"143":1,"145":1,"146":1,"147":1},"2":{"49":1,"113":1,"143":1,"145":1,"146":1,"147":1}}],["returns",{"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"34":1,"35":2,"37":1,"38":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"57":1,"58":1,"59":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"95":1,"101":1,"104":1,"105":1,"106":1,"111":1,"117":1,"118":1,"119":1,"123":1,"124":1,"125":1,"126":1,"127":1,"129":1,"130":1,"131":1,"135":1,"136":1,"140":1,"141":1,"144":1,"146":1,"158":1,"161":1}}],["return",{"2":{"6":2,"7":2,"8":2,"9":2,"10":2,"11":2,"12":2,"13":2,"14":2,"15":2,"16":2,"17":1,"18":1,"19":1,"20":1,"23":2,"34":3,"35":5,"37":2,"38":5,"44":2,"45":2,"46":6,"47":2,"48":2,"49":2,"50":2,"51":2,"52":2,"53":2,"54":2,"55":2,"57":2,"58":4,"59":1,"81":5,"82":3,"83":3,"84":2,"85":2,"86":2,"87":2,"88":2,"89":2,"90":2,"91":2,"92":2,"95":5,"96":1,"97":1,"101":2,"104":1,"105":1,"106":1,"111":2,"114":2,"116":1,"117":2,"118":4,"119":4,"123":2,"124":2,"125":2,"126":2,"127":2,"129":1,"130":2,"131":2,"132":1,"135":2,"136":2,"137":3,"140":2,"141":1,"144":2,"145":1,"146":1,"147":1,"148":1,"158":2,"161":2}}],["range",{"2":{"158":2,"161":2}}],["rand",{"0":{"97":1},"2":{"97":1}}],["radius",{"0":{"158":1,"161":1},"2":{"158":7,"161":7}}],["radian=true",{"2":{"6":1,"7":1,"10":1,"17":1,"19":1,"20":1,"23":1,"82":1,"124":1}}],["radian",{"0":{"5":1},"2":{"5":6,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":2,"18":2,"19":2,"20":1,"23":3}}],["radd",{"2":{"137":1}}],["raise",{"0":{"115":1},"2":{"35":1,"46":1,"47":2,"82":1,"83":1,"84":1,"85":1,"95":1,"114":2,"115":2,"135":1,"140":1,"141":1,"144":1}}],["raises",{"2":{"35":2,"45":2,"46":2,"47":2,"82":2,"83":2,"84":1,"85":2}}],["ratio",{"0":{"27":1}}],["geometricmodels",{"0":{"157":1,"160":1},"1":{"158":1,"161":1}}],["get",{"0":{"35":1,"49":1,"50":1},"2":{"35":2,"49":1,"50":1,"85":1,"91":1}}],["gradient",{"0":{"37":1},"2":{"37":1}}],["gamma",{"0":{"28":1}}],["golden",{"0":{"27":1}}],["gt",{"0":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"19":1,"20":1,"21":1,"22":1,"34":1,"35":1,"37":1,"38":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"57":1,"58":1,"59":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"96":1,"97":1,"101":1,"102":1,"103":1,"106":1,"111":1,"117":1,"118":1,"119":1,"123":1,"124":1,"125":1,"126":1,"127":1,"129":1,"130":1,"131":1,"133":1,"134":1,"137":1,"138":1,"139":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1},"2":{"104":2,"106":2,"119":3,"125":1,"135":2,"137":1,"140":2,"141":1}}],["github",{"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"59":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1}}],["phi",{"2":{"158":5,"161":5}}],["pycharm",{"2":{"155":1,"162":1}}],["py",{"2":{"155":1,"162":1}}],["python",{"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"21":1,"22":1,"57":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"102":1,"103":1,"129":1,"130":1,"131":1,"133":1,"134":1,"138":1,"139":1,"142":1,"143":1,"158":1,"161":1}}],["pythondef",{"2":{"5":1,"17":1,"18":1,"19":1,"20":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":2,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"58":1,"59":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"95":1,"96":1,"97":1,"100":1,"101":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"132":1,"135":1,"136":1,"137":1,"140":1,"141":1,"144":1,"145":1,"146":1,"147":1,"148":1}}],["presets",{"0":{"155":1,"156":1,"159":1,"162":1},"1":{"157":1,"158":1,"160":1,"161":1}}],["property",{"2":{"5":1,"6":2,"7":2,"8":2,"9":2,"10":2,"11":2,"12":2,"13":2,"14":2,"15":2,"16":1,"87":1,"88":1,"128":1,"129":2,"130":2,"131":1}}],["p3",{"0":{"90":1},"2":{"90":4}}],["p2",{"0":{"57":1,"90":1,"109":1},"2":{"57":4,"59":2,"90":4,"109":9}}],["p1",{"0":{"57":1,"90":1,"109":1},"2":{"57":5,"59":2,"90":6,"109":9}}],["perpendicular",{"0":{"48":1},"2":{"48":1}}],["particle",{"0":{"153":1,"154":1}}],["partial",{"0":{"35":1},"2":{"35":6,"37":6}}],["param",{"2":{"109":4,"137":2}}],["parametric",{"0":{"50":1},"2":{"50":1,"85":1}}],["parallel",{"0":{"51":1,"52":1,"86":1,"87":1,"126":1,"127":1},"2":{"44":2,"46":1,"47":2,"51":2,"52":2,"53":2,"54":1,"58":1,"59":2,"84":2,"85":1,"86":1,"87":2,"95":1,"126":1,"127":1}}],["planes",{"2":{"84":1}}],["plane",{"0":{"78":1},"1":{"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1},"2":{"85":1}}],["plane3",{"0":{"79":1,"81":1,"82":1,"83":1,"84":1,"86":2,"87":1,"89":1,"90":1,"91":1,"92":1,"94":1},"1":{"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1},"2":{"39":1,"40":1,"81":1,"82":2,"83":2,"84":1,"86":3,"87":1,"89":1,"90":1,"91":1,"92":1,"94":1,"95":2,"114":1}}],["plus",{"2":{"35":3}}],["p",{"0":{"37":1},"2":{"37":21,"38":1,"104":10,"106":8,"135":4,"137":4,"140":4,"141":4}}],["points",{"0":{"57":1,"90":1},"2":{"57":1,"90":1}}],["point",{"0":{"43":1,"48":1,"49":1,"54":2,"86":1,"89":2,"92":2,"98":1},"1":{"99":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1},"2":{"43":5,"44":2,"46":5,"47":3,"48":6,"49":2,"50":3,"53":2,"54":6,"55":2,"56":3,"59":2,"85":3,"86":5,"89":7,"90":1,"91":6,"92":6}}],["point3",{"0":{"34":2,"37":1,"43":1,"46":1,"47":1,"48":1,"49":1,"54":1,"57":2,"58":1,"83":1,"85":2,"86":1,"89":1,"90":3,"92":1,"93":1,"97":1,"99":1,"101":1,"102":1,"103":2,"106":1,"109":2,"134":2,"137":2,"139":2,"141":1},"1":{"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1},"2":{"34":4,"37":1,"39":1,"40":1,"43":1,"46":2,"47":1,"48":1,"49":1,"54":1,"57":2,"58":1,"83":2,"84":1,"85":3,"86":1,"89":1,"90":3,"92":1,"93":1,"95":1,"97":2,"101":1,"102":1,"103":2,"104":1,"106":1,"109":3,"114":1,"134":2,"135":2,"137":3,"139":2,"140":2,"141":3,"158":3,"161":3}}],["positive",{"0":{"9":1},"2":{"6":1,"7":1,"9":1}}],["pi",{"0":{"25":2},"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"158":2,"161":2}}],["outlook",{"2":{"155":1,"162":1}}],["operand",{"2":{"95":1,"135":1,"140":1,"141":1,"144":1}}],["overload",{"2":{"20":1,"21":2,"22":1,"92":1,"93":2,"94":1,"101":1,"102":2,"103":1,"132":1,"133":2,"134":1,"137":1,"138":2,"139":1,"141":1,"142":2,"143":1}}],["other",{"0":{"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"44":1,"45":1,"46":1,"47":1,"51":1,"52":1,"53":1,"55":1,"58":1,"59":1,"81":1,"82":1,"83":1,"84":1,"85":1,"87":1,"93":1,"94":1,"95":1,"96":1,"97":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"114":1,"115":1,"116":1,"123":1,"124":1,"125":1,"126":1,"127":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1},"2":{"17":2,"18":2,"19":2,"20":2,"21":1,"22":1,"23":4,"44":5,"45":4,"46":13,"47":9,"51":4,"52":4,"53":5,"55":5,"58":7,"59":5,"81":15,"82":9,"83":9,"84":17,"85":11,"87":4,"93":1,"94":1,"95":10,"96":2,"97":2,"101":6,"102":1,"103":1,"104":6,"105":6,"106":6,"114":9,"115":2,"116":2,"123":6,"124":5,"125":9,"126":4,"127":4,"133":1,"134":1,"135":12,"136":6,"137":6,"138":1,"139":1,"140":12,"141":8,"142":1,"143":1,"144":12,"145":2,"146":6,"147":4}}],["only",{"0":{"118":1,"119":1},"2":{"118":4,"119":4}}],["onearrayfunc",{"0":{"67":1,"68":1}}],["onesinglevarfunc",{"0":{"50":3,"66":1,"68":1},"2":{"50":3}}],["onevarfunc",{"0":{"33":3,"38":1,"68":1},"2":{"33":3,"38":1}}],["on",{"0":{"54":1},"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":2,"55":1,"56":1,"57":1,"58":1,"59":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1}}],["order",{"2":{"35":2}}],["or",{"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":2,"59":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":2,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1}}],["v3",{"2":{"125":2}}],["vector",{"0":{"120":1},"1":{"121":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"150":1,"151":1,"152":1},"2":{"106":1}}],["vector3",{"0":{"37":1,"43":1,"88":1,"89":1,"102":1,"106":1,"121":1,"123":1,"124":1,"125":2,"126":1,"127":1,"131":1,"133":2,"138":2,"142":2,"143":1,"144":2,"145":1,"146":1,"147":1,"149":2,"150":1,"151":1,"152":1},"1":{"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1},"2":{"37":2,"39":1,"40":1,"43":1,"88":2,"89":1,"91":1,"102":1,"106":4,"114":2,"123":1,"124":1,"125":3,"126":1,"127":2,"131":1,"133":2,"135":3,"138":2,"140":3,"141":1,"142":2,"143":1,"144":6,"145":1,"146":1,"147":2,"148":1,"149":1,"150":1,"151":1,"152":1}}],["v2",{"2":{"59":2,"90":2,"91":4,"125":2}}],["v1",{"2":{"59":4,"90":2,"91":2,"125":2}}],["v",{"2":{"35":2,"104":2,"106":4,"135":8,"137":2,"140":8,"141":2}}],["var",{"0":{"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"34":1,"35":1,"38":1,"61":1,"62":1,"63":1,"64":1,"65":2,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"149":1,"150":1,"151":1,"152":1},"2":{"34":1,"35":13,"38":3}}],["valueerror",{"2":{"35":3,"47":6,"84":1,"85":3}}],["value",{"0":{"5":1,"113":1},"2":{"5":5,"113":3,"114":6,"115":1}}],["view",{"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"59":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1}}],["cz",{"2":{"80":2}}],["clamp",{"0":{"111":1},"2":{"111":1,"158":1,"161":1}}],["classmethod",{"2":{"56":1,"57":1,"88":1,"89":2,"90":2,"91":2,"92":1}}],["class",{"0":{"3":1,"4":1,"32":1,"42":1,"79":1,"99":1,"108":1,"112":1,"121":1,"157":1,"160":1},"1":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"59":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"113":1,"114":1,"115":1,"116":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1},"2":{"106":2}}],["cls",{"0":{"57":1,"89":1,"90":1,"91":1,"92":1},"2":{"57":2,"89":2,"90":2,"91":2,"92":2}}],["cross",{"0":{"125":1},"2":{"46":4,"47":3,"48":1,"55":1,"84":1,"90":1,"91":1,"125":3,"126":1,"127":1}}],["c",{"0":{"80":1},"2":{"38":4,"80":5,"81":7,"83":2,"84":6,"85":2,"88":1,"89":3,"155":1,"162":1}}],["curried",{"2":{"38":6}}],["currying",{"2":{"38":2}}],["curry",{"0":{"38":1},"2":{"38":3}}],["curveequation",{"0":{"32":1},"1":{"33":1,"34":1},"2":{"39":1,"40":1}}],["cal",{"0":{"37":1,"45":1,"46":1,"47":1,"48":1,"82":1,"83":1,"84":1,"85":1,"86":1,"124":1},"2":{"37":1,"45":2,"46":1,"47":1,"48":1,"58":1,"82":2,"83":1,"84":1,"85":1,"86":1,"95":2,"97":1,"124":1}}],["callable",{"0":{"66":1,"67":1,"69":1,"70":1,"72":1,"73":1,"75":1,"76":1}}],["call",{"0":{"34":1},"2":{"34":1}}],["csc",{"0":{"16":1},"2":{"16":1}}],["copyright",{"2":{"155":1,"162":1}}],["coplanar",{"0":{"55":1},"2":{"46":1,"47":2,"55":1,"58":1}}],["coincident",{"2":{"85":1}}],["collinear",{"0":{"53":1},"2":{"53":1,"58":1}}],["complex",{"0":{"62":1}}],["complementary",{"0":{"6":1},"2":{"6":1,"82":1}}],["com",{"2":{"38":1,"155":1,"162":1}}],["const",{"0":{"24":1},"1":{"25":1,"26":1,"27":1,"28":1,"29":1,"30":1}}],["cot",{"0":{"14":1},"2":{"14":1}}],["cos",{"0":{"12":1},"2":{"12":2,"15":1,"158":2,"161":2}}],["code",{"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"59":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1}}],["sphere",{"0":{"158":1,"161":1},"2":{"158":1,"161":1}}],["staticmethod",{"2":{"157":1,"158":1,"160":1,"161":1}}],["str",{"0":{"118":1,"119":1},"2":{"118":1,"119":1}}],["snowykami",{"2":{"155":2,"162":2}}],["s",{"2":{"95":1,"135":1,"140":1,"141":1,"144":1}}],["software",{"2":{"155":1,"162":1}}],["solve",{"2":{"84":3}}],["source",{"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"59":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1}}],["sign",{"0":{"118":1,"119":1},"2":{"118":1,"119":1}}],["simplify",{"0":{"56":1},"2":{"56":1}}],["singlevar",{"0":{"63":2,"65":1,"66":2,"69":3,"72":4,"75":1}}],["sin",{"0":{"11":1},"2":{"11":2,"16":1,"158":3,"161":3}}],["sqrt",{"0":{"27":1},"2":{"130":1,"158":1,"161":1}}],["sub",{"2":{"19":1,"106":1,"138":1,"139":1,"140":1}}],["supplementary",{"0":{"7":1},"2":{"7":1}}],["segment",{"0":{"107":1},"1":{"108":1,"109":1}}],["segment3",{"0":{"108":1},"1":{"109":1},"2":{"39":1,"40":1}}],["sec",{"0":{"15":1},"2":{"15":1}}],["self",{"0":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"58":1,"59":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"113":1,"114":1,"115":1,"116":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1},"2":{"5":3,"6":2,"7":2,"8":2,"9":2,"10":2,"11":2,"12":2,"13":2,"14":2,"15":2,"16":2,"17":2,"18":2,"19":2,"20":2,"21":1,"22":1,"23":3,"33":4,"34":7,"43":3,"44":4,"45":2,"46":13,"47":8,"48":3,"49":3,"50":7,"51":2,"52":2,"53":4,"54":3,"55":3,"56":8,"58":6,"59":4,"80":5,"81":16,"82":4,"83":8,"84":15,"85":9,"86":2,"87":2,"88":4,"93":1,"94":1,"95":5,"96":2,"97":2,"100":4,"101":4,"102":1,"103":1,"104":4,"105":4,"106":4,"109":15,"113":2,"114":9,"115":2,"116":2,"122":4,"123":4,"124":3,"125":7,"126":2,"127":2,"128":5,"129":4,"130":4,"131":3,"132":2,"133":1,"134":1,"135":7,"136":4,"137":4,"138":1,"139":1,"140":7,"141":4,"142":1,"143":1,"144":7,"145":2,"146":4,"147":4,"148":4}}],["默认为否",{"2":{"5":2}}],["author",{"2":{"155":1,"162":1}}],["all",{"2":{"101":1,"114":1,"123":1,"155":1,"162":1}}],["acos",{"2":{"82":1,"124":1}}],["axis",{"0":{"150":1,"151":1,"152":1}}],["ax",{"2":{"80":2}}],["arccos",{"2":{"158":1,"161":1}}],["array",{"0":{"129":1},"2":{"84":6,"129":2,"158":6,"161":6}}],["arrayvar",{"0":{"64":2,"65":1,"67":2,"70":3,"73":4,"76":1}}],["area",{"2":{"158":2,"161":2}}],["are",{"2":{"47":2,"84":1,"85":1}}],["args2",{"2":{"38":2}}],["args",{"0":{"38":1},"2":{"5":1,"33":1,"34":1,"35":14,"37":1,"38":5,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"51":1,"52":1,"53":1,"54":1,"55":1,"57":1,"58":1,"59":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"89":1,"90":1,"91":1,"92":1,"95":1,"100":1,"101":1,"104":1,"105":1,"106":1,"111":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"135":1,"136":1,"140":1,"141":1,"144":1,"146":1,"158":1,"161":1}}],["arguments",{"2":{"5":1,"33":1,"34":1,"35":1,"37":1,"38":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"51":1,"52":1,"53":1,"54":1,"55":1,"57":1,"58":1,"59":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"89":1,"90":1,"91":1,"92":1,"95":1,"100":1,"101":1,"104":1,"105":1,"106":1,"111":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"135":1,"136":1,"140":1,"141":1,"144":1,"146":1,"158":1,"161":1}}],["abs",{"0":{"132":1},"2":{"46":1,"83":1,"101":3,"114":1,"117":1,"119":1,"123":3,"132":1}}],["a",{"0":{"80":1},"2":{"38":4,"80":5,"81":7,"83":2,"84":12,"85":2,"88":1,"89":3}}],["aaa",{"2":{"36":1}}],["approx",{"0":{"30":1,"44":2,"51":1,"81":1,"101":2,"112":1,"117":2,"123":2,"126":2},"1":{"113":1,"114":1,"115":1,"116":1},"2":{"18":1,"44":3,"51":2,"81":10,"96":1,"101":1,"105":3,"114":4,"117":1,"123":1,"126":1,"127":1,"136":3}}],["add",{"2":{"17":1,"38":8,"102":1,"103":1,"104":1,"133":1,"134":1,"135":1}}],["and",{"0":{"58":1,"89":1,"92":1,"93":1,"94":1,"95":1},"2":{"44":1,"47":2,"53":1,"58":1,"59":1,"81":6,"84":4,"85":1,"86":1,"89":1,"90":1,"91":1,"92":2,"93":1,"94":1,"95":2,"105":2,"115":1,"135":1,"136":2,"140":1,"141":1,"144":1}}],["anyangle",{"0":{"4":1,"6":1,"7":1,"9":1,"10":1,"17":2,"19":2,"20":1,"21":1,"22":1,"45":1,"82":1,"124":1},"1":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1},"2":{"6":2,"7":2,"9":2,"10":2,"17":3,"19":3,"20":2,"21":1,"22":1,"23":2,"39":1,"40":1,"45":1,"82":2,"124":2}}],["angle",{"0":{"2":1,"3":1,"4":1,"45":1,"82":1,"124":1},"1":{"3":1,"4":1,"5":2,"6":2,"7":2,"8":2,"9":2,"10":2,"11":2,"12":2,"13":2,"14":2,"15":2,"16":2,"17":2,"18":2,"19":2,"20":2,"21":2,"22":2,"23":2},"2":{"45":2,"82":2,"124":1}}],["file",{"2":{"155":1,"162":1}}],["from",{"0":{"57":1,"89":1,"90":1,"91":1,"92":1},"2":{"57":1,"86":1,"89":1,"90":2,"91":2,"92":2,"106":1}}],["frac",{"2":{"37":3}}],["f",{"2":{"37":4,"82":1,"83":1,"95":1,"115":1,"119":3,"135":1,"140":1,"141":1,"144":1}}],["format",{"0":{"119":1},"2":{"119":1}}],["for",{"2":{"34":1,"35":1,"95":1,"135":1,"140":1,"141":1,"144":1,"158":2,"161":2}}],["function",{"0":{"36":1},"1":{"37":1,"38":1}}],["func",{"0":{"33":3,"35":2,"37":1,"38":1},"2":{"33":15,"34":6,"35":16,"37":9,"38":6}}],["false",{"0":{"5":1,"118":1,"119":1},"2":{"81":1}}],["float=0",{"2":{"117":1}}],["float=1e",{"2":{"51":1}}],["float=approx",{"2":{"44":1,"101":1,"117":1,"123":1,"126":1}}],["float=epsilon",{"2":{"37":1}}],["float",{"0":{"5":1,"8":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"20":1,"21":1,"22":1,"37":1,"44":1,"46":1,"51":1,"61":1,"80":4,"83":1,"100":3,"101":1,"111":4,"117":3,"118":1,"119":1,"122":3,"123":1,"126":1,"130":1,"144":1,"158":2,"161":2},"2":{"5":1,"8":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"20":1,"21":1,"22":1,"46":1,"80":4,"83":1,"100":3,"111":4,"114":2,"117":1,"118":1,"119":1,"122":3,"130":1,"144":2,"158":2,"161":2}}],["==",{"2":{"34":1,"46":1,"55":1,"56":3,"85":1,"91":1,"95":1}}],["=",{"0":{"5":1,"17":1,"19":1,"20":1,"21":1,"22":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"35":1,"37":1,"44":1,"51":1,"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"101":1,"102":1,"103":1,"106":1,"117":2,"118":1,"119":1,"123":1,"126":1,"133":1,"134":1,"137":1,"138":1,"139":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"149":1,"150":1,"151":1,"152":1},"2":{"5":2,"33":3,"35":5,"37":5,"38":2,"43":2,"56":3,"57":1,"80":6,"81":6,"84":17,"85":2,"89":2,"90":3,"91":3,"100":3,"109":5,"113":1,"122":3,"128":4,"158":7,"161":7}}],["improve",{"2":{"164":1}}],["import",{"2":{"106":1}}],["i",{"2":{"158":4,"161":4}}],["invalid",{"2":{"35":1}}],["intersect",{"2":{"47":2}}],["intersection",{"0":{"47":1,"84":1,"85":1},"2":{"47":1,"58":1,"84":2,"85":1,"95":2,"97":1}}],["int",{"0":{"35":2,"61":1,"144":1},"2":{"35":3,"38":8,"114":2,"144":2,"158":1,"161":1}}],["in",{"2":{"34":1,"35":1,"158":2,"161":2}}],["init",{"0":{"5":1,"33":1,"43":1,"80":1,"100":1,"109":1,"113":1,"122":1},"2":{"5":1,"33":1,"43":1,"80":1,"100":1,"109":1,"113":1,"122":1,"155":1,"162":1}}],["if",{"2":{"5":1,"23":1,"34":1,"35":1,"46":2,"47":2,"56":3,"58":1,"81":1,"82":1,"83":1,"84":2,"85":1,"91":1,"95":3,"114":3,"118":2,"119":2,"135":1,"140":1,"141":1,"144":1}}],["isinstance",{"2":{"23":1,"35":2,"46":2,"82":2,"83":2,"95":2,"114":4,"135":2,"140":2,"141":1,"144":2}}],["is",{"0":{"5":1,"51":1,"52":1,"53":1,"54":1,"55":1,"87":1,"126":1,"127":1},"2":{"5":4,"6":1,"7":1,"10":1,"17":1,"19":1,"20":1,"23":1,"44":2,"46":2,"47":2,"51":2,"52":2,"53":3,"54":2,"55":1,"58":3,"59":2,"82":1,"84":1,"87":2,"95":1,"124":1,"126":1,"127":1}}],["model",{"0":{"156":1,"159":1},"1":{"157":1,"158":1,"160":1,"161":1}}],["midpoint",{"2":{"109":1}}],["min",{"0":{"111":1},"2":{"111":5}}],["minus",{"2":{"35":3}}],["minimum",{"0":{"9":1},"2":{"6":1,"7":1,"9":1}}],["multiarraysfunc",{"0":{"76":1,"77":1}}],["multisinglevarsfunc",{"0":{"75":1,"77":1}}],["multivarsfunc",{"0":{"35":2,"38":1,"77":1},"2":{"35":2,"38":1}}],["mul",{"2":{"20":1,"142":1,"143":1,"144":1,"145":1}}],["matmul",{"2":{"146":1}}],["math导入使用",{"2":{"39":1,"40":1}}],["math",{"0":{"2":1,"24":1,"25":1,"26":1,"27":1,"31":1,"36":1,"39":1,"40":1,"41":1,"60":2,"78":1,"98":1,"107":1,"110":1,"120":1},"1":{"3":1,"4":1,"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"32":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"59":1,"61":2,"62":2,"63":2,"64":2,"65":2,"66":2,"67":2,"68":2,"69":2,"70":2,"71":2,"72":2,"73":2,"74":2,"75":2,"76":2,"77":2,"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"99":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"108":1,"109":1,"111":1,"112":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"121":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"150":1,"151":1,"152":1},"2":{"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"82":1,"124":1,"130":1}}],["max",{"0":{"111":1},"2":{"111":5}}],["maximum",{"0":{"10":1},"2":{"10":1}}],["mp",{"0":{"2":1,"24":1,"31":1,"36":1,"39":1,"40":1,"41":1,"60":2,"78":1,"98":1,"107":1,"110":1,"120":1},"1":{"3":1,"4":1,"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"32":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"59":1,"61":2,"62":2,"63":2,"64":2,"65":2,"66":2,"67":2,"68":2,"69":2,"70":2,"71":2,"72":2,"73":2,"74":2,"75":2,"76":2,"77":2,"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"99":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"108":1,"109":1,"111":1,"112":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"121":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"150":1,"151":1,"152":1},"2":{"39":1,"40":1}}],["mbcp",{"0":{"0":1,"1":1,"2":1,"24":1,"31":1,"36":1,"39":1,"40":1,"41":1,"60":1,"78":1,"98":1,"107":1,"110":1,"120":1,"153":1,"154":1,"155":1,"156":1,"159":1,"162":1},"1":{"3":1,"4":1,"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"32":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"59":1,"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"99":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"108":1,"109":1,"111":1,"112":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"121":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"150":1,"151":1,"152":1,"157":1,"158":1,"160":1,"161":1}}]],"serializationVersion":2}';export{t as default};
diff --git a/assets/chunks/@localSearchIndexja.Dk7h50F0.js b/assets/chunks/@localSearchIndexja.U0mt0YIB.js
similarity index 55%
rename from assets/chunks/@localSearchIndexja.Dk7h50F0.js
rename to assets/chunks/@localSearchIndexja.U0mt0YIB.js
index a3dba98..668a10f 100644
--- a/assets/chunks/@localSearchIndexja.Dk7h50F0.js
+++ b/assets/chunks/@localSearchIndexja.U0mt0YIB.js
@@ -1 +1 @@
-const t='{"documentCount":165,"nextId":165,"documentIds":{"0":"/ja/api/api.html#mbcp","1":"/ja/api/#mbcp","2":"/ja/api/mp_math/angle.html#mbcp-mp-math-angle","3":"/ja/api/mp_math/angle.html#class-angle","4":"/ja/api/mp_math/angle.html#class-anyangle-angle","5":"/ja/api/mp_math/angle.html#def-init-self-value-float-is-radian-bool-false","6":"/ja/api/mp_math/angle.html#def-complementary-self-anyangle","7":"/ja/api/mp_math/angle.html#def-supplementary-self-anyangle","8":"/ja/api/mp_math/angle.html#def-degree-self-float","9":"/ja/api/mp_math/angle.html#def-minimum-positive-self-anyangle","10":"/ja/api/mp_math/angle.html#def-maximum-negative-self-anyangle","11":"/ja/api/mp_math/angle.html#def-sin-self-float","12":"/ja/api/mp_math/angle.html#def-cos-self-float","13":"/ja/api/mp_math/angle.html#def-tan-self-float","14":"/ja/api/mp_math/angle.html#def-cot-self-float","15":"/ja/api/mp_math/angle.html#def-sec-self-float","16":"/ja/api/mp_math/angle.html#def-csc-self-float","17":"/ja/api/mp_math/angle.html#def-self-other-anyangle-anyangle","18":"/ja/api/mp_math/angle.html#def-eq-self-other","19":"/ja/api/mp_math/angle.html#def-self-other-anyangle-anyangle-1","20":"/ja/api/mp_math/angle.html#def-self-other-float-anyangle","21":"/ja/api/mp_math/angle.html#def-self-other-float-anyangle-1","22":"/ja/api/mp_math/angle.html#def-self-other-anyangle-float","23":"/ja/api/mp_math/angle.html#def-self-other","24":"/ja/api/mp_math/const.html#mbcp-mp-math-const","25":"/ja/api/mp_math/const.html#var-pi-math-pi","26":"/ja/api/mp_math/const.html#var-e-math-e","27":"/ja/api/mp_math/const.html#var-golden-ratio-1-math-sqrt-5-2","28":"/ja/api/mp_math/const.html#var-gamma-0-5772156649015329","29":"/ja/api/mp_math/const.html#var-epsilon-0-0001","30":"/ja/api/mp_math/const.html#var-approx-0-001","31":"/ja/api/mp_math/equation.html#mbcp-mp-math-equation","32":"/ja/api/mp_math/equation.html#class-curveequation","33":"/ja/api/mp_math/equation.html#def-init-self-x-func-onevarfunc-y-func-onevarfunc-z-func-onevarfunc","34":"/ja/api/mp_math/equation.html#def-call-self-t-var-point3-tuple-point3","35":"/ja/api/mp_math/equation.html#def-get-partial-derivative-func-func-multivarsfunc-var-int-tuple-int-epsilon-number-epsilon-multivarsfunc","36":"/ja/api/mp_math/function.html#mbcp-mp-math-function","37":"/ja/api/mp_math/function.html#def-cal-gradient-3vf-func-threesinglevarsfunc-p-point3-epsilon-float-epsilon-vector3","38":"/ja/api/mp_math/function.html#def-curry-func-multivarsfunc-args-var-onevarfunc","39":"/ja/api/mp_math/#mbcp-mp-math","40":"/ja/api/mp_math/line.html#mbcp-mp-math-line","41":"/ja/api/mp_math/line.html#class-line3","42":"/ja/api/mp_math/line.html#def-init-self-point-point3-direction-vector3","43":"/ja/api/mp_math/line.html#def-approx-self-other-line3-epsilon-float-approx-bool","44":"/ja/api/mp_math/line.html#def-cal-angle-self-other-line3-anyangle","45":"/ja/api/mp_math/line.html#def-cal-distance-self-other-line3-point3-float","46":"/ja/api/mp_math/line.html#def-cal-intersection-self-other-line3-point3","47":"/ja/api/mp_math/line.html#def-cal-perpendicular-self-point-point3-line3","48":"/ja/api/mp_math/line.html#def-get-point-self-t-realnumber-point3","49":"/ja/api/mp_math/line.html#def-get-parametric-equations-self-tuple-onesinglevarfunc-onesinglevarfunc-onesinglevarfunc","50":"/ja/api/mp_math/line.html#def-is-approx-parallel-self-other-line3-epsilon-float-1e-06-bool","51":"/ja/api/mp_math/line.html#def-is-parallel-self-other-line3-bool","52":"/ja/api/mp_math/line.html#def-is-collinear-self-other-line3-bool","53":"/ja/api/mp_math/line.html#def-is-point-on-self-point-point3-bool","54":"/ja/api/mp_math/line.html#def-is-coplanar-self-other-line3-bool","55":"/ja/api/mp_math/line.html#def-simplify-self","56":"/ja/api/mp_math/line.html#def-from-two-points-cls-p1-point3-p2-point3-line3","57":"/ja/api/mp_math/line.html#def-and-self-other-line3-line3-point3-none","58":"/ja/api/mp_math/line.html#def-eq-self-other-bool","59":"/ja/api/mp_math/mp_math.html#mbcp-mp-math","60":"/ja/api/mp_math/mp_math_typing.html#mbcp-mp-math-mp-math-typing","61":"/ja/api/mp_math/mp_math_typing.html#var-realnumber-int-float","62":"/ja/api/mp_math/mp_math_typing.html#var-number-realnumber-complex","63":"/ja/api/mp_math/mp_math_typing.html#var-singlevar-typevar-singlevar-bound-number","64":"/ja/api/mp_math/mp_math_typing.html#var-arrayvar-typevar-arrayvar-bound-iterable-number","65":"/ja/api/mp_math/mp_math_typing.html#var-var-singlevar-arrayvar","66":"/ja/api/mp_math/mp_math_typing.html#var-onesinglevarfunc-callable-singlevar-singlevar","67":"/ja/api/mp_math/mp_math_typing.html#var-onearrayfunc-callable-arrayvar-arrayvar","68":"/ja/api/mp_math/mp_math_typing.html#var-onevarfunc-onesinglevarfunc-onearrayfunc","69":"/ja/api/mp_math/mp_math_typing.html#var-twosinglevarsfunc-callable-singlevar-singlevar-singlevar","70":"/ja/api/mp_math/mp_math_typing.html#var-twoarraysfunc-callable-arrayvar-arrayvar-arrayvar","71":"/ja/api/mp_math/mp_math_typing.html#var-twovarsfunc-twosinglevarsfunc-twoarraysfunc","72":"/ja/api/mp_math/mp_math_typing.html#var-threesinglevarsfunc-callable-singlevar-singlevar-singlevar-singlevar","73":"/ja/api/mp_math/mp_math_typing.html#var-threearraysfunc-callable-arrayvar-arrayvar-arrayvar-arrayvar","74":"/ja/api/mp_math/mp_math_typing.html#var-threevarsfunc-threesinglevarsfunc-threearraysfunc","75":"/ja/api/mp_math/mp_math_typing.html#var-multisinglevarsfunc-callable-singlevar","76":"/ja/api/mp_math/mp_math_typing.html#var-multiarraysfunc-callable-arrayvar","77":"/ja/api/mp_math/mp_math_typing.html#var-multivarsfunc-multisinglevarsfunc-multiarraysfunc","78":"/ja/api/mp_math/plane.html#mbcp-mp-math-plane","79":"/ja/api/mp_math/plane.html#class-plane3","80":"/ja/api/mp_math/plane.html#def-init-self-a-float-b-float-c-float-d-float","81":"/ja/api/mp_math/plane.html#def-approx-self-other-plane3-bool","82":"/ja/api/mp_math/plane.html#def-cal-angle-self-other-line3-plane3-anyangle","83":"/ja/api/mp_math/plane.html#def-cal-distance-self-other-plane3-point3-float","84":"/ja/api/mp_math/plane.html#def-cal-intersection-line3-self-other-plane3-line3","85":"/ja/api/mp_math/plane.html#def-cal-intersection-point3-self-other-line3-point3","86":"/ja/api/mp_math/plane.html#def-cal-parallel-plane3-self-point-point3-plane3","87":"/ja/api/mp_math/plane.html#def-is-parallel-self-other-plane3-bool","88":"/ja/api/mp_math/plane.html#def-normal-self-vector3","89":"/ja/api/mp_math/plane.html#def-from-point-and-normal-cls-point-point3-normal-vector3-plane3","90":"/ja/api/mp_math/plane.html#def-from-three-points-cls-p1-point3-p2-point3-p3-point3-plane3","91":"/ja/api/mp_math/plane.html#def-from-two-lines-cls-l1-line3-l2-line3-plane3","92":"/ja/api/mp_math/plane.html#def-from-point-and-line-cls-point-point3-line-line3-plane3","93":"/ja/api/mp_math/plane.html#def-and-self-other-line3-point3-none","94":"/ja/api/mp_math/plane.html#def-and-self-other-plane3-line3-none","95":"/ja/api/mp_math/plane.html#def-and-self-other","96":"/ja/api/mp_math/plane.html#def-eq-self-other-bool","97":"/ja/api/mp_math/plane.html#def-rand-self-other-line3-point3","98":"/ja/api/mp_math/point.html#mbcp-mp-math-point","99":"/ja/api/mp_math/point.html#class-point3","100":"/ja/api/mp_math/point.html#def-init-self-x-float-y-float-z-float","101":"/ja/api/mp_math/point.html#def-approx-self-other-point3-epsilon-float-approx-bool","102":"/ja/api/mp_math/point.html#def-self-other-vector3-point3","103":"/ja/api/mp_math/point.html#def-self-other-point3-point3","104":"/ja/api/mp_math/point.html#def-self-other","105":"/ja/api/mp_math/point.html#def-eq-self-other","106":"/ja/api/mp_math/point.html#def-self-other-point3-vector3","107":"/ja/api/mp_math/segment.html#mbcp-mp-math-segment","108":"/ja/api/mp_math/segment.html#class-segment3","109":"/ja/api/mp_math/segment.html#def-init-self-p1-point3-p2-point3","110":"/ja/api/mp_math/utils.html#mbcp-mp-math-utils","111":"/ja/api/mp_math/utils.html#def-clamp-x-float-min-float-max-float-float","112":"/ja/api/mp_math/utils.html#class-approx","113":"/ja/api/mp_math/utils.html#def-init-self-value-realnumber","114":"/ja/api/mp_math/utils.html#def-eq-self-other","115":"/ja/api/mp_math/utils.html#def-raise-type-error-self-other","116":"/ja/api/mp_math/utils.html#def-ne-self-other","117":"/ja/api/mp_math/utils.html#def-approx-x-float-y-float-0-0-epsilon-float-approx-bool","118":"/ja/api/mp_math/utils.html#def-sign-x-float-only-neg-bool-false-str","119":"/ja/api/mp_math/utils.html#def-sign-format-x-float-only-neg-bool-false-str","120":"/ja/api/mp_math/vector.html#mbcp-mp-math-vector","121":"/ja/api/mp_math/vector.html#class-vector3","122":"/ja/api/mp_math/vector.html#def-init-self-x-float-y-float-z-float","123":"/ja/api/mp_math/vector.html#def-approx-self-other-vector3-epsilon-float-approx-bool","124":"/ja/api/mp_math/vector.html#def-cal-angle-self-other-vector3-anyangle","125":"/ja/api/mp_math/vector.html#def-cross-self-other-vector3-vector3","126":"/ja/api/mp_math/vector.html#def-is-approx-parallel-self-other-vector3-epsilon-float-approx-bool","127":"/ja/api/mp_math/vector.html#def-is-parallel-self-other-vector3-bool","128":"/ja/api/mp_math/vector.html#def-normalize-self","129":"/ja/api/mp_math/vector.html#def-np-array-self-np-ndarray","130":"/ja/api/mp_math/vector.html#def-length-self-float","131":"/ja/api/mp_math/vector.html#def-unit-self-vector3","132":"/ja/api/mp_math/vector.html#def-abs-self","133":"/ja/api/mp_math/vector.html#def-self-other-vector3-vector3","134":"/ja/api/mp_math/vector.html#def-self-other-point3-point3","135":"/ja/api/mp_math/vector.html#def-self-other","136":"/ja/api/mp_math/vector.html#def-eq-self-other","137":"/ja/api/mp_math/vector.html#def-self-other-point3-point3-1","138":"/ja/api/mp_math/vector.html#def-self-other-vector3-vector3-1","139":"/ja/api/mp_math/vector.html#def-self-other-point3-point3-2","140":"/ja/api/mp_math/vector.html#def-self-other-1","141":"/ja/api/mp_math/vector.html#def-self-other-point3","142":"/ja/api/mp_math/vector.html#def-self-other-vector3-vector3-2","143":"/ja/api/mp_math/vector.html#def-self-other-realnumber-vector3","144":"/ja/api/mp_math/vector.html#def-self-other-int-float-vector3-vector3","145":"/ja/api/mp_math/vector.html#def-self-other-realnumber-vector3-1","146":"/ja/api/mp_math/vector.html#def-self-other-vector3-realnumber","147":"/ja/api/mp_math/vector.html#def-self-other-realnumber-vector3-2","148":"/ja/api/mp_math/vector.html#def-self","149":"/ja/api/mp_math/vector.html#var-zero-vector3-vector3-0-0-0","150":"/ja/api/mp_math/vector.html#var-x-axis-vector3-1-0-0","151":"/ja/api/mp_math/vector.html#var-y-axis-vector3-0-1-0","152":"/ja/api/mp_math/vector.html#var-z-axis-vector3-0-0-1","153":"/ja/api/particle/#mbcp-particle","154":"/ja/api/particle/particle.html#mbcp-particle","155":"/ja/api/presets/#mbcp-presets","156":"/ja/api/presets/model/#mbcp-presets-model","157":"/ja/api/presets/model/#class-geometricmodels","158":"/ja/api/presets/model/#def-sphere-radius-float-density-float","159":"/ja/api/presets/model/model.html#mbcp-presets-model","160":"/ja/api/presets/model/model.html#class-geometricmodels","161":"/ja/api/presets/model/model.html#def-sphere-radius-float-density-float","162":"/ja/api/presets/presets.html#mbcp-presets","163":"/ja/guide/#开始不了一点","164":"/ja/refer/#reference"},"fieldIds":{"title":0,"titles":1,"text":2},"fieldLength":{"0":[1,1,3],"1":[1,1,3],"2":[4,1,3],"3":[2,4,1],"4":[4,4,1],"5":[11,8,25],"6":[5,8,24],"7":[5,8,23],"8":[5,8,20],"9":[6,8,21],"10":[6,8,23],"11":[5,8,18],"12":[5,8,18],"13":[5,8,18],"14":[5,8,20],"15":[5,8,20],"16":[5,8,20],"17":[7,8,15],"18":[5,8,11],"19":[6,8,14],"20":[7,8,16],"21":[7,8,13],"22":[7,8,13],"23":[3,8,15],"24":[4,1,3],"25":[5,4,4],"26":[5,4,5],"27":[10,4,3],"28":[5,4,3],"29":[5,4,3],"30":[5,4,3],"31":[4,1,3],"32":[2,4,1],"33":[9,6,20],"34":[10,6,35],"35":[15,4,69],"36":[4,1,3],"37":[14,4,59],"38":[8,4,56],"39":[3,1,21],"40":[4,1,3],"41":[2,4,1],"42":[8,6,19],"43":[11,6,28],"44":[8,6,26],"45":[10,6,45],"46":[8,6,43],"47":[8,6,23],"48":[8,6,26],"49":[9,6,25],"50":[14,6,27],"51":[8,6,22],"52":[8,6,25],"53":[8,6,23],"54":[8,6,28],"55":[4,6,27],"56":[10,6,29],"57":[9,6,36],"58":[6,6,26],"59":[3,1,21],"60":[4,1,3],"61":[6,4,5],"62":[6,4,5],"63":[6,4,3],"64":[7,4,3],"65":[6,4,5],"66":[6,4,5],"67":[6,4,5],"68":[6,4,5],"69":[6,4,5],"70":[6,4,5],"71":[6,4,5],"72":[6,4,5],"73":[6,4,5],"74":[6,4,5],"75":[6,4,5],"76":[6,4,5],"77":[6,4,5],"78":[4,1,3],"79":[2,4,1],"80":[9,6,26],"81":[7,6,32],"82":[10,6,43],"83":[10,6,47],"84":[9,6,53],"85":[9,6,55],"86":[9,6,25],"87":[8,6,23],"88":[5,6,21],"89":[10,6,36],"90":[11,6,36],"91":[10,6,41],"92":[10,6,31],"93":[9,6,15],"94":[9,6,15],"95":[5,6,45],"96":[6,6,12],"97":[7,6,15],"98":[4,1,3],"99":[2,4,1],"100":[8,6,17],"101":[11,6,28],"102":[8,6,13],"103":[7,6,12],"104":[4,6,22],"105":[5,6,19],"106":[7,6,29],"107":[4,1,3],"108":[2,4,1],"109":[7,6,25],"110":[4,1,3],"111":[7,4,22],"112":[2,4,1],"113":[6,6,10],"114":[5,6,31],"115":[7,6,15],"116":[5,6,11],"117":[11,4,30],"118":[11,4,31],"119":[12,4,37],"120":[4,1,4],"121":[2,4,1],"122":[8,6,19],"123":[11,6,27],"124":[8,6,26],"125":[6,6,39],"126":[13,6,28],"127":[8,6,25],"128":[4,6,17],"129":[6,6,18],"130":[5,6,24],"131":[5,6,18],"132":[4,6,10],"133":[7,6,12],"134":[7,6,12],"135":[4,6,36],"136":[5,6,21],"137":[7,6,22],"138":[6,6,12],"139":[6,6,12],"140":[3,6,35],"141":[4,6,35],"142":[6,6,12],"143":[7,6,13],"144":[9,6,38],"145":[7,6,13],"146":[7,6,21],"147":[7,6,15],"148":[2,6,12],"149":[7,4,5],"150":[8,4,5],"151":[8,4,5],"152":[8,4,5],"153":[2,1,3],"154":[2,1,3],"155":[2,1,24],"156":[3,1,3],"157":[2,3,2],"158":[6,5,48],"159":[3,1,3],"160":[2,3,2],"161":[6,5,48],"162":[2,1,24],"163":[1,1,2],"164":[1,1,7]},"averageFieldLength":[6.242424242424242,4.963636363636361,17.824242424242428],"storedFields":{"0":{"title":"mbcp","titles":[]},"1":{"title":"mbcp","titles":[]},"2":{"title":"mbcp.mp_math.angle","titles":[]},"3":{"title":"class Angle","titles":["mbcp.mp_math.angle"]},"4":{"title":"class AnyAngle(Angle)","titles":["mbcp.mp_math.angle"]},"5":{"title":"def __init__(self, value: float, is_radian: bool = False)","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"6":{"title":"def complementary(self) -> AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"7":{"title":"def supplementary(self) -> AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"8":{"title":"def degree(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"9":{"title":"def minimum_positive(self) -> AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"10":{"title":"def maximum_negative(self) -> AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"11":{"title":"def sin(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"12":{"title":"def cos(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"13":{"title":"def tan(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"14":{"title":"def cot(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"15":{"title":"def sec(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"16":{"title":"def csc(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"17":{"title":"def self + other: AnyAngle => AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"18":{"title":"def __eq__(self, other)","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"19":{"title":"def self - other: AnyAngle => AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"20":{"title":"def self * other: float => AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"21":{"title":"def self / other: float => AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"22":{"title":"def self / other: AnyAngle => float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"23":{"title":"def self / other","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"24":{"title":"mbcp.mp_math.const","titles":[]},"25":{"title":"var PI = math.pi","titles":["mbcp.mp_math.const"]},"26":{"title":"var E = math.e","titles":["mbcp.mp_math.const"]},"27":{"title":"var GOLDEN_RATIO = (1 + math.sqrt(5)) / 2","titles":["mbcp.mp_math.const"]},"28":{"title":"var GAMMA = 0.5772156649015329","titles":["mbcp.mp_math.const"]},"29":{"title":"var EPSILON = 0.0001","titles":["mbcp.mp_math.const"]},"30":{"title":"var APPROX = 0.001","titles":["mbcp.mp_math.const"]},"31":{"title":"mbcp.mp_math.equation","titles":[]},"32":{"title":"class CurveEquation","titles":["mbcp.mp_math.equation"]},"33":{"title":"def __init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc)","titles":["mbcp.mp_math.equation","class CurveEquation"]},"34":{"title":"def __call__(self, *t: Var) -> Point3 | tuple[Point3, ...]","titles":["mbcp.mp_math.equation","class CurveEquation"]},"35":{"title":"def get_partial_derivative_func(func: MultiVarsFunc, var: int | tuple[int, ...], epsilon: Number = EPSILON) -> MultiVarsFunc","titles":["mbcp.mp_math.equation"]},"36":{"title":"mbcp.mp_math.function","titles":[]},"37":{"title":"def cal_gradient_3vf(func: ThreeSingleVarsFunc, p: Point3, epsilon: float = EPSILON) -> Vector3","titles":["mbcp.mp_math.function"]},"38":{"title":"def curry(func: MultiVarsFunc, *args: Var) -> OneVarFunc","titles":["mbcp.mp_math.function"]},"39":{"title":"mbcp.mp_math","titles":[]},"40":{"title":"mbcp.mp_math.line","titles":[]},"41":{"title":"class Line3","titles":["mbcp.mp_math.line"]},"42":{"title":"def __init__(self, point: Point3, direction: Vector3)","titles":["mbcp.mp_math.line","class Line3"]},"43":{"title":"def approx(self, other: Line3, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"44":{"title":"def cal_angle(self, other: Line3) -> AnyAngle","titles":["mbcp.mp_math.line","class Line3"]},"45":{"title":"def cal_distance(self, other: Line3 | Point3) -> float","titles":["mbcp.mp_math.line","class Line3"]},"46":{"title":"def cal_intersection(self, other: Line3) -> Point3","titles":["mbcp.mp_math.line","class Line3"]},"47":{"title":"def cal_perpendicular(self, point: Point3) -> Line3","titles":["mbcp.mp_math.line","class Line3"]},"48":{"title":"def get_point(self, t: RealNumber) -> Point3","titles":["mbcp.mp_math.line","class Line3"]},"49":{"title":"def get_parametric_equations(self) -> tuple[OneSingleVarFunc, OneSingleVarFunc, OneSingleVarFunc]","titles":["mbcp.mp_math.line","class Line3"]},"50":{"title":"def is_approx_parallel(self, other: Line3, epsilon: float = 1e-06) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"51":{"title":"def is_parallel(self, other: Line3) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"52":{"title":"def is_collinear(self, other: Line3) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"53":{"title":"def is_point_on(self, point: Point3) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"54":{"title":"def is_coplanar(self, other: Line3) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"55":{"title":"def simplify(self)","titles":["mbcp.mp_math.line","class Line3"]},"56":{"title":"def from_two_points(cls, p1: Point3, p2: Point3) -> Line3","titles":["mbcp.mp_math.line","class Line3"]},"57":{"title":"def __and__(self, other: Line3) -> Line3 | Point3 | None","titles":["mbcp.mp_math.line","class Line3"]},"58":{"title":"def __eq__(self, other) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"59":{"title":"mbcp.mp_math","titles":[]},"60":{"title":"mbcp.mp_math.mp_math_typing","titles":[]},"61":{"title":"var RealNumber = int | float","titles":["mbcp.mp_math.mp_math_typing"]},"62":{"title":"var Number = RealNumber | complex","titles":["mbcp.mp_math.mp_math_typing"]},"63":{"title":"var SingleVar = TypeVar(\'SingleVar\', bound=Number)","titles":["mbcp.mp_math.mp_math_typing"]},"64":{"title":"var ArrayVar = TypeVar(\'ArrayVar\', bound=Iterable[Number])","titles":["mbcp.mp_math.mp_math_typing"]},"65":{"title":"var Var = SingleVar | ArrayVar","titles":["mbcp.mp_math.mp_math_typing"]},"66":{"title":"var OneSingleVarFunc = Callable[[SingleVar], SingleVar]","titles":["mbcp.mp_math.mp_math_typing"]},"67":{"title":"var OneArrayFunc = Callable[[ArrayVar], ArrayVar]","titles":["mbcp.mp_math.mp_math_typing"]},"68":{"title":"var OneVarFunc = OneSingleVarFunc | OneArrayFunc","titles":["mbcp.mp_math.mp_math_typing"]},"69":{"title":"var TwoSingleVarsFunc = Callable[[SingleVar, SingleVar], SingleVar]","titles":["mbcp.mp_math.mp_math_typing"]},"70":{"title":"var TwoArraysFunc = Callable[[ArrayVar, ArrayVar], ArrayVar]","titles":["mbcp.mp_math.mp_math_typing"]},"71":{"title":"var TwoVarsFunc = TwoSingleVarsFunc | TwoArraysFunc","titles":["mbcp.mp_math.mp_math_typing"]},"72":{"title":"var ThreeSingleVarsFunc = Callable[[SingleVar, SingleVar, SingleVar], SingleVar]","titles":["mbcp.mp_math.mp_math_typing"]},"73":{"title":"var ThreeArraysFunc = Callable[[ArrayVar, ArrayVar, ArrayVar], ArrayVar]","titles":["mbcp.mp_math.mp_math_typing"]},"74":{"title":"var ThreeVarsFunc = ThreeSingleVarsFunc | ThreeArraysFunc","titles":["mbcp.mp_math.mp_math_typing"]},"75":{"title":"var MultiSingleVarsFunc = Callable[..., SingleVar]","titles":["mbcp.mp_math.mp_math_typing"]},"76":{"title":"var MultiArraysFunc = Callable[..., ArrayVar]","titles":["mbcp.mp_math.mp_math_typing"]},"77":{"title":"var MultiVarsFunc = MultiSingleVarsFunc | MultiArraysFunc","titles":["mbcp.mp_math.mp_math_typing"]},"78":{"title":"mbcp.mp_math.plane","titles":[]},"79":{"title":"class Plane3","titles":["mbcp.mp_math.plane"]},"80":{"title":"def __init__(self, a: float, b: float, c: float, d: float)","titles":["mbcp.mp_math.plane","class Plane3"]},"81":{"title":"def approx(self, other: Plane3) -> bool","titles":["mbcp.mp_math.plane","class Plane3"]},"82":{"title":"def cal_angle(self, other: Line3 | Plane3) -> AnyAngle","titles":["mbcp.mp_math.plane","class Plane3"]},"83":{"title":"def cal_distance(self, other: Plane3 | Point3) -> float","titles":["mbcp.mp_math.plane","class Plane3"]},"84":{"title":"def cal_intersection_line3(self, other: Plane3) -> Line3","titles":["mbcp.mp_math.plane","class Plane3"]},"85":{"title":"def cal_intersection_point3(self, other: Line3) -> Point3","titles":["mbcp.mp_math.plane","class Plane3"]},"86":{"title":"def cal_parallel_plane3(self, point: Point3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"87":{"title":"def is_parallel(self, other: Plane3) -> bool","titles":["mbcp.mp_math.plane","class Plane3"]},"88":{"title":"def normal(self) -> Vector3","titles":["mbcp.mp_math.plane","class Plane3"]},"89":{"title":"def from_point_and_normal(cls, point: Point3, normal: Vector3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"90":{"title":"def from_three_points(cls, p1: Point3, p2: Point3, p3: Point3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"91":{"title":"def from_two_lines(cls, l1: Line3, l2: Line3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"92":{"title":"def from_point_and_line(cls, point: Point3, line: Line3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"93":{"title":"def __and__(self, other: Line3) -> Point3 | None","titles":["mbcp.mp_math.plane","class Plane3"]},"94":{"title":"def __and__(self, other: Plane3) -> Line3 | None","titles":["mbcp.mp_math.plane","class Plane3"]},"95":{"title":"def __and__(self, other)","titles":["mbcp.mp_math.plane","class Plane3"]},"96":{"title":"def __eq__(self, other) -> bool","titles":["mbcp.mp_math.plane","class Plane3"]},"97":{"title":"def __rand__(self, other: Line3) -> Point3","titles":["mbcp.mp_math.plane","class Plane3"]},"98":{"title":"mbcp.mp_math.point","titles":[]},"99":{"title":"class Point3","titles":["mbcp.mp_math.point"]},"100":{"title":"def __init__(self, x: float, y: float, z: float)","titles":["mbcp.mp_math.point","class Point3"]},"101":{"title":"def approx(self, other: Point3, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.point","class Point3"]},"102":{"title":"def self + other: Vector3 => Point3","titles":["mbcp.mp_math.point","class Point3"]},"103":{"title":"def self + other: Point3 => Point3","titles":["mbcp.mp_math.point","class Point3"]},"104":{"title":"def self + other","titles":["mbcp.mp_math.point","class Point3"]},"105":{"title":"def __eq__(self, other)","titles":["mbcp.mp_math.point","class Point3"]},"106":{"title":"def self - other: Point3 => Vector3","titles":["mbcp.mp_math.point","class Point3"]},"107":{"title":"mbcp.mp_math.segment","titles":[]},"108":{"title":"class Segment3","titles":["mbcp.mp_math.segment"]},"109":{"title":"def __init__(self, p1: Point3, p2: Point3)","titles":["mbcp.mp_math.segment","class Segment3"]},"110":{"title":"mbcp.mp_math.utils","titles":[]},"111":{"title":"def clamp(x: float, min_: float, max_: float) -> float","titles":["mbcp.mp_math.utils"]},"112":{"title":"class Approx","titles":["mbcp.mp_math.utils"]},"113":{"title":"def __init__(self, value: RealNumber)","titles":["mbcp.mp_math.utils","class Approx"]},"114":{"title":"def __eq__(self, other)","titles":["mbcp.mp_math.utils","class Approx"]},"115":{"title":"def raise_type_error(self, other)","titles":["mbcp.mp_math.utils","class Approx"]},"116":{"title":"def __ne__(self, other)","titles":["mbcp.mp_math.utils","class Approx"]},"117":{"title":"def approx(x: float, y: float = 0.0, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.utils"]},"118":{"title":"def sign(x: float, only_neg: bool = False) -> str","titles":["mbcp.mp_math.utils"]},"119":{"title":"def sign_format(x: float, only_neg: bool = False) -> str","titles":["mbcp.mp_math.utils"]},"120":{"title":"mbcp.mp_math.vector","titles":[]},"121":{"title":"class Vector3","titles":["mbcp.mp_math.vector"]},"122":{"title":"def __init__(self, x: float, y: float, z: float)","titles":["mbcp.mp_math.vector","class Vector3"]},"123":{"title":"def approx(self, other: Vector3, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.vector","class Vector3"]},"124":{"title":"def cal_angle(self, other: Vector3) -> AnyAngle","titles":["mbcp.mp_math.vector","class Vector3"]},"125":{"title":"def cross(self, other: Vector3) -> Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"126":{"title":"def is_approx_parallel(self, other: Vector3, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.vector","class Vector3"]},"127":{"title":"def is_parallel(self, other: Vector3) -> bool","titles":["mbcp.mp_math.vector","class Vector3"]},"128":{"title":"def normalize(self)","titles":["mbcp.mp_math.vector","class Vector3"]},"129":{"title":"def np_array(self) -> np.ndarray","titles":["mbcp.mp_math.vector","class Vector3"]},"130":{"title":"def length(self) -> float","titles":["mbcp.mp_math.vector","class Vector3"]},"131":{"title":"def unit(self) -> Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"132":{"title":"def __abs__(self)","titles":["mbcp.mp_math.vector","class Vector3"]},"133":{"title":"def self + other: Vector3 => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"134":{"title":"def self + other: Point3 => Point3","titles":["mbcp.mp_math.vector","class Vector3"]},"135":{"title":"def self + other","titles":["mbcp.mp_math.vector","class Vector3"]},"136":{"title":"def __eq__(self, other)","titles":["mbcp.mp_math.vector","class Vector3"]},"137":{"title":"def self + other: Point3 => Point3","titles":["mbcp.mp_math.vector","class Vector3"]},"138":{"title":"def self - other: Vector3 => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"139":{"title":"def self - other: Point3 => Point3","titles":["mbcp.mp_math.vector","class Vector3"]},"140":{"title":"def self - other","titles":["mbcp.mp_math.vector","class Vector3"]},"141":{"title":"def self - other: Point3","titles":["mbcp.mp_math.vector","class Vector3"]},"142":{"title":"def self * other: Vector3 => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"143":{"title":"def self * other: RealNumber => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"144":{"title":"def self * other: int | float | Vector3 => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"145":{"title":"def self * other: RealNumber => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"146":{"title":"def self @ other: Vector3 => RealNumber","titles":["mbcp.mp_math.vector","class Vector3"]},"147":{"title":"def self / other: RealNumber => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"148":{"title":"def - self","titles":["mbcp.mp_math.vector","class Vector3"]},"149":{"title":"var zero_vector3 = Vector3(0, 0, 0)","titles":["mbcp.mp_math.vector"]},"150":{"title":"var x_axis = Vector3(1, 0, 0)","titles":["mbcp.mp_math.vector"]},"151":{"title":"var y_axis = Vector3(0, 1, 0)","titles":["mbcp.mp_math.vector"]},"152":{"title":"var z_axis = Vector3(0, 0, 1)","titles":["mbcp.mp_math.vector"]},"153":{"title":"mbcp.particle","titles":[]},"154":{"title":"mbcp.particle","titles":[]},"155":{"title":"mbcp.presets","titles":[]},"156":{"title":"mbcp.presets.model","titles":[]},"157":{"title":"class GeometricModels","titles":["mbcp.presets.model"]},"158":{"title":"def sphere(radius: float, density: float)","titles":["mbcp.presets.model","class GeometricModels"]},"159":{"title":"mbcp.presets.model","titles":[]},"160":{"title":"class GeometricModels","titles":["mbcp.presets.model"]},"161":{"title":"def sphere(radius: float, density: float)","titles":["mbcp.presets.model","class GeometricModels"]},"162":{"title":"mbcp.presets","titles":[]},"163":{"title":"开始不了一点","titles":[]},"164":{"title":"Reference","titles":[]}},"dirtCount":0,"index":[["∫12x111",{"2":{"163":1}}],["开始不了一点",{"0":{"163":1}}],["4",{"2":{"158":1,"161":1}}],["球体上的点集",{"2":{"158":2,"161":2}}],["生成球体上的点集",{"2":{"158":2,"161":2}}],["几何模型点集",{"2":{"156":1,"159":1}}],["下午9",{"2":{"155":1,"162":1}}],["8",{"2":{"155":1,"162":1}}],["零向量",{"2":{"149":1}}],["非点乘",{"2":{"144":2}}],["别去点那边实现了",{"2":{"137":2}}],["单位向量",{"2":{"131":2}}],["单变量",{"2":{"63":1}}],["模",{"2":{"130":2}}],["向量的模",{"2":{"130":2}}],["向量积",{"2":{"125":2}}],["返回numpy数组",{"2":{"129":1}}],["返回如下行列式的结果",{"2":{"125":1}}],["将向量归一化",{"2":{"128":2}}],["允许的误差",{"2":{"126":2}}],["j",{"2":{"125":1}}],["行列式的结果",{"2":{"125":2}}],["其余结果的模为平行四边形的面积",{"2":{"125":2}}],["叉乘使用cross",{"2":{"144":2}}],["叉乘为0",{"2":{"125":2}}],["叉乘",{"2":{"125":2}}],["夹角",{"2":{"124":2}}],["夹角弧度",{"2":{"44":2,"82":2}}],["以及一些常用的向量",{"2":{"120":1}}],["格式化符号数",{"2":{"119":2}}],["quot",{"2":{"118":2,"119":4}}],["符号",{"2":{"118":2,"119":2}}],["获取该向量的单位向量",{"2":{"131":2}}],["获取数的符号",{"2":{"118":2}}],["获取直线的参数方程",{"2":{"49":2}}],["获取直线上的点",{"2":{"48":2}}],["用于判断是否近似于0",{"2":{"117":2}}],["或包装一个实数",{"2":{"117":2}}],["或整数元组",{"2":{"35":2}}],["限制后的值",{"2":{"111":2}}],["待限定的值",{"2":{"111":2}}],["区间限定函数",{"2":{"111":2}}],["us",{"2":{"164":1}}],["unit",{"0":{"131":1},"2":{"131":1}}],["unsupported",{"2":{"45":1,"82":1,"83":1,"95":1,"115":1,"135":1,"140":1,"141":1,"144":1}}],["utils",{"0":{"110":1},"1":{"111":1,"112":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1}}],["中心点",{"2":{"109":1}}],["中实现",{"2":{"106":2}}],["长度",{"2":{"109":1}}],["方向向量",{"2":{"109":1}}],["``x2",{"2":{"125":1}}],["``x1",{"2":{"125":1}}],["``i",{"2":{"125":1}}],["```",{"2":{"38":1}}],["```python",{"2":{"38":1}}],["`vector3`",{"2":{"106":1}}],["已在",{"2":{"106":2}}],["已知一个函数$f",{"2":{"37":1}}],["已知一个函数f",{"2":{"37":1}}],["坐标",{"2":{"100":6}}],["笛卡尔坐标系中的点",{"2":{"100":2}}],["人话",{"2":{"95":2}}],["取两平面的交集",{"2":{"95":2}}],["面上直线",{"2":{"92":2}}],["面上一点",{"2":{"92":2}}],["法向量",{"2":{"88":2,"89":2}}],["所求平面",{"2":{"86":2}}],["k``",{"2":{"125":1}}],["k",{"2":{"81":12}}],["另一个向量",{"2":{"124":2,"126":2,"127":2}}],["另一个平面或点",{"2":{"83":2}}],["另一个平面",{"2":{"81":2,"82":2,"84":2,"87":2}}],["另一条直线",{"2":{"43":2,"44":2,"46":2,"50":2,"51":2,"52":2,"54":2,"57":2}}],["常数项",{"2":{"80":2}}],["常量",{"2":{"25":1}}],["平面平行返回none",{"2":{"95":2}}],["平面",{"2":{"89":2,"90":2,"91":2,"92":2}}],["平面上的一点",{"2":{"89":2}}],["平面的法向量",{"2":{"88":2}}],["平面与直线平行或重合",{"2":{"85":2}}],["平面方程",{"2":{"80":2}}],["平行线返回none",{"2":{"57":2}}],["平行直线或点",{"2":{"45":2}}],["多元函数",{"2":{"77":1}}],["多元数组函数",{"2":{"76":1}}],["多元单变量函数",{"2":{"75":1}}],["二元函数",{"2":{"71":1}}],["二元数组函数",{"2":{"70":1}}],["二元单变量函数",{"2":{"69":1}}],["一元函数",{"2":{"68":1}}],["一元数组函数",{"2":{"67":1}}],["一元单变量函数",{"2":{"66":1}}],["一阶偏导",{"2":{"35":2}}],["变量",{"2":{"65":1}}],["变量位置",{"2":{"35":2}}],["数组运算",{"2":{"144":2}}],["数组变量",{"2":{"64":1}}],["数2",{"2":{"117":2}}],["数1",{"2":{"117":2}}],["数",{"2":{"62":1,"118":2,"119":2}}],["实数",{"2":{"61":1}}],["タイプ",{"2":{"61":1,"62":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"149":1,"150":1,"151":1,"152":1}}],["∧",{"2":{"58":2}}],["交线",{"2":{"95":2}}],["交线返回交点",{"2":{"57":2}}],["交点",{"2":{"46":2,"57":2,"85":2}}],["重合线返回自身",{"2":{"57":2}}],["由点和直线构造平面",{"2":{"92":2}}],["由点和法向量构造平面",{"2":{"89":2}}],["由两直线构造平面",{"2":{"91":2}}],["由两点构造直线",{"2":{"56":2}}],["由三点构造平面",{"2":{"90":2}}],["由一个点和一个方向向量确定",{"2":{"42":2}}],["工厂函数",{"2":{"56":2,"89":2,"90":2,"91":2,"92":2}}],["并对向量单位化",{"2":{"55":2}}],["处理",{"2":{"55":2}}],["处的梯度向量为",{"2":{"37":1}}],["化",{"2":{"55":2}}],["按照可行性一次对x",{"2":{"55":2}}],["不平行平面的交线",{"2":{"95":2}}],["不包含点",{"2":{"92":2}}],["不与平面平行或在平面上的直线",{"2":{"85":2}}],["不返回值",{"2":{"55":2,"128":2}}],["不支持的类型",{"2":{"44":2,"45":2,"82":2,"83":2}}],["自体归一化",{"2":{"128":2}}],["自体简化",{"2":{"55":2}}],["自然对数的底",{"2":{"26":1}}],["等价相等",{"2":{"55":2}}],["简化直线方程",{"2":{"55":2}}],["两平面的交线",{"2":{"84":2}}],["两直线方向向量的叉乘与两直线上任意一点的向量的点积为0",{"2":{"54":2}}],["两角的和为180°",{"2":{"7":2}}],["两角的和为90°",{"2":{"6":2}}],["充要条件",{"2":{"54":2}}],["判断两个向量是否相等",{"2":{"136":2}}],["判断两个向量是否平行",{"2":{"127":2}}],["判断两个向量是否近似平行",{"2":{"126":2}}],["判断两个向量是否近似相等",{"2":{"123":2}}],["判断两个数是否近似相等",{"2":{"117":2}}],["判断两个点是否相等",{"2":{"105":2}}],["判断两个点是否近似相等",{"2":{"101":2}}],["判断两个平面是否平行",{"2":{"87":2}}],["判断两个平面是否近似相等",{"2":{"81":2}}],["判断两条直线是否等价",{"2":{"58":2}}],["判断两条直线是否共面",{"2":{"54":2}}],["判断两条直线是否共线",{"2":{"52":2}}],["判断两条直线是否平行",{"2":{"51":2}}],["判断两条直线是否近似平行",{"2":{"50":2}}],["判断两条直线是否近似相等",{"2":{"43":2}}],["判断点是否在直线上",{"2":{"53":2}}],["则两向量平行",{"2":{"125":2}}],["则同一个t对应的点不同",{"2":{"48":2}}],["则其在点$",{"2":{"37":1}}],["则其在点",{"2":{"37":1}}],["但起始点和方向向量不同",{"2":{"48":2}}],["同一条直线",{"2":{"48":2}}],["垂线",{"2":{"47":2}}],["指定点",{"2":{"47":2,"86":2}}],["距离",{"2":{"45":2,"83":2}}],["是否相等",{"2":{"136":2}}],["是否只返回负数的符号",{"2":{"118":2,"119":2}}],["是否共面",{"2":{"54":2}}],["是否共线",{"2":{"52":2}}],["是否在直线上",{"2":{"53":2}}],["是否平行",{"2":{"51":2,"87":2,"127":2}}],["是否近似平行",{"2":{"50":2,"126":2}}],["是否近似相等",{"2":{"43":2,"81":2,"101":2,"117":2,"123":2}}],["是否为弧度",{"2":{"5":2}}],["误差",{"2":{"43":2,"50":2,"117":2}}],["直线2",{"2":{"91":2}}],["直线1",{"2":{"91":2}}],["直线",{"2":{"56":2}}],["直线不共面",{"2":{"46":2}}],["直线平行",{"2":{"46":2}}],["直线的方向向量",{"2":{"42":2}}],["直线上的一点",{"2":{"42":2}}],["三元数组函数",{"2":{"73":1}}],["三元单变量函数",{"2":{"72":1}}],["三元函数",{"2":{"37":2,"74":1}}],["三维空间中的线段",{"2":{"109":2}}],["三维空间中的直线",{"2":{"42":2}}],["三维向量",{"2":{"39":1,"59":1}}],["三维线段",{"2":{"39":1,"59":1}}],["三维点",{"2":{"39":1,"59":1}}],["三维平面",{"2":{"39":1,"59":1}}],["三维直线",{"2":{"39":1,"59":1}}],["任意角",{"2":{"39":1,"59":1}}],["任意角度",{"2":{"5":2}}],["导入的类有",{"2":{"39":1,"59":1}}],["本包定义了一些常用的导入",{"2":{"39":1,"59":1}}],["本模块用于内部类型提示",{"2":{"60":1}}],["本模块定义了粒子生成相关的工具",{"2":{"153":1,"154":1}}],["本模块定义了3维向量的类vector3",{"2":{"120":1}}],["本模块定义了一些常用的工具函数",{"2":{"110":1}}],["本模块定义了一些常用的常量",{"2":{"24":1}}],["本模块定义了三维空间中点的类",{"2":{"98":1}}],["本模块定义了三维空间中的线段类",{"2":{"107":1}}],["本模块定义了三维空间中的平面类",{"2":{"78":1}}],["本模块定义了三维空间中的直线类",{"2":{"40":1}}],["本模块定义了方程相关的类和函数以及一些常用的数学函数",{"2":{"31":1}}],["本模块定义了角度相关的类",{"2":{"2":1}}],["本模块塞了一些预设的粒子生成器",{"2":{"0":1,"1":1}}],["help",{"2":{"164":1}}],["have",{"2":{"84":1}}],["https",{"2":{"38":1}}],["high",{"2":{"35":2}}],["hide",{"2":{"35":2,"38":1}}],["6",{"2":{"38":2}}],["3维向量",{"2":{"122":2}}],["355859667",{"2":{"38":1}}],["3",{"2":{"38":2}}],["3vf",{"0":{"37":1},"2":{"37":1}}],["by",{"2":{"80":2}}],["bound=iterable",{"0":{"64":1}}],["bound=number",{"0":{"63":1}}],["bool=false",{"2":{"5":1,"118":1,"119":1}}],["bool",{"0":{"5":1,"43":1,"50":1,"51":1,"52":1,"53":1,"54":1,"58":1,"81":1,"87":1,"96":1,"101":1,"117":1,"118":1,"119":1,"123":1,"126":1,"127":1},"2":{"43":1,"50":1,"51":1,"52":1,"53":1,"54":1,"58":1,"81":1,"87":1,"96":1,"101":1,"117":1,"123":1,"126":1,"127":1}}],["b",{"0":{"80":1},"2":{"38":4,"80":5,"81":7,"83":2,"84":12,"85":2,"88":1,"89":3}}],["例",{"2":{"38":1}}],["例外",{"2":{"35":1,"44":1,"45":1,"46":1,"82":1,"83":1,"85":1}}],["柯里化后的函数",{"2":{"38":2}}],["柯理化",{"2":{"38":2}}],["可直接从mbcp",{"2":{"39":1,"59":1}}],["可参考",{"2":{"38":1}}],["可参考函数式编程",{"2":{"38":1}}],["可为整数",{"2":{"35":2}}],["有关函数柯里化",{"2":{"38":2}}],["对多参数函数进行柯里化",{"2":{"38":2}}],["d",{"0":{"80":1},"2":{"80":7,"81":6,"83":1,"84":6,"85":1,"89":2}}],["documentation",{"2":{"164":1}}],["do",{"2":{"46":2}}],["distance",{"0":{"45":1,"83":1},"2":{"45":1,"83":1}}],["direction",{"0":{"42":1},"2":{"42":5,"43":1,"44":2,"45":8,"46":6,"47":1,"48":1,"49":3,"50":2,"51":2,"52":1,"53":1,"54":2,"55":4,"56":2,"58":3,"82":1,"84":2,"85":4,"91":1,"92":1,"95":1,"109":2}}],["dz",{"2":{"37":2}}],["dy",{"2":{"37":2}}],["dx",{"2":{"37":2}}],["density",{"0":{"158":1,"161":1},"2":{"158":4,"161":4}}],["derivative",{"0":{"35":1},"2":{"35":6}}],["degree",{"0":{"8":1},"2":{"8":1}}],["def",{"0":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1},"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"21":1,"22":1,"35":2,"38":2,"56":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"102":1,"103":1,"129":1,"130":1,"131":1,"133":1,"134":1,"138":1,"139":1,"142":1,"143":1,"158":1,"161":1}}],["$处的梯度向量为",{"2":{"37":1}}],["$",{"2":{"37":3}}],["梯度",{"2":{"37":2}}],["点乘",{"2":{"146":2}}],["点乘使用",{"2":{"144":2}}],["点3",{"2":{"90":2}}],["点法式构造",{"2":{"89":2}}],["点2",{"2":{"56":2,"90":2}}],["点1",{"2":{"56":2,"90":2}}],["点",{"2":{"37":2,"48":2,"53":2}}],["∂f∂z",{"2":{"37":1}}],["∂f∂y",{"2":{"37":1}}],["∂f∂x",{"2":{"37":1}}],["∇f",{"2":{"37":1}}],["计算平行于该平面且过指定点的平面",{"2":{"86":2}}],["计算平面与直线的交点",{"2":{"85":2}}],["计算平面与平面或点之间的距离",{"2":{"83":2}}],["计算平面与平面之间的夹角",{"2":{"82":2}}],["计算两个向量之间的夹角",{"2":{"124":2}}],["计算两平面的交线",{"2":{"84":2}}],["计算两条直线点集合的交集",{"2":{"57":2}}],["计算两条直线的交点",{"2":{"46":2}}],["计算直线经过指定点p的垂线",{"2":{"47":2}}],["计算直线和直线或点之间的距离",{"2":{"45":2}}],["计算直线和直线之间的夹角",{"2":{"44":2}}],["计算三元函数在某点的梯度向量",{"2":{"37":2}}],["计算曲线上的点",{"2":{"34":2}}],["v3",{"2":{"125":2}}],["vector",{"0":{"120":1},"1":{"121":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"150":1,"151":1,"152":1},"2":{"106":1}}],["vector3",{"0":{"37":1,"42":1,"88":1,"89":1,"102":1,"106":1,"121":1,"123":1,"124":1,"125":2,"126":1,"127":1,"131":1,"133":2,"138":2,"142":2,"143":1,"144":2,"145":1,"146":1,"147":1,"149":2,"150":1,"151":1,"152":1},"1":{"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1},"2":{"37":2,"39":1,"42":1,"59":1,"88":2,"89":1,"91":1,"102":1,"106":4,"114":2,"123":1,"124":1,"125":3,"126":1,"127":2,"131":1,"133":2,"135":3,"138":2,"140":3,"141":1,"142":2,"143":1,"144":6,"145":1,"146":1,"147":2,"148":1,"149":1,"150":1,"151":1,"152":1}}],["v2",{"2":{"58":2,"90":2,"91":4,"125":2}}],["v1",{"2":{"58":4,"90":2,"91":2,"125":2}}],["v",{"2":{"35":2,"104":2,"106":4,"135":8,"137":2,"140":8,"141":2}}],["var",{"0":{"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"34":1,"35":1,"38":1,"61":1,"62":1,"63":1,"64":1,"65":2,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"149":1,"150":1,"151":1,"152":1},"2":{"34":1,"35":13,"38":3}}],["valueerror",{"2":{"35":3,"46":6,"84":1,"85":3}}],["value",{"0":{"5":1,"113":1},"2":{"5":5,"113":3,"114":6,"115":1}}],["求高阶偏导函数",{"2":{"35":1}}],["求n元函数一阶偏导函数",{"2":{"35":2}}],["l2",{"0":{"91":1},"2":{"91":5}}],["l1",{"0":{"91":1},"2":{"91":7}}],["lambda",{"2":{"49":3}}],["left",{"2":{"37":1}}],["length",{"0":{"130":1},"2":{"45":5,"46":1,"82":2,"109":2,"124":2,"126":1,"128":5,"130":1,"131":1,"132":1}}],["len",{"2":{"34":1}}],["liteyukistudio",{"2":{"155":1,"162":1}}],["litedoc",{"2":{"35":2,"38":1}}],["linalg",{"2":{"84":3}}],["lines",{"0":{"91":1},"2":{"46":2,"91":1}}],["line",{"0":{"40":1,"92":2},"1":{"41":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1},"2":{"85":1,"92":5}}],["line3",{"0":{"41":1,"43":1,"44":1,"45":1,"46":1,"47":1,"50":1,"51":1,"52":1,"54":1,"56":1,"57":2,"82":1,"84":2,"85":1,"91":2,"92":1,"93":1,"94":1,"97":1},"1":{"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1},"2":{"39":1,"43":1,"44":1,"45":2,"46":1,"47":2,"50":1,"51":1,"52":1,"54":1,"56":1,"57":2,"59":1,"82":2,"84":3,"85":1,"91":2,"92":1,"93":1,"94":1,"95":2,"97":1,"114":1}}],["list",{"2":{"35":8,"158":10,"161":10}}],["无效变量类型",{"2":{"35":2}}],["偏导函数",{"2":{"35":2}}],["偏移量",{"2":{"35":2,"37":2}}],["高阶偏导数值",{"2":{"35":1}}],["高阶偏导",{"2":{"35":2}}],["函数式编程",{"2":{"38":1}}],["函数",{"2":{"35":2,"38":2}}],["因此该函数的稳定性有待提升",{"2":{"35":2}}],["目前数学界对于一个函数的导函数并没有通解的说法",{"2":{"35":2}}],["目标点",{"2":{"34":2}}],["warning",{"2":{"35":2}}],["慎用",{"2":{"35":2}}],["这玩意不太稳定",{"2":{"35":2}}],["num",{"2":{"158":5,"161":5}}],["number=epsilon",{"2":{"35":1}}],["number",{"0":{"35":1,"62":1,"64":1}}],["ndarray",{"0":{"129":1},"2":{"129":1}}],["neg",{"0":{"118":1,"119":1},"2":{"118":4,"119":4,"148":1}}],["negative",{"0":{"10":1},"2":{"10":1}}],["ne",{"0":{"116":1},"2":{"116":1}}],["np",{"0":{"129":2},"2":{"84":9,"129":3,"158":9,"161":9}}],["no",{"2":{"84":1}}],["normal",{"0":{"88":1,"89":2},"2":{"82":5,"84":4,"85":1,"86":2,"87":2,"88":1,"89":7,"90":3,"91":1,"92":1,"95":3}}],["normalize",{"0":{"128":1},"2":{"55":1,"128":1}}],["none",{"0":{"57":1,"93":1,"94":1},"2":{"57":2,"93":1,"94":1,"95":2}}],["not",{"2":{"45":1,"46":4,"57":1,"116":1,"118":1,"119":1}}],["nabla",{"2":{"37":1}}],["参数t",{"2":{"48":2}}],["参数",{"2":{"34":2,"35":1,"38":2}}],["|",{"0":{"34":1,"35":1,"45":1,"57":2,"61":1,"62":1,"65":1,"68":1,"71":1,"74":1,"77":1,"82":1,"83":1,"93":1,"94":1,"144":2},"2":{"34":1,"35":1,"45":1,"57":2,"82":1,"83":1,"93":1,"94":1,"144":2}}],["曲线方程",{"2":{"33":2,"39":1,"59":1}}],["z轴单位向量",{"2":{"152":1}}],["z轴分量",{"2":{"122":2}}],["z2``",{"2":{"125":1}}],["z1``",{"2":{"125":1}}],["zero",{"0":{"149":1},"2":{"91":1,"127":1}}],["z系数",{"2":{"80":2}}],["zhihu",{"2":{"38":1}}],["zhuanlan",{"2":{"38":1}}],["z0",{"2":{"37":2}}],["zip",{"2":{"34":1}}],["z函数",{"2":{"33":2}}],["z",{"0":{"33":1,"100":1,"122":1,"152":1},"2":{"33":5,"34":4,"37":11,"49":4,"55":4,"83":1,"84":4,"85":4,"89":2,"100":7,"101":2,"104":2,"105":2,"106":2,"109":2,"114":2,"122":5,"123":2,"125":4,"128":1,"129":1,"130":1,"135":4,"136":2,"137":2,"140":4,"141":2,"144":3,"146":2,"147":1,"148":1,"158":2,"161":2}}],["y轴单位向量",{"2":{"151":1}}],["y轴分量",{"2":{"122":2}}],["y2",{"2":{"125":1}}],["y1",{"2":{"125":1}}],["y系数",{"2":{"80":2}}],["y0",{"2":{"37":2}}],["y函数",{"2":{"33":2}}],["y",{"0":{"33":1,"100":1,"117":1,"122":1,"151":1},"2":{"33":5,"34":4,"37":11,"49":4,"55":4,"83":1,"84":4,"85":4,"89":2,"100":7,"101":2,"104":2,"105":2,"106":2,"109":2,"114":2,"117":4,"122":5,"123":2,"125":4,"128":1,"129":1,"130":1,"135":4,"136":2,"137":2,"140":4,"141":2,"144":3,"146":2,"147":1,"148":1,"158":2,"161":2}}],["x轴单位向量",{"2":{"150":1}}],["x轴分量",{"2":{"122":2}}],["x3c",{"2":{"101":3,"114":1,"117":1,"118":1,"119":1,"123":3,"126":1}}],["x26",{"2":{"95":1}}],["x系数",{"2":{"80":2}}],["x0",{"2":{"37":2}}],["x函数",{"2":{"33":2}}],["x",{"0":{"33":1,"100":1,"111":1,"117":1,"118":1,"119":1,"122":1,"150":1},"2":{"33":5,"34":4,"37":11,"49":4,"55":2,"83":1,"84":4,"85":4,"89":2,"100":7,"101":2,"104":2,"105":2,"106":2,"109":2,"111":4,"114":2,"117":4,"118":5,"119":8,"122":5,"123":2,"125":4,"128":1,"129":1,"130":1,"135":4,"136":2,"137":2,"140":4,"141":2,"144":3,"146":2,"147":1,"148":1,"158":2,"161":2}}],["约等于判定误差",{"2":{"30":1}}],["精度误差",{"2":{"29":1}}],["欧拉常数",{"2":{"28":1}}],["06",{"0":{"50":1},"2":{"50":1}}],["001",{"0":{"30":1}}],["0001",{"0":{"29":1}}],["0",{"0":{"28":1,"29":1,"30":1,"117":2,"149":3,"150":2,"151":2,"152":2},"2":{"34":3,"37":6,"45":2,"54":1,"55":8,"80":2,"81":3,"83":2,"84":9,"85":1,"95":1,"117":1,"118":2,"119":4,"158":2,"161":2}}],["黄金分割比",{"2":{"27":1}}],["5772156649015329",{"0":{"28":1}}],["5",{"0":{"27":1},"2":{"83":1}}],["π",{"2":{"25":1}}],["to",{"2":{"164":1}}],["time",{"2":{"155":1,"162":1}}],["tip",{"2":{"37":2,"38":2}}],["theta",{"2":{"158":3,"161":3}}],["the",{"2":{"85":2,"164":1}}],["three",{"0":{"90":1},"2":{"90":1}}],["threevarsfunc",{"0":{"74":1}}],["threearraysfunc",{"0":{"73":1,"74":1}}],["threesinglevarsfunc",{"0":{"37":1,"72":1,"74":1},"2":{"37":1}}],["typing",{"0":{"60":1},"1":{"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1}}],["typevar",{"0":{"63":1,"64":1}}],["typealias",{"2":{"61":1,"62":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1}}],["typeerror",{"2":{"44":2,"45":3,"82":3,"83":3,"95":1,"115":1,"135":1,"140":1,"141":1,"144":1}}],["type",{"0":{"115":1},"2":{"35":1,"45":1,"82":2,"83":2,"95":2,"114":2,"115":4,"135":2,"140":2,"141":2,"144":2}}],["twovarsfunc",{"0":{"71":1}}],["twoarraysfunc",{"0":{"70":1,"71":1}}],["twosinglevarsfunc",{"0":{"69":1,"71":1}}],["two",{"0":{"56":1,"91":1},"2":{"56":1,"91":1}}],["tuple",{"0":{"34":1,"35":1,"49":1},"2":{"34":2,"35":2,"49":1}}],["t",{"0":{"34":1,"48":1},"2":{"34":10,"48":4,"49":12,"85":4}}],["truediv",{"2":{"21":1,"22":1,"23":1,"147":1}}],["tan",{"0":{"13":1},"2":{"13":2,"14":1}}],["outlook",{"2":{"155":1,"162":1}}],["operand",{"2":{"95":1,"135":1,"140":1,"141":1,"144":1}}],["or",{"2":{"57":1,"85":1}}],["order",{"2":{"35":2}}],["only",{"0":{"118":1,"119":1},"2":{"118":4,"119":4}}],["on",{"0":{"53":1},"2":{"53":1}}],["onearrayfunc",{"0":{"67":1,"68":1}}],["onesinglevarfunc",{"0":{"49":3,"66":1,"68":1},"2":{"49":3}}],["onevarfunc",{"0":{"33":3,"38":1,"68":1},"2":{"33":3,"38":1}}],["overload",{"2":{"20":1,"21":2,"22":1,"92":1,"93":2,"94":1,"101":1,"102":2,"103":1,"132":1,"133":2,"134":1,"137":1,"138":2,"139":1,"141":1,"142":2,"143":1}}],["other",{"0":{"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"43":1,"44":1,"45":1,"46":1,"50":1,"51":1,"52":1,"54":1,"57":1,"58":1,"81":1,"82":1,"83":1,"84":1,"85":1,"87":1,"93":1,"94":1,"95":1,"96":1,"97":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"114":1,"115":1,"116":1,"123":1,"124":1,"125":1,"126":1,"127":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1},"2":{"17":2,"18":2,"19":2,"20":2,"21":1,"22":1,"23":4,"43":5,"44":4,"45":13,"46":9,"50":4,"51":4,"52":5,"54":5,"57":7,"58":5,"81":15,"82":9,"83":9,"84":17,"85":11,"87":4,"93":1,"94":1,"95":10,"96":2,"97":2,"101":6,"102":1,"103":1,"104":6,"105":6,"106":6,"114":9,"115":2,"116":2,"123":6,"124":5,"125":9,"126":4,"127":4,"133":1,"134":1,"135":12,"136":6,"137":6,"138":1,"139":1,"140":12,"141":8,"142":1,"143":1,"144":12,"145":2,"146":6,"147":4}}],["email",{"2":{"155":1,"162":1}}],["error",{"0":{"115":1},"2":{"114":2,"115":1}}],["examples",{"2":{"38":1}}],["exp",{"2":{"26":1}}],["elif",{"2":{"35":1,"45":3,"57":1,"81":2,"82":1,"83":1,"84":2,"95":1,"114":1,"118":1,"119":1,"135":1,"140":1,"144":1}}],["else",{"2":{"5":1,"34":1,"35":1,"45":2,"57":1,"81":1,"82":1,"83":1,"95":1,"114":2,"118":2,"119":2,"135":1,"140":1,"141":1,"144":1}}],["epsilon",{"0":{"29":1,"35":2,"37":2,"43":1,"50":1,"101":1,"117":1,"123":1,"126":1},"2":{"35":7,"37":12,"43":5,"50":4,"101":6,"117":4,"123":6,"126":4}}],["e",{"0":{"26":2}}],["equations",{"0":{"49":1},"2":{"49":1,"85":1}}],["equation",{"0":{"31":1},"1":{"32":1,"33":1,"34":1,"35":1}}],["eq",{"0":{"18":1,"58":1,"96":1,"105":1,"114":1,"136":1},"2":{"18":1,"58":1,"96":1,"105":1,"114":1,"116":1,"136":1}}],["+1",{"2":{"119":2}}],["+=",{"2":{"35":1}}],["+",{"0":{"17":1,"27":1,"102":1,"103":1,"104":1,"133":1,"134":1,"135":1,"137":1},"2":{"17":1,"37":3,"38":4,"46":1,"48":1,"49":3,"80":6,"83":5,"85":5,"104":7,"109":3,"118":3,"119":3,"130":2,"135":11,"137":5,"146":2,"158":1,"161":1}}],["12",{"2":{"155":2,"162":2}}],["1e",{"0":{"50":1}}],["1",{"0":{"27":1,"150":1,"151":1,"152":1},"2":{"14":1,"15":1,"16":1,"26":1,"34":1,"38":2,"91":1,"119":6,"158":4,"161":4}}],["180",{"2":{"5":1,"8":1}}],["正割值",{"2":{"15":4}}],["正切值",{"2":{"13":4}}],["正弦值",{"2":{"11":4}}],["余割值",{"2":{"16":4}}],["余切值",{"2":{"14":4}}],["余弦值",{"2":{"12":4}}],["余角",{"2":{"6":4}}],["最大值",{"2":{"111":2}}],["最大负角度",{"2":{"10":2}}],["最大负角",{"2":{"10":2}}],["最小值",{"2":{"111":2}}],["最小正角度",{"2":{"9":2}}],["最小正角",{"2":{"9":2}}],["弧度",{"2":{"8":2}}],["角度",{"2":{"8":2}}],["角度或弧度值",{"2":{"5":2}}],["补角",{"2":{"7":4}}],["sphere",{"0":{"158":1,"161":1},"2":{"158":1,"161":1}}],["staticmethod",{"2":{"157":1,"158":1,"160":1,"161":1}}],["str",{"0":{"118":1,"119":1},"2":{"118":1,"119":1}}],["software",{"2":{"155":1,"162":1}}],["solve",{"2":{"84":3}}],["snowykami",{"2":{"155":2,"162":2}}],["s",{"2":{"95":1,"135":1,"140":1,"141":1,"144":1}}],["sign",{"0":{"118":1,"119":1},"2":{"118":1,"119":1}}],["simplify",{"0":{"55":1},"2":{"55":1}}],["singlevar",{"0":{"63":2,"65":1,"66":2,"69":3,"72":4,"75":1}}],["sin",{"0":{"11":1},"2":{"11":2,"16":1,"158":3,"161":3}}],["sqrt",{"0":{"27":1},"2":{"130":1,"158":1,"161":1}}],["sub",{"2":{"19":1,"106":1,"138":1,"139":1,"140":1}}],["supplementary",{"0":{"7":1},"2":{"7":1}}],["segment",{"0":{"107":1},"1":{"108":1,"109":1}}],["segment3",{"0":{"108":1},"1":{"109":1},"2":{"39":1,"59":1}}],["sec",{"0":{"15":1},"2":{"15":1}}],["self",{"0":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"113":1,"114":1,"115":1,"116":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1},"2":{"5":3,"6":2,"7":2,"8":2,"9":2,"10":2,"11":2,"12":2,"13":2,"14":2,"15":2,"16":2,"17":2,"18":2,"19":2,"20":2,"21":1,"22":1,"23":3,"33":4,"34":7,"42":3,"43":4,"44":2,"45":13,"46":8,"47":3,"48":3,"49":7,"50":2,"51":2,"52":4,"53":3,"54":3,"55":8,"57":6,"58":4,"80":5,"81":16,"82":4,"83":8,"84":15,"85":9,"86":2,"87":2,"88":4,"93":1,"94":1,"95":5,"96":2,"97":2,"100":4,"101":4,"102":1,"103":1,"104":4,"105":4,"106":4,"109":15,"113":2,"114":9,"115":2,"116":2,"122":4,"123":4,"124":3,"125":7,"126":2,"127":2,"128":5,"129":4,"130":4,"131":3,"132":2,"133":1,"134":1,"135":7,"136":4,"137":4,"138":1,"139":1,"140":7,"141":4,"142":1,"143":1,"144":7,"145":2,"146":4,"147":4,"148":4}}],["2024",{"2":{"155":2,"162":2}}],["2020",{"2":{"155":1,"162":1}}],["2",{"0":{"27":1},"2":{"6":1,"9":1,"10":1,"35":1,"37":3,"38":2,"46":1,"83":3,"109":3,"130":3,"158":2,"161":2}}],["rmul",{"2":{"145":1}}],["rsub",{"2":{"141":1}}],["rights",{"2":{"155":1,"162":1}}],["right",{"2":{"37":1}}],["reference",{"0":{"164":1}}],["reserved",{"2":{"155":1,"162":1}}],["result",{"2":{"35":4}}],["realnumber",{"0":{"48":1,"61":1,"62":1,"113":1,"143":1,"145":1,"146":1,"147":1},"2":{"48":1,"113":1,"143":1,"145":1,"146":1,"147":1}}],["return",{"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"23":2,"34":2,"35":4,"37":1,"38":4,"43":1,"44":1,"45":5,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":3,"58":1,"81":4,"82":2,"83":2,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"95":4,"96":1,"97":1,"101":1,"104":1,"105":1,"106":1,"111":1,"114":2,"116":1,"117":1,"118":3,"119":3,"123":1,"124":1,"125":1,"126":1,"127":1,"129":1,"130":1,"131":1,"132":1,"135":2,"136":1,"137":3,"140":2,"141":1,"144":2,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1}}],["returns",{"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"34":1,"35":2,"37":1,"38":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"95":1,"101":1,"104":1,"105":1,"106":1,"111":1,"117":1,"118":1,"119":1,"123":1,"124":1,"125":1,"126":1,"127":1,"129":1,"130":1,"131":1,"135":1,"136":1,"140":1,"141":1,"144":1,"146":1,"158":1,"161":1}}],["range",{"2":{"158":2,"161":2}}],["rand",{"0":{"97":1},"2":{"97":1}}],["radius",{"0":{"158":1,"161":1},"2":{"158":7,"161":7}}],["radian=true",{"2":{"6":1,"7":1,"10":1,"17":1,"19":1,"20":1,"23":1,"82":1,"124":1}}],["radian",{"0":{"5":1},"2":{"5":6,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":2,"18":2,"19":2,"20":1,"23":3}}],["radd",{"2":{"137":1}}],["raise",{"0":{"115":1},"2":{"35":1,"45":1,"46":2,"82":1,"83":1,"84":1,"85":1,"95":1,"114":2,"115":2,"135":1,"140":1,"141":1,"144":1}}],["raises",{"2":{"35":1,"44":1,"45":1,"46":1,"82":1,"83":1,"84":1,"85":1}}],["ratio",{"0":{"27":1}}],[">",{"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"19":1,"20":1,"21":1,"22":1,"34":1,"35":5,"37":3,"38":6,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"96":1,"97":1,"101":1,"102":1,"103":1,"104":2,"106":3,"111":1,"117":1,"118":2,"119":5,"123":1,"124":1,"125":2,"126":1,"127":1,"129":1,"130":1,"131":1,"133":1,"134":1,"135":2,"137":2,"138":1,"139":1,"140":2,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1}}],["戻り値",{"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"34":1,"35":1,"37":1,"38":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"95":1,"101":1,"111":1,"117":1,"118":1,"119":1,"123":1,"124":1,"125":1,"126":1,"127":1,"130":1,"131":1,"136":1,"158":1,"161":1}}],["geometricmodels",{"0":{"157":1,"160":1},"1":{"158":1,"161":1}}],["get",{"0":{"35":1,"48":1,"49":1},"2":{"35":2,"48":1,"49":1,"85":1,"91":1}}],["gradient",{"0":{"37":1},"2":{"37":1}}],["gamma",{"0":{"28":1}}],["golden",{"0":{"27":1}}],["gt",{"0":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"19":1,"20":1,"21":1,"22":1,"34":1,"35":1,"37":1,"38":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"96":1,"97":1,"101":1,"102":1,"103":1,"106":1,"111":1,"117":1,"118":1,"119":1,"123":1,"124":1,"125":1,"126":1,"127":1,"129":1,"130":1,"131":1,"133":1,"134":1,"137":1,"138":1,"139":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1},"2":{"104":2,"106":2,"119":3,"125":1,"135":2,"137":1,"140":2,"141":1}}],["githubで表示",{"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1}}],["cz",{"2":{"80":2}}],["clamp",{"0":{"111":1},"2":{"111":1,"158":1,"161":1}}],["classmethod",{"2":{"55":1,"56":1,"88":1,"89":2,"90":2,"91":2,"92":1}}],["class",{"0":{"3":1,"4":1,"32":1,"41":1,"79":1,"99":1,"108":1,"112":1,"121":1,"157":1,"160":1},"1":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"113":1,"114":1,"115":1,"116":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1},"2":{"106":2}}],["cls",{"0":{"56":1,"89":1,"90":1,"91":1,"92":1},"2":{"56":2,"89":2,"90":2,"91":2,"92":2}}],["cross",{"0":{"125":1},"2":{"45":4,"46":3,"47":1,"54":1,"84":1,"90":1,"91":1,"125":3,"126":1,"127":1}}],["c",{"0":{"80":1},"2":{"38":4,"80":5,"81":7,"83":2,"84":6,"85":2,"88":1,"89":3,"155":1,"162":1}}],["curried",{"2":{"38":6}}],["currying",{"2":{"38":2}}],["curry",{"0":{"38":1},"2":{"38":3}}],["curveequation",{"0":{"32":1},"1":{"33":1,"34":1},"2":{"39":1,"59":1}}],["cal",{"0":{"37":1,"44":1,"45":1,"46":1,"47":1,"82":1,"83":1,"84":1,"85":1,"86":1,"124":1},"2":{"37":1,"44":2,"45":1,"46":1,"47":1,"57":1,"82":2,"83":1,"84":1,"85":1,"86":1,"95":2,"97":1,"124":1}}],["callable",{"0":{"66":1,"67":1,"69":1,"70":1,"72":1,"73":1,"75":1,"76":1}}],["call",{"0":{"34":1},"2":{"34":1}}],["csc",{"0":{"16":1},"2":{"16":1}}],["copyright",{"2":{"155":1,"162":1}}],["coplanar",{"0":{"54":1},"2":{"45":1,"46":2,"54":1,"57":1}}],["coincident",{"2":{"85":1}}],["collinear",{"0":{"52":1},"2":{"52":1,"57":1}}],["complex",{"0":{"62":1}}],["complementary",{"0":{"6":1},"2":{"6":1,"82":1}}],["com",{"2":{"38":1,"155":1,"162":1}}],["const",{"0":{"24":1},"1":{"25":1,"26":1,"27":1,"28":1,"29":1,"30":1}}],["cot",{"0":{"14":1},"2":{"14":1}}],["cos",{"0":{"12":1},"2":{"12":2,"15":1,"158":2,"161":2}}],["phi",{"2":{"158":5,"161":5}}],["pycharm",{"2":{"155":1,"162":1}}],["py",{"2":{"155":1,"162":1}}],["python",{"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"21":1,"22":1,"56":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"102":1,"103":1,"129":1,"130":1,"131":1,"133":1,"134":1,"138":1,"139":1,"142":1,"143":1,"158":1,"161":1}}],["pythondef",{"2":{"5":1,"17":1,"18":1,"19":1,"20":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":2,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"95":1,"96":1,"97":1,"100":1,"101":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"132":1,"135":1,"136":1,"137":1,"140":1,"141":1,"144":1,"145":1,"146":1,"147":1,"148":1}}],["presets",{"0":{"155":1,"156":1,"159":1,"162":1},"1":{"157":1,"158":1,"160":1,"161":1}}],["property",{"2":{"5":1,"6":2,"7":2,"8":2,"9":2,"10":2,"11":2,"12":2,"13":2,"14":2,"15":2,"16":1,"87":1,"88":1,"128":1,"129":2,"130":2,"131":1}}],["p3",{"0":{"90":1},"2":{"90":4}}],["p2",{"0":{"56":1,"90":1,"109":1},"2":{"56":4,"58":2,"90":4,"109":9}}],["p1",{"0":{"56":1,"90":1,"109":1},"2":{"56":5,"58":2,"90":6,"109":9}}],["perpendicular",{"0":{"47":1},"2":{"47":1}}],["particle",{"0":{"153":1,"154":1}}],["partial",{"0":{"35":1},"2":{"35":6,"37":6}}],["param",{"2":{"109":4,"137":2}}],["parametric",{"0":{"49":1},"2":{"49":1,"85":1}}],["parallel",{"0":{"50":1,"51":1,"86":1,"87":1,"126":1,"127":1},"2":{"43":2,"45":1,"46":2,"50":2,"51":2,"52":2,"53":1,"57":1,"58":2,"84":2,"85":1,"86":1,"87":2,"95":1,"126":1,"127":1}}],["planes",{"2":{"84":1}}],["plane",{"0":{"78":1},"1":{"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1},"2":{"85":1}}],["plane3",{"0":{"79":1,"81":1,"82":1,"83":1,"84":1,"86":2,"87":1,"89":1,"90":1,"91":1,"92":1,"94":1},"1":{"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1},"2":{"39":1,"59":1,"81":1,"82":2,"83":2,"84":1,"86":3,"87":1,"89":1,"90":1,"91":1,"92":1,"94":1,"95":2,"114":1}}],["plus",{"2":{"35":3}}],["p",{"0":{"37":1},"2":{"37":21,"38":1,"104":10,"106":8,"135":4,"137":4,"140":4,"141":4}}],["points",{"0":{"56":1,"90":1},"2":{"56":1,"90":1}}],["point",{"0":{"42":1,"47":1,"48":1,"53":2,"86":1,"89":2,"92":2,"98":1},"1":{"99":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1},"2":{"42":5,"43":2,"45":5,"46":3,"47":6,"48":2,"49":3,"52":2,"53":6,"54":2,"55":3,"58":2,"85":3,"86":5,"89":7,"90":1,"91":6,"92":6}}],["point3",{"0":{"34":2,"37":1,"42":1,"45":1,"46":1,"47":1,"48":1,"53":1,"56":2,"57":1,"83":1,"85":2,"86":1,"89":1,"90":3,"92":1,"93":1,"97":1,"99":1,"101":1,"102":1,"103":2,"106":1,"109":2,"134":2,"137":2,"139":2,"141":1},"1":{"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1},"2":{"34":4,"37":1,"39":1,"42":1,"45":2,"46":1,"47":1,"48":1,"53":1,"56":2,"57":1,"59":1,"83":2,"84":1,"85":3,"86":1,"89":1,"90":3,"92":1,"93":1,"95":1,"97":2,"101":1,"102":1,"103":2,"104":1,"106":1,"109":3,"114":1,"134":2,"135":2,"137":3,"139":2,"140":2,"141":3,"158":3,"161":3}}],["positive",{"0":{"9":1},"2":{"6":1,"7":1,"9":1}}],["pi",{"0":{"25":2},"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"158":2,"161":2}}],["author",{"2":{"155":1,"162":1}}],["all",{"2":{"101":1,"114":1,"123":1,"155":1,"162":1}}],["acos",{"2":{"82":1,"124":1}}],["axis",{"0":{"150":1,"151":1,"152":1}}],["ax",{"2":{"80":2}}],["arccos",{"2":{"158":1,"161":1}}],["array",{"0":{"129":1},"2":{"84":6,"129":2,"158":6,"161":6}}],["arrayvar",{"0":{"64":2,"65":1,"67":2,"70":3,"73":4,"76":1}}],["area",{"2":{"158":2,"161":2}}],["are",{"2":{"46":2,"84":1,"85":1}}],["args2",{"2":{"38":2}}],["args",{"0":{"38":1},"2":{"5":1,"33":1,"34":1,"35":14,"37":1,"38":5,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"89":1,"90":1,"91":1,"92":1,"95":1,"100":1,"101":1,"104":1,"105":1,"106":1,"111":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"135":1,"136":1,"140":1,"141":1,"144":1,"146":1,"158":1,"161":1}}],["abs",{"0":{"132":1},"2":{"45":1,"83":1,"101":3,"114":1,"117":1,"119":1,"123":3,"132":1}}],["a",{"0":{"80":1},"2":{"38":4,"80":5,"81":7,"83":2,"84":12,"85":2,"88":1,"89":3}}],["aaa",{"2":{"36":1}}],["approx",{"0":{"30":1,"43":2,"50":1,"81":1,"101":2,"112":1,"117":2,"123":2,"126":2},"1":{"113":1,"114":1,"115":1,"116":1},"2":{"18":1,"43":3,"50":2,"81":10,"96":1,"101":1,"105":3,"114":4,"117":1,"123":1,"126":1,"127":1,"136":3}}],["add",{"2":{"17":1,"38":8,"102":1,"103":1,"104":1,"133":1,"134":1,"135":1}}],["and",{"0":{"57":1,"89":1,"92":1,"93":1,"94":1,"95":1},"2":{"43":1,"46":2,"52":1,"57":1,"58":1,"81":6,"84":4,"85":1,"86":1,"89":1,"90":1,"91":1,"92":2,"93":1,"94":1,"95":2,"105":2,"115":1,"135":1,"136":2,"140":1,"141":1,"144":1}}],["anyangle",{"0":{"4":1,"6":1,"7":1,"9":1,"10":1,"17":2,"19":2,"20":1,"21":1,"22":1,"44":1,"82":1,"124":1},"1":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1},"2":{"6":2,"7":2,"9":2,"10":2,"17":3,"19":3,"20":2,"21":1,"22":1,"23":2,"39":1,"44":1,"59":1,"82":2,"124":2}}],["angle",{"0":{"2":1,"3":1,"4":1,"44":1,"82":1,"124":1},"1":{"3":1,"4":1,"5":2,"6":2,"7":2,"8":2,"9":2,"10":2,"11":2,"12":2,"13":2,"14":2,"15":2,"16":2,"17":2,"18":2,"19":2,"20":2,"21":2,"22":2,"23":2},"2":{"44":2,"82":2,"124":1}}],["または",{"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1}}],["ソースコード",{"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1}}],["默认为否",{"2":{"5":2}}],["引数",{"2":{"5":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"89":1,"90":1,"91":1,"92":1,"95":1,"100":1,"101":1,"104":1,"105":1,"106":1,"111":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"135":1,"136":1,"140":1,"141":1,"144":1,"146":1,"158":1,"161":1}}],["file",{"2":{"155":1,"162":1}}],["from",{"0":{"56":1,"89":1,"90":1,"91":1,"92":1},"2":{"56":1,"86":1,"89":1,"90":2,"91":2,"92":2,"106":1}}],["frac",{"2":{"37":3}}],["f",{"2":{"37":4,"82":1,"83":1,"95":1,"115":1,"119":3,"135":1,"140":1,"141":1,"144":1}}],["format",{"0":{"119":1},"2":{"119":1}}],["for",{"2":{"34":1,"35":1,"95":1,"135":1,"140":1,"141":1,"144":1,"158":2,"161":2}}],["function",{"0":{"36":1},"1":{"37":1,"38":1}}],["func",{"0":{"33":3,"35":2,"37":1,"38":1},"2":{"33":15,"34":6,"35":16,"37":9,"38":6}}],["false",{"0":{"5":1,"118":1,"119":1},"2":{"81":1}}],["float=0",{"2":{"117":1}}],["float=1e",{"2":{"50":1}}],["float=approx",{"2":{"43":1,"101":1,"117":1,"123":1,"126":1}}],["float=epsilon",{"2":{"37":1}}],["float",{"0":{"5":1,"8":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"20":1,"21":1,"22":1,"37":1,"43":1,"45":1,"50":1,"61":1,"80":4,"83":1,"100":3,"101":1,"111":4,"117":3,"118":1,"119":1,"122":3,"123":1,"126":1,"130":1,"144":1,"158":2,"161":2},"2":{"5":1,"8":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"20":1,"21":1,"22":1,"45":1,"80":4,"83":1,"100":3,"111":4,"114":2,"117":1,"118":1,"119":1,"122":3,"130":1,"144":2,"158":2,"161":2}}],["==",{"2":{"34":1,"45":1,"54":1,"55":3,"85":1,"91":1,"95":1}}],["=",{"0":{"5":1,"17":1,"19":1,"20":1,"21":1,"22":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"35":1,"37":1,"43":1,"50":1,"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"101":1,"102":1,"103":1,"106":1,"117":2,"118":1,"119":1,"123":1,"126":1,"133":1,"134":1,"137":1,"138":1,"139":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"149":1,"150":1,"151":1,"152":1},"2":{"5":2,"33":3,"35":5,"37":5,"38":2,"42":2,"55":3,"56":1,"80":6,"81":6,"84":17,"85":2,"89":2,"90":3,"91":3,"100":3,"109":5,"113":1,"122":3,"128":4,"158":7,"161":7}}],["improve",{"2":{"164":1}}],["import",{"2":{"106":1}}],["i",{"2":{"158":4,"161":4}}],["invalid",{"2":{"35":1}}],["intersect",{"2":{"46":2}}],["intersection",{"0":{"46":1,"84":1,"85":1},"2":{"46":1,"57":1,"84":2,"85":1,"95":2,"97":1}}],["int",{"0":{"35":2,"61":1,"144":1},"2":{"35":3,"38":8,"114":2,"144":2,"158":1,"161":1}}],["in",{"2":{"34":1,"35":1,"158":2,"161":2}}],["init",{"0":{"5":1,"33":1,"42":1,"80":1,"100":1,"109":1,"113":1,"122":1},"2":{"5":1,"33":1,"42":1,"80":1,"100":1,"109":1,"113":1,"122":1,"155":1,"162":1}}],["if",{"2":{"5":1,"23":1,"34":1,"35":1,"45":2,"46":2,"55":3,"57":1,"81":1,"82":1,"83":1,"84":2,"85":1,"91":1,"95":3,"114":3,"118":2,"119":2,"135":1,"140":1,"141":1,"144":1}}],["isinstance",{"2":{"23":1,"35":2,"45":2,"82":2,"83":2,"95":2,"114":4,"135":2,"140":2,"141":1,"144":2}}],["is",{"0":{"5":1,"50":1,"51":1,"52":1,"53":1,"54":1,"87":1,"126":1,"127":1},"2":{"5":4,"6":1,"7":1,"10":1,"17":1,"19":1,"20":1,"23":1,"43":2,"45":2,"46":2,"50":2,"51":2,"52":3,"53":2,"54":1,"57":3,"58":2,"82":1,"84":1,"87":2,"95":1,"124":1,"126":1,"127":1}}],["model",{"0":{"156":1,"159":1},"1":{"157":1,"158":1,"160":1,"161":1}}],["midpoint",{"2":{"109":1}}],["min",{"0":{"111":1},"2":{"111":5}}],["minus",{"2":{"35":3}}],["minimum",{"0":{"9":1},"2":{"6":1,"7":1,"9":1}}],["multiarraysfunc",{"0":{"76":1,"77":1}}],["multisinglevarsfunc",{"0":{"75":1,"77":1}}],["multivarsfunc",{"0":{"35":2,"38":1,"77":1},"2":{"35":2,"38":1}}],["mul",{"2":{"20":1,"142":1,"143":1,"144":1,"145":1}}],["matmul",{"2":{"146":1}}],["math导入使用",{"2":{"39":1,"59":1}}],["math",{"0":{"2":1,"24":1,"25":1,"26":1,"27":1,"31":1,"36":1,"39":1,"40":1,"59":1,"60":2,"78":1,"98":1,"107":1,"110":1,"120":1},"1":{"3":1,"4":1,"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"32":1,"33":1,"34":1,"35":1,"37":1,"38":1,"41":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"61":2,"62":2,"63":2,"64":2,"65":2,"66":2,"67":2,"68":2,"69":2,"70":2,"71":2,"72":2,"73":2,"74":2,"75":2,"76":2,"77":2,"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"99":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"108":1,"109":1,"111":1,"112":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"121":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"150":1,"151":1,"152":1},"2":{"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"82":1,"124":1,"130":1}}],["max",{"0":{"111":1},"2":{"111":5}}],["maximum",{"0":{"10":1},"2":{"10":1}}],["mp",{"0":{"2":1,"24":1,"31":1,"36":1,"39":1,"40":1,"59":1,"60":2,"78":1,"98":1,"107":1,"110":1,"120":1},"1":{"3":1,"4":1,"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"32":1,"33":1,"34":1,"35":1,"37":1,"38":1,"41":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"61":2,"62":2,"63":2,"64":2,"65":2,"66":2,"67":2,"68":2,"69":2,"70":2,"71":2,"72":2,"73":2,"74":2,"75":2,"76":2,"77":2,"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"99":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"108":1,"109":1,"111":1,"112":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"121":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"150":1,"151":1,"152":1},"2":{"39":1,"59":1}}],["mbcp",{"0":{"0":1,"1":1,"2":1,"24":1,"31":1,"36":1,"39":1,"40":1,"59":1,"60":1,"78":1,"98":1,"107":1,"110":1,"120":1,"153":1,"154":1,"155":1,"156":1,"159":1,"162":1},"1":{"3":1,"4":1,"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"32":1,"33":1,"34":1,"35":1,"37":1,"38":1,"41":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"99":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"108":1,"109":1,"111":1,"112":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"121":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"150":1,"151":1,"152":1,"157":1,"158":1,"160":1,"161":1}}],["説明",{"2":{"0":1,"1":1,"2":1,"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"24":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"31":1,"33":1,"34":1,"35":1,"36":1,"37":1,"38":1,"39":1,"40":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"59":1,"60":1,"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"78":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"95":1,"98":1,"100":1,"101":1,"104":1,"105":1,"106":1,"107":1,"109":1,"110":1,"111":1,"117":1,"118":1,"119":1,"120":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"130":1,"131":1,"135":1,"136":1,"137":1,"140":1,"141":1,"144":1,"146":1,"149":1,"150":1,"151":1,"152":1,"153":1,"154":1,"155":1,"156":1,"158":1,"159":1,"161":1,"162":1}}]],"serializationVersion":2}';export{t as default};
+const t='{"documentCount":165,"nextId":165,"documentIds":{"0":"/ja/api/api.html#mbcp","1":"/ja/api/#mbcp","2":"/ja/api/mp_math/angle.html#mbcp-mp-math-angle","3":"/ja/api/mp_math/angle.html#class-angle","4":"/ja/api/mp_math/angle.html#class-anyangle-angle","5":"/ja/api/mp_math/angle.html#def-init-self-value-float-is-radian-bool-false","6":"/ja/api/mp_math/angle.html#def-complementary-self-anyangle","7":"/ja/api/mp_math/angle.html#def-supplementary-self-anyangle","8":"/ja/api/mp_math/angle.html#def-degree-self-float","9":"/ja/api/mp_math/angle.html#def-minimum-positive-self-anyangle","10":"/ja/api/mp_math/angle.html#def-maximum-negative-self-anyangle","11":"/ja/api/mp_math/angle.html#def-sin-self-float","12":"/ja/api/mp_math/angle.html#def-cos-self-float","13":"/ja/api/mp_math/angle.html#def-tan-self-float","14":"/ja/api/mp_math/angle.html#def-cot-self-float","15":"/ja/api/mp_math/angle.html#def-sec-self-float","16":"/ja/api/mp_math/angle.html#def-csc-self-float","17":"/ja/api/mp_math/angle.html#def-self-other-anyangle-anyangle","18":"/ja/api/mp_math/angle.html#def-eq-self-other","19":"/ja/api/mp_math/angle.html#def-self-other-anyangle-anyangle-1","20":"/ja/api/mp_math/angle.html#def-self-other-float-anyangle","21":"/ja/api/mp_math/angle.html#def-self-other-float-anyangle-1","22":"/ja/api/mp_math/angle.html#def-self-other-anyangle-float","23":"/ja/api/mp_math/angle.html#def-self-other","24":"/ja/api/mp_math/const.html#mbcp-mp-math-const","25":"/ja/api/mp_math/const.html#var-pi-math-pi","26":"/ja/api/mp_math/const.html#var-e-math-e","27":"/ja/api/mp_math/const.html#var-golden-ratio-1-math-sqrt-5-2","28":"/ja/api/mp_math/const.html#var-gamma-0-5772156649015329","29":"/ja/api/mp_math/const.html#var-epsilon-0-0001","30":"/ja/api/mp_math/const.html#var-approx-0-001","31":"/ja/api/mp_math/equation.html#mbcp-mp-math-equation","32":"/ja/api/mp_math/equation.html#class-curveequation","33":"/ja/api/mp_math/equation.html#def-init-self-x-func-onevarfunc-y-func-onevarfunc-z-func-onevarfunc","34":"/ja/api/mp_math/equation.html#def-call-self-t-var-point3-tuple-point3","35":"/ja/api/mp_math/equation.html#def-get-partial-derivative-func-func-multivarsfunc-var-int-tuple-int-epsilon-number-epsilon-multivarsfunc","36":"/ja/api/mp_math/function.html#mbcp-mp-math-function","37":"/ja/api/mp_math/function.html#def-cal-gradient-3vf-func-threesinglevarsfunc-p-point3-epsilon-float-epsilon-vector3","38":"/ja/api/mp_math/function.html#def-curry-func-multivarsfunc-args-var-onevarfunc","39":"/ja/api/mp_math/#mbcp-mp-math","40":"/ja/api/mp_math/line.html#mbcp-mp-math-line","41":"/ja/api/mp_math/line.html#class-line3","42":"/ja/api/mp_math/line.html#def-init-self-point-point3-direction-vector3","43":"/ja/api/mp_math/line.html#def-approx-self-other-line3-epsilon-float-approx-bool","44":"/ja/api/mp_math/line.html#def-cal-angle-self-other-line3-anyangle","45":"/ja/api/mp_math/line.html#def-cal-distance-self-other-line3-point3-float","46":"/ja/api/mp_math/line.html#def-cal-intersection-self-other-line3-point3","47":"/ja/api/mp_math/line.html#def-cal-perpendicular-self-point-point3-line3","48":"/ja/api/mp_math/line.html#def-get-point-self-t-realnumber-point3","49":"/ja/api/mp_math/line.html#def-get-parametric-equations-self-tuple-onesinglevarfunc-onesinglevarfunc-onesinglevarfunc","50":"/ja/api/mp_math/line.html#def-is-approx-parallel-self-other-line3-epsilon-float-1e-06-bool","51":"/ja/api/mp_math/line.html#def-is-parallel-self-other-line3-bool","52":"/ja/api/mp_math/line.html#def-is-collinear-self-other-line3-bool","53":"/ja/api/mp_math/line.html#def-is-point-on-self-point-point3-bool","54":"/ja/api/mp_math/line.html#def-is-coplanar-self-other-line3-bool","55":"/ja/api/mp_math/line.html#def-simplify-self","56":"/ja/api/mp_math/line.html#def-from-two-points-cls-p1-point3-p2-point3-line3","57":"/ja/api/mp_math/line.html#def-and-self-other-line3-line3-point3-none","58":"/ja/api/mp_math/line.html#def-eq-self-other-bool","59":"/ja/api/mp_math/mp_math.html#mbcp-mp-math","60":"/ja/api/mp_math/mp_math_typing.html#mbcp-mp-math-mp-math-typing","61":"/ja/api/mp_math/mp_math_typing.html#var-realnumber-int-float","62":"/ja/api/mp_math/mp_math_typing.html#var-number-realnumber-complex","63":"/ja/api/mp_math/mp_math_typing.html#var-singlevar-typevar-singlevar-bound-number","64":"/ja/api/mp_math/mp_math_typing.html#var-arrayvar-typevar-arrayvar-bound-iterable-number","65":"/ja/api/mp_math/mp_math_typing.html#var-var-singlevar-arrayvar","66":"/ja/api/mp_math/mp_math_typing.html#var-onesinglevarfunc-callable-singlevar-singlevar","67":"/ja/api/mp_math/mp_math_typing.html#var-onearrayfunc-callable-arrayvar-arrayvar","68":"/ja/api/mp_math/mp_math_typing.html#var-onevarfunc-onesinglevarfunc-onearrayfunc","69":"/ja/api/mp_math/mp_math_typing.html#var-twosinglevarsfunc-callable-singlevar-singlevar-singlevar","70":"/ja/api/mp_math/mp_math_typing.html#var-twoarraysfunc-callable-arrayvar-arrayvar-arrayvar","71":"/ja/api/mp_math/mp_math_typing.html#var-twovarsfunc-twosinglevarsfunc-twoarraysfunc","72":"/ja/api/mp_math/mp_math_typing.html#var-threesinglevarsfunc-callable-singlevar-singlevar-singlevar-singlevar","73":"/ja/api/mp_math/mp_math_typing.html#var-threearraysfunc-callable-arrayvar-arrayvar-arrayvar-arrayvar","74":"/ja/api/mp_math/mp_math_typing.html#var-threevarsfunc-threesinglevarsfunc-threearraysfunc","75":"/ja/api/mp_math/mp_math_typing.html#var-multisinglevarsfunc-callable-singlevar","76":"/ja/api/mp_math/mp_math_typing.html#var-multiarraysfunc-callable-arrayvar","77":"/ja/api/mp_math/mp_math_typing.html#var-multivarsfunc-multisinglevarsfunc-multiarraysfunc","78":"/ja/api/mp_math/plane.html#mbcp-mp-math-plane","79":"/ja/api/mp_math/plane.html#class-plane3","80":"/ja/api/mp_math/plane.html#def-init-self-a-float-b-float-c-float-d-float","81":"/ja/api/mp_math/plane.html#def-approx-self-other-plane3-bool","82":"/ja/api/mp_math/plane.html#def-cal-angle-self-other-line3-plane3-anyangle","83":"/ja/api/mp_math/plane.html#def-cal-distance-self-other-plane3-point3-float","84":"/ja/api/mp_math/plane.html#def-cal-intersection-line3-self-other-plane3-line3","85":"/ja/api/mp_math/plane.html#def-cal-intersection-point3-self-other-line3-point3","86":"/ja/api/mp_math/plane.html#def-cal-parallel-plane3-self-point-point3-plane3","87":"/ja/api/mp_math/plane.html#def-is-parallel-self-other-plane3-bool","88":"/ja/api/mp_math/plane.html#def-normal-self-vector3","89":"/ja/api/mp_math/plane.html#def-from-point-and-normal-cls-point-point3-normal-vector3-plane3","90":"/ja/api/mp_math/plane.html#def-from-three-points-cls-p1-point3-p2-point3-p3-point3-plane3","91":"/ja/api/mp_math/plane.html#def-from-two-lines-cls-l1-line3-l2-line3-plane3","92":"/ja/api/mp_math/plane.html#def-from-point-and-line-cls-point-point3-line-line3-plane3","93":"/ja/api/mp_math/plane.html#def-and-self-other-line3-point3-none","94":"/ja/api/mp_math/plane.html#def-and-self-other-plane3-line3-none","95":"/ja/api/mp_math/plane.html#def-and-self-other","96":"/ja/api/mp_math/plane.html#def-eq-self-other-bool","97":"/ja/api/mp_math/plane.html#def-rand-self-other-line3-point3","98":"/ja/api/mp_math/segment.html#mbcp-mp-math-segment","99":"/ja/api/mp_math/segment.html#class-segment3","100":"/ja/api/mp_math/segment.html#def-init-self-p1-point3-p2-point3","101":"/ja/api/mp_math/point.html#mbcp-mp-math-point","102":"/ja/api/mp_math/point.html#class-point3","103":"/ja/api/mp_math/point.html#def-init-self-x-float-y-float-z-float","104":"/ja/api/mp_math/point.html#def-approx-self-other-point3-epsilon-float-approx-bool","105":"/ja/api/mp_math/point.html#def-self-other-vector3-point3","106":"/ja/api/mp_math/point.html#def-self-other-point3-point3","107":"/ja/api/mp_math/point.html#def-self-other","108":"/ja/api/mp_math/point.html#def-eq-self-other","109":"/ja/api/mp_math/point.html#def-self-other-point3-vector3","110":"/ja/api/mp_math/utils.html#mbcp-mp-math-utils","111":"/ja/api/mp_math/utils.html#def-clamp-x-float-min-float-max-float-float","112":"/ja/api/mp_math/utils.html#class-approx","113":"/ja/api/mp_math/utils.html#def-init-self-value-realnumber","114":"/ja/api/mp_math/utils.html#def-eq-self-other","115":"/ja/api/mp_math/utils.html#def-raise-type-error-self-other","116":"/ja/api/mp_math/utils.html#def-ne-self-other","117":"/ja/api/mp_math/utils.html#def-approx-x-float-y-float-0-0-epsilon-float-approx-bool","118":"/ja/api/mp_math/utils.html#def-sign-x-float-only-neg-bool-false-str","119":"/ja/api/mp_math/utils.html#def-sign-format-x-float-only-neg-bool-false-str","120":"/ja/api/particle/#mbcp-particle","121":"/ja/api/mp_math/vector.html#mbcp-mp-math-vector","122":"/ja/api/mp_math/vector.html#class-vector3","123":"/ja/api/mp_math/vector.html#def-init-self-x-float-y-float-z-float","124":"/ja/api/mp_math/vector.html#def-approx-self-other-vector3-epsilon-float-approx-bool","125":"/ja/api/mp_math/vector.html#def-cal-angle-self-other-vector3-anyangle","126":"/ja/api/mp_math/vector.html#def-cross-self-other-vector3-vector3","127":"/ja/api/mp_math/vector.html#def-is-approx-parallel-self-other-vector3-epsilon-float-approx-bool","128":"/ja/api/mp_math/vector.html#def-is-parallel-self-other-vector3-bool","129":"/ja/api/mp_math/vector.html#def-normalize-self","130":"/ja/api/mp_math/vector.html#def-np-array-self-np-ndarray","131":"/ja/api/mp_math/vector.html#def-length-self-float","132":"/ja/api/mp_math/vector.html#def-unit-self-vector3","133":"/ja/api/mp_math/vector.html#def-abs-self","134":"/ja/api/mp_math/vector.html#def-self-other-vector3-vector3","135":"/ja/api/mp_math/vector.html#def-self-other-point3-point3","136":"/ja/api/mp_math/vector.html#def-self-other","137":"/ja/api/mp_math/vector.html#def-eq-self-other","138":"/ja/api/mp_math/vector.html#def-self-other-point3-point3-1","139":"/ja/api/mp_math/vector.html#def-self-other-vector3-vector3-1","140":"/ja/api/mp_math/vector.html#def-self-other-point3-point3-2","141":"/ja/api/mp_math/vector.html#def-self-other-1","142":"/ja/api/mp_math/vector.html#def-self-other-point3","143":"/ja/api/mp_math/vector.html#def-self-other-vector3-vector3-2","144":"/ja/api/mp_math/vector.html#def-self-other-realnumber-vector3","145":"/ja/api/mp_math/vector.html#def-self-other-int-float-vector3-vector3","146":"/ja/api/mp_math/vector.html#def-self-other-realnumber-vector3-1","147":"/ja/api/mp_math/vector.html#def-self-other-vector3-realnumber","148":"/ja/api/mp_math/vector.html#def-self-other-realnumber-vector3-2","149":"/ja/api/mp_math/vector.html#def-self","150":"/ja/api/mp_math/vector.html#var-zero-vector3-vector3-0-0-0","151":"/ja/api/mp_math/vector.html#var-x-axis-vector3-1-0-0","152":"/ja/api/mp_math/vector.html#var-y-axis-vector3-0-1-0","153":"/ja/api/mp_math/vector.html#var-z-axis-vector3-0-0-1","154":"/ja/api/particle/particle.html#mbcp-particle","155":"/ja/api/presets/#mbcp-presets","156":"/ja/api/presets/model/#mbcp-presets-model","157":"/ja/api/presets/model/#class-geometricmodels","158":"/ja/api/presets/model/#def-sphere-radius-float-density-float","159":"/ja/api/presets/model/model.html#mbcp-presets-model","160":"/ja/api/presets/model/model.html#class-geometricmodels","161":"/ja/api/presets/model/model.html#def-sphere-radius-float-density-float","162":"/ja/api/presets/presets.html#mbcp-presets","163":"/ja/guide/#开始不了一点","164":"/ja/refer/#reference"},"fieldIds":{"title":0,"titles":1,"text":2},"fieldLength":{"0":[1,1,3],"1":[1,1,3],"2":[4,1,3],"3":[2,4,1],"4":[4,4,1],"5":[11,8,25],"6":[5,8,24],"7":[5,8,23],"8":[5,8,20],"9":[6,8,21],"10":[6,8,23],"11":[5,8,18],"12":[5,8,18],"13":[5,8,18],"14":[5,8,20],"15":[5,8,20],"16":[5,8,20],"17":[7,8,15],"18":[5,8,11],"19":[6,8,14],"20":[7,8,16],"21":[7,8,13],"22":[7,8,13],"23":[3,8,15],"24":[4,1,3],"25":[5,4,4],"26":[5,4,5],"27":[10,4,3],"28":[5,4,3],"29":[5,4,3],"30":[5,4,3],"31":[4,1,3],"32":[2,4,1],"33":[9,6,20],"34":[10,6,35],"35":[15,4,69],"36":[4,1,3],"37":[14,4,59],"38":[8,4,56],"39":[3,1,21],"40":[4,1,3],"41":[2,4,1],"42":[8,6,19],"43":[11,6,28],"44":[8,6,26],"45":[10,6,45],"46":[8,6,43],"47":[8,6,23],"48":[8,6,26],"49":[9,6,25],"50":[14,6,27],"51":[8,6,22],"52":[8,6,25],"53":[8,6,23],"54":[8,6,28],"55":[4,6,27],"56":[10,6,29],"57":[9,6,36],"58":[6,6,26],"59":[3,1,21],"60":[4,1,3],"61":[6,4,5],"62":[6,4,5],"63":[6,4,3],"64":[7,4,3],"65":[6,4,5],"66":[6,4,5],"67":[6,4,5],"68":[6,4,5],"69":[6,4,5],"70":[6,4,5],"71":[6,4,5],"72":[6,4,5],"73":[6,4,5],"74":[6,4,5],"75":[6,4,5],"76":[6,4,5],"77":[6,4,5],"78":[4,1,3],"79":[2,4,1],"80":[9,6,26],"81":[7,6,32],"82":[10,6,43],"83":[10,6,47],"84":[9,6,53],"85":[9,6,55],"86":[9,6,25],"87":[8,6,23],"88":[5,6,21],"89":[10,6,36],"90":[11,6,36],"91":[10,6,41],"92":[10,6,31],"93":[9,6,15],"94":[9,6,15],"95":[5,6,45],"96":[6,6,12],"97":[7,6,15],"98":[4,1,3],"99":[2,4,1],"100":[7,6,25],"101":[4,1,3],"102":[2,4,1],"103":[8,6,17],"104":[11,6,28],"105":[8,6,13],"106":[7,6,12],"107":[4,6,22],"108":[5,6,19],"109":[7,6,29],"110":[4,1,3],"111":[7,4,22],"112":[2,4,1],"113":[6,6,10],"114":[5,6,31],"115":[7,6,15],"116":[5,6,11],"117":[11,4,30],"118":[11,4,31],"119":[12,4,37],"120":[2,1,3],"121":[4,1,4],"122":[2,4,1],"123":[8,6,19],"124":[11,6,27],"125":[8,6,26],"126":[6,6,39],"127":[13,6,28],"128":[8,6,25],"129":[4,6,17],"130":[6,6,18],"131":[5,6,24],"132":[5,6,18],"133":[4,6,10],"134":[7,6,12],"135":[7,6,12],"136":[4,6,36],"137":[5,6,21],"138":[7,6,22],"139":[6,6,12],"140":[6,6,12],"141":[3,6,35],"142":[4,6,35],"143":[6,6,12],"144":[7,6,13],"145":[9,6,38],"146":[7,6,13],"147":[7,6,21],"148":[7,6,15],"149":[2,6,12],"150":[7,4,5],"151":[8,4,5],"152":[8,4,5],"153":[8,4,5],"154":[2,1,3],"155":[2,1,24],"156":[3,1,3],"157":[2,3,2],"158":[6,5,48],"159":[3,1,3],"160":[2,3,2],"161":[6,5,48],"162":[2,1,24],"163":[1,1,2],"164":[1,1,7]},"averageFieldLength":[6.242424242424242,4.963636363636361,17.824242424242428],"storedFields":{"0":{"title":"mbcp","titles":[]},"1":{"title":"mbcp","titles":[]},"2":{"title":"mbcp.mp_math.angle","titles":[]},"3":{"title":"class Angle","titles":["mbcp.mp_math.angle"]},"4":{"title":"class AnyAngle(Angle)","titles":["mbcp.mp_math.angle"]},"5":{"title":"def __init__(self, value: float, is_radian: bool = False)","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"6":{"title":"def complementary(self) -> AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"7":{"title":"def supplementary(self) -> AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"8":{"title":"def degree(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"9":{"title":"def minimum_positive(self) -> AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"10":{"title":"def maximum_negative(self) -> AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"11":{"title":"def sin(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"12":{"title":"def cos(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"13":{"title":"def tan(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"14":{"title":"def cot(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"15":{"title":"def sec(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"16":{"title":"def csc(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"17":{"title":"def self + other: AnyAngle => AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"18":{"title":"def __eq__(self, other)","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"19":{"title":"def self - other: AnyAngle => AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"20":{"title":"def self * other: float => AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"21":{"title":"def self / other: float => AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"22":{"title":"def self / other: AnyAngle => float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"23":{"title":"def self / other","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"24":{"title":"mbcp.mp_math.const","titles":[]},"25":{"title":"var PI = math.pi","titles":["mbcp.mp_math.const"]},"26":{"title":"var E = math.e","titles":["mbcp.mp_math.const"]},"27":{"title":"var GOLDEN_RATIO = (1 + math.sqrt(5)) / 2","titles":["mbcp.mp_math.const"]},"28":{"title":"var GAMMA = 0.5772156649015329","titles":["mbcp.mp_math.const"]},"29":{"title":"var EPSILON = 0.0001","titles":["mbcp.mp_math.const"]},"30":{"title":"var APPROX = 0.001","titles":["mbcp.mp_math.const"]},"31":{"title":"mbcp.mp_math.equation","titles":[]},"32":{"title":"class CurveEquation","titles":["mbcp.mp_math.equation"]},"33":{"title":"def __init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc)","titles":["mbcp.mp_math.equation","class CurveEquation"]},"34":{"title":"def __call__(self, *t: Var) -> Point3 | tuple[Point3, ...]","titles":["mbcp.mp_math.equation","class CurveEquation"]},"35":{"title":"def get_partial_derivative_func(func: MultiVarsFunc, var: int | tuple[int, ...], epsilon: Number = EPSILON) -> MultiVarsFunc","titles":["mbcp.mp_math.equation"]},"36":{"title":"mbcp.mp_math.function","titles":[]},"37":{"title":"def cal_gradient_3vf(func: ThreeSingleVarsFunc, p: Point3, epsilon: float = EPSILON) -> Vector3","titles":["mbcp.mp_math.function"]},"38":{"title":"def curry(func: MultiVarsFunc, *args: Var) -> OneVarFunc","titles":["mbcp.mp_math.function"]},"39":{"title":"mbcp.mp_math","titles":[]},"40":{"title":"mbcp.mp_math.line","titles":[]},"41":{"title":"class Line3","titles":["mbcp.mp_math.line"]},"42":{"title":"def __init__(self, point: Point3, direction: Vector3)","titles":["mbcp.mp_math.line","class Line3"]},"43":{"title":"def approx(self, other: Line3, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"44":{"title":"def cal_angle(self, other: Line3) -> AnyAngle","titles":["mbcp.mp_math.line","class Line3"]},"45":{"title":"def cal_distance(self, other: Line3 | Point3) -> float","titles":["mbcp.mp_math.line","class Line3"]},"46":{"title":"def cal_intersection(self, other: Line3) -> Point3","titles":["mbcp.mp_math.line","class Line3"]},"47":{"title":"def cal_perpendicular(self, point: Point3) -> Line3","titles":["mbcp.mp_math.line","class Line3"]},"48":{"title":"def get_point(self, t: RealNumber) -> Point3","titles":["mbcp.mp_math.line","class Line3"]},"49":{"title":"def get_parametric_equations(self) -> tuple[OneSingleVarFunc, OneSingleVarFunc, OneSingleVarFunc]","titles":["mbcp.mp_math.line","class Line3"]},"50":{"title":"def is_approx_parallel(self, other: Line3, epsilon: float = 1e-06) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"51":{"title":"def is_parallel(self, other: Line3) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"52":{"title":"def is_collinear(self, other: Line3) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"53":{"title":"def is_point_on(self, point: Point3) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"54":{"title":"def is_coplanar(self, other: Line3) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"55":{"title":"def simplify(self)","titles":["mbcp.mp_math.line","class Line3"]},"56":{"title":"def from_two_points(cls, p1: Point3, p2: Point3) -> Line3","titles":["mbcp.mp_math.line","class Line3"]},"57":{"title":"def __and__(self, other: Line3) -> Line3 | Point3 | None","titles":["mbcp.mp_math.line","class Line3"]},"58":{"title":"def __eq__(self, other) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"59":{"title":"mbcp.mp_math","titles":[]},"60":{"title":"mbcp.mp_math.mp_math_typing","titles":[]},"61":{"title":"var RealNumber = int | float","titles":["mbcp.mp_math.mp_math_typing"]},"62":{"title":"var Number = RealNumber | complex","titles":["mbcp.mp_math.mp_math_typing"]},"63":{"title":"var SingleVar = TypeVar(\'SingleVar\', bound=Number)","titles":["mbcp.mp_math.mp_math_typing"]},"64":{"title":"var ArrayVar = TypeVar(\'ArrayVar\', bound=Iterable[Number])","titles":["mbcp.mp_math.mp_math_typing"]},"65":{"title":"var Var = SingleVar | ArrayVar","titles":["mbcp.mp_math.mp_math_typing"]},"66":{"title":"var OneSingleVarFunc = Callable[[SingleVar], SingleVar]","titles":["mbcp.mp_math.mp_math_typing"]},"67":{"title":"var OneArrayFunc = Callable[[ArrayVar], ArrayVar]","titles":["mbcp.mp_math.mp_math_typing"]},"68":{"title":"var OneVarFunc = OneSingleVarFunc | OneArrayFunc","titles":["mbcp.mp_math.mp_math_typing"]},"69":{"title":"var TwoSingleVarsFunc = Callable[[SingleVar, SingleVar], SingleVar]","titles":["mbcp.mp_math.mp_math_typing"]},"70":{"title":"var TwoArraysFunc = Callable[[ArrayVar, ArrayVar], ArrayVar]","titles":["mbcp.mp_math.mp_math_typing"]},"71":{"title":"var TwoVarsFunc = TwoSingleVarsFunc | TwoArraysFunc","titles":["mbcp.mp_math.mp_math_typing"]},"72":{"title":"var ThreeSingleVarsFunc = Callable[[SingleVar, SingleVar, SingleVar], SingleVar]","titles":["mbcp.mp_math.mp_math_typing"]},"73":{"title":"var ThreeArraysFunc = Callable[[ArrayVar, ArrayVar, ArrayVar], ArrayVar]","titles":["mbcp.mp_math.mp_math_typing"]},"74":{"title":"var ThreeVarsFunc = ThreeSingleVarsFunc | ThreeArraysFunc","titles":["mbcp.mp_math.mp_math_typing"]},"75":{"title":"var MultiSingleVarsFunc = Callable[..., SingleVar]","titles":["mbcp.mp_math.mp_math_typing"]},"76":{"title":"var MultiArraysFunc = Callable[..., ArrayVar]","titles":["mbcp.mp_math.mp_math_typing"]},"77":{"title":"var MultiVarsFunc = MultiSingleVarsFunc | MultiArraysFunc","titles":["mbcp.mp_math.mp_math_typing"]},"78":{"title":"mbcp.mp_math.plane","titles":[]},"79":{"title":"class Plane3","titles":["mbcp.mp_math.plane"]},"80":{"title":"def __init__(self, a: float, b: float, c: float, d: float)","titles":["mbcp.mp_math.plane","class Plane3"]},"81":{"title":"def approx(self, other: Plane3) -> bool","titles":["mbcp.mp_math.plane","class Plane3"]},"82":{"title":"def cal_angle(self, other: Line3 | Plane3) -> AnyAngle","titles":["mbcp.mp_math.plane","class Plane3"]},"83":{"title":"def cal_distance(self, other: Plane3 | Point3) -> float","titles":["mbcp.mp_math.plane","class Plane3"]},"84":{"title":"def cal_intersection_line3(self, other: Plane3) -> Line3","titles":["mbcp.mp_math.plane","class Plane3"]},"85":{"title":"def cal_intersection_point3(self, other: Line3) -> Point3","titles":["mbcp.mp_math.plane","class Plane3"]},"86":{"title":"def cal_parallel_plane3(self, point: Point3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"87":{"title":"def is_parallel(self, other: Plane3) -> bool","titles":["mbcp.mp_math.plane","class Plane3"]},"88":{"title":"def normal(self) -> Vector3","titles":["mbcp.mp_math.plane","class Plane3"]},"89":{"title":"def from_point_and_normal(cls, point: Point3, normal: Vector3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"90":{"title":"def from_three_points(cls, p1: Point3, p2: Point3, p3: Point3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"91":{"title":"def from_two_lines(cls, l1: Line3, l2: Line3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"92":{"title":"def from_point_and_line(cls, point: Point3, line: Line3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"93":{"title":"def __and__(self, other: Line3) -> Point3 | None","titles":["mbcp.mp_math.plane","class Plane3"]},"94":{"title":"def __and__(self, other: Plane3) -> Line3 | None","titles":["mbcp.mp_math.plane","class Plane3"]},"95":{"title":"def __and__(self, other)","titles":["mbcp.mp_math.plane","class Plane3"]},"96":{"title":"def __eq__(self, other) -> bool","titles":["mbcp.mp_math.plane","class Plane3"]},"97":{"title":"def __rand__(self, other: Line3) -> Point3","titles":["mbcp.mp_math.plane","class Plane3"]},"98":{"title":"mbcp.mp_math.segment","titles":[]},"99":{"title":"class Segment3","titles":["mbcp.mp_math.segment"]},"100":{"title":"def __init__(self, p1: Point3, p2: Point3)","titles":["mbcp.mp_math.segment","class Segment3"]},"101":{"title":"mbcp.mp_math.point","titles":[]},"102":{"title":"class Point3","titles":["mbcp.mp_math.point"]},"103":{"title":"def __init__(self, x: float, y: float, z: float)","titles":["mbcp.mp_math.point","class Point3"]},"104":{"title":"def approx(self, other: Point3, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.point","class Point3"]},"105":{"title":"def self + other: Vector3 => Point3","titles":["mbcp.mp_math.point","class Point3"]},"106":{"title":"def self + other: Point3 => Point3","titles":["mbcp.mp_math.point","class Point3"]},"107":{"title":"def self + other","titles":["mbcp.mp_math.point","class Point3"]},"108":{"title":"def __eq__(self, other)","titles":["mbcp.mp_math.point","class Point3"]},"109":{"title":"def self - other: Point3 => Vector3","titles":["mbcp.mp_math.point","class Point3"]},"110":{"title":"mbcp.mp_math.utils","titles":[]},"111":{"title":"def clamp(x: float, min_: float, max_: float) -> float","titles":["mbcp.mp_math.utils"]},"112":{"title":"class Approx","titles":["mbcp.mp_math.utils"]},"113":{"title":"def __init__(self, value: RealNumber)","titles":["mbcp.mp_math.utils","class Approx"]},"114":{"title":"def __eq__(self, other)","titles":["mbcp.mp_math.utils","class Approx"]},"115":{"title":"def raise_type_error(self, other)","titles":["mbcp.mp_math.utils","class Approx"]},"116":{"title":"def __ne__(self, other)","titles":["mbcp.mp_math.utils","class Approx"]},"117":{"title":"def approx(x: float, y: float = 0.0, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.utils"]},"118":{"title":"def sign(x: float, only_neg: bool = False) -> str","titles":["mbcp.mp_math.utils"]},"119":{"title":"def sign_format(x: float, only_neg: bool = False) -> str","titles":["mbcp.mp_math.utils"]},"120":{"title":"mbcp.particle","titles":[]},"121":{"title":"mbcp.mp_math.vector","titles":[]},"122":{"title":"class Vector3","titles":["mbcp.mp_math.vector"]},"123":{"title":"def __init__(self, x: float, y: float, z: float)","titles":["mbcp.mp_math.vector","class Vector3"]},"124":{"title":"def approx(self, other: Vector3, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.vector","class Vector3"]},"125":{"title":"def cal_angle(self, other: Vector3) -> AnyAngle","titles":["mbcp.mp_math.vector","class Vector3"]},"126":{"title":"def cross(self, other: Vector3) -> Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"127":{"title":"def is_approx_parallel(self, other: Vector3, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.vector","class Vector3"]},"128":{"title":"def is_parallel(self, other: Vector3) -> bool","titles":["mbcp.mp_math.vector","class Vector3"]},"129":{"title":"def normalize(self)","titles":["mbcp.mp_math.vector","class Vector3"]},"130":{"title":"def np_array(self) -> np.ndarray","titles":["mbcp.mp_math.vector","class Vector3"]},"131":{"title":"def length(self) -> float","titles":["mbcp.mp_math.vector","class Vector3"]},"132":{"title":"def unit(self) -> Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"133":{"title":"def __abs__(self)","titles":["mbcp.mp_math.vector","class Vector3"]},"134":{"title":"def self + other: Vector3 => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"135":{"title":"def self + other: Point3 => Point3","titles":["mbcp.mp_math.vector","class Vector3"]},"136":{"title":"def self + other","titles":["mbcp.mp_math.vector","class Vector3"]},"137":{"title":"def __eq__(self, other)","titles":["mbcp.mp_math.vector","class Vector3"]},"138":{"title":"def self + other: Point3 => Point3","titles":["mbcp.mp_math.vector","class Vector3"]},"139":{"title":"def self - other: Vector3 => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"140":{"title":"def self - other: Point3 => Point3","titles":["mbcp.mp_math.vector","class Vector3"]},"141":{"title":"def self - other","titles":["mbcp.mp_math.vector","class Vector3"]},"142":{"title":"def self - other: Point3","titles":["mbcp.mp_math.vector","class Vector3"]},"143":{"title":"def self * other: Vector3 => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"144":{"title":"def self * other: RealNumber => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"145":{"title":"def self * other: int | float | Vector3 => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"146":{"title":"def self * other: RealNumber => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"147":{"title":"def self @ other: Vector3 => RealNumber","titles":["mbcp.mp_math.vector","class Vector3"]},"148":{"title":"def self / other: RealNumber => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"149":{"title":"def - self","titles":["mbcp.mp_math.vector","class Vector3"]},"150":{"title":"var zero_vector3 = Vector3(0, 0, 0)","titles":["mbcp.mp_math.vector"]},"151":{"title":"var x_axis = Vector3(1, 0, 0)","titles":["mbcp.mp_math.vector"]},"152":{"title":"var y_axis = Vector3(0, 1, 0)","titles":["mbcp.mp_math.vector"]},"153":{"title":"var z_axis = Vector3(0, 0, 1)","titles":["mbcp.mp_math.vector"]},"154":{"title":"mbcp.particle","titles":[]},"155":{"title":"mbcp.presets","titles":[]},"156":{"title":"mbcp.presets.model","titles":[]},"157":{"title":"class GeometricModels","titles":["mbcp.presets.model"]},"158":{"title":"def sphere(radius: float, density: float)","titles":["mbcp.presets.model","class GeometricModels"]},"159":{"title":"mbcp.presets.model","titles":[]},"160":{"title":"class GeometricModels","titles":["mbcp.presets.model"]},"161":{"title":"def sphere(radius: float, density: float)","titles":["mbcp.presets.model","class GeometricModels"]},"162":{"title":"mbcp.presets","titles":[]},"163":{"title":"开始不了一点","titles":[]},"164":{"title":"Reference","titles":[]}},"dirtCount":0,"index":[["∫12x111",{"2":{"163":1}}],["开始不了一点",{"0":{"163":1}}],["4",{"2":{"158":1,"161":1}}],["球体上的点集",{"2":{"158":2,"161":2}}],["生成球体上的点集",{"2":{"158":2,"161":2}}],["几何模型点集",{"2":{"156":1,"159":1}}],["下午9",{"2":{"155":1,"162":1}}],["8",{"2":{"155":1,"162":1}}],["零向量",{"2":{"150":1}}],["非点乘",{"2":{"145":2}}],["别去点那边实现了",{"2":{"138":2}}],["单位向量",{"2":{"132":2}}],["单变量",{"2":{"63":1}}],["模",{"2":{"131":2}}],["向量的模",{"2":{"131":2}}],["向量积",{"2":{"126":2}}],["返回numpy数组",{"2":{"130":1}}],["返回如下行列式的结果",{"2":{"126":1}}],["将向量归一化",{"2":{"129":2}}],["允许的误差",{"2":{"127":2}}],["j",{"2":{"126":1}}],["行列式的结果",{"2":{"126":2}}],["其余结果的模为平行四边形的面积",{"2":{"126":2}}],["叉乘使用cross",{"2":{"145":2}}],["叉乘为0",{"2":{"126":2}}],["叉乘",{"2":{"126":2}}],["夹角",{"2":{"125":2}}],["夹角弧度",{"2":{"44":2,"82":2}}],["以及一些常用的向量",{"2":{"121":1}}],["格式化符号数",{"2":{"119":2}}],["quot",{"2":{"118":2,"119":4}}],["符号",{"2":{"118":2,"119":2}}],["获取该向量的单位向量",{"2":{"132":2}}],["获取数的符号",{"2":{"118":2}}],["获取直线的参数方程",{"2":{"49":2}}],["获取直线上的点",{"2":{"48":2}}],["用于判断是否近似于0",{"2":{"117":2}}],["或包装一个实数",{"2":{"117":2}}],["或整数元组",{"2":{"35":2}}],["限制后的值",{"2":{"111":2}}],["待限定的值",{"2":{"111":2}}],["区间限定函数",{"2":{"111":2}}],["us",{"2":{"164":1}}],["unit",{"0":{"132":1},"2":{"132":1}}],["unsupported",{"2":{"45":1,"82":1,"83":1,"95":1,"115":1,"136":1,"141":1,"142":1,"145":1}}],["utils",{"0":{"110":1},"1":{"111":1,"112":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1}}],["``x2",{"2":{"126":1}}],["``x1",{"2":{"126":1}}],["``i",{"2":{"126":1}}],["```",{"2":{"38":1}}],["```python",{"2":{"38":1}}],["`vector3`",{"2":{"109":1}}],["中实现",{"2":{"109":2}}],["中心点",{"2":{"100":1}}],["已在",{"2":{"109":2}}],["已知一个函数$f",{"2":{"37":1}}],["已知一个函数f",{"2":{"37":1}}],["坐标",{"2":{"103":6}}],["笛卡尔坐标系中的点",{"2":{"103":2}}],["长度",{"2":{"100":1}}],["方向向量",{"2":{"100":1}}],["人话",{"2":{"95":2}}],["取两平面的交集",{"2":{"95":2}}],["面上直线",{"2":{"92":2}}],["面上一点",{"2":{"92":2}}],["法向量",{"2":{"88":2,"89":2}}],["所求平面",{"2":{"86":2}}],["k``",{"2":{"126":1}}],["k",{"2":{"81":12}}],["另一个向量",{"2":{"125":2,"127":2,"128":2}}],["另一个平面或点",{"2":{"83":2}}],["另一个平面",{"2":{"81":2,"82":2,"84":2,"87":2}}],["另一条直线",{"2":{"43":2,"44":2,"46":2,"50":2,"51":2,"52":2,"54":2,"57":2}}],["常数项",{"2":{"80":2}}],["常量",{"2":{"25":1}}],["平面平行返回none",{"2":{"95":2}}],["平面",{"2":{"89":2,"90":2,"91":2,"92":2}}],["平面上的一点",{"2":{"89":2}}],["平面的法向量",{"2":{"88":2}}],["平面与直线平行或重合",{"2":{"85":2}}],["平面方程",{"2":{"80":2}}],["平行线返回none",{"2":{"57":2}}],["平行直线或点",{"2":{"45":2}}],["多元函数",{"2":{"77":1}}],["多元数组函数",{"2":{"76":1}}],["多元单变量函数",{"2":{"75":1}}],["二元函数",{"2":{"71":1}}],["二元数组函数",{"2":{"70":1}}],["二元单变量函数",{"2":{"69":1}}],["一元函数",{"2":{"68":1}}],["一元数组函数",{"2":{"67":1}}],["一元单变量函数",{"2":{"66":1}}],["一阶偏导",{"2":{"35":2}}],["变量",{"2":{"65":1}}],["变量位置",{"2":{"35":2}}],["数组运算",{"2":{"145":2}}],["数组变量",{"2":{"64":1}}],["数2",{"2":{"117":2}}],["数1",{"2":{"117":2}}],["数",{"2":{"62":1,"118":2,"119":2}}],["实数",{"2":{"61":1}}],["タイプ",{"2":{"61":1,"62":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"150":1,"151":1,"152":1,"153":1}}],["∧",{"2":{"58":2}}],["交线",{"2":{"95":2}}],["交线返回交点",{"2":{"57":2}}],["交点",{"2":{"46":2,"57":2,"85":2}}],["重合线返回自身",{"2":{"57":2}}],["由点和直线构造平面",{"2":{"92":2}}],["由点和法向量构造平面",{"2":{"89":2}}],["由两直线构造平面",{"2":{"91":2}}],["由两点构造直线",{"2":{"56":2}}],["由三点构造平面",{"2":{"90":2}}],["由一个点和一个方向向量确定",{"2":{"42":2}}],["工厂函数",{"2":{"56":2,"89":2,"90":2,"91":2,"92":2}}],["并对向量单位化",{"2":{"55":2}}],["处理",{"2":{"55":2}}],["处的梯度向量为",{"2":{"37":1}}],["化",{"2":{"55":2}}],["按照可行性一次对x",{"2":{"55":2}}],["不平行平面的交线",{"2":{"95":2}}],["不包含点",{"2":{"92":2}}],["不与平面平行或在平面上的直线",{"2":{"85":2}}],["不返回值",{"2":{"55":2,"129":2}}],["不支持的类型",{"2":{"44":2,"45":2,"82":2,"83":2}}],["自体归一化",{"2":{"129":2}}],["自体简化",{"2":{"55":2}}],["自然对数的底",{"2":{"26":1}}],["等价相等",{"2":{"55":2}}],["简化直线方程",{"2":{"55":2}}],["两平面的交线",{"2":{"84":2}}],["两直线方向向量的叉乘与两直线上任意一点的向量的点积为0",{"2":{"54":2}}],["两角的和为180°",{"2":{"7":2}}],["两角的和为90°",{"2":{"6":2}}],["充要条件",{"2":{"54":2}}],["判断两个向量是否相等",{"2":{"137":2}}],["判断两个向量是否平行",{"2":{"128":2}}],["判断两个向量是否近似平行",{"2":{"127":2}}],["判断两个向量是否近似相等",{"2":{"124":2}}],["判断两个数是否近似相等",{"2":{"117":2}}],["判断两个点是否相等",{"2":{"108":2}}],["判断两个点是否近似相等",{"2":{"104":2}}],["判断两个平面是否平行",{"2":{"87":2}}],["判断两个平面是否近似相等",{"2":{"81":2}}],["判断两条直线是否等价",{"2":{"58":2}}],["判断两条直线是否共面",{"2":{"54":2}}],["判断两条直线是否共线",{"2":{"52":2}}],["判断两条直线是否平行",{"2":{"51":2}}],["判断两条直线是否近似平行",{"2":{"50":2}}],["判断两条直线是否近似相等",{"2":{"43":2}}],["判断点是否在直线上",{"2":{"53":2}}],["则两向量平行",{"2":{"126":2}}],["则同一个t对应的点不同",{"2":{"48":2}}],["则其在点$",{"2":{"37":1}}],["则其在点",{"2":{"37":1}}],["但起始点和方向向量不同",{"2":{"48":2}}],["同一条直线",{"2":{"48":2}}],["垂线",{"2":{"47":2}}],["指定点",{"2":{"47":2,"86":2}}],["距离",{"2":{"45":2,"83":2}}],["是否相等",{"2":{"137":2}}],["是否只返回负数的符号",{"2":{"118":2,"119":2}}],["是否共面",{"2":{"54":2}}],["是否共线",{"2":{"52":2}}],["是否在直线上",{"2":{"53":2}}],["是否平行",{"2":{"51":2,"87":2,"128":2}}],["是否近似平行",{"2":{"50":2,"127":2}}],["是否近似相等",{"2":{"43":2,"81":2,"104":2,"117":2,"124":2}}],["是否为弧度",{"2":{"5":2}}],["误差",{"2":{"43":2,"50":2,"117":2}}],["直线2",{"2":{"91":2}}],["直线1",{"2":{"91":2}}],["直线",{"2":{"56":2}}],["直线不共面",{"2":{"46":2}}],["直线平行",{"2":{"46":2}}],["直线的方向向量",{"2":{"42":2}}],["直线上的一点",{"2":{"42":2}}],["三元数组函数",{"2":{"73":1}}],["三元单变量函数",{"2":{"72":1}}],["三元函数",{"2":{"37":2,"74":1}}],["三维空间中的线段",{"2":{"100":2}}],["三维空间中的直线",{"2":{"42":2}}],["三维向量",{"2":{"39":1,"59":1}}],["三维线段",{"2":{"39":1,"59":1}}],["三维点",{"2":{"39":1,"59":1}}],["三维平面",{"2":{"39":1,"59":1}}],["三维直线",{"2":{"39":1,"59":1}}],["任意角",{"2":{"39":1,"59":1}}],["任意角度",{"2":{"5":2}}],["导入的类有",{"2":{"39":1,"59":1}}],["本包定义了一些常用的导入",{"2":{"39":1,"59":1}}],["本模块用于内部类型提示",{"2":{"60":1}}],["本模块定义了3维向量的类vector3",{"2":{"121":1}}],["本模块定义了粒子生成相关的工具",{"2":{"120":1,"154":1}}],["本模块定义了一些常用的工具函数",{"2":{"110":1}}],["本模块定义了一些常用的常量",{"2":{"24":1}}],["本模块定义了三维空间中点的类",{"2":{"101":1}}],["本模块定义了三维空间中的线段类",{"2":{"98":1}}],["本模块定义了三维空间中的平面类",{"2":{"78":1}}],["本模块定义了三维空间中的直线类",{"2":{"40":1}}],["本模块定义了方程相关的类和函数以及一些常用的数学函数",{"2":{"31":1}}],["本模块定义了角度相关的类",{"2":{"2":1}}],["本模块塞了一些预设的粒子生成器",{"2":{"0":1,"1":1}}],["help",{"2":{"164":1}}],["have",{"2":{"84":1}}],["https",{"2":{"38":1}}],["high",{"2":{"35":2}}],["hide",{"2":{"35":2,"38":1}}],["6",{"2":{"38":2}}],["3维向量",{"2":{"123":2}}],["355859667",{"2":{"38":1}}],["3",{"2":{"38":2}}],["3vf",{"0":{"37":1},"2":{"37":1}}],["by",{"2":{"80":2}}],["bound=iterable",{"0":{"64":1}}],["bound=number",{"0":{"63":1}}],["bool=false",{"2":{"5":1,"118":1,"119":1}}],["bool",{"0":{"5":1,"43":1,"50":1,"51":1,"52":1,"53":1,"54":1,"58":1,"81":1,"87":1,"96":1,"104":1,"117":1,"118":1,"119":1,"124":1,"127":1,"128":1},"2":{"43":1,"50":1,"51":1,"52":1,"53":1,"54":1,"58":1,"81":1,"87":1,"96":1,"104":1,"117":1,"124":1,"127":1,"128":1}}],["b",{"0":{"80":1},"2":{"38":4,"80":5,"81":7,"83":2,"84":12,"85":2,"88":1,"89":3}}],["例",{"2":{"38":1}}],["例外",{"2":{"35":1,"44":1,"45":1,"46":1,"82":1,"83":1,"85":1}}],["柯里化后的函数",{"2":{"38":2}}],["柯理化",{"2":{"38":2}}],["可直接从mbcp",{"2":{"39":1,"59":1}}],["可参考",{"2":{"38":1}}],["可参考函数式编程",{"2":{"38":1}}],["可为整数",{"2":{"35":2}}],["有关函数柯里化",{"2":{"38":2}}],["对多参数函数进行柯里化",{"2":{"38":2}}],["d",{"0":{"80":1},"2":{"80":7,"81":6,"83":1,"84":6,"85":1,"89":2}}],["documentation",{"2":{"164":1}}],["do",{"2":{"46":2}}],["distance",{"0":{"45":1,"83":1},"2":{"45":1,"83":1}}],["direction",{"0":{"42":1},"2":{"42":5,"43":1,"44":2,"45":8,"46":6,"47":1,"48":1,"49":3,"50":2,"51":2,"52":1,"53":1,"54":2,"55":4,"56":2,"58":3,"82":1,"84":2,"85":4,"91":1,"92":1,"95":1,"100":2}}],["dz",{"2":{"37":2}}],["dy",{"2":{"37":2}}],["dx",{"2":{"37":2}}],["density",{"0":{"158":1,"161":1},"2":{"158":4,"161":4}}],["derivative",{"0":{"35":1},"2":{"35":6}}],["degree",{"0":{"8":1},"2":{"8":1}}],["def",{"0":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"103":1,"104":1,"105":1,"106":1,"107":1,"108":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"158":1,"161":1},"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"21":1,"22":1,"35":2,"38":2,"56":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"105":1,"106":1,"130":1,"131":1,"132":1,"134":1,"135":1,"139":1,"140":1,"143":1,"144":1,"158":1,"161":1}}],["$处的梯度向量为",{"2":{"37":1}}],["$",{"2":{"37":3}}],["梯度",{"2":{"37":2}}],["点乘",{"2":{"147":2}}],["点乘使用",{"2":{"145":2}}],["点3",{"2":{"90":2}}],["点法式构造",{"2":{"89":2}}],["点2",{"2":{"56":2,"90":2}}],["点1",{"2":{"56":2,"90":2}}],["点",{"2":{"37":2,"48":2,"53":2}}],["∂f∂z",{"2":{"37":1}}],["∂f∂y",{"2":{"37":1}}],["∂f∂x",{"2":{"37":1}}],["∇f",{"2":{"37":1}}],["计算平行于该平面且过指定点的平面",{"2":{"86":2}}],["计算平面与直线的交点",{"2":{"85":2}}],["计算平面与平面或点之间的距离",{"2":{"83":2}}],["计算平面与平面之间的夹角",{"2":{"82":2}}],["计算两个向量之间的夹角",{"2":{"125":2}}],["计算两平面的交线",{"2":{"84":2}}],["计算两条直线点集合的交集",{"2":{"57":2}}],["计算两条直线的交点",{"2":{"46":2}}],["计算直线经过指定点p的垂线",{"2":{"47":2}}],["计算直线和直线或点之间的距离",{"2":{"45":2}}],["计算直线和直线之间的夹角",{"2":{"44":2}}],["计算三元函数在某点的梯度向量",{"2":{"37":2}}],["计算曲线上的点",{"2":{"34":2}}],["v3",{"2":{"126":2}}],["vector",{"0":{"121":1},"1":{"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"150":1,"151":1,"152":1,"153":1},"2":{"109":1}}],["vector3",{"0":{"37":1,"42":1,"88":1,"89":1,"105":1,"109":1,"122":1,"124":1,"125":1,"126":2,"127":1,"128":1,"132":1,"134":2,"139":2,"143":2,"144":1,"145":2,"146":1,"147":1,"148":1,"150":2,"151":1,"152":1,"153":1},"1":{"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1},"2":{"37":2,"39":1,"42":1,"59":1,"88":2,"89":1,"91":1,"105":1,"109":4,"114":2,"124":1,"125":1,"126":3,"127":1,"128":2,"132":1,"134":2,"136":3,"139":2,"141":3,"142":1,"143":2,"144":1,"145":6,"146":1,"147":1,"148":2,"149":1,"150":1,"151":1,"152":1,"153":1}}],["v2",{"2":{"58":2,"90":2,"91":4,"126":2}}],["v1",{"2":{"58":4,"90":2,"91":2,"126":2}}],["v",{"2":{"35":2,"107":2,"109":4,"136":8,"138":2,"141":8,"142":2}}],["var",{"0":{"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"34":1,"35":1,"38":1,"61":1,"62":1,"63":1,"64":1,"65":2,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"150":1,"151":1,"152":1,"153":1},"2":{"34":1,"35":13,"38":3}}],["valueerror",{"2":{"35":3,"46":6,"84":1,"85":3}}],["value",{"0":{"5":1,"113":1},"2":{"5":5,"113":3,"114":6,"115":1}}],["求高阶偏导函数",{"2":{"35":1}}],["求n元函数一阶偏导函数",{"2":{"35":2}}],["l2",{"0":{"91":1},"2":{"91":5}}],["l1",{"0":{"91":1},"2":{"91":7}}],["lambda",{"2":{"49":3}}],["left",{"2":{"37":1}}],["length",{"0":{"131":1},"2":{"45":5,"46":1,"82":2,"100":2,"125":2,"127":1,"129":5,"131":1,"132":1,"133":1}}],["len",{"2":{"34":1}}],["liteyukistudio",{"2":{"155":1,"162":1}}],["litedoc",{"2":{"35":2,"38":1}}],["linalg",{"2":{"84":3}}],["lines",{"0":{"91":1},"2":{"46":2,"91":1}}],["line",{"0":{"40":1,"92":2},"1":{"41":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1},"2":{"85":1,"92":5}}],["line3",{"0":{"41":1,"43":1,"44":1,"45":1,"46":1,"47":1,"50":1,"51":1,"52":1,"54":1,"56":1,"57":2,"82":1,"84":2,"85":1,"91":2,"92":1,"93":1,"94":1,"97":1},"1":{"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1},"2":{"39":1,"43":1,"44":1,"45":2,"46":1,"47":2,"50":1,"51":1,"52":1,"54":1,"56":1,"57":2,"59":1,"82":2,"84":3,"85":1,"91":2,"92":1,"93":1,"94":1,"95":2,"97":1,"114":1}}],["list",{"2":{"35":8,"158":10,"161":10}}],["无效变量类型",{"2":{"35":2}}],["偏导函数",{"2":{"35":2}}],["偏移量",{"2":{"35":2,"37":2}}],["高阶偏导数值",{"2":{"35":1}}],["高阶偏导",{"2":{"35":2}}],["函数式编程",{"2":{"38":1}}],["函数",{"2":{"35":2,"38":2}}],["因此该函数的稳定性有待提升",{"2":{"35":2}}],["目前数学界对于一个函数的导函数并没有通解的说法",{"2":{"35":2}}],["目标点",{"2":{"34":2}}],["warning",{"2":{"35":2}}],["慎用",{"2":{"35":2}}],["这玩意不太稳定",{"2":{"35":2}}],["num",{"2":{"158":5,"161":5}}],["number=epsilon",{"2":{"35":1}}],["number",{"0":{"35":1,"62":1,"64":1}}],["ndarray",{"0":{"130":1},"2":{"130":1}}],["neg",{"0":{"118":1,"119":1},"2":{"118":4,"119":4,"149":1}}],["negative",{"0":{"10":1},"2":{"10":1}}],["ne",{"0":{"116":1},"2":{"116":1}}],["np",{"0":{"130":2},"2":{"84":9,"130":3,"158":9,"161":9}}],["no",{"2":{"84":1}}],["normal",{"0":{"88":1,"89":2},"2":{"82":5,"84":4,"85":1,"86":2,"87":2,"88":1,"89":7,"90":3,"91":1,"92":1,"95":3}}],["normalize",{"0":{"129":1},"2":{"55":1,"129":1}}],["none",{"0":{"57":1,"93":1,"94":1},"2":{"57":2,"93":1,"94":1,"95":2}}],["not",{"2":{"45":1,"46":4,"57":1,"116":1,"118":1,"119":1}}],["nabla",{"2":{"37":1}}],["参数t",{"2":{"48":2}}],["参数",{"2":{"34":2,"35":1,"38":2}}],["|",{"0":{"34":1,"35":1,"45":1,"57":2,"61":1,"62":1,"65":1,"68":1,"71":1,"74":1,"77":1,"82":1,"83":1,"93":1,"94":1,"145":2},"2":{"34":1,"35":1,"45":1,"57":2,"82":1,"83":1,"93":1,"94":1,"145":2}}],["曲线方程",{"2":{"33":2,"39":1,"59":1}}],["z轴单位向量",{"2":{"153":1}}],["z轴分量",{"2":{"123":2}}],["z2``",{"2":{"126":1}}],["z1``",{"2":{"126":1}}],["zero",{"0":{"150":1},"2":{"91":1,"128":1}}],["z系数",{"2":{"80":2}}],["zhihu",{"2":{"38":1}}],["zhuanlan",{"2":{"38":1}}],["z0",{"2":{"37":2}}],["zip",{"2":{"34":1}}],["z函数",{"2":{"33":2}}],["z",{"0":{"33":1,"103":1,"123":1,"153":1},"2":{"33":5,"34":4,"37":11,"49":4,"55":4,"83":1,"84":4,"85":4,"89":2,"100":2,"103":7,"104":2,"107":2,"108":2,"109":2,"114":2,"123":5,"124":2,"126":4,"129":1,"130":1,"131":1,"136":4,"137":2,"138":2,"141":4,"142":2,"145":3,"147":2,"148":1,"149":1,"158":2,"161":2}}],["y轴单位向量",{"2":{"152":1}}],["y轴分量",{"2":{"123":2}}],["y2",{"2":{"126":1}}],["y1",{"2":{"126":1}}],["y系数",{"2":{"80":2}}],["y0",{"2":{"37":2}}],["y函数",{"2":{"33":2}}],["y",{"0":{"33":1,"103":1,"117":1,"123":1,"152":1},"2":{"33":5,"34":4,"37":11,"49":4,"55":4,"83":1,"84":4,"85":4,"89":2,"100":2,"103":7,"104":2,"107":2,"108":2,"109":2,"114":2,"117":4,"123":5,"124":2,"126":4,"129":1,"130":1,"131":1,"136":4,"137":2,"138":2,"141":4,"142":2,"145":3,"147":2,"148":1,"149":1,"158":2,"161":2}}],["x轴单位向量",{"2":{"151":1}}],["x轴分量",{"2":{"123":2}}],["x3c",{"2":{"104":3,"114":1,"117":1,"118":1,"119":1,"124":3,"127":1}}],["x26",{"2":{"95":1}}],["x系数",{"2":{"80":2}}],["x0",{"2":{"37":2}}],["x函数",{"2":{"33":2}}],["x",{"0":{"33":1,"103":1,"111":1,"117":1,"118":1,"119":1,"123":1,"151":1},"2":{"33":5,"34":4,"37":11,"49":4,"55":2,"83":1,"84":4,"85":4,"89":2,"100":2,"103":7,"104":2,"107":2,"108":2,"109":2,"111":4,"114":2,"117":4,"118":5,"119":8,"123":5,"124":2,"126":4,"129":1,"130":1,"131":1,"136":4,"137":2,"138":2,"141":4,"142":2,"145":3,"147":2,"148":1,"149":1,"158":2,"161":2}}],["约等于判定误差",{"2":{"30":1}}],["精度误差",{"2":{"29":1}}],["欧拉常数",{"2":{"28":1}}],["06",{"0":{"50":1},"2":{"50":1}}],["001",{"0":{"30":1}}],["0001",{"0":{"29":1}}],["0",{"0":{"28":1,"29":1,"30":1,"117":2,"150":3,"151":2,"152":2,"153":2},"2":{"34":3,"37":6,"45":2,"54":1,"55":8,"80":2,"81":3,"83":2,"84":9,"85":1,"95":1,"117":1,"118":2,"119":4,"158":2,"161":2}}],["黄金分割比",{"2":{"27":1}}],["5772156649015329",{"0":{"28":1}}],["5",{"0":{"27":1},"2":{"83":1}}],["π",{"2":{"25":1}}],["to",{"2":{"164":1}}],["time",{"2":{"155":1,"162":1}}],["tip",{"2":{"37":2,"38":2}}],["theta",{"2":{"158":3,"161":3}}],["the",{"2":{"85":2,"164":1}}],["three",{"0":{"90":1},"2":{"90":1}}],["threevarsfunc",{"0":{"74":1}}],["threearraysfunc",{"0":{"73":1,"74":1}}],["threesinglevarsfunc",{"0":{"37":1,"72":1,"74":1},"2":{"37":1}}],["typing",{"0":{"60":1},"1":{"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1}}],["typevar",{"0":{"63":1,"64":1}}],["typealias",{"2":{"61":1,"62":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1}}],["typeerror",{"2":{"44":2,"45":3,"82":3,"83":3,"95":1,"115":1,"136":1,"141":1,"142":1,"145":1}}],["type",{"0":{"115":1},"2":{"35":1,"45":1,"82":2,"83":2,"95":2,"114":2,"115":4,"136":2,"141":2,"142":2,"145":2}}],["twovarsfunc",{"0":{"71":1}}],["twoarraysfunc",{"0":{"70":1,"71":1}}],["twosinglevarsfunc",{"0":{"69":1,"71":1}}],["two",{"0":{"56":1,"91":1},"2":{"56":1,"91":1}}],["tuple",{"0":{"34":1,"35":1,"49":1},"2":{"34":2,"35":2,"49":1}}],["t",{"0":{"34":1,"48":1},"2":{"34":10,"48":4,"49":12,"85":4}}],["truediv",{"2":{"21":1,"22":1,"23":1,"148":1}}],["tan",{"0":{"13":1},"2":{"13":2,"14":1}}],["outlook",{"2":{"155":1,"162":1}}],["operand",{"2":{"95":1,"136":1,"141":1,"142":1,"145":1}}],["or",{"2":{"57":1,"85":1}}],["order",{"2":{"35":2}}],["only",{"0":{"118":1,"119":1},"2":{"118":4,"119":4}}],["on",{"0":{"53":1},"2":{"53":1}}],["onearrayfunc",{"0":{"67":1,"68":1}}],["onesinglevarfunc",{"0":{"49":3,"66":1,"68":1},"2":{"49":3}}],["onevarfunc",{"0":{"33":3,"38":1,"68":1},"2":{"33":3,"38":1}}],["overload",{"2":{"20":1,"21":2,"22":1,"92":1,"93":2,"94":1,"104":1,"105":2,"106":1,"133":1,"134":2,"135":1,"138":1,"139":2,"140":1,"142":1,"143":2,"144":1}}],["other",{"0":{"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"43":1,"44":1,"45":1,"46":1,"50":1,"51":1,"52":1,"54":1,"57":1,"58":1,"81":1,"82":1,"83":1,"84":1,"85":1,"87":1,"93":1,"94":1,"95":1,"96":1,"97":1,"104":1,"105":1,"106":1,"107":1,"108":1,"109":1,"114":1,"115":1,"116":1,"124":1,"125":1,"126":1,"127":1,"128":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1},"2":{"17":2,"18":2,"19":2,"20":2,"21":1,"22":1,"23":4,"43":5,"44":4,"45":13,"46":9,"50":4,"51":4,"52":5,"54":5,"57":7,"58":5,"81":15,"82":9,"83":9,"84":17,"85":11,"87":4,"93":1,"94":1,"95":10,"96":2,"97":2,"104":6,"105":1,"106":1,"107":6,"108":6,"109":6,"114":9,"115":2,"116":2,"124":6,"125":5,"126":9,"127":4,"128":4,"134":1,"135":1,"136":12,"137":6,"138":6,"139":1,"140":1,"141":12,"142":8,"143":1,"144":1,"145":12,"146":2,"147":6,"148":4}}],["email",{"2":{"155":1,"162":1}}],["error",{"0":{"115":1},"2":{"114":2,"115":1}}],["examples",{"2":{"38":1}}],["exp",{"2":{"26":1}}],["elif",{"2":{"35":1,"45":3,"57":1,"81":2,"82":1,"83":1,"84":2,"95":1,"114":1,"118":1,"119":1,"136":1,"141":1,"145":1}}],["else",{"2":{"5":1,"34":1,"35":1,"45":2,"57":1,"81":1,"82":1,"83":1,"95":1,"114":2,"118":2,"119":2,"136":1,"141":1,"142":1,"145":1}}],["epsilon",{"0":{"29":1,"35":2,"37":2,"43":1,"50":1,"104":1,"117":1,"124":1,"127":1},"2":{"35":7,"37":12,"43":5,"50":4,"104":6,"117":4,"124":6,"127":4}}],["e",{"0":{"26":2}}],["equations",{"0":{"49":1},"2":{"49":1,"85":1}}],["equation",{"0":{"31":1},"1":{"32":1,"33":1,"34":1,"35":1}}],["eq",{"0":{"18":1,"58":1,"96":1,"108":1,"114":1,"137":1},"2":{"18":1,"58":1,"96":1,"108":1,"114":1,"116":1,"137":1}}],["+1",{"2":{"119":2}}],["+=",{"2":{"35":1}}],["+",{"0":{"17":1,"27":1,"105":1,"106":1,"107":1,"134":1,"135":1,"136":1,"138":1},"2":{"17":1,"37":3,"38":4,"46":1,"48":1,"49":3,"80":6,"83":5,"85":5,"100":3,"107":7,"118":3,"119":3,"131":2,"136":11,"138":5,"147":2,"158":1,"161":1}}],["12",{"2":{"155":2,"162":2}}],["1e",{"0":{"50":1}}],["1",{"0":{"27":1,"151":1,"152":1,"153":1},"2":{"14":1,"15":1,"16":1,"26":1,"34":1,"38":2,"91":1,"119":6,"158":4,"161":4}}],["180",{"2":{"5":1,"8":1}}],["正割值",{"2":{"15":4}}],["正切值",{"2":{"13":4}}],["正弦值",{"2":{"11":4}}],["余割值",{"2":{"16":4}}],["余切值",{"2":{"14":4}}],["余弦值",{"2":{"12":4}}],["余角",{"2":{"6":4}}],["最大值",{"2":{"111":2}}],["最大负角度",{"2":{"10":2}}],["最大负角",{"2":{"10":2}}],["最小值",{"2":{"111":2}}],["最小正角度",{"2":{"9":2}}],["最小正角",{"2":{"9":2}}],["弧度",{"2":{"8":2}}],["角度",{"2":{"8":2}}],["角度或弧度值",{"2":{"5":2}}],["补角",{"2":{"7":4}}],["sphere",{"0":{"158":1,"161":1},"2":{"158":1,"161":1}}],["staticmethod",{"2":{"157":1,"158":1,"160":1,"161":1}}],["str",{"0":{"118":1,"119":1},"2":{"118":1,"119":1}}],["software",{"2":{"155":1,"162":1}}],["solve",{"2":{"84":3}}],["snowykami",{"2":{"155":2,"162":2}}],["s",{"2":{"95":1,"136":1,"141":1,"142":1,"145":1}}],["sign",{"0":{"118":1,"119":1},"2":{"118":1,"119":1}}],["simplify",{"0":{"55":1},"2":{"55":1}}],["singlevar",{"0":{"63":2,"65":1,"66":2,"69":3,"72":4,"75":1}}],["sin",{"0":{"11":1},"2":{"11":2,"16":1,"158":3,"161":3}}],["sqrt",{"0":{"27":1},"2":{"131":1,"158":1,"161":1}}],["sub",{"2":{"19":1,"109":1,"139":1,"140":1,"141":1}}],["supplementary",{"0":{"7":1},"2":{"7":1}}],["segment",{"0":{"98":1},"1":{"99":1,"100":1}}],["segment3",{"0":{"99":1},"1":{"100":1},"2":{"39":1,"59":1}}],["sec",{"0":{"15":1},"2":{"15":1}}],["self",{"0":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"103":1,"104":1,"105":1,"106":1,"107":1,"108":1,"109":1,"113":1,"114":1,"115":1,"116":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1},"2":{"5":3,"6":2,"7":2,"8":2,"9":2,"10":2,"11":2,"12":2,"13":2,"14":2,"15":2,"16":2,"17":2,"18":2,"19":2,"20":2,"21":1,"22":1,"23":3,"33":4,"34":7,"42":3,"43":4,"44":2,"45":13,"46":8,"47":3,"48":3,"49":7,"50":2,"51":2,"52":4,"53":3,"54":3,"55":8,"57":6,"58":4,"80":5,"81":16,"82":4,"83":8,"84":15,"85":9,"86":2,"87":2,"88":4,"93":1,"94":1,"95":5,"96":2,"97":2,"100":15,"103":4,"104":4,"105":1,"106":1,"107":4,"108":4,"109":4,"113":2,"114":9,"115":2,"116":2,"123":4,"124":4,"125":3,"126":7,"127":2,"128":2,"129":5,"130":4,"131":4,"132":3,"133":2,"134":1,"135":1,"136":7,"137":4,"138":4,"139":1,"140":1,"141":7,"142":4,"143":1,"144":1,"145":7,"146":2,"147":4,"148":4,"149":4}}],["2024",{"2":{"155":2,"162":2}}],["2020",{"2":{"155":1,"162":1}}],["2",{"0":{"27":1},"2":{"6":1,"9":1,"10":1,"35":1,"37":3,"38":2,"46":1,"83":3,"100":3,"131":3,"158":2,"161":2}}],["rmul",{"2":{"146":1}}],["rsub",{"2":{"142":1}}],["rights",{"2":{"155":1,"162":1}}],["right",{"2":{"37":1}}],["reference",{"0":{"164":1}}],["reserved",{"2":{"155":1,"162":1}}],["result",{"2":{"35":4}}],["realnumber",{"0":{"48":1,"61":1,"62":1,"113":1,"144":1,"146":1,"147":1,"148":1},"2":{"48":1,"113":1,"144":1,"146":1,"147":1,"148":1}}],["return",{"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"23":2,"34":2,"35":4,"37":1,"38":4,"43":1,"44":1,"45":5,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":3,"58":1,"81":4,"82":2,"83":2,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"95":4,"96":1,"97":1,"104":1,"107":1,"108":1,"109":1,"111":1,"114":2,"116":1,"117":1,"118":3,"119":3,"124":1,"125":1,"126":1,"127":1,"128":1,"130":1,"131":1,"132":1,"133":1,"136":2,"137":1,"138":3,"141":2,"142":1,"145":2,"146":1,"147":1,"148":1,"149":1,"158":1,"161":1}}],["returns",{"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"34":1,"35":2,"37":1,"38":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"95":1,"104":1,"107":1,"108":1,"109":1,"111":1,"117":1,"118":1,"119":1,"124":1,"125":1,"126":1,"127":1,"128":1,"130":1,"131":1,"132":1,"136":1,"137":1,"141":1,"142":1,"145":1,"147":1,"158":1,"161":1}}],["range",{"2":{"158":2,"161":2}}],["rand",{"0":{"97":1},"2":{"97":1}}],["radius",{"0":{"158":1,"161":1},"2":{"158":7,"161":7}}],["radian=true",{"2":{"6":1,"7":1,"10":1,"17":1,"19":1,"20":1,"23":1,"82":1,"125":1}}],["radian",{"0":{"5":1},"2":{"5":6,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":2,"18":2,"19":2,"20":1,"23":3}}],["radd",{"2":{"138":1}}],["raise",{"0":{"115":1},"2":{"35":1,"45":1,"46":2,"82":1,"83":1,"84":1,"85":1,"95":1,"114":2,"115":2,"136":1,"141":1,"142":1,"145":1}}],["raises",{"2":{"35":1,"44":1,"45":1,"46":1,"82":1,"83":1,"84":1,"85":1}}],["ratio",{"0":{"27":1}}],[">",{"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"19":1,"20":1,"21":1,"22":1,"34":1,"35":5,"37":3,"38":6,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"96":1,"97":1,"104":1,"105":1,"106":1,"107":2,"109":3,"111":1,"117":1,"118":2,"119":5,"124":1,"125":1,"126":2,"127":1,"128":1,"130":1,"131":1,"132":1,"134":1,"135":1,"136":2,"138":2,"139":1,"140":1,"141":2,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1}}],["戻り値",{"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"34":1,"35":1,"37":1,"38":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"95":1,"104":1,"111":1,"117":1,"118":1,"119":1,"124":1,"125":1,"126":1,"127":1,"128":1,"131":1,"132":1,"137":1,"158":1,"161":1}}],["geometricmodels",{"0":{"157":1,"160":1},"1":{"158":1,"161":1}}],["get",{"0":{"35":1,"48":1,"49":1},"2":{"35":2,"48":1,"49":1,"85":1,"91":1}}],["gradient",{"0":{"37":1},"2":{"37":1}}],["gamma",{"0":{"28":1}}],["golden",{"0":{"27":1}}],["gt",{"0":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"19":1,"20":1,"21":1,"22":1,"34":1,"35":1,"37":1,"38":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"96":1,"97":1,"104":1,"105":1,"106":1,"109":1,"111":1,"117":1,"118":1,"119":1,"124":1,"125":1,"126":1,"127":1,"128":1,"130":1,"131":1,"132":1,"134":1,"135":1,"138":1,"139":1,"140":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1},"2":{"107":2,"109":2,"119":3,"126":1,"136":2,"138":1,"141":2,"142":1}}],["githubで表示",{"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"103":1,"104":1,"105":1,"106":1,"107":1,"108":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"158":1,"161":1}}],["cz",{"2":{"80":2}}],["clamp",{"0":{"111":1},"2":{"111":1,"158":1,"161":1}}],["classmethod",{"2":{"55":1,"56":1,"88":1,"89":2,"90":2,"91":2,"92":1}}],["class",{"0":{"3":1,"4":1,"32":1,"41":1,"79":1,"99":1,"102":1,"112":1,"122":1,"157":1,"160":1},"1":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"103":1,"104":1,"105":1,"106":1,"107":1,"108":1,"109":1,"113":1,"114":1,"115":1,"116":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"158":1,"161":1},"2":{"109":2}}],["cls",{"0":{"56":1,"89":1,"90":1,"91":1,"92":1},"2":{"56":2,"89":2,"90":2,"91":2,"92":2}}],["cross",{"0":{"126":1},"2":{"45":4,"46":3,"47":1,"54":1,"84":1,"90":1,"91":1,"126":3,"127":1,"128":1}}],["c",{"0":{"80":1},"2":{"38":4,"80":5,"81":7,"83":2,"84":6,"85":2,"88":1,"89":3,"155":1,"162":1}}],["curried",{"2":{"38":6}}],["currying",{"2":{"38":2}}],["curry",{"0":{"38":1},"2":{"38":3}}],["curveequation",{"0":{"32":1},"1":{"33":1,"34":1},"2":{"39":1,"59":1}}],["cal",{"0":{"37":1,"44":1,"45":1,"46":1,"47":1,"82":1,"83":1,"84":1,"85":1,"86":1,"125":1},"2":{"37":1,"44":2,"45":1,"46":1,"47":1,"57":1,"82":2,"83":1,"84":1,"85":1,"86":1,"95":2,"97":1,"125":1}}],["callable",{"0":{"66":1,"67":1,"69":1,"70":1,"72":1,"73":1,"75":1,"76":1}}],["call",{"0":{"34":1},"2":{"34":1}}],["csc",{"0":{"16":1},"2":{"16":1}}],["copyright",{"2":{"155":1,"162":1}}],["coplanar",{"0":{"54":1},"2":{"45":1,"46":2,"54":1,"57":1}}],["coincident",{"2":{"85":1}}],["collinear",{"0":{"52":1},"2":{"52":1,"57":1}}],["complex",{"0":{"62":1}}],["complementary",{"0":{"6":1},"2":{"6":1,"82":1}}],["com",{"2":{"38":1,"155":1,"162":1}}],["const",{"0":{"24":1},"1":{"25":1,"26":1,"27":1,"28":1,"29":1,"30":1}}],["cot",{"0":{"14":1},"2":{"14":1}}],["cos",{"0":{"12":1},"2":{"12":2,"15":1,"158":2,"161":2}}],["phi",{"2":{"158":5,"161":5}}],["pycharm",{"2":{"155":1,"162":1}}],["py",{"2":{"155":1,"162":1}}],["python",{"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"21":1,"22":1,"56":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"105":1,"106":1,"130":1,"131":1,"132":1,"134":1,"135":1,"139":1,"140":1,"143":1,"144":1,"158":1,"161":1}}],["pythondef",{"2":{"5":1,"17":1,"18":1,"19":1,"20":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":2,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"95":1,"96":1,"97":1,"100":1,"103":1,"104":1,"107":1,"108":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"133":1,"136":1,"137":1,"138":1,"141":1,"142":1,"145":1,"146":1,"147":1,"148":1,"149":1}}],["presets",{"0":{"155":1,"156":1,"159":1,"162":1},"1":{"157":1,"158":1,"160":1,"161":1}}],["property",{"2":{"5":1,"6":2,"7":2,"8":2,"9":2,"10":2,"11":2,"12":2,"13":2,"14":2,"15":2,"16":1,"87":1,"88":1,"129":1,"130":2,"131":2,"132":1}}],["p3",{"0":{"90":1},"2":{"90":4}}],["p2",{"0":{"56":1,"90":1,"100":1},"2":{"56":4,"58":2,"90":4,"100":9}}],["p1",{"0":{"56":1,"90":1,"100":1},"2":{"56":5,"58":2,"90":6,"100":9}}],["perpendicular",{"0":{"47":1},"2":{"47":1}}],["particle",{"0":{"120":1,"154":1}}],["partial",{"0":{"35":1},"2":{"35":6,"37":6}}],["param",{"2":{"100":4,"138":2}}],["parametric",{"0":{"49":1},"2":{"49":1,"85":1}}],["parallel",{"0":{"50":1,"51":1,"86":1,"87":1,"127":1,"128":1},"2":{"43":2,"45":1,"46":2,"50":2,"51":2,"52":2,"53":1,"57":1,"58":2,"84":2,"85":1,"86":1,"87":2,"95":1,"127":1,"128":1}}],["planes",{"2":{"84":1}}],["plane",{"0":{"78":1},"1":{"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1},"2":{"85":1}}],["plane3",{"0":{"79":1,"81":1,"82":1,"83":1,"84":1,"86":2,"87":1,"89":1,"90":1,"91":1,"92":1,"94":1},"1":{"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1},"2":{"39":1,"59":1,"81":1,"82":2,"83":2,"84":1,"86":3,"87":1,"89":1,"90":1,"91":1,"92":1,"94":1,"95":2,"114":1}}],["plus",{"2":{"35":3}}],["p",{"0":{"37":1},"2":{"37":21,"38":1,"107":10,"109":8,"136":4,"138":4,"141":4,"142":4}}],["points",{"0":{"56":1,"90":1},"2":{"56":1,"90":1}}],["point",{"0":{"42":1,"47":1,"48":1,"53":2,"86":1,"89":2,"92":2,"101":1},"1":{"102":1,"103":1,"104":1,"105":1,"106":1,"107":1,"108":1,"109":1},"2":{"42":5,"43":2,"45":5,"46":3,"47":6,"48":2,"49":3,"52":2,"53":6,"54":2,"55":3,"58":2,"85":3,"86":5,"89":7,"90":1,"91":6,"92":6}}],["point3",{"0":{"34":2,"37":1,"42":1,"45":1,"46":1,"47":1,"48":1,"53":1,"56":2,"57":1,"83":1,"85":2,"86":1,"89":1,"90":3,"92":1,"93":1,"97":1,"100":2,"102":1,"104":1,"105":1,"106":2,"109":1,"135":2,"138":2,"140":2,"142":1},"1":{"103":1,"104":1,"105":1,"106":1,"107":1,"108":1,"109":1},"2":{"34":4,"37":1,"39":1,"42":1,"45":2,"46":1,"47":1,"48":1,"53":1,"56":2,"57":1,"59":1,"83":2,"84":1,"85":3,"86":1,"89":1,"90":3,"92":1,"93":1,"95":1,"97":2,"100":3,"104":1,"105":1,"106":2,"107":1,"109":1,"114":1,"135":2,"136":2,"138":3,"140":2,"141":2,"142":3,"158":3,"161":3}}],["positive",{"0":{"9":1},"2":{"6":1,"7":1,"9":1}}],["pi",{"0":{"25":2},"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"158":2,"161":2}}],["author",{"2":{"155":1,"162":1}}],["all",{"2":{"104":1,"114":1,"124":1,"155":1,"162":1}}],["acos",{"2":{"82":1,"125":1}}],["axis",{"0":{"151":1,"152":1,"153":1}}],["ax",{"2":{"80":2}}],["arccos",{"2":{"158":1,"161":1}}],["array",{"0":{"130":1},"2":{"84":6,"130":2,"158":6,"161":6}}],["arrayvar",{"0":{"64":2,"65":1,"67":2,"70":3,"73":4,"76":1}}],["area",{"2":{"158":2,"161":2}}],["are",{"2":{"46":2,"84":1,"85":1}}],["args2",{"2":{"38":2}}],["args",{"0":{"38":1},"2":{"5":1,"33":1,"34":1,"35":14,"37":1,"38":5,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"89":1,"90":1,"91":1,"92":1,"95":1,"103":1,"104":1,"107":1,"108":1,"109":1,"111":1,"117":1,"118":1,"119":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"136":1,"137":1,"141":1,"142":1,"145":1,"147":1,"158":1,"161":1}}],["abs",{"0":{"133":1},"2":{"45":1,"83":1,"104":3,"114":1,"117":1,"119":1,"124":3,"133":1}}],["a",{"0":{"80":1},"2":{"38":4,"80":5,"81":7,"83":2,"84":12,"85":2,"88":1,"89":3}}],["aaa",{"2":{"36":1}}],["approx",{"0":{"30":1,"43":2,"50":1,"81":1,"104":2,"112":1,"117":2,"124":2,"127":2},"1":{"113":1,"114":1,"115":1,"116":1},"2":{"18":1,"43":3,"50":2,"81":10,"96":1,"104":1,"108":3,"114":4,"117":1,"124":1,"127":1,"128":1,"137":3}}],["add",{"2":{"17":1,"38":8,"105":1,"106":1,"107":1,"134":1,"135":1,"136":1}}],["and",{"0":{"57":1,"89":1,"92":1,"93":1,"94":1,"95":1},"2":{"43":1,"46":2,"52":1,"57":1,"58":1,"81":6,"84":4,"85":1,"86":1,"89":1,"90":1,"91":1,"92":2,"93":1,"94":1,"95":2,"108":2,"115":1,"136":1,"137":2,"141":1,"142":1,"145":1}}],["anyangle",{"0":{"4":1,"6":1,"7":1,"9":1,"10":1,"17":2,"19":2,"20":1,"21":1,"22":1,"44":1,"82":1,"125":1},"1":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1},"2":{"6":2,"7":2,"9":2,"10":2,"17":3,"19":3,"20":2,"21":1,"22":1,"23":2,"39":1,"44":1,"59":1,"82":2,"125":2}}],["angle",{"0":{"2":1,"3":1,"4":1,"44":1,"82":1,"125":1},"1":{"3":1,"4":1,"5":2,"6":2,"7":2,"8":2,"9":2,"10":2,"11":2,"12":2,"13":2,"14":2,"15":2,"16":2,"17":2,"18":2,"19":2,"20":2,"21":2,"22":2,"23":2},"2":{"44":2,"82":2,"125":1}}],["または",{"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"103":1,"104":1,"105":1,"106":1,"107":1,"108":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"158":1,"161":1}}],["ソースコード",{"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"103":1,"104":1,"105":1,"106":1,"107":1,"108":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"158":1,"161":1}}],["默认为否",{"2":{"5":2}}],["引数",{"2":{"5":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"89":1,"90":1,"91":1,"92":1,"95":1,"103":1,"104":1,"107":1,"108":1,"109":1,"111":1,"117":1,"118":1,"119":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"136":1,"137":1,"141":1,"142":1,"145":1,"147":1,"158":1,"161":1}}],["file",{"2":{"155":1,"162":1}}],["from",{"0":{"56":1,"89":1,"90":1,"91":1,"92":1},"2":{"56":1,"86":1,"89":1,"90":2,"91":2,"92":2,"109":1}}],["frac",{"2":{"37":3}}],["f",{"2":{"37":4,"82":1,"83":1,"95":1,"115":1,"119":3,"136":1,"141":1,"142":1,"145":1}}],["format",{"0":{"119":1},"2":{"119":1}}],["for",{"2":{"34":1,"35":1,"95":1,"136":1,"141":1,"142":1,"145":1,"158":2,"161":2}}],["function",{"0":{"36":1},"1":{"37":1,"38":1}}],["func",{"0":{"33":3,"35":2,"37":1,"38":1},"2":{"33":15,"34":6,"35":16,"37":9,"38":6}}],["false",{"0":{"5":1,"118":1,"119":1},"2":{"81":1}}],["float=0",{"2":{"117":1}}],["float=1e",{"2":{"50":1}}],["float=approx",{"2":{"43":1,"104":1,"117":1,"124":1,"127":1}}],["float=epsilon",{"2":{"37":1}}],["float",{"0":{"5":1,"8":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"20":1,"21":1,"22":1,"37":1,"43":1,"45":1,"50":1,"61":1,"80":4,"83":1,"103":3,"104":1,"111":4,"117":3,"118":1,"119":1,"123":3,"124":1,"127":1,"131":1,"145":1,"158":2,"161":2},"2":{"5":1,"8":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"20":1,"21":1,"22":1,"45":1,"80":4,"83":1,"103":3,"111":4,"114":2,"117":1,"118":1,"119":1,"123":3,"131":1,"145":2,"158":2,"161":2}}],["==",{"2":{"34":1,"45":1,"54":1,"55":3,"85":1,"91":1,"95":1}}],["=",{"0":{"5":1,"17":1,"19":1,"20":1,"21":1,"22":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"35":1,"37":1,"43":1,"50":1,"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"104":1,"105":1,"106":1,"109":1,"117":2,"118":1,"119":1,"124":1,"127":1,"134":1,"135":1,"138":1,"139":1,"140":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"150":1,"151":1,"152":1,"153":1},"2":{"5":2,"33":3,"35":5,"37":5,"38":2,"42":2,"55":3,"56":1,"80":6,"81":6,"84":17,"85":2,"89":2,"90":3,"91":3,"100":5,"103":3,"113":1,"123":3,"129":4,"158":7,"161":7}}],["improve",{"2":{"164":1}}],["import",{"2":{"109":1}}],["i",{"2":{"158":4,"161":4}}],["invalid",{"2":{"35":1}}],["intersect",{"2":{"46":2}}],["intersection",{"0":{"46":1,"84":1,"85":1},"2":{"46":1,"57":1,"84":2,"85":1,"95":2,"97":1}}],["int",{"0":{"35":2,"61":1,"145":1},"2":{"35":3,"38":8,"114":2,"145":2,"158":1,"161":1}}],["in",{"2":{"34":1,"35":1,"158":2,"161":2}}],["init",{"0":{"5":1,"33":1,"42":1,"80":1,"100":1,"103":1,"113":1,"123":1},"2":{"5":1,"33":1,"42":1,"80":1,"100":1,"103":1,"113":1,"123":1,"155":1,"162":1}}],["if",{"2":{"5":1,"23":1,"34":1,"35":1,"45":2,"46":2,"55":3,"57":1,"81":1,"82":1,"83":1,"84":2,"85":1,"91":1,"95":3,"114":3,"118":2,"119":2,"136":1,"141":1,"142":1,"145":1}}],["isinstance",{"2":{"23":1,"35":2,"45":2,"82":2,"83":2,"95":2,"114":4,"136":2,"141":2,"142":1,"145":2}}],["is",{"0":{"5":1,"50":1,"51":1,"52":1,"53":1,"54":1,"87":1,"127":1,"128":1},"2":{"5":4,"6":1,"7":1,"10":1,"17":1,"19":1,"20":1,"23":1,"43":2,"45":2,"46":2,"50":2,"51":2,"52":3,"53":2,"54":1,"57":3,"58":2,"82":1,"84":1,"87":2,"95":1,"125":1,"127":1,"128":1}}],["model",{"0":{"156":1,"159":1},"1":{"157":1,"158":1,"160":1,"161":1}}],["midpoint",{"2":{"100":1}}],["min",{"0":{"111":1},"2":{"111":5}}],["minus",{"2":{"35":3}}],["minimum",{"0":{"9":1},"2":{"6":1,"7":1,"9":1}}],["multiarraysfunc",{"0":{"76":1,"77":1}}],["multisinglevarsfunc",{"0":{"75":1,"77":1}}],["multivarsfunc",{"0":{"35":2,"38":1,"77":1},"2":{"35":2,"38":1}}],["mul",{"2":{"20":1,"143":1,"144":1,"145":1,"146":1}}],["matmul",{"2":{"147":1}}],["math导入使用",{"2":{"39":1,"59":1}}],["math",{"0":{"2":1,"24":1,"25":1,"26":1,"27":1,"31":1,"36":1,"39":1,"40":1,"59":1,"60":2,"78":1,"98":1,"101":1,"110":1,"121":1},"1":{"3":1,"4":1,"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"32":1,"33":1,"34":1,"35":1,"37":1,"38":1,"41":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"61":2,"62":2,"63":2,"64":2,"65":2,"66":2,"67":2,"68":2,"69":2,"70":2,"71":2,"72":2,"73":2,"74":2,"75":2,"76":2,"77":2,"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"99":1,"100":1,"102":1,"103":1,"104":1,"105":1,"106":1,"107":1,"108":1,"109":1,"111":1,"112":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"150":1,"151":1,"152":1,"153":1},"2":{"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"82":1,"125":1,"131":1}}],["max",{"0":{"111":1},"2":{"111":5}}],["maximum",{"0":{"10":1},"2":{"10":1}}],["mp",{"0":{"2":1,"24":1,"31":1,"36":1,"39":1,"40":1,"59":1,"60":2,"78":1,"98":1,"101":1,"110":1,"121":1},"1":{"3":1,"4":1,"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"32":1,"33":1,"34":1,"35":1,"37":1,"38":1,"41":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"61":2,"62":2,"63":2,"64":2,"65":2,"66":2,"67":2,"68":2,"69":2,"70":2,"71":2,"72":2,"73":2,"74":2,"75":2,"76":2,"77":2,"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"99":1,"100":1,"102":1,"103":1,"104":1,"105":1,"106":1,"107":1,"108":1,"109":1,"111":1,"112":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"150":1,"151":1,"152":1,"153":1},"2":{"39":1,"59":1}}],["mbcp",{"0":{"0":1,"1":1,"2":1,"24":1,"31":1,"36":1,"39":1,"40":1,"59":1,"60":1,"78":1,"98":1,"101":1,"110":1,"120":1,"121":1,"154":1,"155":1,"156":1,"159":1,"162":1},"1":{"3":1,"4":1,"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"32":1,"33":1,"34":1,"35":1,"37":1,"38":1,"41":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"99":1,"100":1,"102":1,"103":1,"104":1,"105":1,"106":1,"107":1,"108":1,"109":1,"111":1,"112":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"150":1,"151":1,"152":1,"153":1,"157":1,"158":1,"160":1,"161":1}}],["説明",{"2":{"0":1,"1":1,"2":1,"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"24":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"31":1,"33":1,"34":1,"35":1,"36":1,"37":1,"38":1,"39":1,"40":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"59":1,"60":1,"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"78":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"95":1,"98":1,"100":1,"101":1,"103":1,"104":1,"107":1,"108":1,"109":1,"110":1,"111":1,"117":1,"118":1,"119":1,"120":1,"121":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"131":1,"132":1,"136":1,"137":1,"138":1,"141":1,"142":1,"145":1,"147":1,"150":1,"151":1,"152":1,"153":1,"154":1,"155":1,"156":1,"158":1,"159":1,"161":1,"162":1}}]],"serializationVersion":2}';export{t as default};
diff --git a/assets/chunks/@localSearchIndexroot.98bqRrsH.js b/assets/chunks/@localSearchIndexroot.98bqRrsH.js
new file mode 100644
index 0000000..aa2e430
--- /dev/null
+++ b/assets/chunks/@localSearchIndexroot.98bqRrsH.js
@@ -0,0 +1 @@
+const t='{"documentCount":170,"nextId":170,"documentIds":{"0":"/api/api.html#mbcp","1":"/api/#mbcp","2":"/api/mp_math/const.html#mbcp-mp-math-const","3":"/api/mp_math/const.html#var-pi-math-pi","4":"/api/mp_math/const.html#var-e-math-e","5":"/api/mp_math/const.html#var-golden-ratio-1-math-sqrt-5-2","6":"/api/mp_math/const.html#var-gamma-0-5772156649015329","7":"/api/mp_math/const.html#var-epsilon-0-0001","8":"/api/mp_math/const.html#var-approx-0-001","9":"/api/mp_math/angle.html#mbcp-mp-math-angle","10":"/api/mp_math/angle.html#class-angle","11":"/api/mp_math/angle.html#class-anyangle-angle","12":"/api/mp_math/angle.html#def-init-self-value-float-is-radian-bool-false","13":"/api/mp_math/angle.html#def-complementary-self-anyangle","14":"/api/mp_math/angle.html#def-supplementary-self-anyangle","15":"/api/mp_math/angle.html#def-degree-self-float","16":"/api/mp_math/angle.html#def-minimum-positive-self-anyangle","17":"/api/mp_math/angle.html#def-maximum-negative-self-anyangle","18":"/api/mp_math/angle.html#def-sin-self-float","19":"/api/mp_math/angle.html#def-cos-self-float","20":"/api/mp_math/angle.html#def-tan-self-float","21":"/api/mp_math/angle.html#def-cot-self-float","22":"/api/mp_math/angle.html#def-sec-self-float","23":"/api/mp_math/angle.html#def-csc-self-float","24":"/api/mp_math/angle.html#def-self-other-anyangle-anyangle","25":"/api/mp_math/angle.html#def-eq-self-other","26":"/api/mp_math/angle.html#def-self-other-anyangle-anyangle-1","27":"/api/mp_math/angle.html#def-self-other-float-anyangle","28":"/api/mp_math/angle.html#def-self-other-float-anyangle-1","29":"/api/mp_math/angle.html#def-self-other-anyangle-float","30":"/api/mp_math/angle.html#def-self-other","31":"/api/mp_math/equation.html#mbcp-mp-math-equation","32":"/api/mp_math/equation.html#class-curveequation","33":"/api/mp_math/equation.html#def-init-self-x-func-onevarfunc-y-func-onevarfunc-z-func-onevarfunc","34":"/api/mp_math/equation.html#def-call-self-t-var-point3-tuple-point3","35":"/api/mp_math/equation.html#def-get-partial-derivative-func-func-multivarsfunc-var-int-tuple-int-epsilon-number-epsilon-multivarsfunc","36":"/api/mp_math/function.html#mbcp-mp-math-function","37":"/api/mp_math/function.html#def-cal-gradient-3vf-func-threesinglevarsfunc-p-point3-epsilon-float-epsilon-vector3","38":"/api/mp_math/function.html#def-curry-func-multivarsfunc-args-var-onevarfunc","39":"/api/mp_math/#mbcp-mp-math","40":"/api/mp_math/line.html#mbcp-mp-math-line","41":"/api/mp_math/line.html#class-line3","42":"/api/mp_math/line.html#def-init-self-point-point3-direction-vector3","43":"/api/mp_math/line.html#def-approx-self-other-line3-epsilon-float-approx-bool","44":"/api/mp_math/line.html#def-cal-angle-self-other-line3-anyangle","45":"/api/mp_math/line.html#def-cal-distance-self-other-line3-point3-float","46":"/api/mp_math/line.html#def-cal-intersection-self-other-line3-point3","47":"/api/mp_math/line.html#def-cal-perpendicular-self-point-point3-line3","48":"/api/mp_math/line.html#def-get-point-self-t-realnumber-point3","49":"/api/mp_math/line.html#def-get-parametric-equations-self-tuple-onesinglevarfunc-onesinglevarfunc-onesinglevarfunc","50":"/api/mp_math/line.html#def-is-approx-parallel-self-other-line3-epsilon-float-1e-06-bool","51":"/api/mp_math/line.html#def-is-parallel-self-other-line3-bool","52":"/api/mp_math/line.html#def-is-collinear-self-other-line3-bool","53":"/api/mp_math/line.html#def-is-point-on-self-point-point3-bool","54":"/api/mp_math/line.html#def-is-coplanar-self-other-line3-bool","55":"/api/mp_math/line.html#def-simplify-self","56":"/api/mp_math/line.html#def-from-two-points-cls-p1-point3-p2-point3-line3","57":"/api/mp_math/line.html#def-and-self-other-line3-line3-point3-none","58":"/api/mp_math/line.html#def-eq-self-other-bool","59":"/api/mp_math/mp_math.html#mbcp-mp-math","60":"/api/mp_math/mp_math_typing.html#mbcp-mp-math-mp-math-typing","61":"/api/mp_math/mp_math_typing.html#var-realnumber-int-float","62":"/api/mp_math/mp_math_typing.html#var-number-realnumber-complex","63":"/api/mp_math/mp_math_typing.html#var-singlevar-typevar-singlevar-bound-number","64":"/api/mp_math/mp_math_typing.html#var-arrayvar-typevar-arrayvar-bound-iterable-number","65":"/api/mp_math/mp_math_typing.html#var-var-singlevar-arrayvar","66":"/api/mp_math/mp_math_typing.html#var-onesinglevarfunc-callable-singlevar-singlevar","67":"/api/mp_math/mp_math_typing.html#var-onearrayfunc-callable-arrayvar-arrayvar","68":"/api/mp_math/mp_math_typing.html#var-onevarfunc-onesinglevarfunc-onearrayfunc","69":"/api/mp_math/mp_math_typing.html#var-twosinglevarsfunc-callable-singlevar-singlevar-singlevar","70":"/api/mp_math/mp_math_typing.html#var-twoarraysfunc-callable-arrayvar-arrayvar-arrayvar","71":"/api/mp_math/mp_math_typing.html#var-twovarsfunc-twosinglevarsfunc-twoarraysfunc","72":"/api/mp_math/mp_math_typing.html#var-threesinglevarsfunc-callable-singlevar-singlevar-singlevar-singlevar","73":"/api/mp_math/mp_math_typing.html#var-threearraysfunc-callable-arrayvar-arrayvar-arrayvar-arrayvar","74":"/api/mp_math/mp_math_typing.html#var-threevarsfunc-threesinglevarsfunc-threearraysfunc","75":"/api/mp_math/mp_math_typing.html#var-multisinglevarsfunc-callable-singlevar","76":"/api/mp_math/mp_math_typing.html#var-multiarraysfunc-callable-arrayvar","77":"/api/mp_math/mp_math_typing.html#var-multivarsfunc-multisinglevarsfunc-multiarraysfunc","78":"/api/mp_math/plane.html#mbcp-mp-math-plane","79":"/api/mp_math/plane.html#class-plane3","80":"/api/mp_math/plane.html#def-init-self-a-float-b-float-c-float-d-float","81":"/api/mp_math/plane.html#def-approx-self-other-plane3-bool","82":"/api/mp_math/plane.html#def-cal-angle-self-other-line3-plane3-anyangle","83":"/api/mp_math/plane.html#def-cal-distance-self-other-plane3-point3-float","84":"/api/mp_math/plane.html#def-cal-intersection-line3-self-other-plane3-line3","85":"/api/mp_math/plane.html#def-cal-intersection-point3-self-other-line3-point3","86":"/api/mp_math/plane.html#def-cal-parallel-plane3-self-point-point3-plane3","87":"/api/mp_math/plane.html#def-is-parallel-self-other-plane3-bool","88":"/api/mp_math/plane.html#def-normal-self-vector3","89":"/api/mp_math/plane.html#def-from-point-and-normal-cls-point-point3-normal-vector3-plane3","90":"/api/mp_math/plane.html#def-from-three-points-cls-p1-point3-p2-point3-p3-point3-plane3","91":"/api/mp_math/plane.html#def-from-two-lines-cls-l1-line3-l2-line3-plane3","92":"/api/mp_math/plane.html#def-from-point-and-line-cls-point-point3-line-line3-plane3","93":"/api/mp_math/plane.html#def-and-self-other-line3-point3-none","94":"/api/mp_math/plane.html#def-and-self-other-plane3-line3-none","95":"/api/mp_math/plane.html#def-and-self-other","96":"/api/mp_math/plane.html#def-eq-self-other-bool","97":"/api/mp_math/plane.html#def-rand-self-other-line3-point3","98":"/api/mp_math/point.html#mbcp-mp-math-point","99":"/api/mp_math/point.html#class-point3","100":"/api/mp_math/point.html#def-init-self-x-float-y-float-z-float","101":"/api/mp_math/point.html#def-approx-self-other-point3-epsilon-float-approx-bool","102":"/api/mp_math/point.html#def-self-other-vector3-point3","103":"/api/mp_math/point.html#def-self-other-point3-point3","104":"/api/mp_math/point.html#def-self-other","105":"/api/mp_math/point.html#def-eq-self-other","106":"/api/mp_math/point.html#def-self-other-point3-vector3","107":"/api/mp_math/segment.html#mbcp-mp-math-segment","108":"/api/mp_math/segment.html#class-segment3","109":"/api/mp_math/segment.html#def-init-self-p1-point3-p2-point3","110":"/api/mp_math/utils.html#mbcp-mp-math-utils","111":"/api/mp_math/utils.html#def-clamp-x-float-min-float-max-float-float","112":"/api/mp_math/utils.html#class-approx","113":"/api/mp_math/utils.html#def-init-self-value-realnumber","114":"/api/mp_math/utils.html#def-eq-self-other","115":"/api/mp_math/utils.html#def-raise-type-error-self-other","116":"/api/mp_math/utils.html#def-ne-self-other","117":"/api/mp_math/utils.html#def-approx-x-float-y-float-0-0-epsilon-float-approx-bool","118":"/api/mp_math/utils.html#def-sign-x-float-only-neg-bool-false-str","119":"/api/mp_math/utils.html#def-sign-format-x-float-only-neg-bool-false-str","120":"/api/mp_math/vector.html#mbcp-mp-math-vector","121":"/api/mp_math/vector.html#class-vector3","122":"/api/mp_math/vector.html#def-init-self-x-float-y-float-z-float","123":"/api/mp_math/vector.html#def-approx-self-other-vector3-epsilon-float-approx-bool","124":"/api/mp_math/vector.html#def-cal-angle-self-other-vector3-anyangle","125":"/api/mp_math/vector.html#def-cross-self-other-vector3-vector3","126":"/api/mp_math/vector.html#def-is-approx-parallel-self-other-vector3-epsilon-float-approx-bool","127":"/api/mp_math/vector.html#def-is-parallel-self-other-vector3-bool","128":"/api/mp_math/vector.html#def-normalize-self","129":"/api/mp_math/vector.html#def-np-array-self-np-ndarray","130":"/api/mp_math/vector.html#def-length-self-float","131":"/api/mp_math/vector.html#def-unit-self-vector3","132":"/api/mp_math/vector.html#def-abs-self","133":"/api/mp_math/vector.html#def-self-other-vector3-vector3","134":"/api/mp_math/vector.html#def-self-other-point3-point3","135":"/api/mp_math/vector.html#def-self-other","136":"/api/mp_math/vector.html#def-eq-self-other","137":"/api/mp_math/vector.html#def-self-other-point3-point3-1","138":"/api/mp_math/vector.html#def-self-other-vector3-vector3-1","139":"/api/mp_math/vector.html#def-self-other-point3-point3-2","140":"/api/mp_math/vector.html#def-self-other-1","141":"/api/mp_math/vector.html#def-self-other-point3","142":"/api/mp_math/vector.html#def-self-other-vector3-vector3-2","143":"/api/mp_math/vector.html#def-self-other-realnumber-vector3","144":"/api/mp_math/vector.html#def-self-other-int-float-vector3-vector3","145":"/api/mp_math/vector.html#def-self-other-realnumber-vector3-1","146":"/api/mp_math/vector.html#def-self-other-vector3-realnumber","147":"/api/mp_math/vector.html#def-self-other-realnumber-vector3-2","148":"/api/mp_math/vector.html#def-self","149":"/api/mp_math/vector.html#var-zero-vector3-vector3-0-0-0","150":"/api/mp_math/vector.html#var-x-axis-vector3-1-0-0","151":"/api/mp_math/vector.html#var-y-axis-vector3-0-1-0","152":"/api/mp_math/vector.html#var-z-axis-vector3-0-0-1","153":"/api/particle/#mbcp-particle","154":"/api/particle/particle.html#mbcp-particle","155":"/api/presets/#mbcp-presets","156":"/api/presets/model/#mbcp-presets-model","157":"/api/presets/model/#class-geometricmodels","158":"/api/presets/model/#def-sphere-radius-float-density-float","159":"/api/presets/model/model.html#mbcp-presets-model","160":"/api/presets/model/model.html#class-geometricmodels","161":"/api/presets/model/model.html#def-sphere-radius-float-density-float","162":"/api/presets/presets.html#mbcp-presets","163":"/demo/#demo","164":"/guide/#开始不了一点","165":"/guide/#aaa","166":"/guide/#bbb","167":"/guide/#c","168":"/guide/#ddd","169":"/refer/#reference"},"fieldIds":{"title":0,"titles":1,"text":2},"fieldLength":{"0":[1,1,3],"1":[1,1,3],"2":[4,1,3],"3":[5,4,4],"4":[5,4,5],"5":[10,4,3],"6":[5,4,3],"7":[5,4,3],"8":[5,4,3],"9":[4,1,3],"10":[2,4,1],"11":[4,4,1],"12":[11,8,25],"13":[5,8,24],"14":[5,8,23],"15":[5,8,20],"16":[6,8,21],"17":[6,8,23],"18":[5,8,18],"19":[5,8,18],"20":[5,8,18],"21":[5,8,20],"22":[5,8,20],"23":[5,8,20],"24":[7,8,15],"25":[5,8,11],"26":[6,8,14],"27":[7,8,16],"28":[7,8,13],"29":[7,8,13],"30":[3,8,15],"31":[4,1,3],"32":[2,4,1],"33":[9,6,20],"34":[10,6,34],"35":[15,4,68],"36":[4,1,3],"37":[14,4,59],"38":[8,4,55],"39":[3,1,21],"40":[4,1,3],"41":[2,4,1],"42":[8,6,19],"43":[11,6,28],"44":[8,6,26],"45":[10,6,45],"46":[8,6,43],"47":[8,6,23],"48":[8,6,26],"49":[9,6,25],"50":[14,6,27],"51":[8,6,22],"52":[8,6,25],"53":[8,6,23],"54":[8,6,28],"55":[4,6,27],"56":[10,6,29],"57":[9,6,36],"58":[6,6,26],"59":[3,1,21],"60":[4,1,3],"61":[6,4,5],"62":[6,4,5],"63":[6,4,3],"64":[7,4,3],"65":[6,4,5],"66":[6,4,5],"67":[6,4,5],"68":[6,4,5],"69":[6,4,5],"70":[6,4,5],"71":[6,4,5],"72":[6,4,5],"73":[6,4,5],"74":[6,4,5],"75":[6,4,5],"76":[6,4,5],"77":[6,4,5],"78":[4,1,3],"79":[2,4,1],"80":[9,6,26],"81":[7,6,32],"82":[10,6,43],"83":[10,6,47],"84":[9,6,53],"85":[9,6,55],"86":[9,6,25],"87":[8,6,23],"88":[5,6,21],"89":[10,6,36],"90":[11,6,36],"91":[10,6,41],"92":[10,6,31],"93":[9,6,15],"94":[9,6,15],"95":[5,6,45],"96":[6,6,12],"97":[7,6,15],"98":[4,1,3],"99":[2,4,1],"100":[8,6,17],"101":[11,6,28],"102":[8,6,13],"103":[7,6,12],"104":[4,6,22],"105":[5,6,19],"106":[7,6,29],"107":[4,1,3],"108":[2,4,1],"109":[7,6,25],"110":[4,1,3],"111":[7,4,22],"112":[2,4,1],"113":[6,6,10],"114":[5,6,31],"115":[7,6,15],"116":[5,6,11],"117":[11,4,30],"118":[11,4,31],"119":[12,4,37],"120":[4,1,4],"121":[2,4,1],"122":[8,6,19],"123":[11,6,27],"124":[8,6,26],"125":[6,6,39],"126":[13,6,28],"127":[8,6,25],"128":[4,6,17],"129":[6,6,18],"130":[5,6,24],"131":[5,6,18],"132":[4,6,10],"133":[7,6,12],"134":[7,6,12],"135":[4,6,36],"136":[5,6,21],"137":[7,6,22],"138":[6,6,12],"139":[6,6,12],"140":[3,6,35],"141":[4,6,35],"142":[6,6,12],"143":[7,6,13],"144":[9,6,38],"145":[7,6,13],"146":[7,6,21],"147":[7,6,15],"148":[2,6,12],"149":[7,4,5],"150":[8,4,5],"151":[8,4,5],"152":[8,4,5],"153":[2,1,3],"154":[2,1,3],"155":[2,1,24],"156":[3,1,3],"157":[2,3,2],"158":[6,5,48],"159":[3,1,3],"160":[2,3,2],"161":[6,5,48],"162":[2,1,24],"163":[1,1,1],"164":[1,1,2],"165":[1,1,1],"166":[1,1,1],"167":[1,1,1],"168":[1,1,1],"169":[1,1,7]},"averageFieldLength":[6.088235294117647,4.84705882352941,17.31176470588235],"storedFields":{"0":{"title":"mbcp","titles":[]},"1":{"title":"mbcp","titles":[]},"2":{"title":"mbcp.mp_math.const","titles":[]},"3":{"title":"var PI = math.pi","titles":["mbcp.mp_math.const"]},"4":{"title":"var E = math.e","titles":["mbcp.mp_math.const"]},"5":{"title":"var GOLDEN_RATIO = (1 + math.sqrt(5)) / 2","titles":["mbcp.mp_math.const"]},"6":{"title":"var GAMMA = 0.5772156649015329","titles":["mbcp.mp_math.const"]},"7":{"title":"var EPSILON = 0.0001","titles":["mbcp.mp_math.const"]},"8":{"title":"var APPROX = 0.001","titles":["mbcp.mp_math.const"]},"9":{"title":"mbcp.mp_math.angle","titles":[]},"10":{"title":"class Angle","titles":["mbcp.mp_math.angle"]},"11":{"title":"class AnyAngle(Angle)","titles":["mbcp.mp_math.angle"]},"12":{"title":"def __init__(self, value: float, is_radian: bool = False)","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"13":{"title":"def complementary(self) -> AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"14":{"title":"def supplementary(self) -> AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"15":{"title":"def degree(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"16":{"title":"def minimum_positive(self) -> AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"17":{"title":"def maximum_negative(self) -> AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"18":{"title":"def sin(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"19":{"title":"def cos(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"20":{"title":"def tan(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"21":{"title":"def cot(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"22":{"title":"def sec(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"23":{"title":"def csc(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"24":{"title":"def self + other: AnyAngle => AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"25":{"title":"def __eq__(self, other)","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"26":{"title":"def self - other: AnyAngle => AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"27":{"title":"def self * other: float => AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"28":{"title":"def self / other: float => AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"29":{"title":"def self / other: AnyAngle => float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"30":{"title":"def self / other","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"31":{"title":"mbcp.mp_math.equation","titles":[]},"32":{"title":"class CurveEquation","titles":["mbcp.mp_math.equation"]},"33":{"title":"def __init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc)","titles":["mbcp.mp_math.equation","class CurveEquation"]},"34":{"title":"def __call__(self, *t: Var) -> Point3 | tuple[Point3, ...]","titles":["mbcp.mp_math.equation","class CurveEquation"]},"35":{"title":"def get_partial_derivative_func(func: MultiVarsFunc, var: int | tuple[int, ...], epsilon: Number = EPSILON) -> MultiVarsFunc","titles":["mbcp.mp_math.equation"]},"36":{"title":"mbcp.mp_math.function","titles":[]},"37":{"title":"def cal_gradient_3vf(func: ThreeSingleVarsFunc, p: Point3, epsilon: float = EPSILON) -> Vector3","titles":["mbcp.mp_math.function"]},"38":{"title":"def curry(func: MultiVarsFunc, *args: Var) -> OneVarFunc","titles":["mbcp.mp_math.function"]},"39":{"title":"mbcp.mp_math","titles":[]},"40":{"title":"mbcp.mp_math.line","titles":[]},"41":{"title":"class Line3","titles":["mbcp.mp_math.line"]},"42":{"title":"def __init__(self, point: Point3, direction: Vector3)","titles":["mbcp.mp_math.line","class Line3"]},"43":{"title":"def approx(self, other: Line3, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"44":{"title":"def cal_angle(self, other: Line3) -> AnyAngle","titles":["mbcp.mp_math.line","class Line3"]},"45":{"title":"def cal_distance(self, other: Line3 | Point3) -> float","titles":["mbcp.mp_math.line","class Line3"]},"46":{"title":"def cal_intersection(self, other: Line3) -> Point3","titles":["mbcp.mp_math.line","class Line3"]},"47":{"title":"def cal_perpendicular(self, point: Point3) -> Line3","titles":["mbcp.mp_math.line","class Line3"]},"48":{"title":"def get_point(self, t: RealNumber) -> Point3","titles":["mbcp.mp_math.line","class Line3"]},"49":{"title":"def get_parametric_equations(self) -> tuple[OneSingleVarFunc, OneSingleVarFunc, OneSingleVarFunc]","titles":["mbcp.mp_math.line","class Line3"]},"50":{"title":"def is_approx_parallel(self, other: Line3, epsilon: float = 1e-06) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"51":{"title":"def is_parallel(self, other: Line3) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"52":{"title":"def is_collinear(self, other: Line3) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"53":{"title":"def is_point_on(self, point: Point3) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"54":{"title":"def is_coplanar(self, other: Line3) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"55":{"title":"def simplify(self)","titles":["mbcp.mp_math.line","class Line3"]},"56":{"title":"def from_two_points(cls, p1: Point3, p2: Point3) -> Line3","titles":["mbcp.mp_math.line","class Line3"]},"57":{"title":"def __and__(self, other: Line3) -> Line3 | Point3 | None","titles":["mbcp.mp_math.line","class Line3"]},"58":{"title":"def __eq__(self, other) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"59":{"title":"mbcp.mp_math","titles":[]},"60":{"title":"mbcp.mp_math.mp_math_typing","titles":[]},"61":{"title":"var RealNumber = int | float","titles":["mbcp.mp_math.mp_math_typing"]},"62":{"title":"var Number = RealNumber | complex","titles":["mbcp.mp_math.mp_math_typing"]},"63":{"title":"var SingleVar = TypeVar(\'SingleVar\', bound=Number)","titles":["mbcp.mp_math.mp_math_typing"]},"64":{"title":"var ArrayVar = TypeVar(\'ArrayVar\', bound=Iterable[Number])","titles":["mbcp.mp_math.mp_math_typing"]},"65":{"title":"var Var = SingleVar | ArrayVar","titles":["mbcp.mp_math.mp_math_typing"]},"66":{"title":"var OneSingleVarFunc = Callable[[SingleVar], SingleVar]","titles":["mbcp.mp_math.mp_math_typing"]},"67":{"title":"var OneArrayFunc = Callable[[ArrayVar], ArrayVar]","titles":["mbcp.mp_math.mp_math_typing"]},"68":{"title":"var OneVarFunc = OneSingleVarFunc | OneArrayFunc","titles":["mbcp.mp_math.mp_math_typing"]},"69":{"title":"var TwoSingleVarsFunc = Callable[[SingleVar, SingleVar], SingleVar]","titles":["mbcp.mp_math.mp_math_typing"]},"70":{"title":"var TwoArraysFunc = Callable[[ArrayVar, ArrayVar], ArrayVar]","titles":["mbcp.mp_math.mp_math_typing"]},"71":{"title":"var TwoVarsFunc = TwoSingleVarsFunc | TwoArraysFunc","titles":["mbcp.mp_math.mp_math_typing"]},"72":{"title":"var ThreeSingleVarsFunc = Callable[[SingleVar, SingleVar, SingleVar], SingleVar]","titles":["mbcp.mp_math.mp_math_typing"]},"73":{"title":"var ThreeArraysFunc = Callable[[ArrayVar, ArrayVar, ArrayVar], ArrayVar]","titles":["mbcp.mp_math.mp_math_typing"]},"74":{"title":"var ThreeVarsFunc = ThreeSingleVarsFunc | ThreeArraysFunc","titles":["mbcp.mp_math.mp_math_typing"]},"75":{"title":"var MultiSingleVarsFunc = Callable[..., SingleVar]","titles":["mbcp.mp_math.mp_math_typing"]},"76":{"title":"var MultiArraysFunc = Callable[..., ArrayVar]","titles":["mbcp.mp_math.mp_math_typing"]},"77":{"title":"var MultiVarsFunc = MultiSingleVarsFunc | MultiArraysFunc","titles":["mbcp.mp_math.mp_math_typing"]},"78":{"title":"mbcp.mp_math.plane","titles":[]},"79":{"title":"class Plane3","titles":["mbcp.mp_math.plane"]},"80":{"title":"def __init__(self, a: float, b: float, c: float, d: float)","titles":["mbcp.mp_math.plane","class Plane3"]},"81":{"title":"def approx(self, other: Plane3) -> bool","titles":["mbcp.mp_math.plane","class Plane3"]},"82":{"title":"def cal_angle(self, other: Line3 | Plane3) -> AnyAngle","titles":["mbcp.mp_math.plane","class Plane3"]},"83":{"title":"def cal_distance(self, other: Plane3 | Point3) -> float","titles":["mbcp.mp_math.plane","class Plane3"]},"84":{"title":"def cal_intersection_line3(self, other: Plane3) -> Line3","titles":["mbcp.mp_math.plane","class Plane3"]},"85":{"title":"def cal_intersection_point3(self, other: Line3) -> Point3","titles":["mbcp.mp_math.plane","class Plane3"]},"86":{"title":"def cal_parallel_plane3(self, point: Point3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"87":{"title":"def is_parallel(self, other: Plane3) -> bool","titles":["mbcp.mp_math.plane","class Plane3"]},"88":{"title":"def normal(self) -> Vector3","titles":["mbcp.mp_math.plane","class Plane3"]},"89":{"title":"def from_point_and_normal(cls, point: Point3, normal: Vector3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"90":{"title":"def from_three_points(cls, p1: Point3, p2: Point3, p3: Point3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"91":{"title":"def from_two_lines(cls, l1: Line3, l2: Line3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"92":{"title":"def from_point_and_line(cls, point: Point3, line: Line3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"93":{"title":"def __and__(self, other: Line3) -> Point3 | None","titles":["mbcp.mp_math.plane","class Plane3"]},"94":{"title":"def __and__(self, other: Plane3) -> Line3 | None","titles":["mbcp.mp_math.plane","class Plane3"]},"95":{"title":"def __and__(self, other)","titles":["mbcp.mp_math.plane","class Plane3"]},"96":{"title":"def __eq__(self, other) -> bool","titles":["mbcp.mp_math.plane","class Plane3"]},"97":{"title":"def __rand__(self, other: Line3) -> Point3","titles":["mbcp.mp_math.plane","class Plane3"]},"98":{"title":"mbcp.mp_math.point","titles":[]},"99":{"title":"class Point3","titles":["mbcp.mp_math.point"]},"100":{"title":"def __init__(self, x: float, y: float, z: float)","titles":["mbcp.mp_math.point","class Point3"]},"101":{"title":"def approx(self, other: Point3, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.point","class Point3"]},"102":{"title":"def self + other: Vector3 => Point3","titles":["mbcp.mp_math.point","class Point3"]},"103":{"title":"def self + other: Point3 => Point3","titles":["mbcp.mp_math.point","class Point3"]},"104":{"title":"def self + other","titles":["mbcp.mp_math.point","class Point3"]},"105":{"title":"def __eq__(self, other)","titles":["mbcp.mp_math.point","class Point3"]},"106":{"title":"def self - other: Point3 => Vector3","titles":["mbcp.mp_math.point","class Point3"]},"107":{"title":"mbcp.mp_math.segment","titles":[]},"108":{"title":"class Segment3","titles":["mbcp.mp_math.segment"]},"109":{"title":"def __init__(self, p1: Point3, p2: Point3)","titles":["mbcp.mp_math.segment","class Segment3"]},"110":{"title":"mbcp.mp_math.utils","titles":[]},"111":{"title":"def clamp(x: float, min_: float, max_: float) -> float","titles":["mbcp.mp_math.utils"]},"112":{"title":"class Approx","titles":["mbcp.mp_math.utils"]},"113":{"title":"def __init__(self, value: RealNumber)","titles":["mbcp.mp_math.utils","class Approx"]},"114":{"title":"def __eq__(self, other)","titles":["mbcp.mp_math.utils","class Approx"]},"115":{"title":"def raise_type_error(self, other)","titles":["mbcp.mp_math.utils","class Approx"]},"116":{"title":"def __ne__(self, other)","titles":["mbcp.mp_math.utils","class Approx"]},"117":{"title":"def approx(x: float, y: float = 0.0, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.utils"]},"118":{"title":"def sign(x: float, only_neg: bool = False) -> str","titles":["mbcp.mp_math.utils"]},"119":{"title":"def sign_format(x: float, only_neg: bool = False) -> str","titles":["mbcp.mp_math.utils"]},"120":{"title":"mbcp.mp_math.vector","titles":[]},"121":{"title":"class Vector3","titles":["mbcp.mp_math.vector"]},"122":{"title":"def __init__(self, x: float, y: float, z: float)","titles":["mbcp.mp_math.vector","class Vector3"]},"123":{"title":"def approx(self, other: Vector3, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.vector","class Vector3"]},"124":{"title":"def cal_angle(self, other: Vector3) -> AnyAngle","titles":["mbcp.mp_math.vector","class Vector3"]},"125":{"title":"def cross(self, other: Vector3) -> Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"126":{"title":"def is_approx_parallel(self, other: Vector3, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.vector","class Vector3"]},"127":{"title":"def is_parallel(self, other: Vector3) -> bool","titles":["mbcp.mp_math.vector","class Vector3"]},"128":{"title":"def normalize(self)","titles":["mbcp.mp_math.vector","class Vector3"]},"129":{"title":"def np_array(self) -> np.ndarray","titles":["mbcp.mp_math.vector","class Vector3"]},"130":{"title":"def length(self) -> float","titles":["mbcp.mp_math.vector","class Vector3"]},"131":{"title":"def unit(self) -> Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"132":{"title":"def __abs__(self)","titles":["mbcp.mp_math.vector","class Vector3"]},"133":{"title":"def self + other: Vector3 => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"134":{"title":"def self + other: Point3 => Point3","titles":["mbcp.mp_math.vector","class Vector3"]},"135":{"title":"def self + other","titles":["mbcp.mp_math.vector","class Vector3"]},"136":{"title":"def __eq__(self, other)","titles":["mbcp.mp_math.vector","class Vector3"]},"137":{"title":"def self + other: Point3 => Point3","titles":["mbcp.mp_math.vector","class Vector3"]},"138":{"title":"def self - other: Vector3 => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"139":{"title":"def self - other: Point3 => Point3","titles":["mbcp.mp_math.vector","class Vector3"]},"140":{"title":"def self - other","titles":["mbcp.mp_math.vector","class Vector3"]},"141":{"title":"def self - other: Point3","titles":["mbcp.mp_math.vector","class Vector3"]},"142":{"title":"def self * other: Vector3 => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"143":{"title":"def self * other: RealNumber => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"144":{"title":"def self * other: int | float | Vector3 => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"145":{"title":"def self * other: RealNumber => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"146":{"title":"def self @ other: Vector3 => RealNumber","titles":["mbcp.mp_math.vector","class Vector3"]},"147":{"title":"def self / other: RealNumber => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"148":{"title":"def - self","titles":["mbcp.mp_math.vector","class Vector3"]},"149":{"title":"var zero_vector3 = Vector3(0, 0, 0)","titles":["mbcp.mp_math.vector"]},"150":{"title":"var x_axis = Vector3(1, 0, 0)","titles":["mbcp.mp_math.vector"]},"151":{"title":"var y_axis = Vector3(0, 1, 0)","titles":["mbcp.mp_math.vector"]},"152":{"title":"var z_axis = Vector3(0, 0, 1)","titles":["mbcp.mp_math.vector"]},"153":{"title":"mbcp.particle","titles":[]},"154":{"title":"mbcp.particle","titles":[]},"155":{"title":"mbcp.presets","titles":[]},"156":{"title":"mbcp.presets.model","titles":[]},"157":{"title":"class GeometricModels","titles":["mbcp.presets.model"]},"158":{"title":"def sphere(radius: float, density: float)","titles":["mbcp.presets.model","class GeometricModels"]},"159":{"title":"mbcp.presets.model","titles":[]},"160":{"title":"class GeometricModels","titles":["mbcp.presets.model"]},"161":{"title":"def sphere(radius: float, density: float)","titles":["mbcp.presets.model","class GeometricModels"]},"162":{"title":"mbcp.presets","titles":[]},"163":{"title":"demo","titles":[]},"164":{"title":"开始不了一点","titles":[]},"165":{"title":"AAA","titles":[]},"166":{"title":"BBB","titles":["AAA"]},"167":{"title":"C","titles":[]},"168":{"title":"ddd","titles":["C"]},"169":{"title":"Reference","titles":[]}},"dirtCount":0,"index":[["∫12x111",{"2":{"164":1}}],["开始不了一点",{"0":{"164":1}}],["4",{"2":{"158":1,"161":1}}],["球体上的点集",{"2":{"158":2,"161":2}}],["生成球体上的点集",{"2":{"158":2,"161":2}}],["几何模型点集",{"2":{"156":1,"159":1}}],["下午9",{"2":{"155":1,"162":1}}],["8",{"2":{"155":1,"162":1}}],["零向量",{"2":{"149":1}}],["非点乘",{"2":{"144":2}}],["别去点那边实现了",{"2":{"137":2}}],["单位向量",{"2":{"131":2}}],["单变量",{"2":{"63":1}}],["模",{"2":{"130":2}}],["向量的模",{"2":{"130":2}}],["向量积",{"2":{"125":2}}],["将向量归一化",{"2":{"128":2}}],["允许的误差",{"2":{"126":2}}],["j",{"2":{"125":1}}],["行列式的结果",{"2":{"125":2}}],["其余结果的模为平行四边形的面积",{"2":{"125":2}}],["叉乘使用cross",{"2":{"144":2}}],["叉乘为0",{"2":{"125":2}}],["叉乘",{"2":{"125":2}}],["夹角",{"2":{"124":2}}],["夹角弧度",{"2":{"44":2,"82":2}}],["以及一些常用的向量",{"2":{"120":1}}],["格式化符号数",{"2":{"119":2}}],["quot",{"2":{"118":2,"119":4}}],["符号",{"2":{"118":2,"119":2}}],["获取该向量的单位向量",{"2":{"131":2}}],["获取数的符号",{"2":{"118":2}}],["获取直线的参数方程",{"2":{"49":2}}],["获取直线上的点",{"2":{"48":2}}],["用于判断是否近似于0",{"2":{"117":2}}],["限制后的值",{"2":{"111":2}}],["待限定的值",{"2":{"111":2}}],["区间限定函数",{"2":{"111":2}}],["us",{"2":{"169":1}}],["unit",{"0":{"131":1},"2":{"131":1}}],["unsupported",{"2":{"45":1,"82":1,"83":1,"95":1,"115":1,"135":1,"140":1,"141":1,"144":1}}],["utils",{"0":{"110":1},"1":{"111":1,"112":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1}}],["中心点",{"2":{"109":1}}],["中实现",{"2":{"106":2}}],["长度",{"2":{"109":1}}],["方向向量",{"2":{"109":1}}],["``x2",{"2":{"125":1}}],["``x1",{"2":{"125":1}}],["``i",{"2":{"125":1}}],["```",{"2":{"38":1}}],["```python",{"2":{"38":1}}],["`vector3`",{"2":{"106":1}}],["已在",{"2":{"106":2}}],["已知一个函数$f",{"2":{"37":1}}],["已知一个函数f",{"2":{"37":1}}],["坐标",{"2":{"100":6}}],["笛卡尔坐标系中的点",{"2":{"100":2}}],["人话",{"2":{"95":2}}],["取两平面的交集",{"2":{"95":2}}],["面上直线",{"2":{"92":2}}],["面上一点",{"2":{"92":2}}],["法向量",{"2":{"88":2,"89":2}}],["所求平面",{"2":{"86":2}}],["k``",{"2":{"125":1}}],["k",{"2":{"81":12}}],["另一个向量",{"2":{"124":2,"126":2,"127":2}}],["另一个平面或点",{"2":{"83":2}}],["另一个平面",{"2":{"81":2,"82":2,"84":2,"87":2}}],["另一条直线",{"2":{"43":2,"44":2,"46":2,"50":2,"51":2,"52":2,"54":2,"57":2}}],["常数项",{"2":{"80":2}}],["常量",{"2":{"3":1}}],["平面平行返回none",{"2":{"95":2}}],["平面",{"2":{"89":2,"90":2,"91":2,"92":2}}],["平面上的一点",{"2":{"89":2}}],["平面的法向量",{"2":{"88":2}}],["平面与直线平行或重合",{"2":{"85":2}}],["平面方程",{"2":{"80":2}}],["平行线返回none",{"2":{"57":2}}],["平行直线或点",{"2":{"45":2}}],["多元函数",{"2":{"77":1}}],["多元数组函数",{"2":{"76":1}}],["多元单变量函数",{"2":{"75":1}}],["二元函数",{"2":{"71":1}}],["二元数组函数",{"2":{"70":1}}],["二元单变量函数",{"2":{"69":1}}],["一元函数",{"2":{"68":1}}],["一元数组函数",{"2":{"67":1}}],["一元单变量函数",{"2":{"66":1}}],["一阶偏导",{"2":{"35":2}}],["变量",{"2":{"65":1}}],["变量位置",{"2":{"35":2}}],["数组运算",{"2":{"144":2}}],["数组变量",{"2":{"64":1}}],["数2",{"2":{"117":2}}],["数1",{"2":{"117":2}}],["数",{"2":{"62":1,"118":2,"119":2}}],["实数",{"2":{"61":1}}],["类型",{"2":{"61":1,"62":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"149":1,"150":1,"151":1,"152":1}}],["∧",{"2":{"58":2}}],["交线",{"2":{"95":2}}],["交线返回交点",{"2":{"57":2}}],["交点",{"2":{"46":2,"57":2,"85":2}}],["重合线返回自身",{"2":{"57":2}}],["由点和直线构造平面",{"2":{"92":2}}],["由点和法向量构造平面",{"2":{"89":2}}],["由两直线构造平面",{"2":{"91":2}}],["由两点构造直线",{"2":{"56":2}}],["由三点构造平面",{"2":{"90":2}}],["由一个点和一个方向向量确定",{"2":{"42":2}}],["工厂函数",{"2":{"56":2,"89":2,"90":2,"91":2,"92":2}}],["并对向量单位化",{"2":{"55":2}}],["处理",{"2":{"55":2}}],["处的梯度向量为",{"2":{"37":1}}],["化",{"2":{"55":2}}],["按照可行性一次对x",{"2":{"55":2}}],["不平行平面的交线",{"2":{"95":2}}],["不包含点",{"2":{"92":2}}],["不与平面平行或在平面上的直线",{"2":{"85":2}}],["不返回值",{"2":{"55":2,"128":2}}],["不支持的类型",{"2":{"44":2,"45":2,"82":2,"83":2}}],["自体归一化",{"2":{"128":2}}],["自体简化",{"2":{"55":2}}],["自然对数的底",{"2":{"4":1}}],["等价相等",{"2":{"55":2}}],["简化直线方程",{"2":{"55":2}}],["两平面的交线",{"2":{"84":2}}],["两直线方向向量的叉乘与两直线上任意一点的向量的点积为0",{"2":{"54":2}}],["两角的和为180°",{"2":{"14":2}}],["两角的和为90°",{"2":{"13":2}}],["充要条件",{"2":{"54":2}}],["判断两个向量是否相等",{"2":{"136":2}}],["判断两个向量是否平行",{"2":{"127":2}}],["判断两个向量是否近似平行",{"2":{"126":2}}],["判断两个向量是否近似相等",{"2":{"123":2}}],["判断两个数是否近似相等",{"2":{"117":2}}],["判断两个点是否相等",{"2":{"105":2}}],["判断两个点是否近似相等",{"2":{"101":2}}],["判断两个平面是否平行",{"2":{"87":2}}],["判断两个平面是否近似相等",{"2":{"81":2}}],["判断两条直线是否等价",{"2":{"58":2}}],["判断两条直线是否共面",{"2":{"54":2}}],["判断两条直线是否共线",{"2":{"52":2}}],["判断两条直线是否平行",{"2":{"51":2}}],["判断两条直线是否近似平行",{"2":{"50":2}}],["判断两条直线是否近似相等",{"2":{"43":2}}],["判断点是否在直线上",{"2":{"53":2}}],["则两向量平行",{"2":{"125":2}}],["则同一个t对应的点不同",{"2":{"48":2}}],["则其在点$",{"2":{"37":1}}],["则其在点",{"2":{"37":1}}],["但起始点和方向向量不同",{"2":{"48":2}}],["同一条直线",{"2":{"48":2}}],["垂线",{"2":{"47":2}}],["指定点",{"2":{"47":2,"86":2}}],["距离",{"2":{"45":2,"83":2}}],["是否相等",{"2":{"136":2}}],["是否只返回负数的符号",{"2":{"118":2,"119":2}}],["是否共面",{"2":{"54":2}}],["是否共线",{"2":{"52":2}}],["是否在直线上",{"2":{"53":2}}],["是否平行",{"2":{"51":2,"87":2,"127":2}}],["是否近似平行",{"2":{"50":2,"126":2}}],["是否近似相等",{"2":{"43":2,"81":2,"101":2,"117":2,"123":2}}],["是否为弧度",{"2":{"12":2}}],["误差",{"2":{"43":2,"50":2,"117":2}}],["直线2",{"2":{"91":2}}],["直线1",{"2":{"91":2}}],["直线",{"2":{"56":2}}],["直线不共面",{"2":{"46":2}}],["直线平行",{"2":{"46":2}}],["直线的方向向量",{"2":{"42":2}}],["直线上的一点",{"2":{"42":2}}],["三元数组函数",{"2":{"73":1}}],["三元单变量函数",{"2":{"72":1}}],["三元函数",{"2":{"37":2,"74":1}}],["三维空间中的线段",{"2":{"109":2}}],["三维空间中的直线",{"2":{"42":2}}],["三维向量",{"2":{"39":1,"59":1}}],["三维线段",{"2":{"39":1,"59":1}}],["三维点",{"2":{"39":1,"59":1}}],["三维平面",{"2":{"39":1,"59":1}}],["三维直线",{"2":{"39":1,"59":1}}],["任意角",{"2":{"39":1,"59":1}}],["任意角度",{"2":{"12":2}}],["导入的类有",{"2":{"39":1,"59":1}}],["本包定义了一些常用的导入",{"2":{"39":1,"59":1}}],["本模块用于内部类型提示",{"2":{"60":1}}],["本模块定义了粒子生成相关的工具",{"2":{"153":1,"154":1}}],["本模块定义了3维向量的类vector3",{"2":{"120":1}}],["本模块定义了一些常用的工具函数",{"2":{"110":1}}],["本模块定义了一些常用的常量",{"2":{"2":1}}],["本模块定义了三维空间中点的类",{"2":{"98":1}}],["本模块定义了三维空间中的线段类",{"2":{"107":1}}],["本模块定义了三维空间中的平面类",{"2":{"78":1}}],["本模块定义了三维空间中的直线类",{"2":{"40":1}}],["本模块定义了方程相关的类和函数以及一些常用的数学函数",{"2":{"31":1}}],["本模块定义了角度相关的类",{"2":{"9":1}}],["本模块塞了一些预设的粒子生成器",{"2":{"0":1,"1":1}}],["help",{"2":{"169":1}}],["have",{"2":{"84":1}}],["https",{"2":{"38":1}}],["high",{"2":{"35":2}}],["hide",{"2":{"35":2,"38":1}}],["6",{"2":{"38":2}}],["3维向量",{"2":{"122":2}}],["355859667",{"2":{"38":1}}],["3",{"2":{"38":2}}],["3vf",{"0":{"37":1},"2":{"37":1}}],["bbb",{"0":{"166":1}}],["by",{"2":{"80":2}}],["bound=iterable",{"0":{"64":1}}],["bound=number",{"0":{"63":1}}],["bool=false",{"2":{"12":1,"118":1,"119":1}}],["bool",{"0":{"12":1,"43":1,"50":1,"51":1,"52":1,"53":1,"54":1,"58":1,"81":1,"87":1,"96":1,"101":1,"117":1,"118":1,"119":1,"123":1,"126":1,"127":1},"2":{"43":1,"50":1,"51":1,"52":1,"53":1,"54":1,"58":1,"81":1,"87":1,"96":1,"101":1,"117":1,"123":1,"126":1,"127":1}}],["b",{"0":{"80":1},"2":{"38":4,"80":5,"81":7,"83":2,"84":12,"85":2,"88":1,"89":3}}],["示例",{"2":{"38":1}}],["柯里化后的函数",{"2":{"38":2}}],["柯理化",{"2":{"38":2}}],["可直接从mbcp",{"2":{"39":1,"59":1}}],["可参考",{"2":{"38":1}}],["可参考函数式编程",{"2":{"38":1}}],["可为整数",{"2":{"35":2}}],["有关函数柯里化",{"2":{"38":2}}],["对多参数函数进行柯里化",{"2":{"38":2}}],["ddd",{"0":{"168":1}}],["d",{"0":{"80":1},"2":{"80":7,"81":6,"83":1,"84":6,"85":1,"89":2}}],["documentation",{"2":{"169":1}}],["do",{"2":{"46":2}}],["distance",{"0":{"45":1,"83":1},"2":{"45":1,"83":1}}],["direction",{"0":{"42":1},"2":{"42":5,"43":1,"44":2,"45":8,"46":6,"47":1,"48":1,"49":3,"50":2,"51":2,"52":1,"53":1,"54":2,"55":4,"56":2,"58":3,"82":1,"84":2,"85":4,"91":1,"92":1,"95":1,"109":2}}],["dz",{"2":{"37":2}}],["dy",{"2":{"37":2}}],["dx",{"2":{"37":2}}],["demo",{"0":{"163":1}}],["density",{"0":{"158":1,"161":1},"2":{"158":4,"161":4}}],["derivative",{"0":{"35":1},"2":{"35":6}}],["degree",{"0":{"15":1},"2":{"15":1}}],["def",{"0":{"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"24":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1},"2":{"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"28":1,"29":1,"35":2,"38":2,"56":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"102":1,"103":1,"129":1,"130":1,"131":1,"133":1,"134":1,"138":1,"139":1,"142":1,"143":1,"158":1,"161":1}}],["$处的梯度向量为",{"2":{"37":1}}],["$",{"2":{"37":3}}],["梯度",{"2":{"37":2}}],["点乘",{"2":{"146":2}}],["点乘使用",{"2":{"144":2}}],["点3",{"2":{"90":2}}],["点法式构造",{"2":{"89":2}}],["点2",{"2":{"56":2,"90":2}}],["点1",{"2":{"56":2,"90":2}}],["点",{"2":{"37":2,"48":2,"53":2}}],["∂f∂z",{"2":{"37":1}}],["∂f∂y",{"2":{"37":1}}],["∂f∂x",{"2":{"37":1}}],["∇f",{"2":{"37":1}}],["计算平行于该平面且过指定点的平面",{"2":{"86":2}}],["计算平面与直线的交点",{"2":{"85":2}}],["计算平面与平面或点之间的距离",{"2":{"83":2}}],["计算平面与平面之间的夹角",{"2":{"82":2}}],["计算两个向量之间的夹角",{"2":{"124":2}}],["计算两平面的交线",{"2":{"84":2}}],["计算两条直线点集合的交集",{"2":{"57":2}}],["计算两条直线的交点",{"2":{"46":2}}],["计算直线经过指定点p的垂线",{"2":{"47":2}}],["计算直线和直线或点之间的距离",{"2":{"45":2}}],["计算直线和直线之间的夹角",{"2":{"44":2}}],["计算三元函数在某点的梯度向量",{"2":{"37":2}}],["计算曲线上的点",{"2":{"34":2}}],["v3",{"2":{"125":2}}],["vector",{"0":{"120":1},"1":{"121":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"150":1,"151":1,"152":1},"2":{"106":1}}],["vector3",{"0":{"37":1,"42":1,"88":1,"89":1,"102":1,"106":1,"121":1,"123":1,"124":1,"125":2,"126":1,"127":1,"131":1,"133":2,"138":2,"142":2,"143":1,"144":2,"145":1,"146":1,"147":1,"149":2,"150":1,"151":1,"152":1},"1":{"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1},"2":{"37":2,"39":1,"42":1,"59":1,"88":2,"89":1,"91":1,"102":1,"106":4,"114":2,"123":1,"124":1,"125":3,"126":1,"127":2,"131":1,"133":2,"135":3,"138":2,"140":3,"141":1,"142":2,"143":1,"144":6,"145":1,"146":1,"147":2,"148":1,"149":1,"150":1,"151":1,"152":1}}],["v2",{"2":{"58":2,"90":2,"91":4,"125":2}}],["v1",{"2":{"58":4,"90":2,"91":2,"125":2}}],["v",{"2":{"35":2,"104":2,"106":4,"135":8,"137":2,"140":8,"141":2}}],["valueerror",{"2":{"35":3,"46":6,"84":1,"85":3}}],["value",{"0":{"12":1,"113":1},"2":{"12":5,"113":3,"114":6,"115":1}}],["var",{"0":{"3":1,"4":1,"5":1,"6":1,"7":1,"8":1,"34":1,"35":1,"38":1,"61":1,"62":1,"63":1,"64":1,"65":2,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"149":1,"150":1,"151":1,"152":1},"2":{"34":1,"35":13,"38":3}}],["求高阶偏导函数",{"2":{"35":1}}],["求n元函数一阶偏导函数",{"2":{"35":2}}],["l2",{"0":{"91":1},"2":{"91":5}}],["l1",{"0":{"91":1},"2":{"91":7}}],["lambda",{"2":{"49":3}}],["left",{"2":{"37":1}}],["length",{"0":{"130":1},"2":{"45":5,"46":1,"82":2,"109":2,"124":2,"126":1,"128":5,"130":1,"131":1,"132":1}}],["len",{"2":{"34":1}}],["liteyukistudio",{"2":{"155":1,"162":1}}],["litedoc",{"2":{"35":2,"38":1}}],["linalg",{"2":{"84":3}}],["lines",{"0":{"91":1},"2":{"46":2,"91":1}}],["line",{"0":{"40":1,"92":2},"1":{"41":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1},"2":{"85":1,"92":5}}],["line3",{"0":{"41":1,"43":1,"44":1,"45":1,"46":1,"47":1,"50":1,"51":1,"52":1,"54":1,"56":1,"57":2,"82":1,"84":2,"85":1,"91":2,"92":1,"93":1,"94":1,"97":1},"1":{"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1},"2":{"39":1,"43":1,"44":1,"45":2,"46":1,"47":2,"50":1,"51":1,"52":1,"54":1,"56":1,"57":2,"59":1,"82":2,"84":3,"85":1,"91":2,"92":1,"93":1,"94":1,"95":2,"97":1,"114":1}}],["list",{"2":{"35":8,"158":10,"161":10}}],["无效变量类型",{"2":{"35":2}}],["引发",{"2":{"35":1,"44":1,"45":1,"46":1,"82":1,"83":1,"85":1}}],["偏导函数",{"2":{"35":2}}],["偏移量",{"2":{"35":2,"37":2}}],["高阶偏导数值",{"2":{"35":1}}],["高阶偏导",{"2":{"35":2}}],["函数式编程",{"2":{"38":1}}],["函数",{"2":{"35":2,"38":2}}],["因此该函数的稳定性有待提升",{"2":{"35":2}}],["目前数学界对于一个函数的导函数并没有通解的说法",{"2":{"35":2}}],["目标点",{"2":{"34":2}}],["warning",{"2":{"35":2}}],["慎用",{"2":{"35":2}}],["这玩意不太稳定",{"2":{"35":2}}],["num",{"2":{"158":5,"161":5}}],["number=epsilon",{"2":{"35":1}}],["number",{"0":{"35":1,"62":1,"64":1}}],["ndarray",{"0":{"129":1},"2":{"129":1}}],["neg",{"0":{"118":1,"119":1},"2":{"118":4,"119":4,"148":1}}],["negative",{"0":{"17":1},"2":{"17":1}}],["ne",{"0":{"116":1},"2":{"116":1}}],["np",{"0":{"129":2},"2":{"84":9,"129":3,"158":9,"161":9}}],["no",{"2":{"84":1}}],["normal",{"0":{"88":1,"89":2},"2":{"82":5,"84":4,"85":1,"86":2,"87":2,"88":1,"89":7,"90":3,"91":1,"92":1,"95":3}}],["normalize",{"0":{"128":1},"2":{"55":1,"128":1}}],["none",{"0":{"57":1,"93":1,"94":1},"2":{"57":2,"93":1,"94":1,"95":2}}],["not",{"2":{"45":1,"46":4,"57":1,"116":1,"118":1,"119":1}}],["nabla",{"2":{"37":1}}],["|",{"0":{"34":1,"35":1,"45":1,"57":2,"61":1,"62":1,"65":1,"68":1,"71":1,"74":1,"77":1,"82":1,"83":1,"93":1,"94":1,"144":2},"2":{"34":1,"35":1,"45":1,"57":2,"82":1,"83":1,"93":1,"94":1,"144":2}}],["曲线方程",{"2":{"33":2,"39":1,"59":1}}],["z轴单位向量",{"2":{"152":1}}],["z轴分量",{"2":{"122":2}}],["z2``",{"2":{"125":1}}],["z1``",{"2":{"125":1}}],["zero",{"0":{"149":1},"2":{"91":1,"127":1}}],["z系数",{"2":{"80":2}}],["zhihu",{"2":{"38":1}}],["zhuanlan",{"2":{"38":1}}],["z0",{"2":{"37":2}}],["zip",{"2":{"34":1}}],["z函数",{"2":{"33":2}}],["z",{"0":{"33":1,"100":1,"122":1,"152":1},"2":{"33":5,"34":4,"37":11,"49":4,"55":4,"83":1,"84":4,"85":4,"89":2,"100":7,"101":2,"104":2,"105":2,"106":2,"109":2,"114":2,"122":5,"123":2,"125":4,"128":1,"129":1,"130":1,"135":4,"136":2,"137":2,"140":4,"141":2,"144":3,"146":2,"147":1,"148":1,"158":2,"161":2}}],["y轴单位向量",{"2":{"151":1}}],["y轴分量",{"2":{"122":2}}],["y2",{"2":{"125":1}}],["y1",{"2":{"125":1}}],["y系数",{"2":{"80":2}}],["y0",{"2":{"37":2}}],["y函数",{"2":{"33":2}}],["y",{"0":{"33":1,"100":1,"117":1,"122":1,"151":1},"2":{"33":5,"34":4,"37":11,"49":4,"55":4,"83":1,"84":4,"85":4,"89":2,"100":7,"101":2,"104":2,"105":2,"106":2,"109":2,"114":2,"117":4,"122":5,"123":2,"125":4,"128":1,"129":1,"130":1,"135":4,"136":2,"137":2,"140":4,"141":2,"144":3,"146":2,"147":1,"148":1,"158":2,"161":2}}],["x轴单位向量",{"2":{"150":1}}],["x轴分量",{"2":{"122":2}}],["x3c",{"2":{"101":3,"114":1,"117":1,"118":1,"119":1,"123":3,"126":1}}],["x26",{"2":{"95":1}}],["x系数",{"2":{"80":2}}],["x0",{"2":{"37":2}}],["x函数",{"2":{"33":2}}],["x",{"0":{"33":1,"100":1,"111":1,"117":1,"118":1,"119":1,"122":1,"150":1},"2":{"33":5,"34":4,"37":11,"49":4,"55":2,"83":1,"84":4,"85":4,"89":2,"100":7,"101":2,"104":2,"105":2,"106":2,"109":2,"111":4,"114":2,"117":4,"118":5,"119":8,"122":5,"123":2,"125":4,"128":1,"129":1,"130":1,"135":4,"136":2,"137":2,"140":4,"141":2,"144":3,"146":2,"147":1,"148":1,"158":2,"161":2}}],["to",{"2":{"169":1}}],["time",{"2":{"155":1,"162":1}}],["tip",{"2":{"37":2,"38":2}}],["theta",{"2":{"158":3,"161":3}}],["the",{"2":{"85":2,"169":1}}],["three",{"0":{"90":1},"2":{"90":1}}],["threevarsfunc",{"0":{"74":1}}],["threearraysfunc",{"0":{"73":1,"74":1}}],["threesinglevarsfunc",{"0":{"37":1,"72":1,"74":1},"2":{"37":1}}],["typing",{"0":{"60":1},"1":{"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1}}],["typevar",{"0":{"63":1,"64":1}}],["typealias",{"2":{"61":1,"62":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1}}],["typeerror",{"2":{"44":2,"45":3,"82":3,"83":3,"95":1,"115":1,"135":1,"140":1,"141":1,"144":1}}],["type",{"0":{"115":1},"2":{"35":1,"45":1,"82":2,"83":2,"95":2,"114":2,"115":4,"135":2,"140":2,"141":2,"144":2}}],["twovarsfunc",{"0":{"71":1}}],["twoarraysfunc",{"0":{"70":1,"71":1}}],["twosinglevarsfunc",{"0":{"69":1,"71":1}}],["two",{"0":{"56":1,"91":1},"2":{"56":1,"91":1}}],["tuple",{"0":{"34":1,"35":1,"49":1},"2":{"34":2,"35":2,"49":1}}],["t",{"0":{"34":1,"48":1},"2":{"34":10,"48":4,"49":12,"85":4}}],["truediv",{"2":{"28":1,"29":1,"30":1,"147":1}}],["tan",{"0":{"20":1},"2":{"20":2,"21":1}}],["outlook",{"2":{"155":1,"162":1}}],["operand",{"2":{"95":1,"135":1,"140":1,"141":1,"144":1}}],["or",{"2":{"57":1,"85":1}}],["order",{"2":{"35":2}}],["only",{"0":{"118":1,"119":1},"2":{"118":4,"119":4}}],["on",{"0":{"53":1},"2":{"53":1}}],["onearrayfunc",{"0":{"67":1,"68":1}}],["onesinglevarfunc",{"0":{"49":3,"66":1,"68":1},"2":{"49":3}}],["onevarfunc",{"0":{"33":3,"38":1,"68":1},"2":{"33":3,"38":1}}],["overload",{"2":{"27":1,"28":2,"29":1,"92":1,"93":2,"94":1,"101":1,"102":2,"103":1,"132":1,"133":2,"134":1,"137":1,"138":2,"139":1,"141":1,"142":2,"143":1}}],["other",{"0":{"24":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"43":1,"44":1,"45":1,"46":1,"50":1,"51":1,"52":1,"54":1,"57":1,"58":1,"81":1,"82":1,"83":1,"84":1,"85":1,"87":1,"93":1,"94":1,"95":1,"96":1,"97":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"114":1,"115":1,"116":1,"123":1,"124":1,"125":1,"126":1,"127":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1},"2":{"24":2,"25":2,"26":2,"27":2,"28":1,"29":1,"30":4,"43":5,"44":4,"45":13,"46":9,"50":4,"51":4,"52":5,"54":5,"57":7,"58":5,"81":15,"82":9,"83":9,"84":17,"85":11,"87":4,"93":1,"94":1,"95":10,"96":2,"97":2,"101":6,"102":1,"103":1,"104":6,"105":6,"106":6,"114":9,"115":2,"116":2,"123":6,"124":5,"125":9,"126":4,"127":4,"133":1,"134":1,"135":12,"136":6,"137":6,"138":1,"139":1,"140":12,"141":8,"142":1,"143":1,"144":12,"145":2,"146":6,"147":4}}],["正割值",{"2":{"22":4}}],["正切值",{"2":{"20":4}}],["正弦值",{"2":{"18":4}}],["余割值",{"2":{"23":4}}],["余切值",{"2":{"21":4}}],["余弦值",{"2":{"19":4}}],["余角",{"2":{"13":4}}],["最大值",{"2":{"111":2}}],["最大负角度",{"2":{"17":2}}],["最大负角",{"2":{"17":2}}],["最小值",{"2":{"111":2}}],["最小正角度",{"2":{"16":2}}],["最小正角",{"2":{"16":2}}],["弧度",{"2":{"15":2}}],["角度",{"2":{"15":2}}],["角度或弧度值",{"2":{"12":2}}],["补角",{"2":{"14":4}}],["rmul",{"2":{"145":1}}],["rsub",{"2":{"141":1}}],["rights",{"2":{"155":1,"162":1}}],["right",{"2":{"37":1}}],["reference",{"0":{"169":1}}],["reserved",{"2":{"155":1,"162":1}}],["result",{"2":{"35":4}}],["realnumber",{"0":{"48":1,"61":1,"62":1,"113":1,"143":1,"145":1,"146":1,"147":1},"2":{"48":1,"113":1,"143":1,"145":1,"146":1,"147":1}}],["return",{"2":{"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"24":1,"25":1,"26":1,"27":1,"30":2,"34":2,"35":4,"37":1,"38":4,"43":1,"44":1,"45":5,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":3,"58":1,"81":4,"82":2,"83":2,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"95":4,"96":1,"97":1,"101":1,"104":1,"105":1,"106":1,"111":1,"114":2,"116":1,"117":1,"118":3,"119":3,"123":1,"124":1,"125":1,"126":1,"127":1,"129":1,"130":1,"131":1,"132":1,"135":2,"136":1,"137":3,"140":2,"141":1,"144":2,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1}}],["returns",{"2":{"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"34":1,"35":2,"37":1,"38":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"95":1,"101":1,"104":1,"105":1,"106":1,"111":1,"117":1,"118":1,"119":1,"123":1,"124":1,"125":1,"126":1,"127":1,"129":1,"130":1,"131":1,"135":1,"136":1,"140":1,"141":1,"144":1,"146":1,"158":1,"161":1}}],["range",{"2":{"158":2,"161":2}}],["rand",{"0":{"97":1},"2":{"97":1}}],["radius",{"0":{"158":1,"161":1},"2":{"158":7,"161":7}}],["radian=true",{"2":{"13":1,"14":1,"17":1,"24":1,"26":1,"27":1,"30":1,"82":1,"124":1}}],["radian",{"0":{"12":1},"2":{"12":6,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"24":2,"25":2,"26":2,"27":1,"30":3}}],["radd",{"2":{"137":1}}],["raise",{"0":{"115":1},"2":{"35":1,"45":1,"46":2,"82":1,"83":1,"84":1,"85":1,"95":1,"114":2,"115":2,"135":1,"140":1,"141":1,"144":1}}],["raises",{"2":{"35":1,"44":1,"45":1,"46":1,"82":1,"83":1,"84":1,"85":1}}],["ratio",{"0":{"5":1}}],[">",{"2":{"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"24":1,"26":1,"27":1,"28":1,"29":1,"34":1,"35":5,"37":3,"38":6,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"96":1,"97":1,"101":1,"102":1,"103":1,"104":2,"106":3,"111":1,"117":1,"118":2,"119":5,"123":1,"124":1,"125":2,"126":1,"127":1,"129":1,"130":1,"131":1,"133":1,"134":1,"135":2,"137":2,"138":1,"139":1,"140":2,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1}}],["返回numpy数组",{"2":{"129":1}}],["返回如下行列式的结果",{"2":{"125":1}}],["返回",{"2":{"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"34":1,"35":1,"37":1,"38":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"95":1,"101":1,"111":1,"117":1,"118":1,"119":1,"123":1,"124":1,"125":1,"126":1,"127":1,"130":1,"131":1,"136":1,"158":1,"161":1}}],["phi",{"2":{"158":5,"161":5}}],["pycharm",{"2":{"155":1,"162":1}}],["py",{"2":{"155":1,"162":1}}],["python",{"2":{"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"28":1,"29":1,"56":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"102":1,"103":1,"129":1,"130":1,"131":1,"133":1,"134":1,"138":1,"139":1,"142":1,"143":1,"158":1,"161":1}}],["pythondef",{"2":{"12":1,"24":1,"25":1,"26":1,"27":1,"30":1,"33":1,"34":1,"35":1,"37":1,"38":2,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"95":1,"96":1,"97":1,"100":1,"101":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"132":1,"135":1,"136":1,"137":1,"140":1,"141":1,"144":1,"145":1,"146":1,"147":1,"148":1}}],["presets",{"0":{"155":1,"156":1,"159":1,"162":1},"1":{"157":1,"158":1,"160":1,"161":1}}],["property",{"2":{"12":1,"13":2,"14":2,"15":2,"16":2,"17":2,"18":2,"19":2,"20":2,"21":2,"22":2,"23":1,"87":1,"88":1,"128":1,"129":2,"130":2,"131":1}}],["p3",{"0":{"90":1},"2":{"90":4}}],["p2",{"0":{"56":1,"90":1,"109":1},"2":{"56":4,"58":2,"90":4,"109":9}}],["p1",{"0":{"56":1,"90":1,"109":1},"2":{"56":5,"58":2,"90":6,"109":9}}],["perpendicular",{"0":{"47":1},"2":{"47":1}}],["particle",{"0":{"153":1,"154":1}}],["partial",{"0":{"35":1},"2":{"35":6,"37":6}}],["param",{"2":{"109":4,"137":2}}],["parametric",{"0":{"49":1},"2":{"49":1,"85":1}}],["parallel",{"0":{"50":1,"51":1,"86":1,"87":1,"126":1,"127":1},"2":{"43":2,"45":1,"46":2,"50":2,"51":2,"52":2,"53":1,"57":1,"58":2,"84":2,"85":1,"86":1,"87":2,"95":1,"126":1,"127":1}}],["planes",{"2":{"84":1}}],["plane",{"0":{"78":1},"1":{"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1},"2":{"85":1}}],["plane3",{"0":{"79":1,"81":1,"82":1,"83":1,"84":1,"86":2,"87":1,"89":1,"90":1,"91":1,"92":1,"94":1},"1":{"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1},"2":{"39":1,"59":1,"81":1,"82":2,"83":2,"84":1,"86":3,"87":1,"89":1,"90":1,"91":1,"92":1,"94":1,"95":2,"114":1}}],["plus",{"2":{"35":3}}],["p",{"0":{"37":1},"2":{"37":21,"38":1,"104":10,"106":8,"135":4,"137":4,"140":4,"141":4}}],["points",{"0":{"56":1,"90":1},"2":{"56":1,"90":1}}],["point",{"0":{"42":1,"47":1,"48":1,"53":2,"86":1,"89":2,"92":2,"98":1},"1":{"99":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1},"2":{"42":5,"43":2,"45":5,"46":3,"47":6,"48":2,"49":3,"52":2,"53":6,"54":2,"55":3,"58":2,"85":3,"86":5,"89":7,"90":1,"91":6,"92":6}}],["point3",{"0":{"34":2,"37":1,"42":1,"45":1,"46":1,"47":1,"48":1,"53":1,"56":2,"57":1,"83":1,"85":2,"86":1,"89":1,"90":3,"92":1,"93":1,"97":1,"99":1,"101":1,"102":1,"103":2,"106":1,"109":2,"134":2,"137":2,"139":2,"141":1},"1":{"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1},"2":{"34":4,"37":1,"39":1,"42":1,"45":2,"46":1,"47":1,"48":1,"53":1,"56":2,"57":1,"59":1,"83":2,"84":1,"85":3,"86":1,"89":1,"90":3,"92":1,"93":1,"95":1,"97":2,"101":1,"102":1,"103":2,"104":1,"106":1,"109":3,"114":1,"134":2,"135":2,"137":3,"139":2,"140":2,"141":3,"158":3,"161":3}}],["positive",{"0":{"16":1},"2":{"13":1,"14":1,"16":1}}],["pi",{"0":{"3":2},"2":{"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"158":2,"161":2}}],["在github上查看",{"2":{"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"24":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1}}],["或包装一个实数",{"2":{"117":2}}],["或整数元组",{"2":{"35":2}}],["或",{"2":{"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"24":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1}}],["源代码",{"2":{"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"24":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1}}],["默认为否",{"2":{"12":2}}],["参数t",{"2":{"48":2}}],["参数",{"2":{"12":1,"33":1,"34":3,"35":2,"37":1,"38":3,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"89":1,"90":1,"91":1,"92":1,"95":1,"100":1,"101":1,"104":1,"105":1,"106":1,"111":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"135":1,"136":1,"140":1,"141":1,"144":1,"146":1,"158":1,"161":1}}],["file",{"2":{"155":1,"162":1}}],["from",{"0":{"56":1,"89":1,"90":1,"91":1,"92":1},"2":{"56":1,"86":1,"89":1,"90":2,"91":2,"92":2,"106":1}}],["frac",{"2":{"37":3}}],["f",{"2":{"37":4,"82":1,"83":1,"95":1,"115":1,"119":3,"135":1,"140":1,"141":1,"144":1}}],["format",{"0":{"119":1},"2":{"119":1}}],["for",{"2":{"34":1,"35":1,"95":1,"135":1,"140":1,"141":1,"144":1,"158":2,"161":2}}],["function",{"0":{"36":1},"1":{"37":1,"38":1}}],["func",{"0":{"33":3,"35":2,"37":1,"38":1},"2":{"33":15,"34":6,"35":16,"37":9,"38":6}}],["false",{"0":{"12":1,"118":1,"119":1},"2":{"81":1}}],["float=0",{"2":{"117":1}}],["float=1e",{"2":{"50":1}}],["float=approx",{"2":{"43":1,"101":1,"117":1,"123":1,"126":1}}],["float=epsilon",{"2":{"37":1}}],["float",{"0":{"12":1,"15":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"27":1,"28":1,"29":1,"37":1,"43":1,"45":1,"50":1,"61":1,"80":4,"83":1,"100":3,"101":1,"111":4,"117":3,"118":1,"119":1,"122":3,"123":1,"126":1,"130":1,"144":1,"158":2,"161":2},"2":{"12":1,"15":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"27":1,"28":1,"29":1,"45":1,"80":4,"83":1,"100":3,"111":4,"114":2,"117":1,"118":1,"119":1,"122":3,"130":1,"144":2,"158":2,"161":2}}],["improve",{"2":{"169":1}}],["import",{"2":{"106":1}}],["i",{"2":{"158":4,"161":4}}],["invalid",{"2":{"35":1}}],["intersect",{"2":{"46":2}}],["intersection",{"0":{"46":1,"84":1,"85":1},"2":{"46":1,"57":1,"84":2,"85":1,"95":2,"97":1}}],["int",{"0":{"35":2,"61":1,"144":1},"2":{"35":3,"38":8,"114":2,"144":2,"158":1,"161":1}}],["in",{"2":{"34":1,"35":1,"158":2,"161":2}}],["init",{"0":{"12":1,"33":1,"42":1,"80":1,"100":1,"109":1,"113":1,"122":1},"2":{"12":1,"33":1,"42":1,"80":1,"100":1,"109":1,"113":1,"122":1,"155":1,"162":1}}],["if",{"2":{"12":1,"30":1,"34":1,"35":1,"45":2,"46":2,"55":3,"57":1,"81":1,"82":1,"83":1,"84":2,"85":1,"91":1,"95":3,"114":3,"118":2,"119":2,"135":1,"140":1,"141":1,"144":1}}],["isinstance",{"2":{"30":1,"35":2,"45":2,"82":2,"83":2,"95":2,"114":4,"135":2,"140":2,"141":1,"144":2}}],["is",{"0":{"12":1,"50":1,"51":1,"52":1,"53":1,"54":1,"87":1,"126":1,"127":1},"2":{"12":4,"13":1,"14":1,"17":1,"24":1,"26":1,"27":1,"30":1,"43":2,"45":2,"46":2,"50":2,"51":2,"52":3,"53":2,"54":1,"57":3,"58":2,"82":1,"84":1,"87":2,"95":1,"124":1,"126":1,"127":1}}],["sphere",{"0":{"158":1,"161":1},"2":{"158":1,"161":1}}],["staticmethod",{"2":{"157":1,"158":1,"160":1,"161":1}}],["str",{"0":{"118":1,"119":1},"2":{"118":1,"119":1}}],["software",{"2":{"155":1,"162":1}}],["solve",{"2":{"84":3}}],["snowykami",{"2":{"155":2,"162":2}}],["s",{"2":{"95":1,"135":1,"140":1,"141":1,"144":1}}],["sign",{"0":{"118":1,"119":1},"2":{"118":1,"119":1}}],["simplify",{"0":{"55":1},"2":{"55":1}}],["singlevar",{"0":{"63":2,"65":1,"66":2,"69":3,"72":4,"75":1}}],["sin",{"0":{"18":1},"2":{"18":2,"23":1,"158":3,"161":3}}],["sub",{"2":{"26":1,"106":1,"138":1,"139":1,"140":1}}],["supplementary",{"0":{"14":1},"2":{"14":1}}],["segment",{"0":{"107":1},"1":{"108":1,"109":1}}],["segment3",{"0":{"108":1},"1":{"109":1},"2":{"39":1,"59":1}}],["sec",{"0":{"22":1},"2":{"22":1}}],["self",{"0":{"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"24":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"33":1,"34":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"113":1,"114":1,"115":1,"116":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1},"2":{"12":3,"13":2,"14":2,"15":2,"16":2,"17":2,"18":2,"19":2,"20":2,"21":2,"22":2,"23":2,"24":2,"25":2,"26":2,"27":2,"28":1,"29":1,"30":3,"33":4,"34":7,"42":3,"43":4,"44":2,"45":13,"46":8,"47":3,"48":3,"49":7,"50":2,"51":2,"52":4,"53":3,"54":3,"55":8,"57":6,"58":4,"80":5,"81":16,"82":4,"83":8,"84":15,"85":9,"86":2,"87":2,"88":4,"93":1,"94":1,"95":5,"96":2,"97":2,"100":4,"101":4,"102":1,"103":1,"104":4,"105":4,"106":4,"109":15,"113":2,"114":9,"115":2,"116":2,"122":4,"123":4,"124":3,"125":7,"126":2,"127":2,"128":5,"129":4,"130":4,"131":3,"132":2,"133":1,"134":1,"135":7,"136":4,"137":4,"138":1,"139":1,"140":7,"141":4,"142":1,"143":1,"144":7,"145":2,"146":4,"147":4,"148":4}}],["sqrt",{"0":{"5":1},"2":{"130":1,"158":1,"161":1}}],["cz",{"2":{"80":2}}],["clamp",{"0":{"111":1},"2":{"111":1,"158":1,"161":1}}],["classmethod",{"2":{"55":1,"56":1,"88":1,"89":2,"90":2,"91":2,"92":1}}],["class",{"0":{"10":1,"11":1,"32":1,"41":1,"79":1,"99":1,"108":1,"112":1,"121":1,"157":1,"160":1},"1":{"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"24":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"33":1,"34":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"113":1,"114":1,"115":1,"116":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1},"2":{"106":2}}],["cls",{"0":{"56":1,"89":1,"90":1,"91":1,"92":1},"2":{"56":2,"89":2,"90":2,"91":2,"92":2}}],["cross",{"0":{"125":1},"2":{"45":4,"46":3,"47":1,"54":1,"84":1,"90":1,"91":1,"125":3,"126":1,"127":1}}],["c",{"0":{"80":1,"167":1},"1":{"168":1},"2":{"38":4,"80":5,"81":7,"83":2,"84":6,"85":2,"88":1,"89":3,"155":1,"162":1}}],["curried",{"2":{"38":6}}],["currying",{"2":{"38":2}}],["curry",{"0":{"38":1},"2":{"38":3}}],["curveequation",{"0":{"32":1},"1":{"33":1,"34":1},"2":{"39":1,"59":1}}],["cal",{"0":{"37":1,"44":1,"45":1,"46":1,"47":1,"82":1,"83":1,"84":1,"85":1,"86":1,"124":1},"2":{"37":1,"44":2,"45":1,"46":1,"47":1,"57":1,"82":2,"83":1,"84":1,"85":1,"86":1,"95":2,"97":1,"124":1}}],["callable",{"0":{"66":1,"67":1,"69":1,"70":1,"72":1,"73":1,"75":1,"76":1}}],["call",{"0":{"34":1},"2":{"34":1}}],["csc",{"0":{"23":1},"2":{"23":1}}],["copyright",{"2":{"155":1,"162":1}}],["coplanar",{"0":{"54":1},"2":{"45":1,"46":2,"54":1,"57":1}}],["coincident",{"2":{"85":1}}],["collinear",{"0":{"52":1},"2":{"52":1,"57":1}}],["complex",{"0":{"62":1}}],["complementary",{"0":{"13":1},"2":{"13":1,"82":1}}],["com",{"2":{"38":1,"155":1,"162":1}}],["cot",{"0":{"21":1},"2":{"21":1}}],["cos",{"0":{"19":1},"2":{"19":2,"22":1,"158":2,"161":2}}],["const",{"0":{"2":1},"1":{"3":1,"4":1,"5":1,"6":1,"7":1,"8":1}}],["author",{"2":{"155":1,"162":1}}],["all",{"2":{"101":1,"114":1,"123":1,"155":1,"162":1}}],["acos",{"2":{"82":1,"124":1}}],["axis",{"0":{"150":1,"151":1,"152":1}}],["ax",{"2":{"80":2}}],["arccos",{"2":{"158":1,"161":1}}],["array",{"0":{"129":1},"2":{"84":6,"129":2,"158":6,"161":6}}],["arrayvar",{"0":{"64":2,"65":1,"67":2,"70":3,"73":4,"76":1}}],["area",{"2":{"158":2,"161":2}}],["are",{"2":{"46":2,"84":1,"85":1}}],["args2",{"2":{"38":2}}],["args",{"0":{"38":1},"2":{"12":1,"33":1,"34":1,"35":14,"37":1,"38":5,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"89":1,"90":1,"91":1,"92":1,"95":1,"100":1,"101":1,"104":1,"105":1,"106":1,"111":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"135":1,"136":1,"140":1,"141":1,"144":1,"146":1,"158":1,"161":1}}],["abs",{"0":{"132":1},"2":{"45":1,"83":1,"101":3,"114":1,"117":1,"119":1,"123":3,"132":1}}],["a",{"0":{"80":1},"2":{"38":4,"80":5,"81":7,"83":2,"84":12,"85":2,"88":1,"89":3}}],["aaa",{"0":{"165":1},"1":{"166":1},"2":{"36":1}}],["add",{"2":{"24":1,"38":8,"102":1,"103":1,"104":1,"133":1,"134":1,"135":1}}],["and",{"0":{"57":1,"89":1,"92":1,"93":1,"94":1,"95":1},"2":{"43":1,"46":2,"52":1,"57":1,"58":1,"81":6,"84":4,"85":1,"86":1,"89":1,"90":1,"91":1,"92":2,"93":1,"94":1,"95":2,"105":2,"115":1,"135":1,"136":2,"140":1,"141":1,"144":1}}],["anyangle",{"0":{"11":1,"13":1,"14":1,"16":1,"17":1,"24":2,"26":2,"27":1,"28":1,"29":1,"44":1,"82":1,"124":1},"1":{"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"24":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1},"2":{"13":2,"14":2,"16":2,"17":2,"24":3,"26":3,"27":2,"28":1,"29":1,"30":2,"39":1,"44":1,"59":1,"82":2,"124":2}}],["angle",{"0":{"9":1,"10":1,"11":1,"44":1,"82":1,"124":1},"1":{"10":1,"11":1,"12":2,"13":2,"14":2,"15":2,"16":2,"17":2,"18":2,"19":2,"20":2,"21":2,"22":2,"23":2,"24":2,"25":2,"26":2,"27":2,"28":2,"29":2,"30":2},"2":{"44":2,"82":2,"124":1}}],["approx",{"0":{"8":1,"43":2,"50":1,"81":1,"101":2,"112":1,"117":2,"123":2,"126":2},"1":{"113":1,"114":1,"115":1,"116":1},"2":{"25":1,"43":3,"50":2,"81":10,"96":1,"101":1,"105":3,"114":4,"117":1,"123":1,"126":1,"127":1,"136":3}}],["约等于判定误差",{"2":{"8":1}}],["精度误差",{"2":{"7":1}}],["欧拉常数",{"2":{"6":1}}],["06",{"0":{"50":1},"2":{"50":1}}],["001",{"0":{"8":1}}],["0001",{"0":{"7":1}}],["0",{"0":{"6":1,"7":1,"8":1,"117":2,"149":3,"150":2,"151":2,"152":2},"2":{"34":3,"37":6,"45":2,"54":1,"55":8,"80":2,"81":3,"83":2,"84":9,"85":1,"95":1,"117":1,"118":2,"119":4,"158":2,"161":2}}],["geometricmodels",{"0":{"157":1,"160":1},"1":{"158":1,"161":1}}],["get",{"0":{"35":1,"48":1,"49":1},"2":{"35":2,"48":1,"49":1,"85":1,"91":1}}],["gradient",{"0":{"37":1},"2":{"37":1}}],["gt",{"0":{"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"24":1,"26":1,"27":1,"28":1,"29":1,"34":1,"35":1,"37":1,"38":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"96":1,"97":1,"101":1,"102":1,"103":1,"106":1,"111":1,"117":1,"118":1,"119":1,"123":1,"124":1,"125":1,"126":1,"127":1,"129":1,"130":1,"131":1,"133":1,"134":1,"137":1,"138":1,"139":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1},"2":{"104":2,"106":2,"119":3,"125":1,"135":2,"137":1,"140":2,"141":1}}],["gamma",{"0":{"6":1}}],["golden",{"0":{"5":1}}],["黄金分割比",{"2":{"5":1}}],["2024",{"2":{"155":2,"162":2}}],["2020",{"2":{"155":1,"162":1}}],["2",{"0":{"5":1},"2":{"13":1,"16":1,"17":1,"35":1,"37":3,"38":2,"46":1,"83":3,"109":3,"130":3,"158":2,"161":2}}],["5772156649015329",{"0":{"6":1}}],["5",{"0":{"5":1},"2":{"83":1}}],["+1",{"2":{"119":2}}],["+=",{"2":{"35":1}}],["+",{"0":{"5":1,"24":1,"102":1,"103":1,"104":1,"133":1,"134":1,"135":1,"137":1},"2":{"24":1,"37":3,"38":4,"46":1,"48":1,"49":3,"80":6,"83":5,"85":5,"104":7,"109":3,"118":3,"119":3,"130":2,"135":11,"137":5,"146":2,"158":1,"161":1}}],["12",{"2":{"155":2,"162":2}}],["1e",{"0":{"50":1}}],["180",{"2":{"12":1,"15":1}}],["1",{"0":{"5":1,"150":1,"151":1,"152":1},"2":{"4":1,"21":1,"22":1,"23":1,"34":1,"38":2,"91":1,"119":6,"158":4,"161":4}}],["email",{"2":{"155":1,"162":1}}],["error",{"0":{"115":1},"2":{"114":2,"115":1}}],["examples",{"2":{"38":1}}],["exp",{"2":{"4":1}}],["elif",{"2":{"35":1,"45":3,"57":1,"81":2,"82":1,"83":1,"84":2,"95":1,"114":1,"118":1,"119":1,"135":1,"140":1,"144":1}}],["else",{"2":{"12":1,"34":1,"35":1,"45":2,"57":1,"81":1,"82":1,"83":1,"95":1,"114":2,"118":2,"119":2,"135":1,"140":1,"141":1,"144":1}}],["equations",{"0":{"49":1},"2":{"49":1,"85":1}}],["equation",{"0":{"31":1},"1":{"32":1,"33":1,"34":1,"35":1}}],["eq",{"0":{"25":1,"58":1,"96":1,"105":1,"114":1,"136":1},"2":{"25":1,"58":1,"96":1,"105":1,"114":1,"116":1,"136":1}}],["epsilon",{"0":{"7":1,"35":2,"37":2,"43":1,"50":1,"101":1,"117":1,"123":1,"126":1},"2":{"35":7,"37":12,"43":5,"50":4,"101":6,"117":4,"123":6,"126":4}}],["e",{"0":{"4":2}}],["π",{"2":{"3":1}}],["==",{"2":{"34":1,"45":1,"54":1,"55":3,"85":1,"91":1,"95":1}}],["=",{"0":{"3":1,"4":1,"5":1,"6":1,"7":1,"8":1,"12":1,"24":1,"26":1,"27":1,"28":1,"29":1,"35":1,"37":1,"43":1,"50":1,"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"101":1,"102":1,"103":1,"106":1,"117":2,"118":1,"119":1,"123":1,"126":1,"133":1,"134":1,"137":1,"138":1,"139":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"149":1,"150":1,"151":1,"152":1},"2":{"12":2,"33":3,"35":5,"37":5,"38":2,"42":2,"55":3,"56":1,"80":6,"81":6,"84":17,"85":2,"89":2,"90":3,"91":3,"100":3,"109":5,"113":1,"122":3,"128":4,"158":7,"161":7}}],["model",{"0":{"156":1,"159":1},"1":{"157":1,"158":1,"160":1,"161":1}}],["midpoint",{"2":{"109":1}}],["min",{"0":{"111":1},"2":{"111":5}}],["minus",{"2":{"35":3}}],["minimum",{"0":{"16":1},"2":{"13":1,"14":1,"16":1}}],["multiarraysfunc",{"0":{"76":1,"77":1}}],["multisinglevarsfunc",{"0":{"75":1,"77":1}}],["multivarsfunc",{"0":{"35":2,"38":1,"77":1},"2":{"35":2,"38":1}}],["mul",{"2":{"27":1,"142":1,"143":1,"144":1,"145":1}}],["matmul",{"2":{"146":1}}],["math导入使用",{"2":{"39":1,"59":1}}],["math",{"0":{"2":1,"3":1,"4":1,"5":1,"9":1,"31":1,"36":1,"39":1,"40":1,"59":1,"60":2,"78":1,"98":1,"107":1,"110":1,"120":1},"1":{"3":1,"4":1,"5":1,"6":1,"7":1,"8":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"24":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"32":1,"33":1,"34":1,"35":1,"37":1,"38":1,"41":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"61":2,"62":2,"63":2,"64":2,"65":2,"66":2,"67":2,"68":2,"69":2,"70":2,"71":2,"72":2,"73":2,"74":2,"75":2,"76":2,"77":2,"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"99":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"108":1,"109":1,"111":1,"112":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"121":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"150":1,"151":1,"152":1},"2":{"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"82":1,"124":1,"130":1}}],["max",{"0":{"111":1},"2":{"111":5}}],["maximum",{"0":{"17":1},"2":{"17":1}}],["mp",{"0":{"2":1,"9":1,"31":1,"36":1,"39":1,"40":1,"59":1,"60":2,"78":1,"98":1,"107":1,"110":1,"120":1},"1":{"3":1,"4":1,"5":1,"6":1,"7":1,"8":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"24":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"32":1,"33":1,"34":1,"35":1,"37":1,"38":1,"41":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"61":2,"62":2,"63":2,"64":2,"65":2,"66":2,"67":2,"68":2,"69":2,"70":2,"71":2,"72":2,"73":2,"74":2,"75":2,"76":2,"77":2,"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"99":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"108":1,"109":1,"111":1,"112":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"121":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"150":1,"151":1,"152":1},"2":{"39":1,"59":1}}],["mbcp",{"0":{"0":1,"1":1,"2":1,"9":1,"31":1,"36":1,"39":1,"40":1,"59":1,"60":1,"78":1,"98":1,"107":1,"110":1,"120":1,"153":1,"154":1,"155":1,"156":1,"159":1,"162":1},"1":{"3":1,"4":1,"5":1,"6":1,"7":1,"8":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"24":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"32":1,"33":1,"34":1,"35":1,"37":1,"38":1,"41":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"99":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"108":1,"109":1,"111":1,"112":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"121":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"150":1,"151":1,"152":1,"157":1,"158":1,"160":1,"161":1}}],["说明",{"2":{"0":1,"1":1,"2":1,"3":1,"4":1,"5":1,"6":1,"7":1,"8":1,"9":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"31":1,"33":1,"34":1,"35":1,"36":1,"37":1,"38":1,"39":1,"40":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"59":1,"60":1,"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"78":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"95":1,"98":1,"100":1,"101":1,"104":1,"105":1,"106":1,"107":1,"109":1,"110":1,"111":1,"117":1,"118":1,"119":1,"120":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"130":1,"131":1,"135":1,"136":1,"137":1,"140":1,"141":1,"144":1,"146":1,"149":1,"150":1,"151":1,"152":1,"153":1,"154":1,"155":1,"156":1,"158":1,"159":1,"161":1,"162":1}}]],"serializationVersion":2}';export{t as default};
diff --git a/assets/chunks/@localSearchIndexroot.B_0oYmsz.js b/assets/chunks/@localSearchIndexroot.B_0oYmsz.js
deleted file mode 100644
index a3eb4de..0000000
--- a/assets/chunks/@localSearchIndexroot.B_0oYmsz.js
+++ /dev/null
@@ -1 +0,0 @@
-const t='{"documentCount":170,"nextId":170,"documentIds":{"0":"/api/api.html#mbcp","1":"/api/#mbcp","2":"/api/mp_math/angle.html#mbcp-mp-math-angle","3":"/api/mp_math/angle.html#class-angle","4":"/api/mp_math/angle.html#class-anyangle-angle","5":"/api/mp_math/angle.html#def-init-self-value-float-is-radian-bool-false","6":"/api/mp_math/angle.html#def-complementary-self-anyangle","7":"/api/mp_math/angle.html#def-supplementary-self-anyangle","8":"/api/mp_math/angle.html#def-degree-self-float","9":"/api/mp_math/angle.html#def-minimum-positive-self-anyangle","10":"/api/mp_math/angle.html#def-maximum-negative-self-anyangle","11":"/api/mp_math/angle.html#def-sin-self-float","12":"/api/mp_math/angle.html#def-cos-self-float","13":"/api/mp_math/angle.html#def-tan-self-float","14":"/api/mp_math/angle.html#def-cot-self-float","15":"/api/mp_math/angle.html#def-sec-self-float","16":"/api/mp_math/angle.html#def-csc-self-float","17":"/api/mp_math/angle.html#def-self-other-anyangle-anyangle","18":"/api/mp_math/angle.html#def-eq-self-other","19":"/api/mp_math/angle.html#def-self-other-anyangle-anyangle-1","20":"/api/mp_math/angle.html#def-self-other-float-anyangle","21":"/api/mp_math/angle.html#def-self-other-float-anyangle-1","22":"/api/mp_math/angle.html#def-self-other-anyangle-float","23":"/api/mp_math/angle.html#def-self-other","24":"/api/mp_math/const.html#mbcp-mp-math-const","25":"/api/mp_math/const.html#var-pi-math-pi","26":"/api/mp_math/const.html#var-e-math-e","27":"/api/mp_math/const.html#var-golden-ratio-1-math-sqrt-5-2","28":"/api/mp_math/const.html#var-gamma-0-5772156649015329","29":"/api/mp_math/const.html#var-epsilon-0-0001","30":"/api/mp_math/const.html#var-approx-0-001","31":"/api/mp_math/equation.html#mbcp-mp-math-equation","32":"/api/mp_math/equation.html#class-curveequation","33":"/api/mp_math/equation.html#def-init-self-x-func-onevarfunc-y-func-onevarfunc-z-func-onevarfunc","34":"/api/mp_math/equation.html#def-call-self-t-var-point3-tuple-point3","35":"/api/mp_math/equation.html#def-get-partial-derivative-func-func-multivarsfunc-var-int-tuple-int-epsilon-number-epsilon-multivarsfunc","36":"/api/mp_math/function.html#mbcp-mp-math-function","37":"/api/mp_math/function.html#def-cal-gradient-3vf-func-threesinglevarsfunc-p-point3-epsilon-float-epsilon-vector3","38":"/api/mp_math/function.html#def-curry-func-multivarsfunc-args-var-onevarfunc","39":"/api/mp_math/#mbcp-mp-math","40":"/api/mp_math/line.html#mbcp-mp-math-line","41":"/api/mp_math/line.html#class-line3","42":"/api/mp_math/line.html#def-init-self-point-point3-direction-vector3","43":"/api/mp_math/line.html#def-approx-self-other-line3-epsilon-float-approx-bool","44":"/api/mp_math/line.html#def-cal-angle-self-other-line3-anyangle","45":"/api/mp_math/line.html#def-cal-distance-self-other-line3-point3-float","46":"/api/mp_math/line.html#def-cal-intersection-self-other-line3-point3","47":"/api/mp_math/line.html#def-cal-perpendicular-self-point-point3-line3","48":"/api/mp_math/line.html#def-get-point-self-t-realnumber-point3","49":"/api/mp_math/line.html#def-get-parametric-equations-self-tuple-onesinglevarfunc-onesinglevarfunc-onesinglevarfunc","50":"/api/mp_math/line.html#def-is-approx-parallel-self-other-line3-epsilon-float-1e-06-bool","51":"/api/mp_math/line.html#def-is-parallel-self-other-line3-bool","52":"/api/mp_math/line.html#def-is-collinear-self-other-line3-bool","53":"/api/mp_math/line.html#def-is-point-on-self-point-point3-bool","54":"/api/mp_math/line.html#def-is-coplanar-self-other-line3-bool","55":"/api/mp_math/line.html#def-simplify-self","56":"/api/mp_math/line.html#def-from-two-points-cls-p1-point3-p2-point3-line3","57":"/api/mp_math/line.html#def-and-self-other-line3-line3-point3-none","58":"/api/mp_math/line.html#def-eq-self-other-bool","59":"/api/mp_math/mp_math.html#mbcp-mp-math","60":"/api/mp_math/mp_math_typing.html#mbcp-mp-math-mp-math-typing","61":"/api/mp_math/mp_math_typing.html#var-realnumber-int-float","62":"/api/mp_math/mp_math_typing.html#var-number-realnumber-complex","63":"/api/mp_math/mp_math_typing.html#var-singlevar-typevar-singlevar-bound-number","64":"/api/mp_math/mp_math_typing.html#var-arrayvar-typevar-arrayvar-bound-iterable-number","65":"/api/mp_math/mp_math_typing.html#var-var-singlevar-arrayvar","66":"/api/mp_math/mp_math_typing.html#var-onesinglevarfunc-callable-singlevar-singlevar","67":"/api/mp_math/mp_math_typing.html#var-onearrayfunc-callable-arrayvar-arrayvar","68":"/api/mp_math/mp_math_typing.html#var-onevarfunc-onesinglevarfunc-onearrayfunc","69":"/api/mp_math/mp_math_typing.html#var-twosinglevarsfunc-callable-singlevar-singlevar-singlevar","70":"/api/mp_math/mp_math_typing.html#var-twoarraysfunc-callable-arrayvar-arrayvar-arrayvar","71":"/api/mp_math/mp_math_typing.html#var-twovarsfunc-twosinglevarsfunc-twoarraysfunc","72":"/api/mp_math/mp_math_typing.html#var-threesinglevarsfunc-callable-singlevar-singlevar-singlevar-singlevar","73":"/api/mp_math/mp_math_typing.html#var-threearraysfunc-callable-arrayvar-arrayvar-arrayvar-arrayvar","74":"/api/mp_math/mp_math_typing.html#var-threevarsfunc-threesinglevarsfunc-threearraysfunc","75":"/api/mp_math/mp_math_typing.html#var-multisinglevarsfunc-callable-singlevar","76":"/api/mp_math/mp_math_typing.html#var-multiarraysfunc-callable-arrayvar","77":"/api/mp_math/mp_math_typing.html#var-multivarsfunc-multisinglevarsfunc-multiarraysfunc","78":"/api/mp_math/plane.html#mbcp-mp-math-plane","79":"/api/mp_math/plane.html#class-plane3","80":"/api/mp_math/plane.html#def-init-self-a-float-b-float-c-float-d-float","81":"/api/mp_math/plane.html#def-approx-self-other-plane3-bool","82":"/api/mp_math/plane.html#def-cal-angle-self-other-line3-plane3-anyangle","83":"/api/mp_math/plane.html#def-cal-distance-self-other-plane3-point3-float","84":"/api/mp_math/plane.html#def-cal-intersection-line3-self-other-plane3-line3","85":"/api/mp_math/plane.html#def-cal-intersection-point3-self-other-line3-point3","86":"/api/mp_math/plane.html#def-cal-parallel-plane3-self-point-point3-plane3","87":"/api/mp_math/plane.html#def-is-parallel-self-other-plane3-bool","88":"/api/mp_math/plane.html#def-normal-self-vector3","89":"/api/mp_math/plane.html#def-from-point-and-normal-cls-point-point3-normal-vector3-plane3","90":"/api/mp_math/plane.html#def-from-three-points-cls-p1-point3-p2-point3-p3-point3-plane3","91":"/api/mp_math/plane.html#def-from-two-lines-cls-l1-line3-l2-line3-plane3","92":"/api/mp_math/plane.html#def-from-point-and-line-cls-point-point3-line-line3-plane3","93":"/api/mp_math/plane.html#def-and-self-other-line3-point3-none","94":"/api/mp_math/plane.html#def-and-self-other-plane3-line3-none","95":"/api/mp_math/plane.html#def-and-self-other","96":"/api/mp_math/plane.html#def-eq-self-other-bool","97":"/api/mp_math/plane.html#def-rand-self-other-line3-point3","98":"/api/mp_math/point.html#mbcp-mp-math-point","99":"/api/mp_math/point.html#class-point3","100":"/api/mp_math/point.html#def-init-self-x-float-y-float-z-float","101":"/api/mp_math/point.html#def-approx-self-other-point3-epsilon-float-approx-bool","102":"/api/mp_math/point.html#def-self-other-vector3-point3","103":"/api/mp_math/point.html#def-self-other-point3-point3","104":"/api/mp_math/point.html#def-self-other","105":"/api/mp_math/point.html#def-eq-self-other","106":"/api/mp_math/point.html#def-self-other-point3-vector3","107":"/api/mp_math/segment.html#mbcp-mp-math-segment","108":"/api/mp_math/segment.html#class-segment3","109":"/api/mp_math/segment.html#def-init-self-p1-point3-p2-point3","110":"/api/mp_math/utils.html#mbcp-mp-math-utils","111":"/api/mp_math/utils.html#def-clamp-x-float-min-float-max-float-float","112":"/api/mp_math/utils.html#class-approx","113":"/api/mp_math/utils.html#def-init-self-value-realnumber","114":"/api/mp_math/utils.html#def-eq-self-other","115":"/api/mp_math/utils.html#def-raise-type-error-self-other","116":"/api/mp_math/utils.html#def-ne-self-other","117":"/api/mp_math/utils.html#def-approx-x-float-y-float-0-0-epsilon-float-approx-bool","118":"/api/mp_math/utils.html#def-sign-x-float-only-neg-bool-false-str","119":"/api/mp_math/utils.html#def-sign-format-x-float-only-neg-bool-false-str","120":"/api/mp_math/vector.html#mbcp-mp-math-vector","121":"/api/mp_math/vector.html#class-vector3","122":"/api/mp_math/vector.html#def-init-self-x-float-y-float-z-float","123":"/api/mp_math/vector.html#def-approx-self-other-vector3-epsilon-float-approx-bool","124":"/api/mp_math/vector.html#def-cal-angle-self-other-vector3-anyangle","125":"/api/mp_math/vector.html#def-cross-self-other-vector3-vector3","126":"/api/mp_math/vector.html#def-is-approx-parallel-self-other-vector3-epsilon-float-approx-bool","127":"/api/mp_math/vector.html#def-is-parallel-self-other-vector3-bool","128":"/api/mp_math/vector.html#def-normalize-self","129":"/api/mp_math/vector.html#def-np-array-self-np-ndarray","130":"/api/mp_math/vector.html#def-length-self-float","131":"/api/mp_math/vector.html#def-unit-self-vector3","132":"/api/mp_math/vector.html#def-abs-self","133":"/api/mp_math/vector.html#def-self-other-vector3-vector3","134":"/api/mp_math/vector.html#def-self-other-point3-point3","135":"/api/mp_math/vector.html#def-self-other","136":"/api/mp_math/vector.html#def-eq-self-other","137":"/api/mp_math/vector.html#def-self-other-point3-point3-1","138":"/api/mp_math/vector.html#def-self-other-vector3-vector3-1","139":"/api/mp_math/vector.html#def-self-other-point3-point3-2","140":"/api/mp_math/vector.html#def-self-other-1","141":"/api/mp_math/vector.html#def-self-other-point3","142":"/api/mp_math/vector.html#def-self-other-vector3-vector3-2","143":"/api/mp_math/vector.html#def-self-other-realnumber-vector3","144":"/api/mp_math/vector.html#def-self-other-int-float-vector3-vector3","145":"/api/mp_math/vector.html#def-self-other-realnumber-vector3-1","146":"/api/mp_math/vector.html#def-self-other-vector3-realnumber","147":"/api/mp_math/vector.html#def-self-other-realnumber-vector3-2","148":"/api/mp_math/vector.html#def-self","149":"/api/mp_math/vector.html#var-zero-vector3-vector3-0-0-0","150":"/api/mp_math/vector.html#var-x-axis-vector3-1-0-0","151":"/api/mp_math/vector.html#var-y-axis-vector3-0-1-0","152":"/api/mp_math/vector.html#var-z-axis-vector3-0-0-1","153":"/api/particle/#mbcp-particle","154":"/api/particle/particle.html#mbcp-particle","155":"/api/presets/#mbcp-presets","156":"/api/presets/model/#mbcp-presets-model","157":"/api/presets/model/#class-geometricmodels","158":"/api/presets/model/#def-sphere-radius-float-density-float","159":"/api/presets/model/model.html#mbcp-presets-model","160":"/api/presets/model/model.html#class-geometricmodels","161":"/api/presets/model/model.html#def-sphere-radius-float-density-float","162":"/api/presets/presets.html#mbcp-presets","163":"/demo/#demo","164":"/guide/#开始不了一点","165":"/guide/#aaa","166":"/guide/#bbb","167":"/guide/#c","168":"/guide/#ddd","169":"/refer/#reference"},"fieldIds":{"title":0,"titles":1,"text":2},"fieldLength":{"0":[1,1,3],"1":[1,1,3],"2":[4,1,3],"3":[2,4,1],"4":[4,4,1],"5":[11,8,25],"6":[5,8,24],"7":[5,8,23],"8":[5,8,20],"9":[6,8,21],"10":[6,8,23],"11":[5,8,18],"12":[5,8,18],"13":[5,8,18],"14":[5,8,20],"15":[5,8,20],"16":[5,8,20],"17":[7,8,15],"18":[5,8,11],"19":[6,8,14],"20":[7,8,16],"21":[7,8,13],"22":[7,8,13],"23":[3,8,15],"24":[4,1,3],"25":[5,4,4],"26":[5,4,5],"27":[10,4,3],"28":[5,4,3],"29":[5,4,3],"30":[5,4,3],"31":[4,1,3],"32":[2,4,1],"33":[9,6,20],"34":[10,6,34],"35":[15,4,68],"36":[4,1,3],"37":[14,4,59],"38":[8,4,55],"39":[3,1,21],"40":[4,1,3],"41":[2,4,1],"42":[8,6,19],"43":[11,6,28],"44":[8,6,26],"45":[10,6,45],"46":[8,6,43],"47":[8,6,23],"48":[8,6,26],"49":[9,6,25],"50":[14,6,27],"51":[8,6,22],"52":[8,6,25],"53":[8,6,23],"54":[8,6,28],"55":[4,6,27],"56":[10,6,29],"57":[9,6,36],"58":[6,6,26],"59":[3,1,21],"60":[4,1,3],"61":[6,4,5],"62":[6,4,5],"63":[6,4,3],"64":[7,4,3],"65":[6,4,5],"66":[6,4,5],"67":[6,4,5],"68":[6,4,5],"69":[6,4,5],"70":[6,4,5],"71":[6,4,5],"72":[6,4,5],"73":[6,4,5],"74":[6,4,5],"75":[6,4,5],"76":[6,4,5],"77":[6,4,5],"78":[4,1,3],"79":[2,4,1],"80":[9,6,26],"81":[7,6,32],"82":[10,6,43],"83":[10,6,47],"84":[9,6,53],"85":[9,6,55],"86":[9,6,25],"87":[8,6,23],"88":[5,6,21],"89":[10,6,36],"90":[11,6,36],"91":[10,6,41],"92":[10,6,31],"93":[9,6,15],"94":[9,6,15],"95":[5,6,45],"96":[6,6,12],"97":[7,6,15],"98":[4,1,3],"99":[2,4,1],"100":[8,6,17],"101":[11,6,28],"102":[8,6,13],"103":[7,6,12],"104":[4,6,22],"105":[5,6,19],"106":[7,6,29],"107":[4,1,3],"108":[2,4,1],"109":[7,6,25],"110":[4,1,3],"111":[7,4,22],"112":[2,4,1],"113":[6,6,10],"114":[5,6,31],"115":[7,6,15],"116":[5,6,11],"117":[11,4,30],"118":[11,4,31],"119":[12,4,37],"120":[4,1,4],"121":[2,4,1],"122":[8,6,19],"123":[11,6,27],"124":[8,6,26],"125":[6,6,39],"126":[13,6,28],"127":[8,6,25],"128":[4,6,17],"129":[6,6,18],"130":[5,6,24],"131":[5,6,18],"132":[4,6,10],"133":[7,6,12],"134":[7,6,12],"135":[4,6,36],"136":[5,6,21],"137":[7,6,22],"138":[6,6,12],"139":[6,6,12],"140":[3,6,35],"141":[4,6,35],"142":[6,6,12],"143":[7,6,13],"144":[9,6,38],"145":[7,6,13],"146":[7,6,21],"147":[7,6,15],"148":[2,6,12],"149":[7,4,5],"150":[8,4,5],"151":[8,4,5],"152":[8,4,5],"153":[2,1,3],"154":[2,1,3],"155":[2,1,24],"156":[3,1,3],"157":[2,3,2],"158":[6,5,48],"159":[3,1,3],"160":[2,3,2],"161":[6,5,48],"162":[2,1,24],"163":[1,1,1],"164":[1,1,2],"165":[1,1,1],"166":[1,1,1],"167":[1,1,1],"168":[1,1,1],"169":[1,1,7]},"averageFieldLength":[6.088235294117647,4.84705882352941,17.31176470588235],"storedFields":{"0":{"title":"mbcp","titles":[]},"1":{"title":"mbcp","titles":[]},"2":{"title":"mbcp.mp_math.angle","titles":[]},"3":{"title":"class Angle","titles":["mbcp.mp_math.angle"]},"4":{"title":"class AnyAngle(Angle)","titles":["mbcp.mp_math.angle"]},"5":{"title":"def __init__(self, value: float, is_radian: bool = False)","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"6":{"title":"def complementary(self) -> AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"7":{"title":"def supplementary(self) -> AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"8":{"title":"def degree(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"9":{"title":"def minimum_positive(self) -> AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"10":{"title":"def maximum_negative(self) -> AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"11":{"title":"def sin(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"12":{"title":"def cos(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"13":{"title":"def tan(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"14":{"title":"def cot(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"15":{"title":"def sec(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"16":{"title":"def csc(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"17":{"title":"def self + other: AnyAngle => AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"18":{"title":"def __eq__(self, other)","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"19":{"title":"def self - other: AnyAngle => AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"20":{"title":"def self * other: float => AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"21":{"title":"def self / other: float => AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"22":{"title":"def self / other: AnyAngle => float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"23":{"title":"def self / other","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"24":{"title":"mbcp.mp_math.const","titles":[]},"25":{"title":"var PI = math.pi","titles":["mbcp.mp_math.const"]},"26":{"title":"var E = math.e","titles":["mbcp.mp_math.const"]},"27":{"title":"var GOLDEN_RATIO = (1 + math.sqrt(5)) / 2","titles":["mbcp.mp_math.const"]},"28":{"title":"var GAMMA = 0.5772156649015329","titles":["mbcp.mp_math.const"]},"29":{"title":"var EPSILON = 0.0001","titles":["mbcp.mp_math.const"]},"30":{"title":"var APPROX = 0.001","titles":["mbcp.mp_math.const"]},"31":{"title":"mbcp.mp_math.equation","titles":[]},"32":{"title":"class CurveEquation","titles":["mbcp.mp_math.equation"]},"33":{"title":"def __init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc)","titles":["mbcp.mp_math.equation","class CurveEquation"]},"34":{"title":"def __call__(self, *t: Var) -> Point3 | tuple[Point3, ...]","titles":["mbcp.mp_math.equation","class CurveEquation"]},"35":{"title":"def get_partial_derivative_func(func: MultiVarsFunc, var: int | tuple[int, ...], epsilon: Number = EPSILON) -> MultiVarsFunc","titles":["mbcp.mp_math.equation"]},"36":{"title":"mbcp.mp_math.function","titles":[]},"37":{"title":"def cal_gradient_3vf(func: ThreeSingleVarsFunc, p: Point3, epsilon: float = EPSILON) -> Vector3","titles":["mbcp.mp_math.function"]},"38":{"title":"def curry(func: MultiVarsFunc, *args: Var) -> OneVarFunc","titles":["mbcp.mp_math.function"]},"39":{"title":"mbcp.mp_math","titles":[]},"40":{"title":"mbcp.mp_math.line","titles":[]},"41":{"title":"class Line3","titles":["mbcp.mp_math.line"]},"42":{"title":"def __init__(self, point: Point3, direction: Vector3)","titles":["mbcp.mp_math.line","class Line3"]},"43":{"title":"def approx(self, other: Line3, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"44":{"title":"def cal_angle(self, other: Line3) -> AnyAngle","titles":["mbcp.mp_math.line","class Line3"]},"45":{"title":"def cal_distance(self, other: Line3 | Point3) -> float","titles":["mbcp.mp_math.line","class Line3"]},"46":{"title":"def cal_intersection(self, other: Line3) -> Point3","titles":["mbcp.mp_math.line","class Line3"]},"47":{"title":"def cal_perpendicular(self, point: Point3) -> Line3","titles":["mbcp.mp_math.line","class Line3"]},"48":{"title":"def get_point(self, t: RealNumber) -> Point3","titles":["mbcp.mp_math.line","class Line3"]},"49":{"title":"def get_parametric_equations(self) -> tuple[OneSingleVarFunc, OneSingleVarFunc, OneSingleVarFunc]","titles":["mbcp.mp_math.line","class Line3"]},"50":{"title":"def is_approx_parallel(self, other: Line3, epsilon: float = 1e-06) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"51":{"title":"def is_parallel(self, other: Line3) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"52":{"title":"def is_collinear(self, other: Line3) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"53":{"title":"def is_point_on(self, point: Point3) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"54":{"title":"def is_coplanar(self, other: Line3) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"55":{"title":"def simplify(self)","titles":["mbcp.mp_math.line","class Line3"]},"56":{"title":"def from_two_points(cls, p1: Point3, p2: Point3) -> Line3","titles":["mbcp.mp_math.line","class Line3"]},"57":{"title":"def __and__(self, other: Line3) -> Line3 | Point3 | None","titles":["mbcp.mp_math.line","class Line3"]},"58":{"title":"def __eq__(self, other) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"59":{"title":"mbcp.mp_math","titles":[]},"60":{"title":"mbcp.mp_math.mp_math_typing","titles":[]},"61":{"title":"var RealNumber = int | float","titles":["mbcp.mp_math.mp_math_typing"]},"62":{"title":"var Number = RealNumber | complex","titles":["mbcp.mp_math.mp_math_typing"]},"63":{"title":"var SingleVar = TypeVar(\'SingleVar\', bound=Number)","titles":["mbcp.mp_math.mp_math_typing"]},"64":{"title":"var ArrayVar = TypeVar(\'ArrayVar\', bound=Iterable[Number])","titles":["mbcp.mp_math.mp_math_typing"]},"65":{"title":"var Var = SingleVar | ArrayVar","titles":["mbcp.mp_math.mp_math_typing"]},"66":{"title":"var OneSingleVarFunc = Callable[[SingleVar], SingleVar]","titles":["mbcp.mp_math.mp_math_typing"]},"67":{"title":"var OneArrayFunc = Callable[[ArrayVar], ArrayVar]","titles":["mbcp.mp_math.mp_math_typing"]},"68":{"title":"var OneVarFunc = OneSingleVarFunc | OneArrayFunc","titles":["mbcp.mp_math.mp_math_typing"]},"69":{"title":"var TwoSingleVarsFunc = Callable[[SingleVar, SingleVar], SingleVar]","titles":["mbcp.mp_math.mp_math_typing"]},"70":{"title":"var TwoArraysFunc = Callable[[ArrayVar, ArrayVar], ArrayVar]","titles":["mbcp.mp_math.mp_math_typing"]},"71":{"title":"var TwoVarsFunc = TwoSingleVarsFunc | TwoArraysFunc","titles":["mbcp.mp_math.mp_math_typing"]},"72":{"title":"var ThreeSingleVarsFunc = Callable[[SingleVar, SingleVar, SingleVar], SingleVar]","titles":["mbcp.mp_math.mp_math_typing"]},"73":{"title":"var ThreeArraysFunc = Callable[[ArrayVar, ArrayVar, ArrayVar], ArrayVar]","titles":["mbcp.mp_math.mp_math_typing"]},"74":{"title":"var ThreeVarsFunc = ThreeSingleVarsFunc | ThreeArraysFunc","titles":["mbcp.mp_math.mp_math_typing"]},"75":{"title":"var MultiSingleVarsFunc = Callable[..., SingleVar]","titles":["mbcp.mp_math.mp_math_typing"]},"76":{"title":"var MultiArraysFunc = Callable[..., ArrayVar]","titles":["mbcp.mp_math.mp_math_typing"]},"77":{"title":"var MultiVarsFunc = MultiSingleVarsFunc | MultiArraysFunc","titles":["mbcp.mp_math.mp_math_typing"]},"78":{"title":"mbcp.mp_math.plane","titles":[]},"79":{"title":"class Plane3","titles":["mbcp.mp_math.plane"]},"80":{"title":"def __init__(self, a: float, b: float, c: float, d: float)","titles":["mbcp.mp_math.plane","class Plane3"]},"81":{"title":"def approx(self, other: Plane3) -> bool","titles":["mbcp.mp_math.plane","class Plane3"]},"82":{"title":"def cal_angle(self, other: Line3 | Plane3) -> AnyAngle","titles":["mbcp.mp_math.plane","class Plane3"]},"83":{"title":"def cal_distance(self, other: Plane3 | Point3) -> float","titles":["mbcp.mp_math.plane","class Plane3"]},"84":{"title":"def cal_intersection_line3(self, other: Plane3) -> Line3","titles":["mbcp.mp_math.plane","class Plane3"]},"85":{"title":"def cal_intersection_point3(self, other: Line3) -> Point3","titles":["mbcp.mp_math.plane","class Plane3"]},"86":{"title":"def cal_parallel_plane3(self, point: Point3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"87":{"title":"def is_parallel(self, other: Plane3) -> bool","titles":["mbcp.mp_math.plane","class Plane3"]},"88":{"title":"def normal(self) -> Vector3","titles":["mbcp.mp_math.plane","class Plane3"]},"89":{"title":"def from_point_and_normal(cls, point: Point3, normal: Vector3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"90":{"title":"def from_three_points(cls, p1: Point3, p2: Point3, p3: Point3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"91":{"title":"def from_two_lines(cls, l1: Line3, l2: Line3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"92":{"title":"def from_point_and_line(cls, point: Point3, line: Line3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"93":{"title":"def __and__(self, other: Line3) -> Point3 | None","titles":["mbcp.mp_math.plane","class Plane3"]},"94":{"title":"def __and__(self, other: Plane3) -> Line3 | None","titles":["mbcp.mp_math.plane","class Plane3"]},"95":{"title":"def __and__(self, other)","titles":["mbcp.mp_math.plane","class Plane3"]},"96":{"title":"def __eq__(self, other) -> bool","titles":["mbcp.mp_math.plane","class Plane3"]},"97":{"title":"def __rand__(self, other: Line3) -> Point3","titles":["mbcp.mp_math.plane","class Plane3"]},"98":{"title":"mbcp.mp_math.point","titles":[]},"99":{"title":"class Point3","titles":["mbcp.mp_math.point"]},"100":{"title":"def __init__(self, x: float, y: float, z: float)","titles":["mbcp.mp_math.point","class Point3"]},"101":{"title":"def approx(self, other: Point3, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.point","class Point3"]},"102":{"title":"def self + other: Vector3 => Point3","titles":["mbcp.mp_math.point","class Point3"]},"103":{"title":"def self + other: Point3 => Point3","titles":["mbcp.mp_math.point","class Point3"]},"104":{"title":"def self + other","titles":["mbcp.mp_math.point","class Point3"]},"105":{"title":"def __eq__(self, other)","titles":["mbcp.mp_math.point","class Point3"]},"106":{"title":"def self - other: Point3 => Vector3","titles":["mbcp.mp_math.point","class Point3"]},"107":{"title":"mbcp.mp_math.segment","titles":[]},"108":{"title":"class Segment3","titles":["mbcp.mp_math.segment"]},"109":{"title":"def __init__(self, p1: Point3, p2: Point3)","titles":["mbcp.mp_math.segment","class Segment3"]},"110":{"title":"mbcp.mp_math.utils","titles":[]},"111":{"title":"def clamp(x: float, min_: float, max_: float) -> float","titles":["mbcp.mp_math.utils"]},"112":{"title":"class Approx","titles":["mbcp.mp_math.utils"]},"113":{"title":"def __init__(self, value: RealNumber)","titles":["mbcp.mp_math.utils","class Approx"]},"114":{"title":"def __eq__(self, other)","titles":["mbcp.mp_math.utils","class Approx"]},"115":{"title":"def raise_type_error(self, other)","titles":["mbcp.mp_math.utils","class Approx"]},"116":{"title":"def __ne__(self, other)","titles":["mbcp.mp_math.utils","class Approx"]},"117":{"title":"def approx(x: float, y: float = 0.0, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.utils"]},"118":{"title":"def sign(x: float, only_neg: bool = False) -> str","titles":["mbcp.mp_math.utils"]},"119":{"title":"def sign_format(x: float, only_neg: bool = False) -> str","titles":["mbcp.mp_math.utils"]},"120":{"title":"mbcp.mp_math.vector","titles":[]},"121":{"title":"class Vector3","titles":["mbcp.mp_math.vector"]},"122":{"title":"def __init__(self, x: float, y: float, z: float)","titles":["mbcp.mp_math.vector","class Vector3"]},"123":{"title":"def approx(self, other: Vector3, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.vector","class Vector3"]},"124":{"title":"def cal_angle(self, other: Vector3) -> AnyAngle","titles":["mbcp.mp_math.vector","class Vector3"]},"125":{"title":"def cross(self, other: Vector3) -> Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"126":{"title":"def is_approx_parallel(self, other: Vector3, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.vector","class Vector3"]},"127":{"title":"def is_parallel(self, other: Vector3) -> bool","titles":["mbcp.mp_math.vector","class Vector3"]},"128":{"title":"def normalize(self)","titles":["mbcp.mp_math.vector","class Vector3"]},"129":{"title":"def np_array(self) -> np.ndarray","titles":["mbcp.mp_math.vector","class Vector3"]},"130":{"title":"def length(self) -> float","titles":["mbcp.mp_math.vector","class Vector3"]},"131":{"title":"def unit(self) -> Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"132":{"title":"def __abs__(self)","titles":["mbcp.mp_math.vector","class Vector3"]},"133":{"title":"def self + other: Vector3 => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"134":{"title":"def self + other: Point3 => Point3","titles":["mbcp.mp_math.vector","class Vector3"]},"135":{"title":"def self + other","titles":["mbcp.mp_math.vector","class Vector3"]},"136":{"title":"def __eq__(self, other)","titles":["mbcp.mp_math.vector","class Vector3"]},"137":{"title":"def self + other: Point3 => Point3","titles":["mbcp.mp_math.vector","class Vector3"]},"138":{"title":"def self - other: Vector3 => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"139":{"title":"def self - other: Point3 => Point3","titles":["mbcp.mp_math.vector","class Vector3"]},"140":{"title":"def self - other","titles":["mbcp.mp_math.vector","class Vector3"]},"141":{"title":"def self - other: Point3","titles":["mbcp.mp_math.vector","class Vector3"]},"142":{"title":"def self * other: Vector3 => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"143":{"title":"def self * other: RealNumber => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"144":{"title":"def self * other: int | float | Vector3 => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"145":{"title":"def self * other: RealNumber => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"146":{"title":"def self @ other: Vector3 => RealNumber","titles":["mbcp.mp_math.vector","class Vector3"]},"147":{"title":"def self / other: RealNumber => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"148":{"title":"def - self","titles":["mbcp.mp_math.vector","class Vector3"]},"149":{"title":"var zero_vector3 = Vector3(0, 0, 0)","titles":["mbcp.mp_math.vector"]},"150":{"title":"var x_axis = Vector3(1, 0, 0)","titles":["mbcp.mp_math.vector"]},"151":{"title":"var y_axis = Vector3(0, 1, 0)","titles":["mbcp.mp_math.vector"]},"152":{"title":"var z_axis = Vector3(0, 0, 1)","titles":["mbcp.mp_math.vector"]},"153":{"title":"mbcp.particle","titles":[]},"154":{"title":"mbcp.particle","titles":[]},"155":{"title":"mbcp.presets","titles":[]},"156":{"title":"mbcp.presets.model","titles":[]},"157":{"title":"class GeometricModels","titles":["mbcp.presets.model"]},"158":{"title":"def sphere(radius: float, density: float)","titles":["mbcp.presets.model","class GeometricModels"]},"159":{"title":"mbcp.presets.model","titles":[]},"160":{"title":"class GeometricModels","titles":["mbcp.presets.model"]},"161":{"title":"def sphere(radius: float, density: float)","titles":["mbcp.presets.model","class GeometricModels"]},"162":{"title":"mbcp.presets","titles":[]},"163":{"title":"demo","titles":[]},"164":{"title":"开始不了一点","titles":[]},"165":{"title":"AAA","titles":[]},"166":{"title":"BBB","titles":["AAA"]},"167":{"title":"C","titles":[]},"168":{"title":"ddd","titles":["C"]},"169":{"title":"Reference","titles":[]}},"dirtCount":0,"index":[["∫12x111",{"2":{"164":1}}],["开始不了一点",{"0":{"164":1}}],["4",{"2":{"158":1,"161":1}}],["球体上的点集",{"2":{"158":2,"161":2}}],["生成球体上的点集",{"2":{"158":2,"161":2}}],["几何模型点集",{"2":{"156":1,"159":1}}],["下午9",{"2":{"155":1,"162":1}}],["8",{"2":{"155":1,"162":1}}],["零向量",{"2":{"149":1}}],["非点乘",{"2":{"144":2}}],["别去点那边实现了",{"2":{"137":2}}],["单位向量",{"2":{"131":2}}],["单变量",{"2":{"63":1}}],["模",{"2":{"130":2}}],["向量的模",{"2":{"130":2}}],["向量积",{"2":{"125":2}}],["将向量归一化",{"2":{"128":2}}],["允许的误差",{"2":{"126":2}}],["j",{"2":{"125":1}}],["行列式的结果",{"2":{"125":2}}],["其余结果的模为平行四边形的面积",{"2":{"125":2}}],["叉乘使用cross",{"2":{"144":2}}],["叉乘为0",{"2":{"125":2}}],["叉乘",{"2":{"125":2}}],["夹角",{"2":{"124":2}}],["夹角弧度",{"2":{"44":2,"82":2}}],["以及一些常用的向量",{"2":{"120":1}}],["格式化符号数",{"2":{"119":2}}],["quot",{"2":{"118":2,"119":4}}],["符号",{"2":{"118":2,"119":2}}],["获取该向量的单位向量",{"2":{"131":2}}],["获取数的符号",{"2":{"118":2}}],["获取直线的参数方程",{"2":{"49":2}}],["获取直线上的点",{"2":{"48":2}}],["用于判断是否近似于0",{"2":{"117":2}}],["限制后的值",{"2":{"111":2}}],["待限定的值",{"2":{"111":2}}],["区间限定函数",{"2":{"111":2}}],["us",{"2":{"169":1}}],["unit",{"0":{"131":1},"2":{"131":1}}],["unsupported",{"2":{"45":1,"82":1,"83":1,"95":1,"115":1,"135":1,"140":1,"141":1,"144":1}}],["utils",{"0":{"110":1},"1":{"111":1,"112":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1}}],["中心点",{"2":{"109":1}}],["中实现",{"2":{"106":2}}],["长度",{"2":{"109":1}}],["方向向量",{"2":{"109":1}}],["``x2",{"2":{"125":1}}],["``x1",{"2":{"125":1}}],["``i",{"2":{"125":1}}],["```",{"2":{"38":1}}],["```python",{"2":{"38":1}}],["`vector3`",{"2":{"106":1}}],["已在",{"2":{"106":2}}],["已知一个函数$f",{"2":{"37":1}}],["已知一个函数f",{"2":{"37":1}}],["坐标",{"2":{"100":6}}],["笛卡尔坐标系中的点",{"2":{"100":2}}],["人话",{"2":{"95":2}}],["取两平面的交集",{"2":{"95":2}}],["面上直线",{"2":{"92":2}}],["面上一点",{"2":{"92":2}}],["法向量",{"2":{"88":2,"89":2}}],["所求平面",{"2":{"86":2}}],["k``",{"2":{"125":1}}],["k",{"2":{"81":12}}],["另一个向量",{"2":{"124":2,"126":2,"127":2}}],["另一个平面或点",{"2":{"83":2}}],["另一个平面",{"2":{"81":2,"82":2,"84":2,"87":2}}],["另一条直线",{"2":{"43":2,"44":2,"46":2,"50":2,"51":2,"52":2,"54":2,"57":2}}],["常数项",{"2":{"80":2}}],["常量",{"2":{"25":1}}],["平面平行返回none",{"2":{"95":2}}],["平面",{"2":{"89":2,"90":2,"91":2,"92":2}}],["平面上的一点",{"2":{"89":2}}],["平面的法向量",{"2":{"88":2}}],["平面与直线平行或重合",{"2":{"85":2}}],["平面方程",{"2":{"80":2}}],["平行线返回none",{"2":{"57":2}}],["平行直线或点",{"2":{"45":2}}],["多元函数",{"2":{"77":1}}],["多元数组函数",{"2":{"76":1}}],["多元单变量函数",{"2":{"75":1}}],["二元函数",{"2":{"71":1}}],["二元数组函数",{"2":{"70":1}}],["二元单变量函数",{"2":{"69":1}}],["一元函数",{"2":{"68":1}}],["一元数组函数",{"2":{"67":1}}],["一元单变量函数",{"2":{"66":1}}],["一阶偏导",{"2":{"35":2}}],["变量",{"2":{"65":1}}],["变量位置",{"2":{"35":2}}],["数组运算",{"2":{"144":2}}],["数组变量",{"2":{"64":1}}],["数2",{"2":{"117":2}}],["数1",{"2":{"117":2}}],["数",{"2":{"62":1,"118":2,"119":2}}],["实数",{"2":{"61":1}}],["类型",{"2":{"61":1,"62":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"149":1,"150":1,"151":1,"152":1}}],["∧",{"2":{"58":2}}],["交线",{"2":{"95":2}}],["交线返回交点",{"2":{"57":2}}],["交点",{"2":{"46":2,"57":2,"85":2}}],["重合线返回自身",{"2":{"57":2}}],["由点和直线构造平面",{"2":{"92":2}}],["由点和法向量构造平面",{"2":{"89":2}}],["由两直线构造平面",{"2":{"91":2}}],["由两点构造直线",{"2":{"56":2}}],["由三点构造平面",{"2":{"90":2}}],["由一个点和一个方向向量确定",{"2":{"42":2}}],["工厂函数",{"2":{"56":2,"89":2,"90":2,"91":2,"92":2}}],["并对向量单位化",{"2":{"55":2}}],["处理",{"2":{"55":2}}],["处的梯度向量为",{"2":{"37":1}}],["化",{"2":{"55":2}}],["按照可行性一次对x",{"2":{"55":2}}],["不平行平面的交线",{"2":{"95":2}}],["不包含点",{"2":{"92":2}}],["不与平面平行或在平面上的直线",{"2":{"85":2}}],["不返回值",{"2":{"55":2,"128":2}}],["不支持的类型",{"2":{"44":2,"45":2,"82":2,"83":2}}],["自体归一化",{"2":{"128":2}}],["自体简化",{"2":{"55":2}}],["自然对数的底",{"2":{"26":1}}],["等价相等",{"2":{"55":2}}],["简化直线方程",{"2":{"55":2}}],["两平面的交线",{"2":{"84":2}}],["两直线方向向量的叉乘与两直线上任意一点的向量的点积为0",{"2":{"54":2}}],["两角的和为180°",{"2":{"7":2}}],["两角的和为90°",{"2":{"6":2}}],["充要条件",{"2":{"54":2}}],["判断两个向量是否相等",{"2":{"136":2}}],["判断两个向量是否平行",{"2":{"127":2}}],["判断两个向量是否近似平行",{"2":{"126":2}}],["判断两个向量是否近似相等",{"2":{"123":2}}],["判断两个数是否近似相等",{"2":{"117":2}}],["判断两个点是否相等",{"2":{"105":2}}],["判断两个点是否近似相等",{"2":{"101":2}}],["判断两个平面是否平行",{"2":{"87":2}}],["判断两个平面是否近似相等",{"2":{"81":2}}],["判断两条直线是否等价",{"2":{"58":2}}],["判断两条直线是否共面",{"2":{"54":2}}],["判断两条直线是否共线",{"2":{"52":2}}],["判断两条直线是否平行",{"2":{"51":2}}],["判断两条直线是否近似平行",{"2":{"50":2}}],["判断两条直线是否近似相等",{"2":{"43":2}}],["判断点是否在直线上",{"2":{"53":2}}],["则两向量平行",{"2":{"125":2}}],["则同一个t对应的点不同",{"2":{"48":2}}],["则其在点$",{"2":{"37":1}}],["则其在点",{"2":{"37":1}}],["但起始点和方向向量不同",{"2":{"48":2}}],["同一条直线",{"2":{"48":2}}],["垂线",{"2":{"47":2}}],["指定点",{"2":{"47":2,"86":2}}],["距离",{"2":{"45":2,"83":2}}],["是否相等",{"2":{"136":2}}],["是否只返回负数的符号",{"2":{"118":2,"119":2}}],["是否共面",{"2":{"54":2}}],["是否共线",{"2":{"52":2}}],["是否在直线上",{"2":{"53":2}}],["是否平行",{"2":{"51":2,"87":2,"127":2}}],["是否近似平行",{"2":{"50":2,"126":2}}],["是否近似相等",{"2":{"43":2,"81":2,"101":2,"117":2,"123":2}}],["是否为弧度",{"2":{"5":2}}],["误差",{"2":{"43":2,"50":2,"117":2}}],["直线2",{"2":{"91":2}}],["直线1",{"2":{"91":2}}],["直线",{"2":{"56":2}}],["直线不共面",{"2":{"46":2}}],["直线平行",{"2":{"46":2}}],["直线的方向向量",{"2":{"42":2}}],["直线上的一点",{"2":{"42":2}}],["三元数组函数",{"2":{"73":1}}],["三元单变量函数",{"2":{"72":1}}],["三元函数",{"2":{"37":2,"74":1}}],["三维空间中的线段",{"2":{"109":2}}],["三维空间中的直线",{"2":{"42":2}}],["三维向量",{"2":{"39":1,"59":1}}],["三维线段",{"2":{"39":1,"59":1}}],["三维点",{"2":{"39":1,"59":1}}],["三维平面",{"2":{"39":1,"59":1}}],["三维直线",{"2":{"39":1,"59":1}}],["任意角",{"2":{"39":1,"59":1}}],["任意角度",{"2":{"5":2}}],["导入的类有",{"2":{"39":1,"59":1}}],["本包定义了一些常用的导入",{"2":{"39":1,"59":1}}],["本模块用于内部类型提示",{"2":{"60":1}}],["本模块定义了粒子生成相关的工具",{"2":{"153":1,"154":1}}],["本模块定义了3维向量的类vector3",{"2":{"120":1}}],["本模块定义了一些常用的工具函数",{"2":{"110":1}}],["本模块定义了一些常用的常量",{"2":{"24":1}}],["本模块定义了三维空间中点的类",{"2":{"98":1}}],["本模块定义了三维空间中的线段类",{"2":{"107":1}}],["本模块定义了三维空间中的平面类",{"2":{"78":1}}],["本模块定义了三维空间中的直线类",{"2":{"40":1}}],["本模块定义了方程相关的类和函数以及一些常用的数学函数",{"2":{"31":1}}],["本模块定义了角度相关的类",{"2":{"2":1}}],["本模块塞了一些预设的粒子生成器",{"2":{"0":1,"1":1}}],["help",{"2":{"169":1}}],["have",{"2":{"84":1}}],["https",{"2":{"38":1}}],["high",{"2":{"35":2}}],["hide",{"2":{"35":2,"38":1}}],["6",{"2":{"38":2}}],["3维向量",{"2":{"122":2}}],["355859667",{"2":{"38":1}}],["3",{"2":{"38":2}}],["3vf",{"0":{"37":1},"2":{"37":1}}],["bbb",{"0":{"166":1}}],["by",{"2":{"80":2}}],["bound=iterable",{"0":{"64":1}}],["bound=number",{"0":{"63":1}}],["bool=false",{"2":{"5":1,"118":1,"119":1}}],["bool",{"0":{"5":1,"43":1,"50":1,"51":1,"52":1,"53":1,"54":1,"58":1,"81":1,"87":1,"96":1,"101":1,"117":1,"118":1,"119":1,"123":1,"126":1,"127":1},"2":{"43":1,"50":1,"51":1,"52":1,"53":1,"54":1,"58":1,"81":1,"87":1,"96":1,"101":1,"117":1,"123":1,"126":1,"127":1}}],["b",{"0":{"80":1},"2":{"38":4,"80":5,"81":7,"83":2,"84":12,"85":2,"88":1,"89":3}}],["示例",{"2":{"38":1}}],["柯里化后的函数",{"2":{"38":2}}],["柯理化",{"2":{"38":2}}],["可直接从mbcp",{"2":{"39":1,"59":1}}],["可参考",{"2":{"38":1}}],["可参考函数式编程",{"2":{"38":1}}],["可为整数",{"2":{"35":2}}],["有关函数柯里化",{"2":{"38":2}}],["对多参数函数进行柯里化",{"2":{"38":2}}],["ddd",{"0":{"168":1}}],["d",{"0":{"80":1},"2":{"80":7,"81":6,"83":1,"84":6,"85":1,"89":2}}],["documentation",{"2":{"169":1}}],["do",{"2":{"46":2}}],["distance",{"0":{"45":1,"83":1},"2":{"45":1,"83":1}}],["direction",{"0":{"42":1},"2":{"42":5,"43":1,"44":2,"45":8,"46":6,"47":1,"48":1,"49":3,"50":2,"51":2,"52":1,"53":1,"54":2,"55":4,"56":2,"58":3,"82":1,"84":2,"85":4,"91":1,"92":1,"95":1,"109":2}}],["dz",{"2":{"37":2}}],["dy",{"2":{"37":2}}],["dx",{"2":{"37":2}}],["demo",{"0":{"163":1}}],["density",{"0":{"158":1,"161":1},"2":{"158":4,"161":4}}],["derivative",{"0":{"35":1},"2":{"35":6}}],["degree",{"0":{"8":1},"2":{"8":1}}],["def",{"0":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1},"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"21":1,"22":1,"35":2,"38":2,"56":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"102":1,"103":1,"129":1,"130":1,"131":1,"133":1,"134":1,"138":1,"139":1,"142":1,"143":1,"158":1,"161":1}}],["$处的梯度向量为",{"2":{"37":1}}],["$",{"2":{"37":3}}],["梯度",{"2":{"37":2}}],["点乘",{"2":{"146":2}}],["点乘使用",{"2":{"144":2}}],["点3",{"2":{"90":2}}],["点法式构造",{"2":{"89":2}}],["点2",{"2":{"56":2,"90":2}}],["点1",{"2":{"56":2,"90":2}}],["点",{"2":{"37":2,"48":2,"53":2}}],["∂f∂z",{"2":{"37":1}}],["∂f∂y",{"2":{"37":1}}],["∂f∂x",{"2":{"37":1}}],["∇f",{"2":{"37":1}}],["计算平行于该平面且过指定点的平面",{"2":{"86":2}}],["计算平面与直线的交点",{"2":{"85":2}}],["计算平面与平面或点之间的距离",{"2":{"83":2}}],["计算平面与平面之间的夹角",{"2":{"82":2}}],["计算两个向量之间的夹角",{"2":{"124":2}}],["计算两平面的交线",{"2":{"84":2}}],["计算两条直线点集合的交集",{"2":{"57":2}}],["计算两条直线的交点",{"2":{"46":2}}],["计算直线经过指定点p的垂线",{"2":{"47":2}}],["计算直线和直线或点之间的距离",{"2":{"45":2}}],["计算直线和直线之间的夹角",{"2":{"44":2}}],["计算三元函数在某点的梯度向量",{"2":{"37":2}}],["计算曲线上的点",{"2":{"34":2}}],["v3",{"2":{"125":2}}],["vector",{"0":{"120":1},"1":{"121":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"150":1,"151":1,"152":1},"2":{"106":1}}],["vector3",{"0":{"37":1,"42":1,"88":1,"89":1,"102":1,"106":1,"121":1,"123":1,"124":1,"125":2,"126":1,"127":1,"131":1,"133":2,"138":2,"142":2,"143":1,"144":2,"145":1,"146":1,"147":1,"149":2,"150":1,"151":1,"152":1},"1":{"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1},"2":{"37":2,"39":1,"42":1,"59":1,"88":2,"89":1,"91":1,"102":1,"106":4,"114":2,"123":1,"124":1,"125":3,"126":1,"127":2,"131":1,"133":2,"135":3,"138":2,"140":3,"141":1,"142":2,"143":1,"144":6,"145":1,"146":1,"147":2,"148":1,"149":1,"150":1,"151":1,"152":1}}],["v2",{"2":{"58":2,"90":2,"91":4,"125":2}}],["v1",{"2":{"58":4,"90":2,"91":2,"125":2}}],["v",{"2":{"35":2,"104":2,"106":4,"135":8,"137":2,"140":8,"141":2}}],["var",{"0":{"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"34":1,"35":1,"38":1,"61":1,"62":1,"63":1,"64":1,"65":2,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"149":1,"150":1,"151":1,"152":1},"2":{"34":1,"35":13,"38":3}}],["valueerror",{"2":{"35":3,"46":6,"84":1,"85":3}}],["value",{"0":{"5":1,"113":1},"2":{"5":5,"113":3,"114":6,"115":1}}],["求高阶偏导函数",{"2":{"35":1}}],["求n元函数一阶偏导函数",{"2":{"35":2}}],["l2",{"0":{"91":1},"2":{"91":5}}],["l1",{"0":{"91":1},"2":{"91":7}}],["lambda",{"2":{"49":3}}],["left",{"2":{"37":1}}],["length",{"0":{"130":1},"2":{"45":5,"46":1,"82":2,"109":2,"124":2,"126":1,"128":5,"130":1,"131":1,"132":1}}],["len",{"2":{"34":1}}],["liteyukistudio",{"2":{"155":1,"162":1}}],["litedoc",{"2":{"35":2,"38":1}}],["linalg",{"2":{"84":3}}],["lines",{"0":{"91":1},"2":{"46":2,"91":1}}],["line",{"0":{"40":1,"92":2},"1":{"41":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1},"2":{"85":1,"92":5}}],["line3",{"0":{"41":1,"43":1,"44":1,"45":1,"46":1,"47":1,"50":1,"51":1,"52":1,"54":1,"56":1,"57":2,"82":1,"84":2,"85":1,"91":2,"92":1,"93":1,"94":1,"97":1},"1":{"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1},"2":{"39":1,"43":1,"44":1,"45":2,"46":1,"47":2,"50":1,"51":1,"52":1,"54":1,"56":1,"57":2,"59":1,"82":2,"84":3,"85":1,"91":2,"92":1,"93":1,"94":1,"95":2,"97":1,"114":1}}],["list",{"2":{"35":8,"158":10,"161":10}}],["无效变量类型",{"2":{"35":2}}],["引发",{"2":{"35":1,"44":1,"45":1,"46":1,"82":1,"83":1,"85":1}}],["偏导函数",{"2":{"35":2}}],["偏移量",{"2":{"35":2,"37":2}}],["高阶偏导数值",{"2":{"35":1}}],["高阶偏导",{"2":{"35":2}}],["函数式编程",{"2":{"38":1}}],["函数",{"2":{"35":2,"38":2}}],["因此该函数的稳定性有待提升",{"2":{"35":2}}],["目前数学界对于一个函数的导函数并没有通解的说法",{"2":{"35":2}}],["目标点",{"2":{"34":2}}],["warning",{"2":{"35":2}}],["慎用",{"2":{"35":2}}],["这玩意不太稳定",{"2":{"35":2}}],["num",{"2":{"158":5,"161":5}}],["number=epsilon",{"2":{"35":1}}],["number",{"0":{"35":1,"62":1,"64":1}}],["ndarray",{"0":{"129":1},"2":{"129":1}}],["neg",{"0":{"118":1,"119":1},"2":{"118":4,"119":4,"148":1}}],["negative",{"0":{"10":1},"2":{"10":1}}],["ne",{"0":{"116":1},"2":{"116":1}}],["np",{"0":{"129":2},"2":{"84":9,"129":3,"158":9,"161":9}}],["no",{"2":{"84":1}}],["normal",{"0":{"88":1,"89":2},"2":{"82":5,"84":4,"85":1,"86":2,"87":2,"88":1,"89":7,"90":3,"91":1,"92":1,"95":3}}],["normalize",{"0":{"128":1},"2":{"55":1,"128":1}}],["none",{"0":{"57":1,"93":1,"94":1},"2":{"57":2,"93":1,"94":1,"95":2}}],["not",{"2":{"45":1,"46":4,"57":1,"116":1,"118":1,"119":1}}],["nabla",{"2":{"37":1}}],["|",{"0":{"34":1,"35":1,"45":1,"57":2,"61":1,"62":1,"65":1,"68":1,"71":1,"74":1,"77":1,"82":1,"83":1,"93":1,"94":1,"144":2},"2":{"34":1,"35":1,"45":1,"57":2,"82":1,"83":1,"93":1,"94":1,"144":2}}],["曲线方程",{"2":{"33":2,"39":1,"59":1}}],["z轴单位向量",{"2":{"152":1}}],["z轴分量",{"2":{"122":2}}],["z2``",{"2":{"125":1}}],["z1``",{"2":{"125":1}}],["zero",{"0":{"149":1},"2":{"91":1,"127":1}}],["z系数",{"2":{"80":2}}],["zhihu",{"2":{"38":1}}],["zhuanlan",{"2":{"38":1}}],["z0",{"2":{"37":2}}],["zip",{"2":{"34":1}}],["z函数",{"2":{"33":2}}],["z",{"0":{"33":1,"100":1,"122":1,"152":1},"2":{"33":5,"34":4,"37":11,"49":4,"55":4,"83":1,"84":4,"85":4,"89":2,"100":7,"101":2,"104":2,"105":2,"106":2,"109":2,"114":2,"122":5,"123":2,"125":4,"128":1,"129":1,"130":1,"135":4,"136":2,"137":2,"140":4,"141":2,"144":3,"146":2,"147":1,"148":1,"158":2,"161":2}}],["y轴单位向量",{"2":{"151":1}}],["y轴分量",{"2":{"122":2}}],["y2",{"2":{"125":1}}],["y1",{"2":{"125":1}}],["y系数",{"2":{"80":2}}],["y0",{"2":{"37":2}}],["y函数",{"2":{"33":2}}],["y",{"0":{"33":1,"100":1,"117":1,"122":1,"151":1},"2":{"33":5,"34":4,"37":11,"49":4,"55":4,"83":1,"84":4,"85":4,"89":2,"100":7,"101":2,"104":2,"105":2,"106":2,"109":2,"114":2,"117":4,"122":5,"123":2,"125":4,"128":1,"129":1,"130":1,"135":4,"136":2,"137":2,"140":4,"141":2,"144":3,"146":2,"147":1,"148":1,"158":2,"161":2}}],["x轴单位向量",{"2":{"150":1}}],["x轴分量",{"2":{"122":2}}],["x3c",{"2":{"101":3,"114":1,"117":1,"118":1,"119":1,"123":3,"126":1}}],["x26",{"2":{"95":1}}],["x系数",{"2":{"80":2}}],["x0",{"2":{"37":2}}],["x函数",{"2":{"33":2}}],["x",{"0":{"33":1,"100":1,"111":1,"117":1,"118":1,"119":1,"122":1,"150":1},"2":{"33":5,"34":4,"37":11,"49":4,"55":2,"83":1,"84":4,"85":4,"89":2,"100":7,"101":2,"104":2,"105":2,"106":2,"109":2,"111":4,"114":2,"117":4,"118":5,"119":8,"122":5,"123":2,"125":4,"128":1,"129":1,"130":1,"135":4,"136":2,"137":2,"140":4,"141":2,"144":3,"146":2,"147":1,"148":1,"158":2,"161":2}}],["约等于判定误差",{"2":{"30":1}}],["精度误差",{"2":{"29":1}}],["欧拉常数",{"2":{"28":1}}],["06",{"0":{"50":1},"2":{"50":1}}],["001",{"0":{"30":1}}],["0001",{"0":{"29":1}}],["0",{"0":{"28":1,"29":1,"30":1,"117":2,"149":3,"150":2,"151":2,"152":2},"2":{"34":3,"37":6,"45":2,"54":1,"55":8,"80":2,"81":3,"83":2,"84":9,"85":1,"95":1,"117":1,"118":2,"119":4,"158":2,"161":2}}],["黄金分割比",{"2":{"27":1}}],["5772156649015329",{"0":{"28":1}}],["5",{"0":{"27":1},"2":{"83":1}}],["geometricmodels",{"0":{"157":1,"160":1},"1":{"158":1,"161":1}}],["get",{"0":{"35":1,"48":1,"49":1},"2":{"35":2,"48":1,"49":1,"85":1,"91":1}}],["gradient",{"0":{"37":1},"2":{"37":1}}],["gamma",{"0":{"28":1}}],["golden",{"0":{"27":1}}],["gt",{"0":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"19":1,"20":1,"21":1,"22":1,"34":1,"35":1,"37":1,"38":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"96":1,"97":1,"101":1,"102":1,"103":1,"106":1,"111":1,"117":1,"118":1,"119":1,"123":1,"124":1,"125":1,"126":1,"127":1,"129":1,"130":1,"131":1,"133":1,"134":1,"137":1,"138":1,"139":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1},"2":{"104":2,"106":2,"119":3,"125":1,"135":2,"137":1,"140":2,"141":1}}],["π",{"2":{"25":1}}],["to",{"2":{"169":1}}],["time",{"2":{"155":1,"162":1}}],["tip",{"2":{"37":2,"38":2}}],["theta",{"2":{"158":3,"161":3}}],["the",{"2":{"85":2,"169":1}}],["three",{"0":{"90":1},"2":{"90":1}}],["threevarsfunc",{"0":{"74":1}}],["threearraysfunc",{"0":{"73":1,"74":1}}],["threesinglevarsfunc",{"0":{"37":1,"72":1,"74":1},"2":{"37":1}}],["typing",{"0":{"60":1},"1":{"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1}}],["typevar",{"0":{"63":1,"64":1}}],["typealias",{"2":{"61":1,"62":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1}}],["typeerror",{"2":{"44":2,"45":3,"82":3,"83":3,"95":1,"115":1,"135":1,"140":1,"141":1,"144":1}}],["type",{"0":{"115":1},"2":{"35":1,"45":1,"82":2,"83":2,"95":2,"114":2,"115":4,"135":2,"140":2,"141":2,"144":2}}],["twovarsfunc",{"0":{"71":1}}],["twoarraysfunc",{"0":{"70":1,"71":1}}],["twosinglevarsfunc",{"0":{"69":1,"71":1}}],["two",{"0":{"56":1,"91":1},"2":{"56":1,"91":1}}],["tuple",{"0":{"34":1,"35":1,"49":1},"2":{"34":2,"35":2,"49":1}}],["t",{"0":{"34":1,"48":1},"2":{"34":10,"48":4,"49":12,"85":4}}],["truediv",{"2":{"21":1,"22":1,"23":1,"147":1}}],["tan",{"0":{"13":1},"2":{"13":2,"14":1}}],["outlook",{"2":{"155":1,"162":1}}],["operand",{"2":{"95":1,"135":1,"140":1,"141":1,"144":1}}],["or",{"2":{"57":1,"85":1}}],["order",{"2":{"35":2}}],["only",{"0":{"118":1,"119":1},"2":{"118":4,"119":4}}],["on",{"0":{"53":1},"2":{"53":1}}],["onearrayfunc",{"0":{"67":1,"68":1}}],["onesinglevarfunc",{"0":{"49":3,"66":1,"68":1},"2":{"49":3}}],["onevarfunc",{"0":{"33":3,"38":1,"68":1},"2":{"33":3,"38":1}}],["overload",{"2":{"20":1,"21":2,"22":1,"92":1,"93":2,"94":1,"101":1,"102":2,"103":1,"132":1,"133":2,"134":1,"137":1,"138":2,"139":1,"141":1,"142":2,"143":1}}],["other",{"0":{"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"43":1,"44":1,"45":1,"46":1,"50":1,"51":1,"52":1,"54":1,"57":1,"58":1,"81":1,"82":1,"83":1,"84":1,"85":1,"87":1,"93":1,"94":1,"95":1,"96":1,"97":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"114":1,"115":1,"116":1,"123":1,"124":1,"125":1,"126":1,"127":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1},"2":{"17":2,"18":2,"19":2,"20":2,"21":1,"22":1,"23":4,"43":5,"44":4,"45":13,"46":9,"50":4,"51":4,"52":5,"54":5,"57":7,"58":5,"81":15,"82":9,"83":9,"84":17,"85":11,"87":4,"93":1,"94":1,"95":10,"96":2,"97":2,"101":6,"102":1,"103":1,"104":6,"105":6,"106":6,"114":9,"115":2,"116":2,"123":6,"124":5,"125":9,"126":4,"127":4,"133":1,"134":1,"135":12,"136":6,"137":6,"138":1,"139":1,"140":12,"141":8,"142":1,"143":1,"144":12,"145":2,"146":6,"147":4}}],["email",{"2":{"155":1,"162":1}}],["error",{"0":{"115":1},"2":{"114":2,"115":1}}],["examples",{"2":{"38":1}}],["exp",{"2":{"26":1}}],["elif",{"2":{"35":1,"45":3,"57":1,"81":2,"82":1,"83":1,"84":2,"95":1,"114":1,"118":1,"119":1,"135":1,"140":1,"144":1}}],["else",{"2":{"5":1,"34":1,"35":1,"45":2,"57":1,"81":1,"82":1,"83":1,"95":1,"114":2,"118":2,"119":2,"135":1,"140":1,"141":1,"144":1}}],["epsilon",{"0":{"29":1,"35":2,"37":2,"43":1,"50":1,"101":1,"117":1,"123":1,"126":1},"2":{"35":7,"37":12,"43":5,"50":4,"101":6,"117":4,"123":6,"126":4}}],["e",{"0":{"26":2}}],["equations",{"0":{"49":1},"2":{"49":1,"85":1}}],["equation",{"0":{"31":1},"1":{"32":1,"33":1,"34":1,"35":1}}],["eq",{"0":{"18":1,"58":1,"96":1,"105":1,"114":1,"136":1},"2":{"18":1,"58":1,"96":1,"105":1,"114":1,"116":1,"136":1}}],["+1",{"2":{"119":2}}],["+=",{"2":{"35":1}}],["+",{"0":{"17":1,"27":1,"102":1,"103":1,"104":1,"133":1,"134":1,"135":1,"137":1},"2":{"17":1,"37":3,"38":4,"46":1,"48":1,"49":3,"80":6,"83":5,"85":5,"104":7,"109":3,"118":3,"119":3,"130":2,"135":11,"137":5,"146":2,"158":1,"161":1}}],["12",{"2":{"155":2,"162":2}}],["1e",{"0":{"50":1}}],["1",{"0":{"27":1,"150":1,"151":1,"152":1},"2":{"14":1,"15":1,"16":1,"26":1,"34":1,"38":2,"91":1,"119":6,"158":4,"161":4}}],["180",{"2":{"5":1,"8":1}}],["正割值",{"2":{"15":4}}],["正切值",{"2":{"13":4}}],["正弦值",{"2":{"11":4}}],["余割值",{"2":{"16":4}}],["余切值",{"2":{"14":4}}],["余弦值",{"2":{"12":4}}],["余角",{"2":{"6":4}}],["最大值",{"2":{"111":2}}],["最大负角度",{"2":{"10":2}}],["最大负角",{"2":{"10":2}}],["最小值",{"2":{"111":2}}],["最小正角度",{"2":{"9":2}}],["最小正角",{"2":{"9":2}}],["弧度",{"2":{"8":2}}],["角度",{"2":{"8":2}}],["角度或弧度值",{"2":{"5":2}}],["补角",{"2":{"7":4}}],["sphere",{"0":{"158":1,"161":1},"2":{"158":1,"161":1}}],["staticmethod",{"2":{"157":1,"158":1,"160":1,"161":1}}],["str",{"0":{"118":1,"119":1},"2":{"118":1,"119":1}}],["software",{"2":{"155":1,"162":1}}],["solve",{"2":{"84":3}}],["snowykami",{"2":{"155":2,"162":2}}],["s",{"2":{"95":1,"135":1,"140":1,"141":1,"144":1}}],["sign",{"0":{"118":1,"119":1},"2":{"118":1,"119":1}}],["simplify",{"0":{"55":1},"2":{"55":1}}],["singlevar",{"0":{"63":2,"65":1,"66":2,"69":3,"72":4,"75":1}}],["sin",{"0":{"11":1},"2":{"11":2,"16":1,"158":3,"161":3}}],["sqrt",{"0":{"27":1},"2":{"130":1,"158":1,"161":1}}],["sub",{"2":{"19":1,"106":1,"138":1,"139":1,"140":1}}],["supplementary",{"0":{"7":1},"2":{"7":1}}],["segment",{"0":{"107":1},"1":{"108":1,"109":1}}],["segment3",{"0":{"108":1},"1":{"109":1},"2":{"39":1,"59":1}}],["sec",{"0":{"15":1},"2":{"15":1}}],["self",{"0":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"113":1,"114":1,"115":1,"116":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1},"2":{"5":3,"6":2,"7":2,"8":2,"9":2,"10":2,"11":2,"12":2,"13":2,"14":2,"15":2,"16":2,"17":2,"18":2,"19":2,"20":2,"21":1,"22":1,"23":3,"33":4,"34":7,"42":3,"43":4,"44":2,"45":13,"46":8,"47":3,"48":3,"49":7,"50":2,"51":2,"52":4,"53":3,"54":3,"55":8,"57":6,"58":4,"80":5,"81":16,"82":4,"83":8,"84":15,"85":9,"86":2,"87":2,"88":4,"93":1,"94":1,"95":5,"96":2,"97":2,"100":4,"101":4,"102":1,"103":1,"104":4,"105":4,"106":4,"109":15,"113":2,"114":9,"115":2,"116":2,"122":4,"123":4,"124":3,"125":7,"126":2,"127":2,"128":5,"129":4,"130":4,"131":3,"132":2,"133":1,"134":1,"135":7,"136":4,"137":4,"138":1,"139":1,"140":7,"141":4,"142":1,"143":1,"144":7,"145":2,"146":4,"147":4,"148":4}}],["2024",{"2":{"155":2,"162":2}}],["2020",{"2":{"155":1,"162":1}}],["2",{"0":{"27":1},"2":{"6":1,"9":1,"10":1,"35":1,"37":3,"38":2,"46":1,"83":3,"109":3,"130":3,"158":2,"161":2}}],["rmul",{"2":{"145":1}}],["rsub",{"2":{"141":1}}],["rights",{"2":{"155":1,"162":1}}],["right",{"2":{"37":1}}],["reference",{"0":{"169":1}}],["reserved",{"2":{"155":1,"162":1}}],["result",{"2":{"35":4}}],["realnumber",{"0":{"48":1,"61":1,"62":1,"113":1,"143":1,"145":1,"146":1,"147":1},"2":{"48":1,"113":1,"143":1,"145":1,"146":1,"147":1}}],["return",{"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"23":2,"34":2,"35":4,"37":1,"38":4,"43":1,"44":1,"45":5,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":3,"58":1,"81":4,"82":2,"83":2,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"95":4,"96":1,"97":1,"101":1,"104":1,"105":1,"106":1,"111":1,"114":2,"116":1,"117":1,"118":3,"119":3,"123":1,"124":1,"125":1,"126":1,"127":1,"129":1,"130":1,"131":1,"132":1,"135":2,"136":1,"137":3,"140":2,"141":1,"144":2,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1}}],["returns",{"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"34":1,"35":2,"37":1,"38":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"95":1,"101":1,"104":1,"105":1,"106":1,"111":1,"117":1,"118":1,"119":1,"123":1,"124":1,"125":1,"126":1,"127":1,"129":1,"130":1,"131":1,"135":1,"136":1,"140":1,"141":1,"144":1,"146":1,"158":1,"161":1}}],["range",{"2":{"158":2,"161":2}}],["rand",{"0":{"97":1},"2":{"97":1}}],["radius",{"0":{"158":1,"161":1},"2":{"158":7,"161":7}}],["radian=true",{"2":{"6":1,"7":1,"10":1,"17":1,"19":1,"20":1,"23":1,"82":1,"124":1}}],["radian",{"0":{"5":1},"2":{"5":6,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":2,"18":2,"19":2,"20":1,"23":3}}],["radd",{"2":{"137":1}}],["raise",{"0":{"115":1},"2":{"35":1,"45":1,"46":2,"82":1,"83":1,"84":1,"85":1,"95":1,"114":2,"115":2,"135":1,"140":1,"141":1,"144":1}}],["raises",{"2":{"35":1,"44":1,"45":1,"46":1,"82":1,"83":1,"84":1,"85":1}}],["ratio",{"0":{"27":1}}],[">",{"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"19":1,"20":1,"21":1,"22":1,"34":1,"35":5,"37":3,"38":6,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"96":1,"97":1,"101":1,"102":1,"103":1,"104":2,"106":3,"111":1,"117":1,"118":2,"119":5,"123":1,"124":1,"125":2,"126":1,"127":1,"129":1,"130":1,"131":1,"133":1,"134":1,"135":2,"137":2,"138":1,"139":1,"140":2,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1}}],["返回numpy数组",{"2":{"129":1}}],["返回如下行列式的结果",{"2":{"125":1}}],["返回",{"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"34":1,"35":1,"37":1,"38":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"95":1,"101":1,"111":1,"117":1,"118":1,"119":1,"123":1,"124":1,"125":1,"126":1,"127":1,"130":1,"131":1,"136":1,"158":1,"161":1}}],["cz",{"2":{"80":2}}],["clamp",{"0":{"111":1},"2":{"111":1,"158":1,"161":1}}],["classmethod",{"2":{"55":1,"56":1,"88":1,"89":2,"90":2,"91":2,"92":1}}],["class",{"0":{"3":1,"4":1,"32":1,"41":1,"79":1,"99":1,"108":1,"112":1,"121":1,"157":1,"160":1},"1":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"113":1,"114":1,"115":1,"116":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1},"2":{"106":2}}],["cls",{"0":{"56":1,"89":1,"90":1,"91":1,"92":1},"2":{"56":2,"89":2,"90":2,"91":2,"92":2}}],["cross",{"0":{"125":1},"2":{"45":4,"46":3,"47":1,"54":1,"84":1,"90":1,"91":1,"125":3,"126":1,"127":1}}],["c",{"0":{"80":1,"167":1},"1":{"168":1},"2":{"38":4,"80":5,"81":7,"83":2,"84":6,"85":2,"88":1,"89":3,"155":1,"162":1}}],["curried",{"2":{"38":6}}],["currying",{"2":{"38":2}}],["curry",{"0":{"38":1},"2":{"38":3}}],["curveequation",{"0":{"32":1},"1":{"33":1,"34":1},"2":{"39":1,"59":1}}],["cal",{"0":{"37":1,"44":1,"45":1,"46":1,"47":1,"82":1,"83":1,"84":1,"85":1,"86":1,"124":1},"2":{"37":1,"44":2,"45":1,"46":1,"47":1,"57":1,"82":2,"83":1,"84":1,"85":1,"86":1,"95":2,"97":1,"124":1}}],["callable",{"0":{"66":1,"67":1,"69":1,"70":1,"72":1,"73":1,"75":1,"76":1}}],["call",{"0":{"34":1},"2":{"34":1}}],["csc",{"0":{"16":1},"2":{"16":1}}],["copyright",{"2":{"155":1,"162":1}}],["coplanar",{"0":{"54":1},"2":{"45":1,"46":2,"54":1,"57":1}}],["coincident",{"2":{"85":1}}],["collinear",{"0":{"52":1},"2":{"52":1,"57":1}}],["complex",{"0":{"62":1}}],["complementary",{"0":{"6":1},"2":{"6":1,"82":1}}],["com",{"2":{"38":1,"155":1,"162":1}}],["const",{"0":{"24":1},"1":{"25":1,"26":1,"27":1,"28":1,"29":1,"30":1}}],["cot",{"0":{"14":1},"2":{"14":1}}],["cos",{"0":{"12":1},"2":{"12":2,"15":1,"158":2,"161":2}}],["phi",{"2":{"158":5,"161":5}}],["pycharm",{"2":{"155":1,"162":1}}],["py",{"2":{"155":1,"162":1}}],["python",{"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"21":1,"22":1,"56":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"102":1,"103":1,"129":1,"130":1,"131":1,"133":1,"134":1,"138":1,"139":1,"142":1,"143":1,"158":1,"161":1}}],["pythondef",{"2":{"5":1,"17":1,"18":1,"19":1,"20":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":2,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"95":1,"96":1,"97":1,"100":1,"101":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"132":1,"135":1,"136":1,"137":1,"140":1,"141":1,"144":1,"145":1,"146":1,"147":1,"148":1}}],["presets",{"0":{"155":1,"156":1,"159":1,"162":1},"1":{"157":1,"158":1,"160":1,"161":1}}],["property",{"2":{"5":1,"6":2,"7":2,"8":2,"9":2,"10":2,"11":2,"12":2,"13":2,"14":2,"15":2,"16":1,"87":1,"88":1,"128":1,"129":2,"130":2,"131":1}}],["p3",{"0":{"90":1},"2":{"90":4}}],["p2",{"0":{"56":1,"90":1,"109":1},"2":{"56":4,"58":2,"90":4,"109":9}}],["p1",{"0":{"56":1,"90":1,"109":1},"2":{"56":5,"58":2,"90":6,"109":9}}],["perpendicular",{"0":{"47":1},"2":{"47":1}}],["particle",{"0":{"153":1,"154":1}}],["partial",{"0":{"35":1},"2":{"35":6,"37":6}}],["param",{"2":{"109":4,"137":2}}],["parametric",{"0":{"49":1},"2":{"49":1,"85":1}}],["parallel",{"0":{"50":1,"51":1,"86":1,"87":1,"126":1,"127":1},"2":{"43":2,"45":1,"46":2,"50":2,"51":2,"52":2,"53":1,"57":1,"58":2,"84":2,"85":1,"86":1,"87":2,"95":1,"126":1,"127":1}}],["planes",{"2":{"84":1}}],["plane",{"0":{"78":1},"1":{"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1},"2":{"85":1}}],["plane3",{"0":{"79":1,"81":1,"82":1,"83":1,"84":1,"86":2,"87":1,"89":1,"90":1,"91":1,"92":1,"94":1},"1":{"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1},"2":{"39":1,"59":1,"81":1,"82":2,"83":2,"84":1,"86":3,"87":1,"89":1,"90":1,"91":1,"92":1,"94":1,"95":2,"114":1}}],["plus",{"2":{"35":3}}],["p",{"0":{"37":1},"2":{"37":21,"38":1,"104":10,"106":8,"135":4,"137":4,"140":4,"141":4}}],["points",{"0":{"56":1,"90":1},"2":{"56":1,"90":1}}],["point",{"0":{"42":1,"47":1,"48":1,"53":2,"86":1,"89":2,"92":2,"98":1},"1":{"99":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1},"2":{"42":5,"43":2,"45":5,"46":3,"47":6,"48":2,"49":3,"52":2,"53":6,"54":2,"55":3,"58":2,"85":3,"86":5,"89":7,"90":1,"91":6,"92":6}}],["point3",{"0":{"34":2,"37":1,"42":1,"45":1,"46":1,"47":1,"48":1,"53":1,"56":2,"57":1,"83":1,"85":2,"86":1,"89":1,"90":3,"92":1,"93":1,"97":1,"99":1,"101":1,"102":1,"103":2,"106":1,"109":2,"134":2,"137":2,"139":2,"141":1},"1":{"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1},"2":{"34":4,"37":1,"39":1,"42":1,"45":2,"46":1,"47":1,"48":1,"53":1,"56":2,"57":1,"59":1,"83":2,"84":1,"85":3,"86":1,"89":1,"90":3,"92":1,"93":1,"95":1,"97":2,"101":1,"102":1,"103":2,"104":1,"106":1,"109":3,"114":1,"134":2,"135":2,"137":3,"139":2,"140":2,"141":3,"158":3,"161":3}}],["positive",{"0":{"9":1},"2":{"6":1,"7":1,"9":1}}],["pi",{"0":{"25":2},"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"158":2,"161":2}}],["author",{"2":{"155":1,"162":1}}],["all",{"2":{"101":1,"114":1,"123":1,"155":1,"162":1}}],["acos",{"2":{"82":1,"124":1}}],["axis",{"0":{"150":1,"151":1,"152":1}}],["ax",{"2":{"80":2}}],["arccos",{"2":{"158":1,"161":1}}],["array",{"0":{"129":1},"2":{"84":6,"129":2,"158":6,"161":6}}],["arrayvar",{"0":{"64":2,"65":1,"67":2,"70":3,"73":4,"76":1}}],["area",{"2":{"158":2,"161":2}}],["are",{"2":{"46":2,"84":1,"85":1}}],["args2",{"2":{"38":2}}],["args",{"0":{"38":1},"2":{"5":1,"33":1,"34":1,"35":14,"37":1,"38":5,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"89":1,"90":1,"91":1,"92":1,"95":1,"100":1,"101":1,"104":1,"105":1,"106":1,"111":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"135":1,"136":1,"140":1,"141":1,"144":1,"146":1,"158":1,"161":1}}],["abs",{"0":{"132":1},"2":{"45":1,"83":1,"101":3,"114":1,"117":1,"119":1,"123":3,"132":1}}],["a",{"0":{"80":1},"2":{"38":4,"80":5,"81":7,"83":2,"84":12,"85":2,"88":1,"89":3}}],["aaa",{"0":{"165":1},"1":{"166":1},"2":{"36":1}}],["approx",{"0":{"30":1,"43":2,"50":1,"81":1,"101":2,"112":1,"117":2,"123":2,"126":2},"1":{"113":1,"114":1,"115":1,"116":1},"2":{"18":1,"43":3,"50":2,"81":10,"96":1,"101":1,"105":3,"114":4,"117":1,"123":1,"126":1,"127":1,"136":3}}],["add",{"2":{"17":1,"38":8,"102":1,"103":1,"104":1,"133":1,"134":1,"135":1}}],["and",{"0":{"57":1,"89":1,"92":1,"93":1,"94":1,"95":1},"2":{"43":1,"46":2,"52":1,"57":1,"58":1,"81":6,"84":4,"85":1,"86":1,"89":1,"90":1,"91":1,"92":2,"93":1,"94":1,"95":2,"105":2,"115":1,"135":1,"136":2,"140":1,"141":1,"144":1}}],["anyangle",{"0":{"4":1,"6":1,"7":1,"9":1,"10":1,"17":2,"19":2,"20":1,"21":1,"22":1,"44":1,"82":1,"124":1},"1":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1},"2":{"6":2,"7":2,"9":2,"10":2,"17":3,"19":3,"20":2,"21":1,"22":1,"23":2,"39":1,"44":1,"59":1,"82":2,"124":2}}],["angle",{"0":{"2":1,"3":1,"4":1,"44":1,"82":1,"124":1},"1":{"3":1,"4":1,"5":2,"6":2,"7":2,"8":2,"9":2,"10":2,"11":2,"12":2,"13":2,"14":2,"15":2,"16":2,"17":2,"18":2,"19":2,"20":2,"21":2,"22":2,"23":2},"2":{"44":2,"82":2,"124":1}}],["在github上查看",{"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1}}],["或包装一个实数",{"2":{"117":2}}],["或整数元组",{"2":{"35":2}}],["或",{"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1}}],["源代码",{"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1}}],["默认为否",{"2":{"5":2}}],["参数t",{"2":{"48":2}}],["参数",{"2":{"5":1,"33":1,"34":3,"35":2,"37":1,"38":3,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"89":1,"90":1,"91":1,"92":1,"95":1,"100":1,"101":1,"104":1,"105":1,"106":1,"111":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"135":1,"136":1,"140":1,"141":1,"144":1,"146":1,"158":1,"161":1}}],["file",{"2":{"155":1,"162":1}}],["from",{"0":{"56":1,"89":1,"90":1,"91":1,"92":1},"2":{"56":1,"86":1,"89":1,"90":2,"91":2,"92":2,"106":1}}],["frac",{"2":{"37":3}}],["f",{"2":{"37":4,"82":1,"83":1,"95":1,"115":1,"119":3,"135":1,"140":1,"141":1,"144":1}}],["format",{"0":{"119":1},"2":{"119":1}}],["for",{"2":{"34":1,"35":1,"95":1,"135":1,"140":1,"141":1,"144":1,"158":2,"161":2}}],["function",{"0":{"36":1},"1":{"37":1,"38":1}}],["func",{"0":{"33":3,"35":2,"37":1,"38":1},"2":{"33":15,"34":6,"35":16,"37":9,"38":6}}],["false",{"0":{"5":1,"118":1,"119":1},"2":{"81":1}}],["float=0",{"2":{"117":1}}],["float=1e",{"2":{"50":1}}],["float=approx",{"2":{"43":1,"101":1,"117":1,"123":1,"126":1}}],["float=epsilon",{"2":{"37":1}}],["float",{"0":{"5":1,"8":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"20":1,"21":1,"22":1,"37":1,"43":1,"45":1,"50":1,"61":1,"80":4,"83":1,"100":3,"101":1,"111":4,"117":3,"118":1,"119":1,"122":3,"123":1,"126":1,"130":1,"144":1,"158":2,"161":2},"2":{"5":1,"8":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"20":1,"21":1,"22":1,"45":1,"80":4,"83":1,"100":3,"111":4,"114":2,"117":1,"118":1,"119":1,"122":3,"130":1,"144":2,"158":2,"161":2}}],["==",{"2":{"34":1,"45":1,"54":1,"55":3,"85":1,"91":1,"95":1}}],["=",{"0":{"5":1,"17":1,"19":1,"20":1,"21":1,"22":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"35":1,"37":1,"43":1,"50":1,"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"101":1,"102":1,"103":1,"106":1,"117":2,"118":1,"119":1,"123":1,"126":1,"133":1,"134":1,"137":1,"138":1,"139":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"149":1,"150":1,"151":1,"152":1},"2":{"5":2,"33":3,"35":5,"37":5,"38":2,"42":2,"55":3,"56":1,"80":6,"81":6,"84":17,"85":2,"89":2,"90":3,"91":3,"100":3,"109":5,"113":1,"122":3,"128":4,"158":7,"161":7}}],["improve",{"2":{"169":1}}],["import",{"2":{"106":1}}],["i",{"2":{"158":4,"161":4}}],["invalid",{"2":{"35":1}}],["intersect",{"2":{"46":2}}],["intersection",{"0":{"46":1,"84":1,"85":1},"2":{"46":1,"57":1,"84":2,"85":1,"95":2,"97":1}}],["int",{"0":{"35":2,"61":1,"144":1},"2":{"35":3,"38":8,"114":2,"144":2,"158":1,"161":1}}],["in",{"2":{"34":1,"35":1,"158":2,"161":2}}],["init",{"0":{"5":1,"33":1,"42":1,"80":1,"100":1,"109":1,"113":1,"122":1},"2":{"5":1,"33":1,"42":1,"80":1,"100":1,"109":1,"113":1,"122":1,"155":1,"162":1}}],["if",{"2":{"5":1,"23":1,"34":1,"35":1,"45":2,"46":2,"55":3,"57":1,"81":1,"82":1,"83":1,"84":2,"85":1,"91":1,"95":3,"114":3,"118":2,"119":2,"135":1,"140":1,"141":1,"144":1}}],["isinstance",{"2":{"23":1,"35":2,"45":2,"82":2,"83":2,"95":2,"114":4,"135":2,"140":2,"141":1,"144":2}}],["is",{"0":{"5":1,"50":1,"51":1,"52":1,"53":1,"54":1,"87":1,"126":1,"127":1},"2":{"5":4,"6":1,"7":1,"10":1,"17":1,"19":1,"20":1,"23":1,"43":2,"45":2,"46":2,"50":2,"51":2,"52":3,"53":2,"54":1,"57":3,"58":2,"82":1,"84":1,"87":2,"95":1,"124":1,"126":1,"127":1}}],["model",{"0":{"156":1,"159":1},"1":{"157":1,"158":1,"160":1,"161":1}}],["midpoint",{"2":{"109":1}}],["min",{"0":{"111":1},"2":{"111":5}}],["minus",{"2":{"35":3}}],["minimum",{"0":{"9":1},"2":{"6":1,"7":1,"9":1}}],["multiarraysfunc",{"0":{"76":1,"77":1}}],["multisinglevarsfunc",{"0":{"75":1,"77":1}}],["multivarsfunc",{"0":{"35":2,"38":1,"77":1},"2":{"35":2,"38":1}}],["mul",{"2":{"20":1,"142":1,"143":1,"144":1,"145":1}}],["matmul",{"2":{"146":1}}],["math导入使用",{"2":{"39":1,"59":1}}],["math",{"0":{"2":1,"24":1,"25":1,"26":1,"27":1,"31":1,"36":1,"39":1,"40":1,"59":1,"60":2,"78":1,"98":1,"107":1,"110":1,"120":1},"1":{"3":1,"4":1,"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"32":1,"33":1,"34":1,"35":1,"37":1,"38":1,"41":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"61":2,"62":2,"63":2,"64":2,"65":2,"66":2,"67":2,"68":2,"69":2,"70":2,"71":2,"72":2,"73":2,"74":2,"75":2,"76":2,"77":2,"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"99":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"108":1,"109":1,"111":1,"112":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"121":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"150":1,"151":1,"152":1},"2":{"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"82":1,"124":1,"130":1}}],["max",{"0":{"111":1},"2":{"111":5}}],["maximum",{"0":{"10":1},"2":{"10":1}}],["mp",{"0":{"2":1,"24":1,"31":1,"36":1,"39":1,"40":1,"59":1,"60":2,"78":1,"98":1,"107":1,"110":1,"120":1},"1":{"3":1,"4":1,"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"32":1,"33":1,"34":1,"35":1,"37":1,"38":1,"41":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"61":2,"62":2,"63":2,"64":2,"65":2,"66":2,"67":2,"68":2,"69":2,"70":2,"71":2,"72":2,"73":2,"74":2,"75":2,"76":2,"77":2,"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"99":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"108":1,"109":1,"111":1,"112":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"121":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"150":1,"151":1,"152":1},"2":{"39":1,"59":1}}],["mbcp",{"0":{"0":1,"1":1,"2":1,"24":1,"31":1,"36":1,"39":1,"40":1,"59":1,"60":1,"78":1,"98":1,"107":1,"110":1,"120":1,"153":1,"154":1,"155":1,"156":1,"159":1,"162":1},"1":{"3":1,"4":1,"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"32":1,"33":1,"34":1,"35":1,"37":1,"38":1,"41":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"99":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"108":1,"109":1,"111":1,"112":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"121":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"150":1,"151":1,"152":1,"157":1,"158":1,"160":1,"161":1}}],["说明",{"2":{"0":1,"1":1,"2":1,"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"24":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"31":1,"33":1,"34":1,"35":1,"36":1,"37":1,"38":1,"39":1,"40":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"59":1,"60":1,"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"78":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"95":1,"98":1,"100":1,"101":1,"104":1,"105":1,"106":1,"107":1,"109":1,"110":1,"111":1,"117":1,"118":1,"119":1,"120":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"130":1,"131":1,"135":1,"136":1,"137":1,"140":1,"141":1,"144":1,"146":1,"149":1,"150":1,"151":1,"152":1,"153":1,"154":1,"155":1,"156":1,"158":1,"159":1,"161":1,"162":1}}]],"serializationVersion":2}';export{t as default};
diff --git a/assets/chunks/@localSearchIndexzht.swFDtkrQ.js b/assets/chunks/@localSearchIndexzht.B7_xczEa.js
similarity index 99%
rename from assets/chunks/@localSearchIndexzht.swFDtkrQ.js
rename to assets/chunks/@localSearchIndexzht.B7_xczEa.js
index 02760e0..17aa09c 100644
--- a/assets/chunks/@localSearchIndexzht.swFDtkrQ.js
+++ b/assets/chunks/@localSearchIndexzht.B7_xczEa.js
@@ -1 +1 @@
-const t='{"documentCount":165,"nextId":165,"documentIds":{"0":"/zht/api/api.html#mbcp","1":"/zht/api/#mbcp","2":"/zht/api/mp_math/angle.html#mbcp-mp-math-angle","3":"/zht/api/mp_math/angle.html#class-angle","4":"/zht/api/mp_math/angle.html#class-anyangle-angle","5":"/zht/api/mp_math/angle.html#def-init-self-value-float-is-radian-bool-false","6":"/zht/api/mp_math/angle.html#def-complementary-self-anyangle","7":"/zht/api/mp_math/angle.html#def-supplementary-self-anyangle","8":"/zht/api/mp_math/angle.html#def-degree-self-float","9":"/zht/api/mp_math/angle.html#def-minimum-positive-self-anyangle","10":"/zht/api/mp_math/angle.html#def-maximum-negative-self-anyangle","11":"/zht/api/mp_math/angle.html#def-sin-self-float","12":"/zht/api/mp_math/angle.html#def-cos-self-float","13":"/zht/api/mp_math/angle.html#def-tan-self-float","14":"/zht/api/mp_math/angle.html#def-cot-self-float","15":"/zht/api/mp_math/angle.html#def-sec-self-float","16":"/zht/api/mp_math/angle.html#def-csc-self-float","17":"/zht/api/mp_math/angle.html#def-self-other-anyangle-anyangle","18":"/zht/api/mp_math/angle.html#def-eq-self-other","19":"/zht/api/mp_math/angle.html#def-self-other-anyangle-anyangle-1","20":"/zht/api/mp_math/angle.html#def-self-other-float-anyangle","21":"/zht/api/mp_math/angle.html#def-self-other-float-anyangle-1","22":"/zht/api/mp_math/angle.html#def-self-other-anyangle-float","23":"/zht/api/mp_math/angle.html#def-self-other","24":"/zht/api/mp_math/const.html#mbcp-mp-math-const","25":"/zht/api/mp_math/const.html#var-pi-math-pi","26":"/zht/api/mp_math/const.html#var-e-math-e","27":"/zht/api/mp_math/const.html#var-golden-ratio-1-math-sqrt-5-2","28":"/zht/api/mp_math/const.html#var-gamma-0-5772156649015329","29":"/zht/api/mp_math/const.html#var-epsilon-0-0001","30":"/zht/api/mp_math/const.html#var-approx-0-001","31":"/zht/api/mp_math/equation.html#mbcp-mp-math-equation","32":"/zht/api/mp_math/equation.html#class-curveequation","33":"/zht/api/mp_math/equation.html#def-init-self-x-func-onevarfunc-y-func-onevarfunc-z-func-onevarfunc","34":"/zht/api/mp_math/equation.html#def-call-self-t-var-point3-tuple-point3","35":"/zht/api/mp_math/equation.html#def-get-partial-derivative-func-func-multivarsfunc-var-int-tuple-int-epsilon-number-epsilon-multivarsfunc","36":"/zht/api/mp_math/function.html#mbcp-mp-math-function","37":"/zht/api/mp_math/function.html#def-cal-gradient-3vf-func-threesinglevarsfunc-p-point3-epsilon-float-epsilon-vector3","38":"/zht/api/mp_math/function.html#def-curry-func-multivarsfunc-args-var-onevarfunc","39":"/zht/api/mp_math/#mbcp-mp-math","40":"/zht/api/mp_math/line.html#mbcp-mp-math-line","41":"/zht/api/mp_math/line.html#class-line3","42":"/zht/api/mp_math/line.html#def-init-self-point-point3-direction-vector3","43":"/zht/api/mp_math/line.html#def-approx-self-other-line3-epsilon-float-approx-bool","44":"/zht/api/mp_math/line.html#def-cal-angle-self-other-line3-anyangle","45":"/zht/api/mp_math/line.html#def-cal-distance-self-other-line3-point3-float","46":"/zht/api/mp_math/line.html#def-cal-intersection-self-other-line3-point3","47":"/zht/api/mp_math/line.html#def-cal-perpendicular-self-point-point3-line3","48":"/zht/api/mp_math/line.html#def-get-point-self-t-realnumber-point3","49":"/zht/api/mp_math/line.html#def-get-parametric-equations-self-tuple-onesinglevarfunc-onesinglevarfunc-onesinglevarfunc","50":"/zht/api/mp_math/line.html#def-is-approx-parallel-self-other-line3-epsilon-float-1e-06-bool","51":"/zht/api/mp_math/line.html#def-is-parallel-self-other-line3-bool","52":"/zht/api/mp_math/line.html#def-is-collinear-self-other-line3-bool","53":"/zht/api/mp_math/line.html#def-is-point-on-self-point-point3-bool","54":"/zht/api/mp_math/line.html#def-is-coplanar-self-other-line3-bool","55":"/zht/api/mp_math/line.html#def-simplify-self","56":"/zht/api/mp_math/line.html#def-from-two-points-cls-p1-point3-p2-point3-line3","57":"/zht/api/mp_math/line.html#def-and-self-other-line3-line3-point3-none","58":"/zht/api/mp_math/line.html#def-eq-self-other-bool","59":"/zht/api/mp_math/mp_math.html#mbcp-mp-math","60":"/zht/api/mp_math/mp_math_typing.html#mbcp-mp-math-mp-math-typing","61":"/zht/api/mp_math/mp_math_typing.html#var-realnumber-int-float","62":"/zht/api/mp_math/mp_math_typing.html#var-number-realnumber-complex","63":"/zht/api/mp_math/mp_math_typing.html#var-singlevar-typevar-singlevar-bound-number","64":"/zht/api/mp_math/mp_math_typing.html#var-arrayvar-typevar-arrayvar-bound-iterable-number","65":"/zht/api/mp_math/mp_math_typing.html#var-var-singlevar-arrayvar","66":"/zht/api/mp_math/mp_math_typing.html#var-onesinglevarfunc-callable-singlevar-singlevar","67":"/zht/api/mp_math/mp_math_typing.html#var-onearrayfunc-callable-arrayvar-arrayvar","68":"/zht/api/mp_math/mp_math_typing.html#var-onevarfunc-onesinglevarfunc-onearrayfunc","69":"/zht/api/mp_math/mp_math_typing.html#var-twosinglevarsfunc-callable-singlevar-singlevar-singlevar","70":"/zht/api/mp_math/mp_math_typing.html#var-twoarraysfunc-callable-arrayvar-arrayvar-arrayvar","71":"/zht/api/mp_math/mp_math_typing.html#var-twovarsfunc-twosinglevarsfunc-twoarraysfunc","72":"/zht/api/mp_math/mp_math_typing.html#var-threesinglevarsfunc-callable-singlevar-singlevar-singlevar-singlevar","73":"/zht/api/mp_math/mp_math_typing.html#var-threearraysfunc-callable-arrayvar-arrayvar-arrayvar-arrayvar","74":"/zht/api/mp_math/mp_math_typing.html#var-threevarsfunc-threesinglevarsfunc-threearraysfunc","75":"/zht/api/mp_math/mp_math_typing.html#var-multisinglevarsfunc-callable-singlevar","76":"/zht/api/mp_math/mp_math_typing.html#var-multiarraysfunc-callable-arrayvar","77":"/zht/api/mp_math/mp_math_typing.html#var-multivarsfunc-multisinglevarsfunc-multiarraysfunc","78":"/zht/api/mp_math/plane.html#mbcp-mp-math-plane","79":"/zht/api/mp_math/plane.html#class-plane3","80":"/zht/api/mp_math/plane.html#def-init-self-a-float-b-float-c-float-d-float","81":"/zht/api/mp_math/plane.html#def-approx-self-other-plane3-bool","82":"/zht/api/mp_math/plane.html#def-cal-angle-self-other-line3-plane3-anyangle","83":"/zht/api/mp_math/plane.html#def-cal-distance-self-other-plane3-point3-float","84":"/zht/api/mp_math/plane.html#def-cal-intersection-line3-self-other-plane3-line3","85":"/zht/api/mp_math/plane.html#def-cal-intersection-point3-self-other-line3-point3","86":"/zht/api/mp_math/plane.html#def-cal-parallel-plane3-self-point-point3-plane3","87":"/zht/api/mp_math/plane.html#def-is-parallel-self-other-plane3-bool","88":"/zht/api/mp_math/plane.html#def-normal-self-vector3","89":"/zht/api/mp_math/plane.html#def-from-point-and-normal-cls-point-point3-normal-vector3-plane3","90":"/zht/api/mp_math/plane.html#def-from-three-points-cls-p1-point3-p2-point3-p3-point3-plane3","91":"/zht/api/mp_math/plane.html#def-from-two-lines-cls-l1-line3-l2-line3-plane3","92":"/zht/api/mp_math/plane.html#def-from-point-and-line-cls-point-point3-line-line3-plane3","93":"/zht/api/mp_math/plane.html#def-and-self-other-line3-point3-none","94":"/zht/api/mp_math/plane.html#def-and-self-other-plane3-line3-none","95":"/zht/api/mp_math/plane.html#def-and-self-other","96":"/zht/api/mp_math/plane.html#def-eq-self-other-bool","97":"/zht/api/mp_math/plane.html#def-rand-self-other-line3-point3","98":"/zht/api/mp_math/point.html#mbcp-mp-math-point","99":"/zht/api/mp_math/point.html#class-point3","100":"/zht/api/mp_math/point.html#def-init-self-x-float-y-float-z-float","101":"/zht/api/mp_math/point.html#def-approx-self-other-point3-epsilon-float-approx-bool","102":"/zht/api/mp_math/point.html#def-self-other-vector3-point3","103":"/zht/api/mp_math/point.html#def-self-other-point3-point3","104":"/zht/api/mp_math/point.html#def-self-other","105":"/zht/api/mp_math/point.html#def-eq-self-other","106":"/zht/api/mp_math/point.html#def-self-other-point3-vector3","107":"/zht/api/mp_math/segment.html#mbcp-mp-math-segment","108":"/zht/api/mp_math/segment.html#class-segment3","109":"/zht/api/mp_math/segment.html#def-init-self-p1-point3-p2-point3","110":"/zht/api/mp_math/utils.html#mbcp-mp-math-utils","111":"/zht/api/mp_math/utils.html#def-clamp-x-float-min-float-max-float-float","112":"/zht/api/mp_math/utils.html#class-approx","113":"/zht/api/mp_math/utils.html#def-init-self-value-realnumber","114":"/zht/api/mp_math/utils.html#def-eq-self-other","115":"/zht/api/mp_math/utils.html#def-raise-type-error-self-other","116":"/zht/api/mp_math/utils.html#def-ne-self-other","117":"/zht/api/mp_math/utils.html#def-approx-x-float-y-float-0-0-epsilon-float-approx-bool","118":"/zht/api/mp_math/utils.html#def-sign-x-float-only-neg-bool-false-str","119":"/zht/api/mp_math/utils.html#def-sign-format-x-float-only-neg-bool-false-str","120":"/zht/api/mp_math/vector.html#mbcp-mp-math-vector","121":"/zht/api/mp_math/vector.html#class-vector3","122":"/zht/api/mp_math/vector.html#def-init-self-x-float-y-float-z-float","123":"/zht/api/mp_math/vector.html#def-approx-self-other-vector3-epsilon-float-approx-bool","124":"/zht/api/mp_math/vector.html#def-cal-angle-self-other-vector3-anyangle","125":"/zht/api/mp_math/vector.html#def-cross-self-other-vector3-vector3","126":"/zht/api/mp_math/vector.html#def-is-approx-parallel-self-other-vector3-epsilon-float-approx-bool","127":"/zht/api/mp_math/vector.html#def-is-parallel-self-other-vector3-bool","128":"/zht/api/mp_math/vector.html#def-normalize-self","129":"/zht/api/mp_math/vector.html#def-np-array-self-np-ndarray","130":"/zht/api/mp_math/vector.html#def-length-self-float","131":"/zht/api/mp_math/vector.html#def-unit-self-vector3","132":"/zht/api/mp_math/vector.html#def-abs-self","133":"/zht/api/mp_math/vector.html#def-self-other-vector3-vector3","134":"/zht/api/mp_math/vector.html#def-self-other-point3-point3","135":"/zht/api/mp_math/vector.html#def-self-other","136":"/zht/api/mp_math/vector.html#def-eq-self-other","137":"/zht/api/mp_math/vector.html#def-self-other-point3-point3-1","138":"/zht/api/mp_math/vector.html#def-self-other-vector3-vector3-1","139":"/zht/api/mp_math/vector.html#def-self-other-point3-point3-2","140":"/zht/api/mp_math/vector.html#def-self-other-1","141":"/zht/api/mp_math/vector.html#def-self-other-point3","142":"/zht/api/mp_math/vector.html#def-self-other-vector3-vector3-2","143":"/zht/api/mp_math/vector.html#def-self-other-realnumber-vector3","144":"/zht/api/mp_math/vector.html#def-self-other-int-float-vector3-vector3","145":"/zht/api/mp_math/vector.html#def-self-other-realnumber-vector3-1","146":"/zht/api/mp_math/vector.html#def-self-other-vector3-realnumber","147":"/zht/api/mp_math/vector.html#def-self-other-realnumber-vector3-2","148":"/zht/api/mp_math/vector.html#def-self","149":"/zht/api/mp_math/vector.html#var-zero-vector3-vector3-0-0-0","150":"/zht/api/mp_math/vector.html#var-x-axis-vector3-1-0-0","151":"/zht/api/mp_math/vector.html#var-y-axis-vector3-0-1-0","152":"/zht/api/mp_math/vector.html#var-z-axis-vector3-0-0-1","153":"/zht/api/particle/particle.html#mbcp-particle","154":"/zht/api/particle/#mbcp-particle","155":"/zht/api/presets/#mbcp-presets","156":"/zht/api/presets/model/model.html#mbcp-presets-model","157":"/zht/api/presets/model/model.html#class-geometricmodels","158":"/zht/api/presets/model/model.html#def-sphere-radius-float-density-float","159":"/zht/api/presets/model/#mbcp-presets-model","160":"/zht/api/presets/model/#class-geometricmodels","161":"/zht/api/presets/model/#def-sphere-radius-float-density-float","162":"/zht/api/presets/presets.html#mbcp-presets","163":"/zht/guide/#开始不了一点","164":"/zht/refer/#reference"},"fieldIds":{"title":0,"titles":1,"text":2},"fieldLength":{"0":[1,1,3],"1":[1,1,3],"2":[4,1,3],"3":[2,4,1],"4":[4,4,1],"5":[11,8,25],"6":[5,8,24],"7":[5,8,23],"8":[5,8,20],"9":[6,8,21],"10":[6,8,23],"11":[5,8,18],"12":[5,8,18],"13":[5,8,18],"14":[5,8,20],"15":[5,8,20],"16":[5,8,20],"17":[7,8,15],"18":[5,8,11],"19":[6,8,14],"20":[7,8,16],"21":[7,8,13],"22":[7,8,13],"23":[3,8,15],"24":[4,1,3],"25":[5,4,4],"26":[5,4,5],"27":[10,4,3],"28":[5,4,3],"29":[5,4,3],"30":[5,4,3],"31":[4,1,3],"32":[2,4,1],"33":[9,6,20],"34":[10,6,35],"35":[15,4,69],"36":[4,1,3],"37":[14,4,59],"38":[8,4,56],"39":[3,1,21],"40":[4,1,3],"41":[2,4,1],"42":[8,6,19],"43":[11,6,28],"44":[8,6,26],"45":[10,6,45],"46":[8,6,43],"47":[8,6,23],"48":[8,6,26],"49":[9,6,25],"50":[14,6,27],"51":[8,6,22],"52":[8,6,25],"53":[8,6,23],"54":[8,6,28],"55":[4,6,27],"56":[10,6,29],"57":[9,6,36],"58":[6,6,26],"59":[3,1,21],"60":[4,1,3],"61":[6,4,5],"62":[6,4,5],"63":[6,4,3],"64":[7,4,3],"65":[6,4,5],"66":[6,4,5],"67":[6,4,5],"68":[6,4,5],"69":[6,4,5],"70":[6,4,5],"71":[6,4,5],"72":[6,4,5],"73":[6,4,5],"74":[6,4,5],"75":[6,4,5],"76":[6,4,5],"77":[6,4,5],"78":[4,1,3],"79":[2,4,1],"80":[9,6,26],"81":[7,6,32],"82":[10,6,43],"83":[10,6,47],"84":[9,6,53],"85":[9,6,55],"86":[9,6,25],"87":[8,6,23],"88":[5,6,21],"89":[10,6,36],"90":[11,6,36],"91":[10,6,41],"92":[10,6,31],"93":[9,6,15],"94":[9,6,15],"95":[5,6,45],"96":[6,6,12],"97":[7,6,15],"98":[4,1,3],"99":[2,4,1],"100":[8,6,17],"101":[11,6,28],"102":[8,6,13],"103":[7,6,12],"104":[4,6,22],"105":[5,6,19],"106":[7,6,29],"107":[4,1,3],"108":[2,4,1],"109":[7,6,25],"110":[4,1,3],"111":[7,4,22],"112":[2,4,1],"113":[6,6,10],"114":[5,6,31],"115":[7,6,15],"116":[5,6,11],"117":[11,4,30],"118":[11,4,31],"119":[12,4,37],"120":[4,1,4],"121":[2,4,1],"122":[8,6,19],"123":[11,6,27],"124":[8,6,26],"125":[6,6,39],"126":[13,6,28],"127":[8,6,25],"128":[4,6,17],"129":[6,6,18],"130":[5,6,24],"131":[5,6,18],"132":[4,6,10],"133":[7,6,12],"134":[7,6,12],"135":[4,6,36],"136":[5,6,21],"137":[7,6,22],"138":[6,6,12],"139":[6,6,12],"140":[3,6,35],"141":[4,6,35],"142":[6,6,12],"143":[7,6,13],"144":[9,6,38],"145":[7,6,13],"146":[7,6,21],"147":[7,6,15],"148":[2,6,12],"149":[7,4,5],"150":[8,4,5],"151":[8,4,5],"152":[8,4,5],"153":[2,1,3],"154":[2,1,3],"155":[2,1,24],"156":[3,1,3],"157":[2,3,2],"158":[6,5,48],"159":[3,1,3],"160":[2,3,2],"161":[6,5,48],"162":[2,1,24],"163":[1,1,2],"164":[1,1,7]},"averageFieldLength":[6.242424242424242,4.963636363636361,17.824242424242428],"storedFields":{"0":{"title":"mbcp","titles":[]},"1":{"title":"mbcp","titles":[]},"2":{"title":"mbcp.mp_math.angle","titles":[]},"3":{"title":"class Angle","titles":["mbcp.mp_math.angle"]},"4":{"title":"class AnyAngle(Angle)","titles":["mbcp.mp_math.angle"]},"5":{"title":"def __init__(self, value: float, is_radian: bool = False)","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"6":{"title":"def complementary(self) -> AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"7":{"title":"def supplementary(self) -> AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"8":{"title":"def degree(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"9":{"title":"def minimum_positive(self) -> AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"10":{"title":"def maximum_negative(self) -> AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"11":{"title":"def sin(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"12":{"title":"def cos(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"13":{"title":"def tan(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"14":{"title":"def cot(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"15":{"title":"def sec(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"16":{"title":"def csc(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"17":{"title":"def self + other: AnyAngle => AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"18":{"title":"def __eq__(self, other)","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"19":{"title":"def self - other: AnyAngle => AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"20":{"title":"def self * other: float => AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"21":{"title":"def self / other: float => AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"22":{"title":"def self / other: AnyAngle => float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"23":{"title":"def self / other","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"24":{"title":"mbcp.mp_math.const","titles":[]},"25":{"title":"var PI = math.pi","titles":["mbcp.mp_math.const"]},"26":{"title":"var E = math.e","titles":["mbcp.mp_math.const"]},"27":{"title":"var GOLDEN_RATIO = (1 + math.sqrt(5)) / 2","titles":["mbcp.mp_math.const"]},"28":{"title":"var GAMMA = 0.5772156649015329","titles":["mbcp.mp_math.const"]},"29":{"title":"var EPSILON = 0.0001","titles":["mbcp.mp_math.const"]},"30":{"title":"var APPROX = 0.001","titles":["mbcp.mp_math.const"]},"31":{"title":"mbcp.mp_math.equation","titles":[]},"32":{"title":"class CurveEquation","titles":["mbcp.mp_math.equation"]},"33":{"title":"def __init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc)","titles":["mbcp.mp_math.equation","class CurveEquation"]},"34":{"title":"def __call__(self, *t: Var) -> Point3 | tuple[Point3, ...]","titles":["mbcp.mp_math.equation","class CurveEquation"]},"35":{"title":"def get_partial_derivative_func(func: MultiVarsFunc, var: int | tuple[int, ...], epsilon: Number = EPSILON) -> MultiVarsFunc","titles":["mbcp.mp_math.equation"]},"36":{"title":"mbcp.mp_math.function","titles":[]},"37":{"title":"def cal_gradient_3vf(func: ThreeSingleVarsFunc, p: Point3, epsilon: float = EPSILON) -> Vector3","titles":["mbcp.mp_math.function"]},"38":{"title":"def curry(func: MultiVarsFunc, *args: Var) -> OneVarFunc","titles":["mbcp.mp_math.function"]},"39":{"title":"mbcp.mp_math","titles":[]},"40":{"title":"mbcp.mp_math.line","titles":[]},"41":{"title":"class Line3","titles":["mbcp.mp_math.line"]},"42":{"title":"def __init__(self, point: Point3, direction: Vector3)","titles":["mbcp.mp_math.line","class Line3"]},"43":{"title":"def approx(self, other: Line3, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"44":{"title":"def cal_angle(self, other: Line3) -> AnyAngle","titles":["mbcp.mp_math.line","class Line3"]},"45":{"title":"def cal_distance(self, other: Line3 | Point3) -> float","titles":["mbcp.mp_math.line","class Line3"]},"46":{"title":"def cal_intersection(self, other: Line3) -> Point3","titles":["mbcp.mp_math.line","class Line3"]},"47":{"title":"def cal_perpendicular(self, point: Point3) -> Line3","titles":["mbcp.mp_math.line","class Line3"]},"48":{"title":"def get_point(self, t: RealNumber) -> Point3","titles":["mbcp.mp_math.line","class Line3"]},"49":{"title":"def get_parametric_equations(self) -> tuple[OneSingleVarFunc, OneSingleVarFunc, OneSingleVarFunc]","titles":["mbcp.mp_math.line","class Line3"]},"50":{"title":"def is_approx_parallel(self, other: Line3, epsilon: float = 1e-06) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"51":{"title":"def is_parallel(self, other: Line3) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"52":{"title":"def is_collinear(self, other: Line3) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"53":{"title":"def is_point_on(self, point: Point3) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"54":{"title":"def is_coplanar(self, other: Line3) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"55":{"title":"def simplify(self)","titles":["mbcp.mp_math.line","class Line3"]},"56":{"title":"def from_two_points(cls, p1: Point3, p2: Point3) -> Line3","titles":["mbcp.mp_math.line","class Line3"]},"57":{"title":"def __and__(self, other: Line3) -> Line3 | Point3 | None","titles":["mbcp.mp_math.line","class Line3"]},"58":{"title":"def __eq__(self, other) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"59":{"title":"mbcp.mp_math","titles":[]},"60":{"title":"mbcp.mp_math.mp_math_typing","titles":[]},"61":{"title":"var RealNumber = int | float","titles":["mbcp.mp_math.mp_math_typing"]},"62":{"title":"var Number = RealNumber | complex","titles":["mbcp.mp_math.mp_math_typing"]},"63":{"title":"var SingleVar = TypeVar(\'SingleVar\', bound=Number)","titles":["mbcp.mp_math.mp_math_typing"]},"64":{"title":"var ArrayVar = TypeVar(\'ArrayVar\', bound=Iterable[Number])","titles":["mbcp.mp_math.mp_math_typing"]},"65":{"title":"var Var = SingleVar | ArrayVar","titles":["mbcp.mp_math.mp_math_typing"]},"66":{"title":"var OneSingleVarFunc = Callable[[SingleVar], SingleVar]","titles":["mbcp.mp_math.mp_math_typing"]},"67":{"title":"var OneArrayFunc = Callable[[ArrayVar], ArrayVar]","titles":["mbcp.mp_math.mp_math_typing"]},"68":{"title":"var OneVarFunc = OneSingleVarFunc | OneArrayFunc","titles":["mbcp.mp_math.mp_math_typing"]},"69":{"title":"var TwoSingleVarsFunc = Callable[[SingleVar, SingleVar], SingleVar]","titles":["mbcp.mp_math.mp_math_typing"]},"70":{"title":"var TwoArraysFunc = Callable[[ArrayVar, ArrayVar], ArrayVar]","titles":["mbcp.mp_math.mp_math_typing"]},"71":{"title":"var TwoVarsFunc = TwoSingleVarsFunc | TwoArraysFunc","titles":["mbcp.mp_math.mp_math_typing"]},"72":{"title":"var ThreeSingleVarsFunc = Callable[[SingleVar, SingleVar, SingleVar], SingleVar]","titles":["mbcp.mp_math.mp_math_typing"]},"73":{"title":"var ThreeArraysFunc = Callable[[ArrayVar, ArrayVar, ArrayVar], ArrayVar]","titles":["mbcp.mp_math.mp_math_typing"]},"74":{"title":"var ThreeVarsFunc = ThreeSingleVarsFunc | ThreeArraysFunc","titles":["mbcp.mp_math.mp_math_typing"]},"75":{"title":"var MultiSingleVarsFunc = Callable[..., SingleVar]","titles":["mbcp.mp_math.mp_math_typing"]},"76":{"title":"var MultiArraysFunc = Callable[..., ArrayVar]","titles":["mbcp.mp_math.mp_math_typing"]},"77":{"title":"var MultiVarsFunc = MultiSingleVarsFunc | MultiArraysFunc","titles":["mbcp.mp_math.mp_math_typing"]},"78":{"title":"mbcp.mp_math.plane","titles":[]},"79":{"title":"class Plane3","titles":["mbcp.mp_math.plane"]},"80":{"title":"def __init__(self, a: float, b: float, c: float, d: float)","titles":["mbcp.mp_math.plane","class Plane3"]},"81":{"title":"def approx(self, other: Plane3) -> bool","titles":["mbcp.mp_math.plane","class Plane3"]},"82":{"title":"def cal_angle(self, other: Line3 | Plane3) -> AnyAngle","titles":["mbcp.mp_math.plane","class Plane3"]},"83":{"title":"def cal_distance(self, other: Plane3 | Point3) -> float","titles":["mbcp.mp_math.plane","class Plane3"]},"84":{"title":"def cal_intersection_line3(self, other: Plane3) -> Line3","titles":["mbcp.mp_math.plane","class Plane3"]},"85":{"title":"def cal_intersection_point3(self, other: Line3) -> Point3","titles":["mbcp.mp_math.plane","class Plane3"]},"86":{"title":"def cal_parallel_plane3(self, point: Point3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"87":{"title":"def is_parallel(self, other: Plane3) -> bool","titles":["mbcp.mp_math.plane","class Plane3"]},"88":{"title":"def normal(self) -> Vector3","titles":["mbcp.mp_math.plane","class Plane3"]},"89":{"title":"def from_point_and_normal(cls, point: Point3, normal: Vector3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"90":{"title":"def from_three_points(cls, p1: Point3, p2: Point3, p3: Point3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"91":{"title":"def from_two_lines(cls, l1: Line3, l2: Line3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"92":{"title":"def from_point_and_line(cls, point: Point3, line: Line3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"93":{"title":"def __and__(self, other: Line3) -> Point3 | None","titles":["mbcp.mp_math.plane","class Plane3"]},"94":{"title":"def __and__(self, other: Plane3) -> Line3 | None","titles":["mbcp.mp_math.plane","class Plane3"]},"95":{"title":"def __and__(self, other)","titles":["mbcp.mp_math.plane","class Plane3"]},"96":{"title":"def __eq__(self, other) -> bool","titles":["mbcp.mp_math.plane","class Plane3"]},"97":{"title":"def __rand__(self, other: Line3) -> Point3","titles":["mbcp.mp_math.plane","class Plane3"]},"98":{"title":"mbcp.mp_math.point","titles":[]},"99":{"title":"class Point3","titles":["mbcp.mp_math.point"]},"100":{"title":"def __init__(self, x: float, y: float, z: float)","titles":["mbcp.mp_math.point","class Point3"]},"101":{"title":"def approx(self, other: Point3, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.point","class Point3"]},"102":{"title":"def self + other: Vector3 => Point3","titles":["mbcp.mp_math.point","class Point3"]},"103":{"title":"def self + other: Point3 => Point3","titles":["mbcp.mp_math.point","class Point3"]},"104":{"title":"def self + other","titles":["mbcp.mp_math.point","class Point3"]},"105":{"title":"def __eq__(self, other)","titles":["mbcp.mp_math.point","class Point3"]},"106":{"title":"def self - other: Point3 => Vector3","titles":["mbcp.mp_math.point","class Point3"]},"107":{"title":"mbcp.mp_math.segment","titles":[]},"108":{"title":"class Segment3","titles":["mbcp.mp_math.segment"]},"109":{"title":"def __init__(self, p1: Point3, p2: Point3)","titles":["mbcp.mp_math.segment","class Segment3"]},"110":{"title":"mbcp.mp_math.utils","titles":[]},"111":{"title":"def clamp(x: float, min_: float, max_: float) -> float","titles":["mbcp.mp_math.utils"]},"112":{"title":"class Approx","titles":["mbcp.mp_math.utils"]},"113":{"title":"def __init__(self, value: RealNumber)","titles":["mbcp.mp_math.utils","class Approx"]},"114":{"title":"def __eq__(self, other)","titles":["mbcp.mp_math.utils","class Approx"]},"115":{"title":"def raise_type_error(self, other)","titles":["mbcp.mp_math.utils","class Approx"]},"116":{"title":"def __ne__(self, other)","titles":["mbcp.mp_math.utils","class Approx"]},"117":{"title":"def approx(x: float, y: float = 0.0, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.utils"]},"118":{"title":"def sign(x: float, only_neg: bool = False) -> str","titles":["mbcp.mp_math.utils"]},"119":{"title":"def sign_format(x: float, only_neg: bool = False) -> str","titles":["mbcp.mp_math.utils"]},"120":{"title":"mbcp.mp_math.vector","titles":[]},"121":{"title":"class Vector3","titles":["mbcp.mp_math.vector"]},"122":{"title":"def __init__(self, x: float, y: float, z: float)","titles":["mbcp.mp_math.vector","class Vector3"]},"123":{"title":"def approx(self, other: Vector3, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.vector","class Vector3"]},"124":{"title":"def cal_angle(self, other: Vector3) -> AnyAngle","titles":["mbcp.mp_math.vector","class Vector3"]},"125":{"title":"def cross(self, other: Vector3) -> Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"126":{"title":"def is_approx_parallel(self, other: Vector3, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.vector","class Vector3"]},"127":{"title":"def is_parallel(self, other: Vector3) -> bool","titles":["mbcp.mp_math.vector","class Vector3"]},"128":{"title":"def normalize(self)","titles":["mbcp.mp_math.vector","class Vector3"]},"129":{"title":"def np_array(self) -> np.ndarray","titles":["mbcp.mp_math.vector","class Vector3"]},"130":{"title":"def length(self) -> float","titles":["mbcp.mp_math.vector","class Vector3"]},"131":{"title":"def unit(self) -> Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"132":{"title":"def __abs__(self)","titles":["mbcp.mp_math.vector","class Vector3"]},"133":{"title":"def self + other: Vector3 => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"134":{"title":"def self + other: Point3 => Point3","titles":["mbcp.mp_math.vector","class Vector3"]},"135":{"title":"def self + other","titles":["mbcp.mp_math.vector","class Vector3"]},"136":{"title":"def __eq__(self, other)","titles":["mbcp.mp_math.vector","class Vector3"]},"137":{"title":"def self + other: Point3 => Point3","titles":["mbcp.mp_math.vector","class Vector3"]},"138":{"title":"def self - other: Vector3 => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"139":{"title":"def self - other: Point3 => Point3","titles":["mbcp.mp_math.vector","class Vector3"]},"140":{"title":"def self - other","titles":["mbcp.mp_math.vector","class Vector3"]},"141":{"title":"def self - other: Point3","titles":["mbcp.mp_math.vector","class Vector3"]},"142":{"title":"def self * other: Vector3 => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"143":{"title":"def self * other: RealNumber => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"144":{"title":"def self * other: int | float | Vector3 => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"145":{"title":"def self * other: RealNumber => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"146":{"title":"def self @ other: Vector3 => RealNumber","titles":["mbcp.mp_math.vector","class Vector3"]},"147":{"title":"def self / other: RealNumber => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"148":{"title":"def - self","titles":["mbcp.mp_math.vector","class Vector3"]},"149":{"title":"var zero_vector3 = Vector3(0, 0, 0)","titles":["mbcp.mp_math.vector"]},"150":{"title":"var x_axis = Vector3(1, 0, 0)","titles":["mbcp.mp_math.vector"]},"151":{"title":"var y_axis = Vector3(0, 1, 0)","titles":["mbcp.mp_math.vector"]},"152":{"title":"var z_axis = Vector3(0, 0, 1)","titles":["mbcp.mp_math.vector"]},"153":{"title":"mbcp.particle","titles":[]},"154":{"title":"mbcp.particle","titles":[]},"155":{"title":"mbcp.presets","titles":[]},"156":{"title":"mbcp.presets.model","titles":[]},"157":{"title":"class GeometricModels","titles":["mbcp.presets.model"]},"158":{"title":"def sphere(radius: float, density: float)","titles":["mbcp.presets.model","class GeometricModels"]},"159":{"title":"mbcp.presets.model","titles":[]},"160":{"title":"class GeometricModels","titles":["mbcp.presets.model"]},"161":{"title":"def sphere(radius: float, density: float)","titles":["mbcp.presets.model","class GeometricModels"]},"162":{"title":"mbcp.presets","titles":[]},"163":{"title":"开始不了一点","titles":[]},"164":{"title":"Reference","titles":[]}},"dirtCount":0,"index":[["∫12x111",{"2":{"163":1}}],["开始不了一点",{"0":{"163":1}}],["4",{"2":{"158":1,"161":1}}],["球体上的点集",{"2":{"158":2,"161":2}}],["生成球体上的点集",{"2":{"158":2,"161":2}}],["几何模型点集",{"2":{"156":1,"159":1}}],["下午9",{"2":{"155":1,"162":1}}],["8",{"2":{"155":1,"162":1}}],["零向量",{"2":{"149":1}}],["非点乘",{"2":{"144":2}}],["别去点那边实现了",{"2":{"137":2}}],["单位向量",{"2":{"131":2}}],["单变量",{"2":{"63":1}}],["模",{"2":{"130":2}}],["向量的模",{"2":{"130":2}}],["向量积",{"2":{"125":2}}],["将向量归一化",{"2":{"128":2}}],["允许的误差",{"2":{"126":2}}],["j",{"2":{"125":1}}],["行列式的结果",{"2":{"125":2}}],["其余结果的模为平行四边形的面积",{"2":{"125":2}}],["叉乘使用cross",{"2":{"144":2}}],["叉乘为0",{"2":{"125":2}}],["叉乘",{"2":{"125":2}}],["夹角",{"2":{"124":2}}],["夹角弧度",{"2":{"44":2,"82":2}}],["以及一些常用的向量",{"2":{"120":1}}],["格式化符号数",{"2":{"119":2}}],["quot",{"2":{"118":2,"119":4}}],["符号",{"2":{"118":2,"119":2}}],["获取该向量的单位向量",{"2":{"131":2}}],["获取数的符号",{"2":{"118":2}}],["获取直线的参数方程",{"2":{"49":2}}],["获取直线上的点",{"2":{"48":2}}],["用于判断是否近似于0",{"2":{"117":2}}],["限制后的值",{"2":{"111":2}}],["待限定的值",{"2":{"111":2}}],["区间限定函数",{"2":{"111":2}}],["us",{"2":{"164":1}}],["unit",{"0":{"131":1},"2":{"131":1}}],["unsupported",{"2":{"45":1,"82":1,"83":1,"95":1,"115":1,"135":1,"140":1,"141":1,"144":1}}],["utils",{"0":{"110":1},"1":{"111":1,"112":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1}}],["中心点",{"2":{"109":1}}],["中实现",{"2":{"106":2}}],["长度",{"2":{"109":1}}],["方向向量",{"2":{"109":1}}],["``x2",{"2":{"125":1}}],["``x1",{"2":{"125":1}}],["``i",{"2":{"125":1}}],["```",{"2":{"38":1}}],["```python",{"2":{"38":1}}],["`vector3`",{"2":{"106":1}}],["已在",{"2":{"106":2}}],["已知一个函数$f",{"2":{"37":1}}],["已知一个函数f",{"2":{"37":1}}],["坐标",{"2":{"100":6}}],["笛卡尔坐标系中的点",{"2":{"100":2}}],["人话",{"2":{"95":2}}],["取两平面的交集",{"2":{"95":2}}],["面上直线",{"2":{"92":2}}],["面上一点",{"2":{"92":2}}],["法向量",{"2":{"88":2,"89":2}}],["所求平面",{"2":{"86":2}}],["k``",{"2":{"125":1}}],["k",{"2":{"81":12}}],["另一个向量",{"2":{"124":2,"126":2,"127":2}}],["另一个平面或点",{"2":{"83":2}}],["另一个平面",{"2":{"81":2,"82":2,"84":2,"87":2}}],["另一条直线",{"2":{"43":2,"44":2,"46":2,"50":2,"51":2,"52":2,"54":2,"57":2}}],["常数项",{"2":{"80":2}}],["常量",{"2":{"25":1}}],["平面平行返回none",{"2":{"95":2}}],["平面",{"2":{"89":2,"90":2,"91":2,"92":2}}],["平面上的一点",{"2":{"89":2}}],["平面的法向量",{"2":{"88":2}}],["平面与直线平行或重合",{"2":{"85":2}}],["平面方程",{"2":{"80":2}}],["平行线返回none",{"2":{"57":2}}],["平行直线或点",{"2":{"45":2}}],["多元函数",{"2":{"77":1}}],["多元数组函数",{"2":{"76":1}}],["多元单变量函数",{"2":{"75":1}}],["二元函数",{"2":{"71":1}}],["二元数组函数",{"2":{"70":1}}],["二元单变量函数",{"2":{"69":1}}],["一元函数",{"2":{"68":1}}],["一元数组函数",{"2":{"67":1}}],["一元单变量函数",{"2":{"66":1}}],["一阶偏导",{"2":{"35":2}}],["变量",{"2":{"65":1}}],["变量位置",{"2":{"35":2}}],["数组运算",{"2":{"144":2}}],["数组变量",{"2":{"64":1}}],["数2",{"2":{"117":2}}],["数1",{"2":{"117":2}}],["数",{"2":{"62":1,"118":2,"119":2}}],["实数",{"2":{"61":1}}],["類型",{"2":{"61":1,"62":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"149":1,"150":1,"151":1,"152":1}}],["∧",{"2":{"58":2}}],["交线",{"2":{"95":2}}],["交线返回交点",{"2":{"57":2}}],["交点",{"2":{"46":2,"57":2,"85":2}}],["重合线返回自身",{"2":{"57":2}}],["由点和直线构造平面",{"2":{"92":2}}],["由点和法向量构造平面",{"2":{"89":2}}],["由两直线构造平面",{"2":{"91":2}}],["由两点构造直线",{"2":{"56":2}}],["由三点构造平面",{"2":{"90":2}}],["由一个点和一个方向向量确定",{"2":{"42":2}}],["工厂函数",{"2":{"56":2,"89":2,"90":2,"91":2,"92":2}}],["并对向量单位化",{"2":{"55":2}}],["处理",{"2":{"55":2}}],["处的梯度向量为",{"2":{"37":1}}],["化",{"2":{"55":2}}],["按照可行性一次对x",{"2":{"55":2}}],["不平行平面的交线",{"2":{"95":2}}],["不包含点",{"2":{"92":2}}],["不与平面平行或在平面上的直线",{"2":{"85":2}}],["不返回值",{"2":{"55":2,"128":2}}],["不支持的类型",{"2":{"44":2,"45":2,"82":2,"83":2}}],["自体归一化",{"2":{"128":2}}],["自体简化",{"2":{"55":2}}],["自然对数的底",{"2":{"26":1}}],["等价相等",{"2":{"55":2}}],["简化直线方程",{"2":{"55":2}}],["两平面的交线",{"2":{"84":2}}],["两直线方向向量的叉乘与两直线上任意一点的向量的点积为0",{"2":{"54":2}}],["两角的和为180°",{"2":{"7":2}}],["两角的和为90°",{"2":{"6":2}}],["充要条件",{"2":{"54":2}}],["判断两个向量是否相等",{"2":{"136":2}}],["判断两个向量是否平行",{"2":{"127":2}}],["判断两个向量是否近似平行",{"2":{"126":2}}],["判断两个向量是否近似相等",{"2":{"123":2}}],["判断两个数是否近似相等",{"2":{"117":2}}],["判断两个点是否相等",{"2":{"105":2}}],["判断两个点是否近似相等",{"2":{"101":2}}],["判断两个平面是否平行",{"2":{"87":2}}],["判断两个平面是否近似相等",{"2":{"81":2}}],["判断两条直线是否等价",{"2":{"58":2}}],["判断两条直线是否共面",{"2":{"54":2}}],["判断两条直线是否共线",{"2":{"52":2}}],["判断两条直线是否平行",{"2":{"51":2}}],["判断两条直线是否近似平行",{"2":{"50":2}}],["判断两条直线是否近似相等",{"2":{"43":2}}],["判断点是否在直线上",{"2":{"53":2}}],["则两向量平行",{"2":{"125":2}}],["则同一个t对应的点不同",{"2":{"48":2}}],["则其在点$",{"2":{"37":1}}],["则其在点",{"2":{"37":1}}],["但起始点和方向向量不同",{"2":{"48":2}}],["同一条直线",{"2":{"48":2}}],["垂线",{"2":{"47":2}}],["指定点",{"2":{"47":2,"86":2}}],["距离",{"2":{"45":2,"83":2}}],["是否相等",{"2":{"136":2}}],["是否只返回负数的符号",{"2":{"118":2,"119":2}}],["是否共面",{"2":{"54":2}}],["是否共线",{"2":{"52":2}}],["是否在直线上",{"2":{"53":2}}],["是否平行",{"2":{"51":2,"87":2,"127":2}}],["是否近似平行",{"2":{"50":2,"126":2}}],["是否近似相等",{"2":{"43":2,"81":2,"101":2,"117":2,"123":2}}],["是否为弧度",{"2":{"5":2}}],["误差",{"2":{"43":2,"50":2,"117":2}}],["直线2",{"2":{"91":2}}],["直线1",{"2":{"91":2}}],["直线",{"2":{"56":2}}],["直线不共面",{"2":{"46":2}}],["直线平行",{"2":{"46":2}}],["直线的方向向量",{"2":{"42":2}}],["直线上的一点",{"2":{"42":2}}],["三元数组函数",{"2":{"73":1}}],["三元单变量函数",{"2":{"72":1}}],["三元函数",{"2":{"37":2,"74":1}}],["三维空间中的线段",{"2":{"109":2}}],["三维空间中的直线",{"2":{"42":2}}],["三维向量",{"2":{"39":1,"59":1}}],["三维线段",{"2":{"39":1,"59":1}}],["三维点",{"2":{"39":1,"59":1}}],["三维平面",{"2":{"39":1,"59":1}}],["三维直线",{"2":{"39":1,"59":1}}],["任意角",{"2":{"39":1,"59":1}}],["任意角度",{"2":{"5":2}}],["导入的类有",{"2":{"39":1,"59":1}}],["本包定义了一些常用的导入",{"2":{"39":1,"59":1}}],["本模块用于内部类型提示",{"2":{"60":1}}],["本模块定义了粒子生成相关的工具",{"2":{"153":1,"154":1}}],["本模块定义了3维向量的类vector3",{"2":{"120":1}}],["本模块定义了一些常用的工具函数",{"2":{"110":1}}],["本模块定义了一些常用的常量",{"2":{"24":1}}],["本模块定义了三维空间中点的类",{"2":{"98":1}}],["本模块定义了三维空间中的线段类",{"2":{"107":1}}],["本模块定义了三维空间中的平面类",{"2":{"78":1}}],["本模块定义了三维空间中的直线类",{"2":{"40":1}}],["本模块定义了方程相关的类和函数以及一些常用的数学函数",{"2":{"31":1}}],["本模块定义了角度相关的类",{"2":{"2":1}}],["本模块塞了一些预设的粒子生成器",{"2":{"0":1,"1":1}}],["help",{"2":{"164":1}}],["have",{"2":{"84":1}}],["https",{"2":{"38":1}}],["high",{"2":{"35":2}}],["hide",{"2":{"35":2,"38":1}}],["6",{"2":{"38":2}}],["3维向量",{"2":{"122":2}}],["355859667",{"2":{"38":1}}],["3",{"2":{"38":2}}],["3vf",{"0":{"37":1},"2":{"37":1}}],["by",{"2":{"80":2}}],["bound=iterable",{"0":{"64":1}}],["bound=number",{"0":{"63":1}}],["bool=false",{"2":{"5":1,"118":1,"119":1}}],["bool",{"0":{"5":1,"43":1,"50":1,"51":1,"52":1,"53":1,"54":1,"58":1,"81":1,"87":1,"96":1,"101":1,"117":1,"118":1,"119":1,"123":1,"126":1,"127":1},"2":{"43":1,"50":1,"51":1,"52":1,"53":1,"54":1,"58":1,"81":1,"87":1,"96":1,"101":1,"117":1,"123":1,"126":1,"127":1}}],["b",{"0":{"80":1},"2":{"38":4,"80":5,"81":7,"83":2,"84":12,"85":2,"88":1,"89":3}}],["範例",{"2":{"38":1}}],["柯里化后的函数",{"2":{"38":2}}],["柯理化",{"2":{"38":2}}],["可直接从mbcp",{"2":{"39":1,"59":1}}],["可参考",{"2":{"38":1}}],["可参考函数式编程",{"2":{"38":1}}],["可为整数",{"2":{"35":2}}],["有关函数柯里化",{"2":{"38":2}}],["对多参数函数进行柯里化",{"2":{"38":2}}],["d",{"0":{"80":1},"2":{"80":7,"81":6,"83":1,"84":6,"85":1,"89":2}}],["documentation",{"2":{"164":1}}],["do",{"2":{"46":2}}],["distance",{"0":{"45":1,"83":1},"2":{"45":1,"83":1}}],["direction",{"0":{"42":1},"2":{"42":5,"43":1,"44":2,"45":8,"46":6,"47":1,"48":1,"49":3,"50":2,"51":2,"52":1,"53":1,"54":2,"55":4,"56":2,"58":3,"82":1,"84":2,"85":4,"91":1,"92":1,"95":1,"109":2}}],["dz",{"2":{"37":2}}],["dy",{"2":{"37":2}}],["dx",{"2":{"37":2}}],["density",{"0":{"158":1,"161":1},"2":{"158":4,"161":4}}],["derivative",{"0":{"35":1},"2":{"35":6}}],["degree",{"0":{"8":1},"2":{"8":1}}],["def",{"0":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1},"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"21":1,"22":1,"35":2,"38":2,"56":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"102":1,"103":1,"129":1,"130":1,"131":1,"133":1,"134":1,"138":1,"139":1,"142":1,"143":1,"158":1,"161":1}}],["$处的梯度向量为",{"2":{"37":1}}],["$",{"2":{"37":3}}],["梯度",{"2":{"37":2}}],["点乘",{"2":{"146":2}}],["点乘使用",{"2":{"144":2}}],["点3",{"2":{"90":2}}],["点法式构造",{"2":{"89":2}}],["点2",{"2":{"56":2,"90":2}}],["点1",{"2":{"56":2,"90":2}}],["点",{"2":{"37":2,"48":2,"53":2}}],["∂f∂z",{"2":{"37":1}}],["∂f∂y",{"2":{"37":1}}],["∂f∂x",{"2":{"37":1}}],["∇f",{"2":{"37":1}}],["计算平行于该平面且过指定点的平面",{"2":{"86":2}}],["计算平面与直线的交点",{"2":{"85":2}}],["计算平面与平面或点之间的距离",{"2":{"83":2}}],["计算平面与平面之间的夹角",{"2":{"82":2}}],["计算两个向量之间的夹角",{"2":{"124":2}}],["计算两平面的交线",{"2":{"84":2}}],["计算两条直线点集合的交集",{"2":{"57":2}}],["计算两条直线的交点",{"2":{"46":2}}],["计算直线经过指定点p的垂线",{"2":{"47":2}}],["计算直线和直线或点之间的距离",{"2":{"45":2}}],["计算直线和直线之间的夹角",{"2":{"44":2}}],["计算三元函数在某点的梯度向量",{"2":{"37":2}}],["计算曲线上的点",{"2":{"34":2}}],["v3",{"2":{"125":2}}],["vector",{"0":{"120":1},"1":{"121":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"150":1,"151":1,"152":1},"2":{"106":1}}],["vector3",{"0":{"37":1,"42":1,"88":1,"89":1,"102":1,"106":1,"121":1,"123":1,"124":1,"125":2,"126":1,"127":1,"131":1,"133":2,"138":2,"142":2,"143":1,"144":2,"145":1,"146":1,"147":1,"149":2,"150":1,"151":1,"152":1},"1":{"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1},"2":{"37":2,"39":1,"42":1,"59":1,"88":2,"89":1,"91":1,"102":1,"106":4,"114":2,"123":1,"124":1,"125":3,"126":1,"127":2,"131":1,"133":2,"135":3,"138":2,"140":3,"141":1,"142":2,"143":1,"144":6,"145":1,"146":1,"147":2,"148":1,"149":1,"150":1,"151":1,"152":1}}],["v2",{"2":{"58":2,"90":2,"91":4,"125":2}}],["v1",{"2":{"58":4,"90":2,"91":2,"125":2}}],["v",{"2":{"35":2,"104":2,"106":4,"135":8,"137":2,"140":8,"141":2}}],["var",{"0":{"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"34":1,"35":1,"38":1,"61":1,"62":1,"63":1,"64":1,"65":2,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"149":1,"150":1,"151":1,"152":1},"2":{"34":1,"35":13,"38":3}}],["valueerror",{"2":{"35":3,"46":6,"84":1,"85":3}}],["value",{"0":{"5":1,"113":1},"2":{"5":5,"113":3,"114":6,"115":1}}],["求高阶偏导函数",{"2":{"35":1}}],["求n元函数一阶偏导函数",{"2":{"35":2}}],["l2",{"0":{"91":1},"2":{"91":5}}],["l1",{"0":{"91":1},"2":{"91":7}}],["lambda",{"2":{"49":3}}],["left",{"2":{"37":1}}],["length",{"0":{"130":1},"2":{"45":5,"46":1,"82":2,"109":2,"124":2,"126":1,"128":5,"130":1,"131":1,"132":1}}],["len",{"2":{"34":1}}],["liteyukistudio",{"2":{"155":1,"162":1}}],["litedoc",{"2":{"35":2,"38":1}}],["linalg",{"2":{"84":3}}],["lines",{"0":{"91":1},"2":{"46":2,"91":1}}],["line",{"0":{"40":1,"92":2},"1":{"41":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1},"2":{"85":1,"92":5}}],["line3",{"0":{"41":1,"43":1,"44":1,"45":1,"46":1,"47":1,"50":1,"51":1,"52":1,"54":1,"56":1,"57":2,"82":1,"84":2,"85":1,"91":2,"92":1,"93":1,"94":1,"97":1},"1":{"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1},"2":{"39":1,"43":1,"44":1,"45":2,"46":1,"47":2,"50":1,"51":1,"52":1,"54":1,"56":1,"57":2,"59":1,"82":2,"84":3,"85":1,"91":2,"92":1,"93":1,"94":1,"95":2,"97":1,"114":1}}],["list",{"2":{"35":8,"158":10,"161":10}}],["无效变量类型",{"2":{"35":2}}],["抛出",{"2":{"35":1,"44":1,"45":1,"46":1,"82":1,"83":1,"85":1}}],["偏导函数",{"2":{"35":2}}],["偏移量",{"2":{"35":2,"37":2}}],["高阶偏导数值",{"2":{"35":1}}],["高阶偏导",{"2":{"35":2}}],["函数式编程",{"2":{"38":1}}],["函数",{"2":{"35":2,"38":2}}],["因此该函数的稳定性有待提升",{"2":{"35":2}}],["目前数学界对于一个函数的导函数并没有通解的说法",{"2":{"35":2}}],["目标点",{"2":{"34":2}}],["warning",{"2":{"35":2}}],["慎用",{"2":{"35":2}}],["这玩意不太稳定",{"2":{"35":2}}],["num",{"2":{"158":5,"161":5}}],["number=epsilon",{"2":{"35":1}}],["number",{"0":{"35":1,"62":1,"64":1}}],["ndarray",{"0":{"129":1},"2":{"129":1}}],["neg",{"0":{"118":1,"119":1},"2":{"118":4,"119":4,"148":1}}],["negative",{"0":{"10":1},"2":{"10":1}}],["ne",{"0":{"116":1},"2":{"116":1}}],["np",{"0":{"129":2},"2":{"84":9,"129":3,"158":9,"161":9}}],["no",{"2":{"84":1}}],["normal",{"0":{"88":1,"89":2},"2":{"82":5,"84":4,"85":1,"86":2,"87":2,"88":1,"89":7,"90":3,"91":1,"92":1,"95":3}}],["normalize",{"0":{"128":1},"2":{"55":1,"128":1}}],["none",{"0":{"57":1,"93":1,"94":1},"2":{"57":2,"93":1,"94":1,"95":2}}],["not",{"2":{"45":1,"46":4,"57":1,"116":1,"118":1,"119":1}}],["nabla",{"2":{"37":1}}],["参数t",{"2":{"48":2}}],["参数",{"2":{"34":2,"35":1,"38":2}}],["|",{"0":{"34":1,"35":1,"45":1,"57":2,"61":1,"62":1,"65":1,"68":1,"71":1,"74":1,"77":1,"82":1,"83":1,"93":1,"94":1,"144":2},"2":{"34":1,"35":1,"45":1,"57":2,"82":1,"83":1,"93":1,"94":1,"144":2}}],["曲线方程",{"2":{"33":2,"39":1,"59":1}}],["z轴单位向量",{"2":{"152":1}}],["z轴分量",{"2":{"122":2}}],["z2``",{"2":{"125":1}}],["z1``",{"2":{"125":1}}],["zero",{"0":{"149":1},"2":{"91":1,"127":1}}],["z系数",{"2":{"80":2}}],["zhihu",{"2":{"38":1}}],["zhuanlan",{"2":{"38":1}}],["z0",{"2":{"37":2}}],["zip",{"2":{"34":1}}],["z函数",{"2":{"33":2}}],["z",{"0":{"33":1,"100":1,"122":1,"152":1},"2":{"33":5,"34":4,"37":11,"49":4,"55":4,"83":1,"84":4,"85":4,"89":2,"100":7,"101":2,"104":2,"105":2,"106":2,"109":2,"114":2,"122":5,"123":2,"125":4,"128":1,"129":1,"130":1,"135":4,"136":2,"137":2,"140":4,"141":2,"144":3,"146":2,"147":1,"148":1,"158":2,"161":2}}],["y轴单位向量",{"2":{"151":1}}],["y轴分量",{"2":{"122":2}}],["y2",{"2":{"125":1}}],["y1",{"2":{"125":1}}],["y系数",{"2":{"80":2}}],["y0",{"2":{"37":2}}],["y函数",{"2":{"33":2}}],["y",{"0":{"33":1,"100":1,"117":1,"122":1,"151":1},"2":{"33":5,"34":4,"37":11,"49":4,"55":4,"83":1,"84":4,"85":4,"89":2,"100":7,"101":2,"104":2,"105":2,"106":2,"109":2,"114":2,"117":4,"122":5,"123":2,"125":4,"128":1,"129":1,"130":1,"135":4,"136":2,"137":2,"140":4,"141":2,"144":3,"146":2,"147":1,"148":1,"158":2,"161":2}}],["x轴单位向量",{"2":{"150":1}}],["x轴分量",{"2":{"122":2}}],["x3c",{"2":{"101":3,"114":1,"117":1,"118":1,"119":1,"123":3,"126":1}}],["x26",{"2":{"95":1}}],["x系数",{"2":{"80":2}}],["x0",{"2":{"37":2}}],["x函数",{"2":{"33":2}}],["x",{"0":{"33":1,"100":1,"111":1,"117":1,"118":1,"119":1,"122":1,"150":1},"2":{"33":5,"34":4,"37":11,"49":4,"55":2,"83":1,"84":4,"85":4,"89":2,"100":7,"101":2,"104":2,"105":2,"106":2,"109":2,"111":4,"114":2,"117":4,"118":5,"119":8,"122":5,"123":2,"125":4,"128":1,"129":1,"130":1,"135":4,"136":2,"137":2,"140":4,"141":2,"144":3,"146":2,"147":1,"148":1,"158":2,"161":2}}],["约等于判定误差",{"2":{"30":1}}],["精度误差",{"2":{"29":1}}],["欧拉常数",{"2":{"28":1}}],["06",{"0":{"50":1},"2":{"50":1}}],["001",{"0":{"30":1}}],["0001",{"0":{"29":1}}],["0",{"0":{"28":1,"29":1,"30":1,"117":2,"149":3,"150":2,"151":2,"152":2},"2":{"34":3,"37":6,"45":2,"54":1,"55":8,"80":2,"81":3,"83":2,"84":9,"85":1,"95":1,"117":1,"118":2,"119":4,"158":2,"161":2}}],["黄金分割比",{"2":{"27":1}}],["5772156649015329",{"0":{"28":1}}],["5",{"0":{"27":1},"2":{"83":1}}],["geometricmodels",{"0":{"157":1,"160":1},"1":{"158":1,"161":1}}],["get",{"0":{"35":1,"48":1,"49":1},"2":{"35":2,"48":1,"49":1,"85":1,"91":1}}],["gradient",{"0":{"37":1},"2":{"37":1}}],["gamma",{"0":{"28":1}}],["golden",{"0":{"27":1}}],["gt",{"0":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"19":1,"20":1,"21":1,"22":1,"34":1,"35":1,"37":1,"38":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"96":1,"97":1,"101":1,"102":1,"103":1,"106":1,"111":1,"117":1,"118":1,"119":1,"123":1,"124":1,"125":1,"126":1,"127":1,"129":1,"130":1,"131":1,"133":1,"134":1,"137":1,"138":1,"139":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1},"2":{"104":2,"106":2,"119":3,"125":1,"135":2,"137":1,"140":2,"141":1}}],["π",{"2":{"25":1}}],["to",{"2":{"164":1}}],["time",{"2":{"155":1,"162":1}}],["tip",{"2":{"37":2,"38":2}}],["theta",{"2":{"158":3,"161":3}}],["the",{"2":{"85":2,"164":1}}],["three",{"0":{"90":1},"2":{"90":1}}],["threevarsfunc",{"0":{"74":1}}],["threearraysfunc",{"0":{"73":1,"74":1}}],["threesinglevarsfunc",{"0":{"37":1,"72":1,"74":1},"2":{"37":1}}],["typing",{"0":{"60":1},"1":{"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1}}],["typevar",{"0":{"63":1,"64":1}}],["typealias",{"2":{"61":1,"62":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1}}],["typeerror",{"2":{"44":2,"45":3,"82":3,"83":3,"95":1,"115":1,"135":1,"140":1,"141":1,"144":1}}],["type",{"0":{"115":1},"2":{"35":1,"45":1,"82":2,"83":2,"95":2,"114":2,"115":4,"135":2,"140":2,"141":2,"144":2}}],["twovarsfunc",{"0":{"71":1}}],["twoarraysfunc",{"0":{"70":1,"71":1}}],["twosinglevarsfunc",{"0":{"69":1,"71":1}}],["two",{"0":{"56":1,"91":1},"2":{"56":1,"91":1}}],["tuple",{"0":{"34":1,"35":1,"49":1},"2":{"34":2,"35":2,"49":1}}],["t",{"0":{"34":1,"48":1},"2":{"34":10,"48":4,"49":12,"85":4}}],["truediv",{"2":{"21":1,"22":1,"23":1,"147":1}}],["tan",{"0":{"13":1},"2":{"13":2,"14":1}}],["outlook",{"2":{"155":1,"162":1}}],["operand",{"2":{"95":1,"135":1,"140":1,"141":1,"144":1}}],["or",{"2":{"57":1,"85":1}}],["order",{"2":{"35":2}}],["only",{"0":{"118":1,"119":1},"2":{"118":4,"119":4}}],["on",{"0":{"53":1},"2":{"53":1}}],["onearrayfunc",{"0":{"67":1,"68":1}}],["onesinglevarfunc",{"0":{"49":3,"66":1,"68":1},"2":{"49":3}}],["onevarfunc",{"0":{"33":3,"38":1,"68":1},"2":{"33":3,"38":1}}],["overload",{"2":{"20":1,"21":2,"22":1,"92":1,"93":2,"94":1,"101":1,"102":2,"103":1,"132":1,"133":2,"134":1,"137":1,"138":2,"139":1,"141":1,"142":2,"143":1}}],["other",{"0":{"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"43":1,"44":1,"45":1,"46":1,"50":1,"51":1,"52":1,"54":1,"57":1,"58":1,"81":1,"82":1,"83":1,"84":1,"85":1,"87":1,"93":1,"94":1,"95":1,"96":1,"97":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"114":1,"115":1,"116":1,"123":1,"124":1,"125":1,"126":1,"127":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1},"2":{"17":2,"18":2,"19":2,"20":2,"21":1,"22":1,"23":4,"43":5,"44":4,"45":13,"46":9,"50":4,"51":4,"52":5,"54":5,"57":7,"58":5,"81":15,"82":9,"83":9,"84":17,"85":11,"87":4,"93":1,"94":1,"95":10,"96":2,"97":2,"101":6,"102":1,"103":1,"104":6,"105":6,"106":6,"114":9,"115":2,"116":2,"123":6,"124":5,"125":9,"126":4,"127":4,"133":1,"134":1,"135":12,"136":6,"137":6,"138":1,"139":1,"140":12,"141":8,"142":1,"143":1,"144":12,"145":2,"146":6,"147":4}}],["email",{"2":{"155":1,"162":1}}],["error",{"0":{"115":1},"2":{"114":2,"115":1}}],["examples",{"2":{"38":1}}],["exp",{"2":{"26":1}}],["elif",{"2":{"35":1,"45":3,"57":1,"81":2,"82":1,"83":1,"84":2,"95":1,"114":1,"118":1,"119":1,"135":1,"140":1,"144":1}}],["else",{"2":{"5":1,"34":1,"35":1,"45":2,"57":1,"81":1,"82":1,"83":1,"95":1,"114":2,"118":2,"119":2,"135":1,"140":1,"141":1,"144":1}}],["epsilon",{"0":{"29":1,"35":2,"37":2,"43":1,"50":1,"101":1,"117":1,"123":1,"126":1},"2":{"35":7,"37":12,"43":5,"50":4,"101":6,"117":4,"123":6,"126":4}}],["e",{"0":{"26":2}}],["equations",{"0":{"49":1},"2":{"49":1,"85":1}}],["equation",{"0":{"31":1},"1":{"32":1,"33":1,"34":1,"35":1}}],["eq",{"0":{"18":1,"58":1,"96":1,"105":1,"114":1,"136":1},"2":{"18":1,"58":1,"96":1,"105":1,"114":1,"116":1,"136":1}}],["+1",{"2":{"119":2}}],["+=",{"2":{"35":1}}],["+",{"0":{"17":1,"27":1,"102":1,"103":1,"104":1,"133":1,"134":1,"135":1,"137":1},"2":{"17":1,"37":3,"38":4,"46":1,"48":1,"49":3,"80":6,"83":5,"85":5,"104":7,"109":3,"118":3,"119":3,"130":2,"135":11,"137":5,"146":2,"158":1,"161":1}}],["12",{"2":{"155":2,"162":2}}],["1e",{"0":{"50":1}}],["1",{"0":{"27":1,"150":1,"151":1,"152":1},"2":{"14":1,"15":1,"16":1,"26":1,"34":1,"38":2,"91":1,"119":6,"158":4,"161":4}}],["180",{"2":{"5":1,"8":1}}],["正割值",{"2":{"15":4}}],["正切值",{"2":{"13":4}}],["正弦值",{"2":{"11":4}}],["余割值",{"2":{"16":4}}],["余切值",{"2":{"14":4}}],["余弦值",{"2":{"12":4}}],["余角",{"2":{"6":4}}],["最大值",{"2":{"111":2}}],["最大负角度",{"2":{"10":2}}],["最大负角",{"2":{"10":2}}],["最小值",{"2":{"111":2}}],["最小正角度",{"2":{"9":2}}],["最小正角",{"2":{"9":2}}],["弧度",{"2":{"8":2}}],["角度",{"2":{"8":2}}],["角度或弧度值",{"2":{"5":2}}],["补角",{"2":{"7":4}}],["sphere",{"0":{"158":1,"161":1},"2":{"158":1,"161":1}}],["staticmethod",{"2":{"157":1,"158":1,"160":1,"161":1}}],["str",{"0":{"118":1,"119":1},"2":{"118":1,"119":1}}],["software",{"2":{"155":1,"162":1}}],["solve",{"2":{"84":3}}],["snowykami",{"2":{"155":2,"162":2}}],["s",{"2":{"95":1,"135":1,"140":1,"141":1,"144":1}}],["sign",{"0":{"118":1,"119":1},"2":{"118":1,"119":1}}],["simplify",{"0":{"55":1},"2":{"55":1}}],["singlevar",{"0":{"63":2,"65":1,"66":2,"69":3,"72":4,"75":1}}],["sin",{"0":{"11":1},"2":{"11":2,"16":1,"158":3,"161":3}}],["sqrt",{"0":{"27":1},"2":{"130":1,"158":1,"161":1}}],["sub",{"2":{"19":1,"106":1,"138":1,"139":1,"140":1}}],["supplementary",{"0":{"7":1},"2":{"7":1}}],["segment",{"0":{"107":1},"1":{"108":1,"109":1}}],["segment3",{"0":{"108":1},"1":{"109":1},"2":{"39":1,"59":1}}],["sec",{"0":{"15":1},"2":{"15":1}}],["self",{"0":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"113":1,"114":1,"115":1,"116":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1},"2":{"5":3,"6":2,"7":2,"8":2,"9":2,"10":2,"11":2,"12":2,"13":2,"14":2,"15":2,"16":2,"17":2,"18":2,"19":2,"20":2,"21":1,"22":1,"23":3,"33":4,"34":7,"42":3,"43":4,"44":2,"45":13,"46":8,"47":3,"48":3,"49":7,"50":2,"51":2,"52":4,"53":3,"54":3,"55":8,"57":6,"58":4,"80":5,"81":16,"82":4,"83":8,"84":15,"85":9,"86":2,"87":2,"88":4,"93":1,"94":1,"95":5,"96":2,"97":2,"100":4,"101":4,"102":1,"103":1,"104":4,"105":4,"106":4,"109":15,"113":2,"114":9,"115":2,"116":2,"122":4,"123":4,"124":3,"125":7,"126":2,"127":2,"128":5,"129":4,"130":4,"131":3,"132":2,"133":1,"134":1,"135":7,"136":4,"137":4,"138":1,"139":1,"140":7,"141":4,"142":1,"143":1,"144":7,"145":2,"146":4,"147":4,"148":4}}],["2024",{"2":{"155":2,"162":2}}],["2020",{"2":{"155":1,"162":1}}],["2",{"0":{"27":1},"2":{"6":1,"9":1,"10":1,"35":1,"37":3,"38":2,"46":1,"83":3,"109":3,"130":3,"158":2,"161":2}}],["rmul",{"2":{"145":1}}],["rsub",{"2":{"141":1}}],["rights",{"2":{"155":1,"162":1}}],["right",{"2":{"37":1}}],["reference",{"0":{"164":1}}],["reserved",{"2":{"155":1,"162":1}}],["result",{"2":{"35":4}}],["realnumber",{"0":{"48":1,"61":1,"62":1,"113":1,"143":1,"145":1,"146":1,"147":1},"2":{"48":1,"113":1,"143":1,"145":1,"146":1,"147":1}}],["return",{"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"23":2,"34":2,"35":4,"37":1,"38":4,"43":1,"44":1,"45":5,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":3,"58":1,"81":4,"82":2,"83":2,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"95":4,"96":1,"97":1,"101":1,"104":1,"105":1,"106":1,"111":1,"114":2,"116":1,"117":1,"118":3,"119":3,"123":1,"124":1,"125":1,"126":1,"127":1,"129":1,"130":1,"131":1,"132":1,"135":2,"136":1,"137":3,"140":2,"141":1,"144":2,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1}}],["returns",{"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"34":1,"35":2,"37":1,"38":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"95":1,"101":1,"104":1,"105":1,"106":1,"111":1,"117":1,"118":1,"119":1,"123":1,"124":1,"125":1,"126":1,"127":1,"129":1,"130":1,"131":1,"135":1,"136":1,"140":1,"141":1,"144":1,"146":1,"158":1,"161":1}}],["range",{"2":{"158":2,"161":2}}],["rand",{"0":{"97":1},"2":{"97":1}}],["radius",{"0":{"158":1,"161":1},"2":{"158":7,"161":7}}],["radian=true",{"2":{"6":1,"7":1,"10":1,"17":1,"19":1,"20":1,"23":1,"82":1,"124":1}}],["radian",{"0":{"5":1},"2":{"5":6,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":2,"18":2,"19":2,"20":1,"23":3}}],["radd",{"2":{"137":1}}],["raise",{"0":{"115":1},"2":{"35":1,"45":1,"46":2,"82":1,"83":1,"84":1,"85":1,"95":1,"114":2,"115":2,"135":1,"140":1,"141":1,"144":1}}],["raises",{"2":{"35":1,"44":1,"45":1,"46":1,"82":1,"83":1,"84":1,"85":1}}],["ratio",{"0":{"27":1}}],[">",{"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"19":1,"20":1,"21":1,"22":1,"34":1,"35":5,"37":3,"38":6,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"96":1,"97":1,"101":1,"102":1,"103":1,"104":2,"106":3,"111":1,"117":1,"118":2,"119":5,"123":1,"124":1,"125":2,"126":1,"127":1,"129":1,"130":1,"131":1,"133":1,"134":1,"135":2,"137":2,"138":1,"139":1,"140":2,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1}}],["返回numpy数组",{"2":{"129":1}}],["返回如下行列式的结果",{"2":{"125":1}}],["返回",{"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"34":1,"35":1,"37":1,"38":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"95":1,"101":1,"111":1,"117":1,"118":1,"119":1,"123":1,"124":1,"125":1,"126":1,"127":1,"130":1,"131":1,"136":1,"158":1,"161":1}}],["cz",{"2":{"80":2}}],["clamp",{"0":{"111":1},"2":{"111":1,"158":1,"161":1}}],["classmethod",{"2":{"55":1,"56":1,"88":1,"89":2,"90":2,"91":2,"92":1}}],["class",{"0":{"3":1,"4":1,"32":1,"41":1,"79":1,"99":1,"108":1,"112":1,"121":1,"157":1,"160":1},"1":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"113":1,"114":1,"115":1,"116":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1},"2":{"106":2}}],["cls",{"0":{"56":1,"89":1,"90":1,"91":1,"92":1},"2":{"56":2,"89":2,"90":2,"91":2,"92":2}}],["cross",{"0":{"125":1},"2":{"45":4,"46":3,"47":1,"54":1,"84":1,"90":1,"91":1,"125":3,"126":1,"127":1}}],["c",{"0":{"80":1},"2":{"38":4,"80":5,"81":7,"83":2,"84":6,"85":2,"88":1,"89":3,"155":1,"162":1}}],["curried",{"2":{"38":6}}],["currying",{"2":{"38":2}}],["curry",{"0":{"38":1},"2":{"38":3}}],["curveequation",{"0":{"32":1},"1":{"33":1,"34":1},"2":{"39":1,"59":1}}],["cal",{"0":{"37":1,"44":1,"45":1,"46":1,"47":1,"82":1,"83":1,"84":1,"85":1,"86":1,"124":1},"2":{"37":1,"44":2,"45":1,"46":1,"47":1,"57":1,"82":2,"83":1,"84":1,"85":1,"86":1,"95":2,"97":1,"124":1}}],["callable",{"0":{"66":1,"67":1,"69":1,"70":1,"72":1,"73":1,"75":1,"76":1}}],["call",{"0":{"34":1},"2":{"34":1}}],["csc",{"0":{"16":1},"2":{"16":1}}],["copyright",{"2":{"155":1,"162":1}}],["coplanar",{"0":{"54":1},"2":{"45":1,"46":2,"54":1,"57":1}}],["coincident",{"2":{"85":1}}],["collinear",{"0":{"52":1},"2":{"52":1,"57":1}}],["complex",{"0":{"62":1}}],["complementary",{"0":{"6":1},"2":{"6":1,"82":1}}],["com",{"2":{"38":1,"155":1,"162":1}}],["const",{"0":{"24":1},"1":{"25":1,"26":1,"27":1,"28":1,"29":1,"30":1}}],["cot",{"0":{"14":1},"2":{"14":1}}],["cos",{"0":{"12":1},"2":{"12":2,"15":1,"158":2,"161":2}}],["phi",{"2":{"158":5,"161":5}}],["pycharm",{"2":{"155":1,"162":1}}],["py",{"2":{"155":1,"162":1}}],["python",{"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"21":1,"22":1,"56":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"102":1,"103":1,"129":1,"130":1,"131":1,"133":1,"134":1,"138":1,"139":1,"142":1,"143":1,"158":1,"161":1}}],["pythondef",{"2":{"5":1,"17":1,"18":1,"19":1,"20":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":2,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"95":1,"96":1,"97":1,"100":1,"101":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"132":1,"135":1,"136":1,"137":1,"140":1,"141":1,"144":1,"145":1,"146":1,"147":1,"148":1}}],["presets",{"0":{"155":1,"156":1,"159":1,"162":1},"1":{"157":1,"158":1,"160":1,"161":1}}],["property",{"2":{"5":1,"6":2,"7":2,"8":2,"9":2,"10":2,"11":2,"12":2,"13":2,"14":2,"15":2,"16":1,"87":1,"88":1,"128":1,"129":2,"130":2,"131":1}}],["p3",{"0":{"90":1},"2":{"90":4}}],["p2",{"0":{"56":1,"90":1,"109":1},"2":{"56":4,"58":2,"90":4,"109":9}}],["p1",{"0":{"56":1,"90":1,"109":1},"2":{"56":5,"58":2,"90":6,"109":9}}],["perpendicular",{"0":{"47":1},"2":{"47":1}}],["particle",{"0":{"153":1,"154":1}}],["partial",{"0":{"35":1},"2":{"35":6,"37":6}}],["param",{"2":{"109":4,"137":2}}],["parametric",{"0":{"49":1},"2":{"49":1,"85":1}}],["parallel",{"0":{"50":1,"51":1,"86":1,"87":1,"126":1,"127":1},"2":{"43":2,"45":1,"46":2,"50":2,"51":2,"52":2,"53":1,"57":1,"58":2,"84":2,"85":1,"86":1,"87":2,"95":1,"126":1,"127":1}}],["planes",{"2":{"84":1}}],["plane",{"0":{"78":1},"1":{"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1},"2":{"85":1}}],["plane3",{"0":{"79":1,"81":1,"82":1,"83":1,"84":1,"86":2,"87":1,"89":1,"90":1,"91":1,"92":1,"94":1},"1":{"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1},"2":{"39":1,"59":1,"81":1,"82":2,"83":2,"84":1,"86":3,"87":1,"89":1,"90":1,"91":1,"92":1,"94":1,"95":2,"114":1}}],["plus",{"2":{"35":3}}],["p",{"0":{"37":1},"2":{"37":21,"38":1,"104":10,"106":8,"135":4,"137":4,"140":4,"141":4}}],["points",{"0":{"56":1,"90":1},"2":{"56":1,"90":1}}],["point",{"0":{"42":1,"47":1,"48":1,"53":2,"86":1,"89":2,"92":2,"98":1},"1":{"99":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1},"2":{"42":5,"43":2,"45":5,"46":3,"47":6,"48":2,"49":3,"52":2,"53":6,"54":2,"55":3,"58":2,"85":3,"86":5,"89":7,"90":1,"91":6,"92":6}}],["point3",{"0":{"34":2,"37":1,"42":1,"45":1,"46":1,"47":1,"48":1,"53":1,"56":2,"57":1,"83":1,"85":2,"86":1,"89":1,"90":3,"92":1,"93":1,"97":1,"99":1,"101":1,"102":1,"103":2,"106":1,"109":2,"134":2,"137":2,"139":2,"141":1},"1":{"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1},"2":{"34":4,"37":1,"39":1,"42":1,"45":2,"46":1,"47":1,"48":1,"53":1,"56":2,"57":1,"59":1,"83":2,"84":1,"85":3,"86":1,"89":1,"90":3,"92":1,"93":1,"95":1,"97":2,"101":1,"102":1,"103":2,"104":1,"106":1,"109":3,"114":1,"134":2,"135":2,"137":3,"139":2,"140":2,"141":3,"158":3,"161":3}}],["positive",{"0":{"9":1},"2":{"6":1,"7":1,"9":1}}],["pi",{"0":{"25":2},"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"158":2,"161":2}}],["author",{"2":{"155":1,"162":1}}],["all",{"2":{"101":1,"114":1,"123":1,"155":1,"162":1}}],["acos",{"2":{"82":1,"124":1}}],["axis",{"0":{"150":1,"151":1,"152":1}}],["ax",{"2":{"80":2}}],["arccos",{"2":{"158":1,"161":1}}],["array",{"0":{"129":1},"2":{"84":6,"129":2,"158":6,"161":6}}],["arrayvar",{"0":{"64":2,"65":1,"67":2,"70":3,"73":4,"76":1}}],["area",{"2":{"158":2,"161":2}}],["are",{"2":{"46":2,"84":1,"85":1}}],["args2",{"2":{"38":2}}],["args",{"0":{"38":1},"2":{"5":1,"33":1,"34":1,"35":14,"37":1,"38":5,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"89":1,"90":1,"91":1,"92":1,"95":1,"100":1,"101":1,"104":1,"105":1,"106":1,"111":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"135":1,"136":1,"140":1,"141":1,"144":1,"146":1,"158":1,"161":1}}],["abs",{"0":{"132":1},"2":{"45":1,"83":1,"101":3,"114":1,"117":1,"119":1,"123":3,"132":1}}],["a",{"0":{"80":1},"2":{"38":4,"80":5,"81":7,"83":2,"84":12,"85":2,"88":1,"89":3}}],["aaa",{"2":{"36":1}}],["approx",{"0":{"30":1,"43":2,"50":1,"81":1,"101":2,"112":1,"117":2,"123":2,"126":2},"1":{"113":1,"114":1,"115":1,"116":1},"2":{"18":1,"43":3,"50":2,"81":10,"96":1,"101":1,"105":3,"114":4,"117":1,"123":1,"126":1,"127":1,"136":3}}],["add",{"2":{"17":1,"38":8,"102":1,"103":1,"104":1,"133":1,"134":1,"135":1}}],["and",{"0":{"57":1,"89":1,"92":1,"93":1,"94":1,"95":1},"2":{"43":1,"46":2,"52":1,"57":1,"58":1,"81":6,"84":4,"85":1,"86":1,"89":1,"90":1,"91":1,"92":2,"93":1,"94":1,"95":2,"105":2,"115":1,"135":1,"136":2,"140":1,"141":1,"144":1}}],["anyangle",{"0":{"4":1,"6":1,"7":1,"9":1,"10":1,"17":2,"19":2,"20":1,"21":1,"22":1,"44":1,"82":1,"124":1},"1":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1},"2":{"6":2,"7":2,"9":2,"10":2,"17":3,"19":3,"20":2,"21":1,"22":1,"23":2,"39":1,"44":1,"59":1,"82":2,"124":2}}],["angle",{"0":{"2":1,"3":1,"4":1,"44":1,"82":1,"124":1},"1":{"3":1,"4":1,"5":2,"6":2,"7":2,"8":2,"9":2,"10":2,"11":2,"12":2,"13":2,"14":2,"15":2,"16":2,"17":2,"18":2,"19":2,"20":2,"21":2,"22":2,"23":2},"2":{"44":2,"82":2,"124":1}}],["於github上查看",{"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1}}],["或包装一个实数",{"2":{"117":2}}],["或整数元组",{"2":{"35":2}}],["或",{"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1}}],["源碼",{"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1}}],["默认为否",{"2":{"5":2}}],["變數説明",{"2":{"5":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"89":1,"90":1,"91":1,"92":1,"95":1,"100":1,"101":1,"104":1,"105":1,"106":1,"111":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"135":1,"136":1,"140":1,"141":1,"144":1,"146":1,"158":1,"161":1}}],["file",{"2":{"155":1,"162":1}}],["from",{"0":{"56":1,"89":1,"90":1,"91":1,"92":1},"2":{"56":1,"86":1,"89":1,"90":2,"91":2,"92":2,"106":1}}],["frac",{"2":{"37":3}}],["f",{"2":{"37":4,"82":1,"83":1,"95":1,"115":1,"119":3,"135":1,"140":1,"141":1,"144":1}}],["format",{"0":{"119":1},"2":{"119":1}}],["for",{"2":{"34":1,"35":1,"95":1,"135":1,"140":1,"141":1,"144":1,"158":2,"161":2}}],["function",{"0":{"36":1},"1":{"37":1,"38":1}}],["func",{"0":{"33":3,"35":2,"37":1,"38":1},"2":{"33":15,"34":6,"35":16,"37":9,"38":6}}],["false",{"0":{"5":1,"118":1,"119":1},"2":{"81":1}}],["float=0",{"2":{"117":1}}],["float=1e",{"2":{"50":1}}],["float=approx",{"2":{"43":1,"101":1,"117":1,"123":1,"126":1}}],["float=epsilon",{"2":{"37":1}}],["float",{"0":{"5":1,"8":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"20":1,"21":1,"22":1,"37":1,"43":1,"45":1,"50":1,"61":1,"80":4,"83":1,"100":3,"101":1,"111":4,"117":3,"118":1,"119":1,"122":3,"123":1,"126":1,"130":1,"144":1,"158":2,"161":2},"2":{"5":1,"8":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"20":1,"21":1,"22":1,"45":1,"80":4,"83":1,"100":3,"111":4,"114":2,"117":1,"118":1,"119":1,"122":3,"130":1,"144":2,"158":2,"161":2}}],["==",{"2":{"34":1,"45":1,"54":1,"55":3,"85":1,"91":1,"95":1}}],["=",{"0":{"5":1,"17":1,"19":1,"20":1,"21":1,"22":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"35":1,"37":1,"43":1,"50":1,"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"101":1,"102":1,"103":1,"106":1,"117":2,"118":1,"119":1,"123":1,"126":1,"133":1,"134":1,"137":1,"138":1,"139":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"149":1,"150":1,"151":1,"152":1},"2":{"5":2,"33":3,"35":5,"37":5,"38":2,"42":2,"55":3,"56":1,"80":6,"81":6,"84":17,"85":2,"89":2,"90":3,"91":3,"100":3,"109":5,"113":1,"122":3,"128":4,"158":7,"161":7}}],["improve",{"2":{"164":1}}],["import",{"2":{"106":1}}],["i",{"2":{"158":4,"161":4}}],["invalid",{"2":{"35":1}}],["intersect",{"2":{"46":2}}],["intersection",{"0":{"46":1,"84":1,"85":1},"2":{"46":1,"57":1,"84":2,"85":1,"95":2,"97":1}}],["int",{"0":{"35":2,"61":1,"144":1},"2":{"35":3,"38":8,"114":2,"144":2,"158":1,"161":1}}],["in",{"2":{"34":1,"35":1,"158":2,"161":2}}],["init",{"0":{"5":1,"33":1,"42":1,"80":1,"100":1,"109":1,"113":1,"122":1},"2":{"5":1,"33":1,"42":1,"80":1,"100":1,"109":1,"113":1,"122":1,"155":1,"162":1}}],["if",{"2":{"5":1,"23":1,"34":1,"35":1,"45":2,"46":2,"55":3,"57":1,"81":1,"82":1,"83":1,"84":2,"85":1,"91":1,"95":3,"114":3,"118":2,"119":2,"135":1,"140":1,"141":1,"144":1}}],["isinstance",{"2":{"23":1,"35":2,"45":2,"82":2,"83":2,"95":2,"114":4,"135":2,"140":2,"141":1,"144":2}}],["is",{"0":{"5":1,"50":1,"51":1,"52":1,"53":1,"54":1,"87":1,"126":1,"127":1},"2":{"5":4,"6":1,"7":1,"10":1,"17":1,"19":1,"20":1,"23":1,"43":2,"45":2,"46":2,"50":2,"51":2,"52":3,"53":2,"54":1,"57":3,"58":2,"82":1,"84":1,"87":2,"95":1,"124":1,"126":1,"127":1}}],["model",{"0":{"156":1,"159":1},"1":{"157":1,"158":1,"160":1,"161":1}}],["midpoint",{"2":{"109":1}}],["min",{"0":{"111":1},"2":{"111":5}}],["minus",{"2":{"35":3}}],["minimum",{"0":{"9":1},"2":{"6":1,"7":1,"9":1}}],["multiarraysfunc",{"0":{"76":1,"77":1}}],["multisinglevarsfunc",{"0":{"75":1,"77":1}}],["multivarsfunc",{"0":{"35":2,"38":1,"77":1},"2":{"35":2,"38":1}}],["mul",{"2":{"20":1,"142":1,"143":1,"144":1,"145":1}}],["matmul",{"2":{"146":1}}],["math导入使用",{"2":{"39":1,"59":1}}],["math",{"0":{"2":1,"24":1,"25":1,"26":1,"27":1,"31":1,"36":1,"39":1,"40":1,"59":1,"60":2,"78":1,"98":1,"107":1,"110":1,"120":1},"1":{"3":1,"4":1,"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"32":1,"33":1,"34":1,"35":1,"37":1,"38":1,"41":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"61":2,"62":2,"63":2,"64":2,"65":2,"66":2,"67":2,"68":2,"69":2,"70":2,"71":2,"72":2,"73":2,"74":2,"75":2,"76":2,"77":2,"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"99":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"108":1,"109":1,"111":1,"112":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"121":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"150":1,"151":1,"152":1},"2":{"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"82":1,"124":1,"130":1}}],["max",{"0":{"111":1},"2":{"111":5}}],["maximum",{"0":{"10":1},"2":{"10":1}}],["mp",{"0":{"2":1,"24":1,"31":1,"36":1,"39":1,"40":1,"59":1,"60":2,"78":1,"98":1,"107":1,"110":1,"120":1},"1":{"3":1,"4":1,"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"32":1,"33":1,"34":1,"35":1,"37":1,"38":1,"41":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"61":2,"62":2,"63":2,"64":2,"65":2,"66":2,"67":2,"68":2,"69":2,"70":2,"71":2,"72":2,"73":2,"74":2,"75":2,"76":2,"77":2,"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"99":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"108":1,"109":1,"111":1,"112":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"121":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"150":1,"151":1,"152":1},"2":{"39":1,"59":1}}],["mbcp",{"0":{"0":1,"1":1,"2":1,"24":1,"31":1,"36":1,"39":1,"40":1,"59":1,"60":1,"78":1,"98":1,"107":1,"110":1,"120":1,"153":1,"154":1,"155":1,"156":1,"159":1,"162":1},"1":{"3":1,"4":1,"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"32":1,"33":1,"34":1,"35":1,"37":1,"38":1,"41":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"99":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"108":1,"109":1,"111":1,"112":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"121":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"150":1,"151":1,"152":1,"157":1,"158":1,"160":1,"161":1}}],["説明",{"2":{"0":1,"1":1,"2":1,"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"24":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"31":1,"33":1,"34":1,"35":1,"36":1,"37":1,"38":1,"39":1,"40":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"59":1,"60":1,"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"78":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"95":1,"98":1,"100":1,"101":1,"104":1,"105":1,"106":1,"107":1,"109":1,"110":1,"111":1,"117":1,"118":1,"119":1,"120":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"130":1,"131":1,"135":1,"136":1,"137":1,"140":1,"141":1,"144":1,"146":1,"149":1,"150":1,"151":1,"152":1,"153":1,"154":1,"155":1,"156":1,"158":1,"159":1,"161":1,"162":1}}]],"serializationVersion":2}';export{t as default};
+const t='{"documentCount":165,"nextId":165,"documentIds":{"0":"/zht/api/api.html#mbcp","1":"/zht/api/#mbcp","2":"/zht/api/mp_math/angle.html#mbcp-mp-math-angle","3":"/zht/api/mp_math/angle.html#class-angle","4":"/zht/api/mp_math/angle.html#class-anyangle-angle","5":"/zht/api/mp_math/angle.html#def-init-self-value-float-is-radian-bool-false","6":"/zht/api/mp_math/angle.html#def-complementary-self-anyangle","7":"/zht/api/mp_math/angle.html#def-supplementary-self-anyangle","8":"/zht/api/mp_math/angle.html#def-degree-self-float","9":"/zht/api/mp_math/angle.html#def-minimum-positive-self-anyangle","10":"/zht/api/mp_math/angle.html#def-maximum-negative-self-anyangle","11":"/zht/api/mp_math/angle.html#def-sin-self-float","12":"/zht/api/mp_math/angle.html#def-cos-self-float","13":"/zht/api/mp_math/angle.html#def-tan-self-float","14":"/zht/api/mp_math/angle.html#def-cot-self-float","15":"/zht/api/mp_math/angle.html#def-sec-self-float","16":"/zht/api/mp_math/angle.html#def-csc-self-float","17":"/zht/api/mp_math/angle.html#def-self-other-anyangle-anyangle","18":"/zht/api/mp_math/angle.html#def-eq-self-other","19":"/zht/api/mp_math/angle.html#def-self-other-anyangle-anyangle-1","20":"/zht/api/mp_math/angle.html#def-self-other-float-anyangle","21":"/zht/api/mp_math/angle.html#def-self-other-float-anyangle-1","22":"/zht/api/mp_math/angle.html#def-self-other-anyangle-float","23":"/zht/api/mp_math/angle.html#def-self-other","24":"/zht/api/mp_math/const.html#mbcp-mp-math-const","25":"/zht/api/mp_math/const.html#var-pi-math-pi","26":"/zht/api/mp_math/const.html#var-e-math-e","27":"/zht/api/mp_math/const.html#var-golden-ratio-1-math-sqrt-5-2","28":"/zht/api/mp_math/const.html#var-gamma-0-5772156649015329","29":"/zht/api/mp_math/const.html#var-epsilon-0-0001","30":"/zht/api/mp_math/const.html#var-approx-0-001","31":"/zht/api/mp_math/equation.html#mbcp-mp-math-equation","32":"/zht/api/mp_math/equation.html#class-curveequation","33":"/zht/api/mp_math/equation.html#def-init-self-x-func-onevarfunc-y-func-onevarfunc-z-func-onevarfunc","34":"/zht/api/mp_math/equation.html#def-call-self-t-var-point3-tuple-point3","35":"/zht/api/mp_math/equation.html#def-get-partial-derivative-func-func-multivarsfunc-var-int-tuple-int-epsilon-number-epsilon-multivarsfunc","36":"/zht/api/mp_math/function.html#mbcp-mp-math-function","37":"/zht/api/mp_math/function.html#def-cal-gradient-3vf-func-threesinglevarsfunc-p-point3-epsilon-float-epsilon-vector3","38":"/zht/api/mp_math/function.html#def-curry-func-multivarsfunc-args-var-onevarfunc","39":"/zht/api/mp_math/#mbcp-mp-math","40":"/zht/api/mp_math/line.html#mbcp-mp-math-line","41":"/zht/api/mp_math/line.html#class-line3","42":"/zht/api/mp_math/line.html#def-init-self-point-point3-direction-vector3","43":"/zht/api/mp_math/line.html#def-approx-self-other-line3-epsilon-float-approx-bool","44":"/zht/api/mp_math/line.html#def-cal-angle-self-other-line3-anyangle","45":"/zht/api/mp_math/line.html#def-cal-distance-self-other-line3-point3-float","46":"/zht/api/mp_math/line.html#def-cal-intersection-self-other-line3-point3","47":"/zht/api/mp_math/line.html#def-cal-perpendicular-self-point-point3-line3","48":"/zht/api/mp_math/line.html#def-get-point-self-t-realnumber-point3","49":"/zht/api/mp_math/line.html#def-get-parametric-equations-self-tuple-onesinglevarfunc-onesinglevarfunc-onesinglevarfunc","50":"/zht/api/mp_math/line.html#def-is-approx-parallel-self-other-line3-epsilon-float-1e-06-bool","51":"/zht/api/mp_math/line.html#def-is-parallel-self-other-line3-bool","52":"/zht/api/mp_math/line.html#def-is-collinear-self-other-line3-bool","53":"/zht/api/mp_math/line.html#def-is-point-on-self-point-point3-bool","54":"/zht/api/mp_math/line.html#def-is-coplanar-self-other-line3-bool","55":"/zht/api/mp_math/line.html#def-simplify-self","56":"/zht/api/mp_math/line.html#def-from-two-points-cls-p1-point3-p2-point3-line3","57":"/zht/api/mp_math/line.html#def-and-self-other-line3-line3-point3-none","58":"/zht/api/mp_math/line.html#def-eq-self-other-bool","59":"/zht/api/mp_math/mp_math.html#mbcp-mp-math","60":"/zht/api/mp_math/mp_math_typing.html#mbcp-mp-math-mp-math-typing","61":"/zht/api/mp_math/mp_math_typing.html#var-realnumber-int-float","62":"/zht/api/mp_math/mp_math_typing.html#var-number-realnumber-complex","63":"/zht/api/mp_math/mp_math_typing.html#var-singlevar-typevar-singlevar-bound-number","64":"/zht/api/mp_math/mp_math_typing.html#var-arrayvar-typevar-arrayvar-bound-iterable-number","65":"/zht/api/mp_math/mp_math_typing.html#var-var-singlevar-arrayvar","66":"/zht/api/mp_math/mp_math_typing.html#var-onesinglevarfunc-callable-singlevar-singlevar","67":"/zht/api/mp_math/mp_math_typing.html#var-onearrayfunc-callable-arrayvar-arrayvar","68":"/zht/api/mp_math/mp_math_typing.html#var-onevarfunc-onesinglevarfunc-onearrayfunc","69":"/zht/api/mp_math/mp_math_typing.html#var-twosinglevarsfunc-callable-singlevar-singlevar-singlevar","70":"/zht/api/mp_math/mp_math_typing.html#var-twoarraysfunc-callable-arrayvar-arrayvar-arrayvar","71":"/zht/api/mp_math/mp_math_typing.html#var-twovarsfunc-twosinglevarsfunc-twoarraysfunc","72":"/zht/api/mp_math/mp_math_typing.html#var-threesinglevarsfunc-callable-singlevar-singlevar-singlevar-singlevar","73":"/zht/api/mp_math/mp_math_typing.html#var-threearraysfunc-callable-arrayvar-arrayvar-arrayvar-arrayvar","74":"/zht/api/mp_math/mp_math_typing.html#var-threevarsfunc-threesinglevarsfunc-threearraysfunc","75":"/zht/api/mp_math/mp_math_typing.html#var-multisinglevarsfunc-callable-singlevar","76":"/zht/api/mp_math/mp_math_typing.html#var-multiarraysfunc-callable-arrayvar","77":"/zht/api/mp_math/mp_math_typing.html#var-multivarsfunc-multisinglevarsfunc-multiarraysfunc","78":"/zht/api/mp_math/plane.html#mbcp-mp-math-plane","79":"/zht/api/mp_math/plane.html#class-plane3","80":"/zht/api/mp_math/plane.html#def-init-self-a-float-b-float-c-float-d-float","81":"/zht/api/mp_math/plane.html#def-approx-self-other-plane3-bool","82":"/zht/api/mp_math/plane.html#def-cal-angle-self-other-line3-plane3-anyangle","83":"/zht/api/mp_math/plane.html#def-cal-distance-self-other-plane3-point3-float","84":"/zht/api/mp_math/plane.html#def-cal-intersection-line3-self-other-plane3-line3","85":"/zht/api/mp_math/plane.html#def-cal-intersection-point3-self-other-line3-point3","86":"/zht/api/mp_math/plane.html#def-cal-parallel-plane3-self-point-point3-plane3","87":"/zht/api/mp_math/plane.html#def-is-parallel-self-other-plane3-bool","88":"/zht/api/mp_math/plane.html#def-normal-self-vector3","89":"/zht/api/mp_math/plane.html#def-from-point-and-normal-cls-point-point3-normal-vector3-plane3","90":"/zht/api/mp_math/plane.html#def-from-three-points-cls-p1-point3-p2-point3-p3-point3-plane3","91":"/zht/api/mp_math/plane.html#def-from-two-lines-cls-l1-line3-l2-line3-plane3","92":"/zht/api/mp_math/plane.html#def-from-point-and-line-cls-point-point3-line-line3-plane3","93":"/zht/api/mp_math/plane.html#def-and-self-other-line3-point3-none","94":"/zht/api/mp_math/plane.html#def-and-self-other-plane3-line3-none","95":"/zht/api/mp_math/plane.html#def-and-self-other","96":"/zht/api/mp_math/plane.html#def-eq-self-other-bool","97":"/zht/api/mp_math/plane.html#def-rand-self-other-line3-point3","98":"/zht/api/mp_math/point.html#mbcp-mp-math-point","99":"/zht/api/mp_math/point.html#class-point3","100":"/zht/api/mp_math/point.html#def-init-self-x-float-y-float-z-float","101":"/zht/api/mp_math/point.html#def-approx-self-other-point3-epsilon-float-approx-bool","102":"/zht/api/mp_math/point.html#def-self-other-vector3-point3","103":"/zht/api/mp_math/point.html#def-self-other-point3-point3","104":"/zht/api/mp_math/point.html#def-self-other","105":"/zht/api/mp_math/point.html#def-eq-self-other","106":"/zht/api/mp_math/point.html#def-self-other-point3-vector3","107":"/zht/api/mp_math/segment.html#mbcp-mp-math-segment","108":"/zht/api/mp_math/segment.html#class-segment3","109":"/zht/api/mp_math/segment.html#def-init-self-p1-point3-p2-point3","110":"/zht/api/mp_math/utils.html#mbcp-mp-math-utils","111":"/zht/api/mp_math/utils.html#def-clamp-x-float-min-float-max-float-float","112":"/zht/api/mp_math/utils.html#class-approx","113":"/zht/api/mp_math/utils.html#def-init-self-value-realnumber","114":"/zht/api/mp_math/utils.html#def-eq-self-other","115":"/zht/api/mp_math/utils.html#def-raise-type-error-self-other","116":"/zht/api/mp_math/utils.html#def-ne-self-other","117":"/zht/api/mp_math/utils.html#def-approx-x-float-y-float-0-0-epsilon-float-approx-bool","118":"/zht/api/mp_math/utils.html#def-sign-x-float-only-neg-bool-false-str","119":"/zht/api/mp_math/utils.html#def-sign-format-x-float-only-neg-bool-false-str","120":"/zht/api/mp_math/vector.html#mbcp-mp-math-vector","121":"/zht/api/mp_math/vector.html#class-vector3","122":"/zht/api/mp_math/vector.html#def-init-self-x-float-y-float-z-float","123":"/zht/api/mp_math/vector.html#def-approx-self-other-vector3-epsilon-float-approx-bool","124":"/zht/api/mp_math/vector.html#def-cal-angle-self-other-vector3-anyangle","125":"/zht/api/mp_math/vector.html#def-cross-self-other-vector3-vector3","126":"/zht/api/mp_math/vector.html#def-is-approx-parallel-self-other-vector3-epsilon-float-approx-bool","127":"/zht/api/mp_math/vector.html#def-is-parallel-self-other-vector3-bool","128":"/zht/api/mp_math/vector.html#def-normalize-self","129":"/zht/api/mp_math/vector.html#def-np-array-self-np-ndarray","130":"/zht/api/mp_math/vector.html#def-length-self-float","131":"/zht/api/mp_math/vector.html#def-unit-self-vector3","132":"/zht/api/mp_math/vector.html#def-abs-self","133":"/zht/api/mp_math/vector.html#def-self-other-vector3-vector3","134":"/zht/api/mp_math/vector.html#def-self-other-point3-point3","135":"/zht/api/mp_math/vector.html#def-self-other","136":"/zht/api/mp_math/vector.html#def-eq-self-other","137":"/zht/api/mp_math/vector.html#def-self-other-point3-point3-1","138":"/zht/api/mp_math/vector.html#def-self-other-vector3-vector3-1","139":"/zht/api/mp_math/vector.html#def-self-other-point3-point3-2","140":"/zht/api/mp_math/vector.html#def-self-other-1","141":"/zht/api/mp_math/vector.html#def-self-other-point3","142":"/zht/api/mp_math/vector.html#def-self-other-vector3-vector3-2","143":"/zht/api/mp_math/vector.html#def-self-other-realnumber-vector3","144":"/zht/api/mp_math/vector.html#def-self-other-int-float-vector3-vector3","145":"/zht/api/mp_math/vector.html#def-self-other-realnumber-vector3-1","146":"/zht/api/mp_math/vector.html#def-self-other-vector3-realnumber","147":"/zht/api/mp_math/vector.html#def-self-other-realnumber-vector3-2","148":"/zht/api/mp_math/vector.html#def-self","149":"/zht/api/mp_math/vector.html#var-zero-vector3-vector3-0-0-0","150":"/zht/api/mp_math/vector.html#var-x-axis-vector3-1-0-0","151":"/zht/api/mp_math/vector.html#var-y-axis-vector3-0-1-0","152":"/zht/api/mp_math/vector.html#var-z-axis-vector3-0-0-1","153":"/zht/api/particle/#mbcp-particle","154":"/zht/api/particle/particle.html#mbcp-particle","155":"/zht/api/presets/#mbcp-presets","156":"/zht/api/presets/model/#mbcp-presets-model","157":"/zht/api/presets/model/#class-geometricmodels","158":"/zht/api/presets/model/#def-sphere-radius-float-density-float","159":"/zht/api/presets/model/model.html#mbcp-presets-model","160":"/zht/api/presets/model/model.html#class-geometricmodels","161":"/zht/api/presets/model/model.html#def-sphere-radius-float-density-float","162":"/zht/api/presets/presets.html#mbcp-presets","163":"/zht/guide/#开始不了一点","164":"/zht/refer/#reference"},"fieldIds":{"title":0,"titles":1,"text":2},"fieldLength":{"0":[1,1,3],"1":[1,1,3],"2":[4,1,3],"3":[2,4,1],"4":[4,4,1],"5":[11,8,25],"6":[5,8,24],"7":[5,8,23],"8":[5,8,20],"9":[6,8,21],"10":[6,8,23],"11":[5,8,18],"12":[5,8,18],"13":[5,8,18],"14":[5,8,20],"15":[5,8,20],"16":[5,8,20],"17":[7,8,15],"18":[5,8,11],"19":[6,8,14],"20":[7,8,16],"21":[7,8,13],"22":[7,8,13],"23":[3,8,15],"24":[4,1,3],"25":[5,4,4],"26":[5,4,5],"27":[10,4,3],"28":[5,4,3],"29":[5,4,3],"30":[5,4,3],"31":[4,1,3],"32":[2,4,1],"33":[9,6,20],"34":[10,6,35],"35":[15,4,69],"36":[4,1,3],"37":[14,4,59],"38":[8,4,56],"39":[3,1,21],"40":[4,1,3],"41":[2,4,1],"42":[8,6,19],"43":[11,6,28],"44":[8,6,26],"45":[10,6,45],"46":[8,6,43],"47":[8,6,23],"48":[8,6,26],"49":[9,6,25],"50":[14,6,27],"51":[8,6,22],"52":[8,6,25],"53":[8,6,23],"54":[8,6,28],"55":[4,6,27],"56":[10,6,29],"57":[9,6,36],"58":[6,6,26],"59":[3,1,21],"60":[4,1,3],"61":[6,4,5],"62":[6,4,5],"63":[6,4,3],"64":[7,4,3],"65":[6,4,5],"66":[6,4,5],"67":[6,4,5],"68":[6,4,5],"69":[6,4,5],"70":[6,4,5],"71":[6,4,5],"72":[6,4,5],"73":[6,4,5],"74":[6,4,5],"75":[6,4,5],"76":[6,4,5],"77":[6,4,5],"78":[4,1,3],"79":[2,4,1],"80":[9,6,26],"81":[7,6,32],"82":[10,6,43],"83":[10,6,47],"84":[9,6,53],"85":[9,6,55],"86":[9,6,25],"87":[8,6,23],"88":[5,6,21],"89":[10,6,36],"90":[11,6,36],"91":[10,6,41],"92":[10,6,31],"93":[9,6,15],"94":[9,6,15],"95":[5,6,45],"96":[6,6,12],"97":[7,6,15],"98":[4,1,3],"99":[2,4,1],"100":[8,6,17],"101":[11,6,28],"102":[8,6,13],"103":[7,6,12],"104":[4,6,22],"105":[5,6,19],"106":[7,6,29],"107":[4,1,3],"108":[2,4,1],"109":[7,6,25],"110":[4,1,3],"111":[7,4,22],"112":[2,4,1],"113":[6,6,10],"114":[5,6,31],"115":[7,6,15],"116":[5,6,11],"117":[11,4,30],"118":[11,4,31],"119":[12,4,37],"120":[4,1,4],"121":[2,4,1],"122":[8,6,19],"123":[11,6,27],"124":[8,6,26],"125":[6,6,39],"126":[13,6,28],"127":[8,6,25],"128":[4,6,17],"129":[6,6,18],"130":[5,6,24],"131":[5,6,18],"132":[4,6,10],"133":[7,6,12],"134":[7,6,12],"135":[4,6,36],"136":[5,6,21],"137":[7,6,22],"138":[6,6,12],"139":[6,6,12],"140":[3,6,35],"141":[4,6,35],"142":[6,6,12],"143":[7,6,13],"144":[9,6,38],"145":[7,6,13],"146":[7,6,21],"147":[7,6,15],"148":[2,6,12],"149":[7,4,5],"150":[8,4,5],"151":[8,4,5],"152":[8,4,5],"153":[2,1,3],"154":[2,1,3],"155":[2,1,24],"156":[3,1,3],"157":[2,3,2],"158":[6,5,48],"159":[3,1,3],"160":[2,3,2],"161":[6,5,48],"162":[2,1,24],"163":[1,1,2],"164":[1,1,7]},"averageFieldLength":[6.242424242424242,4.963636363636361,17.824242424242428],"storedFields":{"0":{"title":"mbcp","titles":[]},"1":{"title":"mbcp","titles":[]},"2":{"title":"mbcp.mp_math.angle","titles":[]},"3":{"title":"class Angle","titles":["mbcp.mp_math.angle"]},"4":{"title":"class AnyAngle(Angle)","titles":["mbcp.mp_math.angle"]},"5":{"title":"def __init__(self, value: float, is_radian: bool = False)","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"6":{"title":"def complementary(self) -> AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"7":{"title":"def supplementary(self) -> AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"8":{"title":"def degree(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"9":{"title":"def minimum_positive(self) -> AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"10":{"title":"def maximum_negative(self) -> AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"11":{"title":"def sin(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"12":{"title":"def cos(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"13":{"title":"def tan(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"14":{"title":"def cot(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"15":{"title":"def sec(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"16":{"title":"def csc(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"17":{"title":"def self + other: AnyAngle => AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"18":{"title":"def __eq__(self, other)","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"19":{"title":"def self - other: AnyAngle => AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"20":{"title":"def self * other: float => AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"21":{"title":"def self / other: float => AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"22":{"title":"def self / other: AnyAngle => float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"23":{"title":"def self / other","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"24":{"title":"mbcp.mp_math.const","titles":[]},"25":{"title":"var PI = math.pi","titles":["mbcp.mp_math.const"]},"26":{"title":"var E = math.e","titles":["mbcp.mp_math.const"]},"27":{"title":"var GOLDEN_RATIO = (1 + math.sqrt(5)) / 2","titles":["mbcp.mp_math.const"]},"28":{"title":"var GAMMA = 0.5772156649015329","titles":["mbcp.mp_math.const"]},"29":{"title":"var EPSILON = 0.0001","titles":["mbcp.mp_math.const"]},"30":{"title":"var APPROX = 0.001","titles":["mbcp.mp_math.const"]},"31":{"title":"mbcp.mp_math.equation","titles":[]},"32":{"title":"class CurveEquation","titles":["mbcp.mp_math.equation"]},"33":{"title":"def __init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc)","titles":["mbcp.mp_math.equation","class CurveEquation"]},"34":{"title":"def __call__(self, *t: Var) -> Point3 | tuple[Point3, ...]","titles":["mbcp.mp_math.equation","class CurveEquation"]},"35":{"title":"def get_partial_derivative_func(func: MultiVarsFunc, var: int | tuple[int, ...], epsilon: Number = EPSILON) -> MultiVarsFunc","titles":["mbcp.mp_math.equation"]},"36":{"title":"mbcp.mp_math.function","titles":[]},"37":{"title":"def cal_gradient_3vf(func: ThreeSingleVarsFunc, p: Point3, epsilon: float = EPSILON) -> Vector3","titles":["mbcp.mp_math.function"]},"38":{"title":"def curry(func: MultiVarsFunc, *args: Var) -> OneVarFunc","titles":["mbcp.mp_math.function"]},"39":{"title":"mbcp.mp_math","titles":[]},"40":{"title":"mbcp.mp_math.line","titles":[]},"41":{"title":"class Line3","titles":["mbcp.mp_math.line"]},"42":{"title":"def __init__(self, point: Point3, direction: Vector3)","titles":["mbcp.mp_math.line","class Line3"]},"43":{"title":"def approx(self, other: Line3, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"44":{"title":"def cal_angle(self, other: Line3) -> AnyAngle","titles":["mbcp.mp_math.line","class Line3"]},"45":{"title":"def cal_distance(self, other: Line3 | Point3) -> float","titles":["mbcp.mp_math.line","class Line3"]},"46":{"title":"def cal_intersection(self, other: Line3) -> Point3","titles":["mbcp.mp_math.line","class Line3"]},"47":{"title":"def cal_perpendicular(self, point: Point3) -> Line3","titles":["mbcp.mp_math.line","class Line3"]},"48":{"title":"def get_point(self, t: RealNumber) -> Point3","titles":["mbcp.mp_math.line","class Line3"]},"49":{"title":"def get_parametric_equations(self) -> tuple[OneSingleVarFunc, OneSingleVarFunc, OneSingleVarFunc]","titles":["mbcp.mp_math.line","class Line3"]},"50":{"title":"def is_approx_parallel(self, other: Line3, epsilon: float = 1e-06) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"51":{"title":"def is_parallel(self, other: Line3) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"52":{"title":"def is_collinear(self, other: Line3) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"53":{"title":"def is_point_on(self, point: Point3) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"54":{"title":"def is_coplanar(self, other: Line3) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"55":{"title":"def simplify(self)","titles":["mbcp.mp_math.line","class Line3"]},"56":{"title":"def from_two_points(cls, p1: Point3, p2: Point3) -> Line3","titles":["mbcp.mp_math.line","class Line3"]},"57":{"title":"def __and__(self, other: Line3) -> Line3 | Point3 | None","titles":["mbcp.mp_math.line","class Line3"]},"58":{"title":"def __eq__(self, other) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"59":{"title":"mbcp.mp_math","titles":[]},"60":{"title":"mbcp.mp_math.mp_math_typing","titles":[]},"61":{"title":"var RealNumber = int | float","titles":["mbcp.mp_math.mp_math_typing"]},"62":{"title":"var Number = RealNumber | complex","titles":["mbcp.mp_math.mp_math_typing"]},"63":{"title":"var SingleVar = TypeVar(\'SingleVar\', bound=Number)","titles":["mbcp.mp_math.mp_math_typing"]},"64":{"title":"var ArrayVar = TypeVar(\'ArrayVar\', bound=Iterable[Number])","titles":["mbcp.mp_math.mp_math_typing"]},"65":{"title":"var Var = SingleVar | ArrayVar","titles":["mbcp.mp_math.mp_math_typing"]},"66":{"title":"var OneSingleVarFunc = Callable[[SingleVar], SingleVar]","titles":["mbcp.mp_math.mp_math_typing"]},"67":{"title":"var OneArrayFunc = Callable[[ArrayVar], ArrayVar]","titles":["mbcp.mp_math.mp_math_typing"]},"68":{"title":"var OneVarFunc = OneSingleVarFunc | OneArrayFunc","titles":["mbcp.mp_math.mp_math_typing"]},"69":{"title":"var TwoSingleVarsFunc = Callable[[SingleVar, SingleVar], SingleVar]","titles":["mbcp.mp_math.mp_math_typing"]},"70":{"title":"var TwoArraysFunc = Callable[[ArrayVar, ArrayVar], ArrayVar]","titles":["mbcp.mp_math.mp_math_typing"]},"71":{"title":"var TwoVarsFunc = TwoSingleVarsFunc | TwoArraysFunc","titles":["mbcp.mp_math.mp_math_typing"]},"72":{"title":"var ThreeSingleVarsFunc = Callable[[SingleVar, SingleVar, SingleVar], SingleVar]","titles":["mbcp.mp_math.mp_math_typing"]},"73":{"title":"var ThreeArraysFunc = Callable[[ArrayVar, ArrayVar, ArrayVar], ArrayVar]","titles":["mbcp.mp_math.mp_math_typing"]},"74":{"title":"var ThreeVarsFunc = ThreeSingleVarsFunc | ThreeArraysFunc","titles":["mbcp.mp_math.mp_math_typing"]},"75":{"title":"var MultiSingleVarsFunc = Callable[..., SingleVar]","titles":["mbcp.mp_math.mp_math_typing"]},"76":{"title":"var MultiArraysFunc = Callable[..., ArrayVar]","titles":["mbcp.mp_math.mp_math_typing"]},"77":{"title":"var MultiVarsFunc = MultiSingleVarsFunc | MultiArraysFunc","titles":["mbcp.mp_math.mp_math_typing"]},"78":{"title":"mbcp.mp_math.plane","titles":[]},"79":{"title":"class Plane3","titles":["mbcp.mp_math.plane"]},"80":{"title":"def __init__(self, a: float, b: float, c: float, d: float)","titles":["mbcp.mp_math.plane","class Plane3"]},"81":{"title":"def approx(self, other: Plane3) -> bool","titles":["mbcp.mp_math.plane","class Plane3"]},"82":{"title":"def cal_angle(self, other: Line3 | Plane3) -> AnyAngle","titles":["mbcp.mp_math.plane","class Plane3"]},"83":{"title":"def cal_distance(self, other: Plane3 | Point3) -> float","titles":["mbcp.mp_math.plane","class Plane3"]},"84":{"title":"def cal_intersection_line3(self, other: Plane3) -> Line3","titles":["mbcp.mp_math.plane","class Plane3"]},"85":{"title":"def cal_intersection_point3(self, other: Line3) -> Point3","titles":["mbcp.mp_math.plane","class Plane3"]},"86":{"title":"def cal_parallel_plane3(self, point: Point3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"87":{"title":"def is_parallel(self, other: Plane3) -> bool","titles":["mbcp.mp_math.plane","class Plane3"]},"88":{"title":"def normal(self) -> Vector3","titles":["mbcp.mp_math.plane","class Plane3"]},"89":{"title":"def from_point_and_normal(cls, point: Point3, normal: Vector3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"90":{"title":"def from_three_points(cls, p1: Point3, p2: Point3, p3: Point3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"91":{"title":"def from_two_lines(cls, l1: Line3, l2: Line3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"92":{"title":"def from_point_and_line(cls, point: Point3, line: Line3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"93":{"title":"def __and__(self, other: Line3) -> Point3 | None","titles":["mbcp.mp_math.plane","class Plane3"]},"94":{"title":"def __and__(self, other: Plane3) -> Line3 | None","titles":["mbcp.mp_math.plane","class Plane3"]},"95":{"title":"def __and__(self, other)","titles":["mbcp.mp_math.plane","class Plane3"]},"96":{"title":"def __eq__(self, other) -> bool","titles":["mbcp.mp_math.plane","class Plane3"]},"97":{"title":"def __rand__(self, other: Line3) -> Point3","titles":["mbcp.mp_math.plane","class Plane3"]},"98":{"title":"mbcp.mp_math.point","titles":[]},"99":{"title":"class Point3","titles":["mbcp.mp_math.point"]},"100":{"title":"def __init__(self, x: float, y: float, z: float)","titles":["mbcp.mp_math.point","class Point3"]},"101":{"title":"def approx(self, other: Point3, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.point","class Point3"]},"102":{"title":"def self + other: Vector3 => Point3","titles":["mbcp.mp_math.point","class Point3"]},"103":{"title":"def self + other: Point3 => Point3","titles":["mbcp.mp_math.point","class Point3"]},"104":{"title":"def self + other","titles":["mbcp.mp_math.point","class Point3"]},"105":{"title":"def __eq__(self, other)","titles":["mbcp.mp_math.point","class Point3"]},"106":{"title":"def self - other: Point3 => Vector3","titles":["mbcp.mp_math.point","class Point3"]},"107":{"title":"mbcp.mp_math.segment","titles":[]},"108":{"title":"class Segment3","titles":["mbcp.mp_math.segment"]},"109":{"title":"def __init__(self, p1: Point3, p2: Point3)","titles":["mbcp.mp_math.segment","class Segment3"]},"110":{"title":"mbcp.mp_math.utils","titles":[]},"111":{"title":"def clamp(x: float, min_: float, max_: float) -> float","titles":["mbcp.mp_math.utils"]},"112":{"title":"class Approx","titles":["mbcp.mp_math.utils"]},"113":{"title":"def __init__(self, value: RealNumber)","titles":["mbcp.mp_math.utils","class Approx"]},"114":{"title":"def __eq__(self, other)","titles":["mbcp.mp_math.utils","class Approx"]},"115":{"title":"def raise_type_error(self, other)","titles":["mbcp.mp_math.utils","class Approx"]},"116":{"title":"def __ne__(self, other)","titles":["mbcp.mp_math.utils","class Approx"]},"117":{"title":"def approx(x: float, y: float = 0.0, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.utils"]},"118":{"title":"def sign(x: float, only_neg: bool = False) -> str","titles":["mbcp.mp_math.utils"]},"119":{"title":"def sign_format(x: float, only_neg: bool = False) -> str","titles":["mbcp.mp_math.utils"]},"120":{"title":"mbcp.mp_math.vector","titles":[]},"121":{"title":"class Vector3","titles":["mbcp.mp_math.vector"]},"122":{"title":"def __init__(self, x: float, y: float, z: float)","titles":["mbcp.mp_math.vector","class Vector3"]},"123":{"title":"def approx(self, other: Vector3, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.vector","class Vector3"]},"124":{"title":"def cal_angle(self, other: Vector3) -> AnyAngle","titles":["mbcp.mp_math.vector","class Vector3"]},"125":{"title":"def cross(self, other: Vector3) -> Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"126":{"title":"def is_approx_parallel(self, other: Vector3, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.vector","class Vector3"]},"127":{"title":"def is_parallel(self, other: Vector3) -> bool","titles":["mbcp.mp_math.vector","class Vector3"]},"128":{"title":"def normalize(self)","titles":["mbcp.mp_math.vector","class Vector3"]},"129":{"title":"def np_array(self) -> np.ndarray","titles":["mbcp.mp_math.vector","class Vector3"]},"130":{"title":"def length(self) -> float","titles":["mbcp.mp_math.vector","class Vector3"]},"131":{"title":"def unit(self) -> Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"132":{"title":"def __abs__(self)","titles":["mbcp.mp_math.vector","class Vector3"]},"133":{"title":"def self + other: Vector3 => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"134":{"title":"def self + other: Point3 => Point3","titles":["mbcp.mp_math.vector","class Vector3"]},"135":{"title":"def self + other","titles":["mbcp.mp_math.vector","class Vector3"]},"136":{"title":"def __eq__(self, other)","titles":["mbcp.mp_math.vector","class Vector3"]},"137":{"title":"def self + other: Point3 => Point3","titles":["mbcp.mp_math.vector","class Vector3"]},"138":{"title":"def self - other: Vector3 => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"139":{"title":"def self - other: Point3 => Point3","titles":["mbcp.mp_math.vector","class Vector3"]},"140":{"title":"def self - other","titles":["mbcp.mp_math.vector","class Vector3"]},"141":{"title":"def self - other: Point3","titles":["mbcp.mp_math.vector","class Vector3"]},"142":{"title":"def self * other: Vector3 => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"143":{"title":"def self * other: RealNumber => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"144":{"title":"def self * other: int | float | Vector3 => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"145":{"title":"def self * other: RealNumber => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"146":{"title":"def self @ other: Vector3 => RealNumber","titles":["mbcp.mp_math.vector","class Vector3"]},"147":{"title":"def self / other: RealNumber => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"148":{"title":"def - self","titles":["mbcp.mp_math.vector","class Vector3"]},"149":{"title":"var zero_vector3 = Vector3(0, 0, 0)","titles":["mbcp.mp_math.vector"]},"150":{"title":"var x_axis = Vector3(1, 0, 0)","titles":["mbcp.mp_math.vector"]},"151":{"title":"var y_axis = Vector3(0, 1, 0)","titles":["mbcp.mp_math.vector"]},"152":{"title":"var z_axis = Vector3(0, 0, 1)","titles":["mbcp.mp_math.vector"]},"153":{"title":"mbcp.particle","titles":[]},"154":{"title":"mbcp.particle","titles":[]},"155":{"title":"mbcp.presets","titles":[]},"156":{"title":"mbcp.presets.model","titles":[]},"157":{"title":"class GeometricModels","titles":["mbcp.presets.model"]},"158":{"title":"def sphere(radius: float, density: float)","titles":["mbcp.presets.model","class GeometricModels"]},"159":{"title":"mbcp.presets.model","titles":[]},"160":{"title":"class GeometricModels","titles":["mbcp.presets.model"]},"161":{"title":"def sphere(radius: float, density: float)","titles":["mbcp.presets.model","class GeometricModels"]},"162":{"title":"mbcp.presets","titles":[]},"163":{"title":"开始不了一点","titles":[]},"164":{"title":"Reference","titles":[]}},"dirtCount":0,"index":[["∫12x111",{"2":{"163":1}}],["开始不了一点",{"0":{"163":1}}],["4",{"2":{"158":1,"161":1}}],["球体上的点集",{"2":{"158":2,"161":2}}],["生成球体上的点集",{"2":{"158":2,"161":2}}],["几何模型点集",{"2":{"156":1,"159":1}}],["下午9",{"2":{"155":1,"162":1}}],["8",{"2":{"155":1,"162":1}}],["零向量",{"2":{"149":1}}],["非点乘",{"2":{"144":2}}],["别去点那边实现了",{"2":{"137":2}}],["单位向量",{"2":{"131":2}}],["单变量",{"2":{"63":1}}],["模",{"2":{"130":2}}],["向量的模",{"2":{"130":2}}],["向量积",{"2":{"125":2}}],["将向量归一化",{"2":{"128":2}}],["允许的误差",{"2":{"126":2}}],["j",{"2":{"125":1}}],["行列式的结果",{"2":{"125":2}}],["其余结果的模为平行四边形的面积",{"2":{"125":2}}],["叉乘使用cross",{"2":{"144":2}}],["叉乘为0",{"2":{"125":2}}],["叉乘",{"2":{"125":2}}],["夹角",{"2":{"124":2}}],["夹角弧度",{"2":{"44":2,"82":2}}],["以及一些常用的向量",{"2":{"120":1}}],["格式化符号数",{"2":{"119":2}}],["quot",{"2":{"118":2,"119":4}}],["符号",{"2":{"118":2,"119":2}}],["获取该向量的单位向量",{"2":{"131":2}}],["获取数的符号",{"2":{"118":2}}],["获取直线的参数方程",{"2":{"49":2}}],["获取直线上的点",{"2":{"48":2}}],["用于判断是否近似于0",{"2":{"117":2}}],["限制后的值",{"2":{"111":2}}],["待限定的值",{"2":{"111":2}}],["区间限定函数",{"2":{"111":2}}],["us",{"2":{"164":1}}],["unit",{"0":{"131":1},"2":{"131":1}}],["unsupported",{"2":{"45":1,"82":1,"83":1,"95":1,"115":1,"135":1,"140":1,"141":1,"144":1}}],["utils",{"0":{"110":1},"1":{"111":1,"112":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1}}],["中心点",{"2":{"109":1}}],["中实现",{"2":{"106":2}}],["长度",{"2":{"109":1}}],["方向向量",{"2":{"109":1}}],["``x2",{"2":{"125":1}}],["``x1",{"2":{"125":1}}],["``i",{"2":{"125":1}}],["```",{"2":{"38":1}}],["```python",{"2":{"38":1}}],["`vector3`",{"2":{"106":1}}],["已在",{"2":{"106":2}}],["已知一个函数$f",{"2":{"37":1}}],["已知一个函数f",{"2":{"37":1}}],["坐标",{"2":{"100":6}}],["笛卡尔坐标系中的点",{"2":{"100":2}}],["人话",{"2":{"95":2}}],["取两平面的交集",{"2":{"95":2}}],["面上直线",{"2":{"92":2}}],["面上一点",{"2":{"92":2}}],["法向量",{"2":{"88":2,"89":2}}],["所求平面",{"2":{"86":2}}],["k``",{"2":{"125":1}}],["k",{"2":{"81":12}}],["另一个向量",{"2":{"124":2,"126":2,"127":2}}],["另一个平面或点",{"2":{"83":2}}],["另一个平面",{"2":{"81":2,"82":2,"84":2,"87":2}}],["另一条直线",{"2":{"43":2,"44":2,"46":2,"50":2,"51":2,"52":2,"54":2,"57":2}}],["常数项",{"2":{"80":2}}],["常量",{"2":{"25":1}}],["平面平行返回none",{"2":{"95":2}}],["平面",{"2":{"89":2,"90":2,"91":2,"92":2}}],["平面上的一点",{"2":{"89":2}}],["平面的法向量",{"2":{"88":2}}],["平面与直线平行或重合",{"2":{"85":2}}],["平面方程",{"2":{"80":2}}],["平行线返回none",{"2":{"57":2}}],["平行直线或点",{"2":{"45":2}}],["多元函数",{"2":{"77":1}}],["多元数组函数",{"2":{"76":1}}],["多元单变量函数",{"2":{"75":1}}],["二元函数",{"2":{"71":1}}],["二元数组函数",{"2":{"70":1}}],["二元单变量函数",{"2":{"69":1}}],["一元函数",{"2":{"68":1}}],["一元数组函数",{"2":{"67":1}}],["一元单变量函数",{"2":{"66":1}}],["一阶偏导",{"2":{"35":2}}],["变量",{"2":{"65":1}}],["变量位置",{"2":{"35":2}}],["数组运算",{"2":{"144":2}}],["数组变量",{"2":{"64":1}}],["数2",{"2":{"117":2}}],["数1",{"2":{"117":2}}],["数",{"2":{"62":1,"118":2,"119":2}}],["实数",{"2":{"61":1}}],["類型",{"2":{"61":1,"62":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"149":1,"150":1,"151":1,"152":1}}],["∧",{"2":{"58":2}}],["交线",{"2":{"95":2}}],["交线返回交点",{"2":{"57":2}}],["交点",{"2":{"46":2,"57":2,"85":2}}],["重合线返回自身",{"2":{"57":2}}],["由点和直线构造平面",{"2":{"92":2}}],["由点和法向量构造平面",{"2":{"89":2}}],["由两直线构造平面",{"2":{"91":2}}],["由两点构造直线",{"2":{"56":2}}],["由三点构造平面",{"2":{"90":2}}],["由一个点和一个方向向量确定",{"2":{"42":2}}],["工厂函数",{"2":{"56":2,"89":2,"90":2,"91":2,"92":2}}],["并对向量单位化",{"2":{"55":2}}],["处理",{"2":{"55":2}}],["处的梯度向量为",{"2":{"37":1}}],["化",{"2":{"55":2}}],["按照可行性一次对x",{"2":{"55":2}}],["不平行平面的交线",{"2":{"95":2}}],["不包含点",{"2":{"92":2}}],["不与平面平行或在平面上的直线",{"2":{"85":2}}],["不返回值",{"2":{"55":2,"128":2}}],["不支持的类型",{"2":{"44":2,"45":2,"82":2,"83":2}}],["自体归一化",{"2":{"128":2}}],["自体简化",{"2":{"55":2}}],["自然对数的底",{"2":{"26":1}}],["等价相等",{"2":{"55":2}}],["简化直线方程",{"2":{"55":2}}],["两平面的交线",{"2":{"84":2}}],["两直线方向向量的叉乘与两直线上任意一点的向量的点积为0",{"2":{"54":2}}],["两角的和为180°",{"2":{"7":2}}],["两角的和为90°",{"2":{"6":2}}],["充要条件",{"2":{"54":2}}],["判断两个向量是否相等",{"2":{"136":2}}],["判断两个向量是否平行",{"2":{"127":2}}],["判断两个向量是否近似平行",{"2":{"126":2}}],["判断两个向量是否近似相等",{"2":{"123":2}}],["判断两个数是否近似相等",{"2":{"117":2}}],["判断两个点是否相等",{"2":{"105":2}}],["判断两个点是否近似相等",{"2":{"101":2}}],["判断两个平面是否平行",{"2":{"87":2}}],["判断两个平面是否近似相等",{"2":{"81":2}}],["判断两条直线是否等价",{"2":{"58":2}}],["判断两条直线是否共面",{"2":{"54":2}}],["判断两条直线是否共线",{"2":{"52":2}}],["判断两条直线是否平行",{"2":{"51":2}}],["判断两条直线是否近似平行",{"2":{"50":2}}],["判断两条直线是否近似相等",{"2":{"43":2}}],["判断点是否在直线上",{"2":{"53":2}}],["则两向量平行",{"2":{"125":2}}],["则同一个t对应的点不同",{"2":{"48":2}}],["则其在点$",{"2":{"37":1}}],["则其在点",{"2":{"37":1}}],["但起始点和方向向量不同",{"2":{"48":2}}],["同一条直线",{"2":{"48":2}}],["垂线",{"2":{"47":2}}],["指定点",{"2":{"47":2,"86":2}}],["距离",{"2":{"45":2,"83":2}}],["是否相等",{"2":{"136":2}}],["是否只返回负数的符号",{"2":{"118":2,"119":2}}],["是否共面",{"2":{"54":2}}],["是否共线",{"2":{"52":2}}],["是否在直线上",{"2":{"53":2}}],["是否平行",{"2":{"51":2,"87":2,"127":2}}],["是否近似平行",{"2":{"50":2,"126":2}}],["是否近似相等",{"2":{"43":2,"81":2,"101":2,"117":2,"123":2}}],["是否为弧度",{"2":{"5":2}}],["误差",{"2":{"43":2,"50":2,"117":2}}],["直线2",{"2":{"91":2}}],["直线1",{"2":{"91":2}}],["直线",{"2":{"56":2}}],["直线不共面",{"2":{"46":2}}],["直线平行",{"2":{"46":2}}],["直线的方向向量",{"2":{"42":2}}],["直线上的一点",{"2":{"42":2}}],["三元数组函数",{"2":{"73":1}}],["三元单变量函数",{"2":{"72":1}}],["三元函数",{"2":{"37":2,"74":1}}],["三维空间中的线段",{"2":{"109":2}}],["三维空间中的直线",{"2":{"42":2}}],["三维向量",{"2":{"39":1,"59":1}}],["三维线段",{"2":{"39":1,"59":1}}],["三维点",{"2":{"39":1,"59":1}}],["三维平面",{"2":{"39":1,"59":1}}],["三维直线",{"2":{"39":1,"59":1}}],["任意角",{"2":{"39":1,"59":1}}],["任意角度",{"2":{"5":2}}],["导入的类有",{"2":{"39":1,"59":1}}],["本包定义了一些常用的导入",{"2":{"39":1,"59":1}}],["本模块用于内部类型提示",{"2":{"60":1}}],["本模块定义了粒子生成相关的工具",{"2":{"153":1,"154":1}}],["本模块定义了3维向量的类vector3",{"2":{"120":1}}],["本模块定义了一些常用的工具函数",{"2":{"110":1}}],["本模块定义了一些常用的常量",{"2":{"24":1}}],["本模块定义了三维空间中点的类",{"2":{"98":1}}],["本模块定义了三维空间中的线段类",{"2":{"107":1}}],["本模块定义了三维空间中的平面类",{"2":{"78":1}}],["本模块定义了三维空间中的直线类",{"2":{"40":1}}],["本模块定义了方程相关的类和函数以及一些常用的数学函数",{"2":{"31":1}}],["本模块定义了角度相关的类",{"2":{"2":1}}],["本模块塞了一些预设的粒子生成器",{"2":{"0":1,"1":1}}],["help",{"2":{"164":1}}],["have",{"2":{"84":1}}],["https",{"2":{"38":1}}],["high",{"2":{"35":2}}],["hide",{"2":{"35":2,"38":1}}],["6",{"2":{"38":2}}],["3维向量",{"2":{"122":2}}],["355859667",{"2":{"38":1}}],["3",{"2":{"38":2}}],["3vf",{"0":{"37":1},"2":{"37":1}}],["by",{"2":{"80":2}}],["bound=iterable",{"0":{"64":1}}],["bound=number",{"0":{"63":1}}],["bool=false",{"2":{"5":1,"118":1,"119":1}}],["bool",{"0":{"5":1,"43":1,"50":1,"51":1,"52":1,"53":1,"54":1,"58":1,"81":1,"87":1,"96":1,"101":1,"117":1,"118":1,"119":1,"123":1,"126":1,"127":1},"2":{"43":1,"50":1,"51":1,"52":1,"53":1,"54":1,"58":1,"81":1,"87":1,"96":1,"101":1,"117":1,"123":1,"126":1,"127":1}}],["b",{"0":{"80":1},"2":{"38":4,"80":5,"81":7,"83":2,"84":12,"85":2,"88":1,"89":3}}],["範例",{"2":{"38":1}}],["柯里化后的函数",{"2":{"38":2}}],["柯理化",{"2":{"38":2}}],["可直接从mbcp",{"2":{"39":1,"59":1}}],["可参考",{"2":{"38":1}}],["可参考函数式编程",{"2":{"38":1}}],["可为整数",{"2":{"35":2}}],["有关函数柯里化",{"2":{"38":2}}],["对多参数函数进行柯里化",{"2":{"38":2}}],["d",{"0":{"80":1},"2":{"80":7,"81":6,"83":1,"84":6,"85":1,"89":2}}],["documentation",{"2":{"164":1}}],["do",{"2":{"46":2}}],["distance",{"0":{"45":1,"83":1},"2":{"45":1,"83":1}}],["direction",{"0":{"42":1},"2":{"42":5,"43":1,"44":2,"45":8,"46":6,"47":1,"48":1,"49":3,"50":2,"51":2,"52":1,"53":1,"54":2,"55":4,"56":2,"58":3,"82":1,"84":2,"85":4,"91":1,"92":1,"95":1,"109":2}}],["dz",{"2":{"37":2}}],["dy",{"2":{"37":2}}],["dx",{"2":{"37":2}}],["density",{"0":{"158":1,"161":1},"2":{"158":4,"161":4}}],["derivative",{"0":{"35":1},"2":{"35":6}}],["degree",{"0":{"8":1},"2":{"8":1}}],["def",{"0":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1},"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"21":1,"22":1,"35":2,"38":2,"56":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"102":1,"103":1,"129":1,"130":1,"131":1,"133":1,"134":1,"138":1,"139":1,"142":1,"143":1,"158":1,"161":1}}],["$处的梯度向量为",{"2":{"37":1}}],["$",{"2":{"37":3}}],["梯度",{"2":{"37":2}}],["点乘",{"2":{"146":2}}],["点乘使用",{"2":{"144":2}}],["点3",{"2":{"90":2}}],["点法式构造",{"2":{"89":2}}],["点2",{"2":{"56":2,"90":2}}],["点1",{"2":{"56":2,"90":2}}],["点",{"2":{"37":2,"48":2,"53":2}}],["∂f∂z",{"2":{"37":1}}],["∂f∂y",{"2":{"37":1}}],["∂f∂x",{"2":{"37":1}}],["∇f",{"2":{"37":1}}],["计算平行于该平面且过指定点的平面",{"2":{"86":2}}],["计算平面与直线的交点",{"2":{"85":2}}],["计算平面与平面或点之间的距离",{"2":{"83":2}}],["计算平面与平面之间的夹角",{"2":{"82":2}}],["计算两个向量之间的夹角",{"2":{"124":2}}],["计算两平面的交线",{"2":{"84":2}}],["计算两条直线点集合的交集",{"2":{"57":2}}],["计算两条直线的交点",{"2":{"46":2}}],["计算直线经过指定点p的垂线",{"2":{"47":2}}],["计算直线和直线或点之间的距离",{"2":{"45":2}}],["计算直线和直线之间的夹角",{"2":{"44":2}}],["计算三元函数在某点的梯度向量",{"2":{"37":2}}],["计算曲线上的点",{"2":{"34":2}}],["v3",{"2":{"125":2}}],["vector",{"0":{"120":1},"1":{"121":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"150":1,"151":1,"152":1},"2":{"106":1}}],["vector3",{"0":{"37":1,"42":1,"88":1,"89":1,"102":1,"106":1,"121":1,"123":1,"124":1,"125":2,"126":1,"127":1,"131":1,"133":2,"138":2,"142":2,"143":1,"144":2,"145":1,"146":1,"147":1,"149":2,"150":1,"151":1,"152":1},"1":{"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1},"2":{"37":2,"39":1,"42":1,"59":1,"88":2,"89":1,"91":1,"102":1,"106":4,"114":2,"123":1,"124":1,"125":3,"126":1,"127":2,"131":1,"133":2,"135":3,"138":2,"140":3,"141":1,"142":2,"143":1,"144":6,"145":1,"146":1,"147":2,"148":1,"149":1,"150":1,"151":1,"152":1}}],["v2",{"2":{"58":2,"90":2,"91":4,"125":2}}],["v1",{"2":{"58":4,"90":2,"91":2,"125":2}}],["v",{"2":{"35":2,"104":2,"106":4,"135":8,"137":2,"140":8,"141":2}}],["var",{"0":{"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"34":1,"35":1,"38":1,"61":1,"62":1,"63":1,"64":1,"65":2,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"149":1,"150":1,"151":1,"152":1},"2":{"34":1,"35":13,"38":3}}],["valueerror",{"2":{"35":3,"46":6,"84":1,"85":3}}],["value",{"0":{"5":1,"113":1},"2":{"5":5,"113":3,"114":6,"115":1}}],["求高阶偏导函数",{"2":{"35":1}}],["求n元函数一阶偏导函数",{"2":{"35":2}}],["l2",{"0":{"91":1},"2":{"91":5}}],["l1",{"0":{"91":1},"2":{"91":7}}],["lambda",{"2":{"49":3}}],["left",{"2":{"37":1}}],["length",{"0":{"130":1},"2":{"45":5,"46":1,"82":2,"109":2,"124":2,"126":1,"128":5,"130":1,"131":1,"132":1}}],["len",{"2":{"34":1}}],["liteyukistudio",{"2":{"155":1,"162":1}}],["litedoc",{"2":{"35":2,"38":1}}],["linalg",{"2":{"84":3}}],["lines",{"0":{"91":1},"2":{"46":2,"91":1}}],["line",{"0":{"40":1,"92":2},"1":{"41":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1},"2":{"85":1,"92":5}}],["line3",{"0":{"41":1,"43":1,"44":1,"45":1,"46":1,"47":1,"50":1,"51":1,"52":1,"54":1,"56":1,"57":2,"82":1,"84":2,"85":1,"91":2,"92":1,"93":1,"94":1,"97":1},"1":{"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1},"2":{"39":1,"43":1,"44":1,"45":2,"46":1,"47":2,"50":1,"51":1,"52":1,"54":1,"56":1,"57":2,"59":1,"82":2,"84":3,"85":1,"91":2,"92":1,"93":1,"94":1,"95":2,"97":1,"114":1}}],["list",{"2":{"35":8,"158":10,"161":10}}],["无效变量类型",{"2":{"35":2}}],["抛出",{"2":{"35":1,"44":1,"45":1,"46":1,"82":1,"83":1,"85":1}}],["偏导函数",{"2":{"35":2}}],["偏移量",{"2":{"35":2,"37":2}}],["高阶偏导数值",{"2":{"35":1}}],["高阶偏导",{"2":{"35":2}}],["函数式编程",{"2":{"38":1}}],["函数",{"2":{"35":2,"38":2}}],["因此该函数的稳定性有待提升",{"2":{"35":2}}],["目前数学界对于一个函数的导函数并没有通解的说法",{"2":{"35":2}}],["目标点",{"2":{"34":2}}],["warning",{"2":{"35":2}}],["慎用",{"2":{"35":2}}],["这玩意不太稳定",{"2":{"35":2}}],["num",{"2":{"158":5,"161":5}}],["number=epsilon",{"2":{"35":1}}],["number",{"0":{"35":1,"62":1,"64":1}}],["ndarray",{"0":{"129":1},"2":{"129":1}}],["neg",{"0":{"118":1,"119":1},"2":{"118":4,"119":4,"148":1}}],["negative",{"0":{"10":1},"2":{"10":1}}],["ne",{"0":{"116":1},"2":{"116":1}}],["np",{"0":{"129":2},"2":{"84":9,"129":3,"158":9,"161":9}}],["no",{"2":{"84":1}}],["normal",{"0":{"88":1,"89":2},"2":{"82":5,"84":4,"85":1,"86":2,"87":2,"88":1,"89":7,"90":3,"91":1,"92":1,"95":3}}],["normalize",{"0":{"128":1},"2":{"55":1,"128":1}}],["none",{"0":{"57":1,"93":1,"94":1},"2":{"57":2,"93":1,"94":1,"95":2}}],["not",{"2":{"45":1,"46":4,"57":1,"116":1,"118":1,"119":1}}],["nabla",{"2":{"37":1}}],["参数t",{"2":{"48":2}}],["参数",{"2":{"34":2,"35":1,"38":2}}],["|",{"0":{"34":1,"35":1,"45":1,"57":2,"61":1,"62":1,"65":1,"68":1,"71":1,"74":1,"77":1,"82":1,"83":1,"93":1,"94":1,"144":2},"2":{"34":1,"35":1,"45":1,"57":2,"82":1,"83":1,"93":1,"94":1,"144":2}}],["曲线方程",{"2":{"33":2,"39":1,"59":1}}],["z轴单位向量",{"2":{"152":1}}],["z轴分量",{"2":{"122":2}}],["z2``",{"2":{"125":1}}],["z1``",{"2":{"125":1}}],["zero",{"0":{"149":1},"2":{"91":1,"127":1}}],["z系数",{"2":{"80":2}}],["zhihu",{"2":{"38":1}}],["zhuanlan",{"2":{"38":1}}],["z0",{"2":{"37":2}}],["zip",{"2":{"34":1}}],["z函数",{"2":{"33":2}}],["z",{"0":{"33":1,"100":1,"122":1,"152":1},"2":{"33":5,"34":4,"37":11,"49":4,"55":4,"83":1,"84":4,"85":4,"89":2,"100":7,"101":2,"104":2,"105":2,"106":2,"109":2,"114":2,"122":5,"123":2,"125":4,"128":1,"129":1,"130":1,"135":4,"136":2,"137":2,"140":4,"141":2,"144":3,"146":2,"147":1,"148":1,"158":2,"161":2}}],["y轴单位向量",{"2":{"151":1}}],["y轴分量",{"2":{"122":2}}],["y2",{"2":{"125":1}}],["y1",{"2":{"125":1}}],["y系数",{"2":{"80":2}}],["y0",{"2":{"37":2}}],["y函数",{"2":{"33":2}}],["y",{"0":{"33":1,"100":1,"117":1,"122":1,"151":1},"2":{"33":5,"34":4,"37":11,"49":4,"55":4,"83":1,"84":4,"85":4,"89":2,"100":7,"101":2,"104":2,"105":2,"106":2,"109":2,"114":2,"117":4,"122":5,"123":2,"125":4,"128":1,"129":1,"130":1,"135":4,"136":2,"137":2,"140":4,"141":2,"144":3,"146":2,"147":1,"148":1,"158":2,"161":2}}],["x轴单位向量",{"2":{"150":1}}],["x轴分量",{"2":{"122":2}}],["x3c",{"2":{"101":3,"114":1,"117":1,"118":1,"119":1,"123":3,"126":1}}],["x26",{"2":{"95":1}}],["x系数",{"2":{"80":2}}],["x0",{"2":{"37":2}}],["x函数",{"2":{"33":2}}],["x",{"0":{"33":1,"100":1,"111":1,"117":1,"118":1,"119":1,"122":1,"150":1},"2":{"33":5,"34":4,"37":11,"49":4,"55":2,"83":1,"84":4,"85":4,"89":2,"100":7,"101":2,"104":2,"105":2,"106":2,"109":2,"111":4,"114":2,"117":4,"118":5,"119":8,"122":5,"123":2,"125":4,"128":1,"129":1,"130":1,"135":4,"136":2,"137":2,"140":4,"141":2,"144":3,"146":2,"147":1,"148":1,"158":2,"161":2}}],["约等于判定误差",{"2":{"30":1}}],["精度误差",{"2":{"29":1}}],["欧拉常数",{"2":{"28":1}}],["06",{"0":{"50":1},"2":{"50":1}}],["001",{"0":{"30":1}}],["0001",{"0":{"29":1}}],["0",{"0":{"28":1,"29":1,"30":1,"117":2,"149":3,"150":2,"151":2,"152":2},"2":{"34":3,"37":6,"45":2,"54":1,"55":8,"80":2,"81":3,"83":2,"84":9,"85":1,"95":1,"117":1,"118":2,"119":4,"158":2,"161":2}}],["黄金分割比",{"2":{"27":1}}],["5772156649015329",{"0":{"28":1}}],["5",{"0":{"27":1},"2":{"83":1}}],["geometricmodels",{"0":{"157":1,"160":1},"1":{"158":1,"161":1}}],["get",{"0":{"35":1,"48":1,"49":1},"2":{"35":2,"48":1,"49":1,"85":1,"91":1}}],["gradient",{"0":{"37":1},"2":{"37":1}}],["gamma",{"0":{"28":1}}],["golden",{"0":{"27":1}}],["gt",{"0":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"19":1,"20":1,"21":1,"22":1,"34":1,"35":1,"37":1,"38":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"96":1,"97":1,"101":1,"102":1,"103":1,"106":1,"111":1,"117":1,"118":1,"119":1,"123":1,"124":1,"125":1,"126":1,"127":1,"129":1,"130":1,"131":1,"133":1,"134":1,"137":1,"138":1,"139":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1},"2":{"104":2,"106":2,"119":3,"125":1,"135":2,"137":1,"140":2,"141":1}}],["π",{"2":{"25":1}}],["to",{"2":{"164":1}}],["time",{"2":{"155":1,"162":1}}],["tip",{"2":{"37":2,"38":2}}],["theta",{"2":{"158":3,"161":3}}],["the",{"2":{"85":2,"164":1}}],["three",{"0":{"90":1},"2":{"90":1}}],["threevarsfunc",{"0":{"74":1}}],["threearraysfunc",{"0":{"73":1,"74":1}}],["threesinglevarsfunc",{"0":{"37":1,"72":1,"74":1},"2":{"37":1}}],["typing",{"0":{"60":1},"1":{"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1}}],["typevar",{"0":{"63":1,"64":1}}],["typealias",{"2":{"61":1,"62":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1}}],["typeerror",{"2":{"44":2,"45":3,"82":3,"83":3,"95":1,"115":1,"135":1,"140":1,"141":1,"144":1}}],["type",{"0":{"115":1},"2":{"35":1,"45":1,"82":2,"83":2,"95":2,"114":2,"115":4,"135":2,"140":2,"141":2,"144":2}}],["twovarsfunc",{"0":{"71":1}}],["twoarraysfunc",{"0":{"70":1,"71":1}}],["twosinglevarsfunc",{"0":{"69":1,"71":1}}],["two",{"0":{"56":1,"91":1},"2":{"56":1,"91":1}}],["tuple",{"0":{"34":1,"35":1,"49":1},"2":{"34":2,"35":2,"49":1}}],["t",{"0":{"34":1,"48":1},"2":{"34":10,"48":4,"49":12,"85":4}}],["truediv",{"2":{"21":1,"22":1,"23":1,"147":1}}],["tan",{"0":{"13":1},"2":{"13":2,"14":1}}],["outlook",{"2":{"155":1,"162":1}}],["operand",{"2":{"95":1,"135":1,"140":1,"141":1,"144":1}}],["or",{"2":{"57":1,"85":1}}],["order",{"2":{"35":2}}],["only",{"0":{"118":1,"119":1},"2":{"118":4,"119":4}}],["on",{"0":{"53":1},"2":{"53":1}}],["onearrayfunc",{"0":{"67":1,"68":1}}],["onesinglevarfunc",{"0":{"49":3,"66":1,"68":1},"2":{"49":3}}],["onevarfunc",{"0":{"33":3,"38":1,"68":1},"2":{"33":3,"38":1}}],["overload",{"2":{"20":1,"21":2,"22":1,"92":1,"93":2,"94":1,"101":1,"102":2,"103":1,"132":1,"133":2,"134":1,"137":1,"138":2,"139":1,"141":1,"142":2,"143":1}}],["other",{"0":{"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"43":1,"44":1,"45":1,"46":1,"50":1,"51":1,"52":1,"54":1,"57":1,"58":1,"81":1,"82":1,"83":1,"84":1,"85":1,"87":1,"93":1,"94":1,"95":1,"96":1,"97":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"114":1,"115":1,"116":1,"123":1,"124":1,"125":1,"126":1,"127":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1},"2":{"17":2,"18":2,"19":2,"20":2,"21":1,"22":1,"23":4,"43":5,"44":4,"45":13,"46":9,"50":4,"51":4,"52":5,"54":5,"57":7,"58":5,"81":15,"82":9,"83":9,"84":17,"85":11,"87":4,"93":1,"94":1,"95":10,"96":2,"97":2,"101":6,"102":1,"103":1,"104":6,"105":6,"106":6,"114":9,"115":2,"116":2,"123":6,"124":5,"125":9,"126":4,"127":4,"133":1,"134":1,"135":12,"136":6,"137":6,"138":1,"139":1,"140":12,"141":8,"142":1,"143":1,"144":12,"145":2,"146":6,"147":4}}],["email",{"2":{"155":1,"162":1}}],["error",{"0":{"115":1},"2":{"114":2,"115":1}}],["examples",{"2":{"38":1}}],["exp",{"2":{"26":1}}],["elif",{"2":{"35":1,"45":3,"57":1,"81":2,"82":1,"83":1,"84":2,"95":1,"114":1,"118":1,"119":1,"135":1,"140":1,"144":1}}],["else",{"2":{"5":1,"34":1,"35":1,"45":2,"57":1,"81":1,"82":1,"83":1,"95":1,"114":2,"118":2,"119":2,"135":1,"140":1,"141":1,"144":1}}],["epsilon",{"0":{"29":1,"35":2,"37":2,"43":1,"50":1,"101":1,"117":1,"123":1,"126":1},"2":{"35":7,"37":12,"43":5,"50":4,"101":6,"117":4,"123":6,"126":4}}],["e",{"0":{"26":2}}],["equations",{"0":{"49":1},"2":{"49":1,"85":1}}],["equation",{"0":{"31":1},"1":{"32":1,"33":1,"34":1,"35":1}}],["eq",{"0":{"18":1,"58":1,"96":1,"105":1,"114":1,"136":1},"2":{"18":1,"58":1,"96":1,"105":1,"114":1,"116":1,"136":1}}],["+1",{"2":{"119":2}}],["+=",{"2":{"35":1}}],["+",{"0":{"17":1,"27":1,"102":1,"103":1,"104":1,"133":1,"134":1,"135":1,"137":1},"2":{"17":1,"37":3,"38":4,"46":1,"48":1,"49":3,"80":6,"83":5,"85":5,"104":7,"109":3,"118":3,"119":3,"130":2,"135":11,"137":5,"146":2,"158":1,"161":1}}],["12",{"2":{"155":2,"162":2}}],["1e",{"0":{"50":1}}],["1",{"0":{"27":1,"150":1,"151":1,"152":1},"2":{"14":1,"15":1,"16":1,"26":1,"34":1,"38":2,"91":1,"119":6,"158":4,"161":4}}],["180",{"2":{"5":1,"8":1}}],["正割值",{"2":{"15":4}}],["正切值",{"2":{"13":4}}],["正弦值",{"2":{"11":4}}],["余割值",{"2":{"16":4}}],["余切值",{"2":{"14":4}}],["余弦值",{"2":{"12":4}}],["余角",{"2":{"6":4}}],["最大值",{"2":{"111":2}}],["最大负角度",{"2":{"10":2}}],["最大负角",{"2":{"10":2}}],["最小值",{"2":{"111":2}}],["最小正角度",{"2":{"9":2}}],["最小正角",{"2":{"9":2}}],["弧度",{"2":{"8":2}}],["角度",{"2":{"8":2}}],["角度或弧度值",{"2":{"5":2}}],["补角",{"2":{"7":4}}],["sphere",{"0":{"158":1,"161":1},"2":{"158":1,"161":1}}],["staticmethod",{"2":{"157":1,"158":1,"160":1,"161":1}}],["str",{"0":{"118":1,"119":1},"2":{"118":1,"119":1}}],["software",{"2":{"155":1,"162":1}}],["solve",{"2":{"84":3}}],["snowykami",{"2":{"155":2,"162":2}}],["s",{"2":{"95":1,"135":1,"140":1,"141":1,"144":1}}],["sign",{"0":{"118":1,"119":1},"2":{"118":1,"119":1}}],["simplify",{"0":{"55":1},"2":{"55":1}}],["singlevar",{"0":{"63":2,"65":1,"66":2,"69":3,"72":4,"75":1}}],["sin",{"0":{"11":1},"2":{"11":2,"16":1,"158":3,"161":3}}],["sqrt",{"0":{"27":1},"2":{"130":1,"158":1,"161":1}}],["sub",{"2":{"19":1,"106":1,"138":1,"139":1,"140":1}}],["supplementary",{"0":{"7":1},"2":{"7":1}}],["segment",{"0":{"107":1},"1":{"108":1,"109":1}}],["segment3",{"0":{"108":1},"1":{"109":1},"2":{"39":1,"59":1}}],["sec",{"0":{"15":1},"2":{"15":1}}],["self",{"0":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"113":1,"114":1,"115":1,"116":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1},"2":{"5":3,"6":2,"7":2,"8":2,"9":2,"10":2,"11":2,"12":2,"13":2,"14":2,"15":2,"16":2,"17":2,"18":2,"19":2,"20":2,"21":1,"22":1,"23":3,"33":4,"34":7,"42":3,"43":4,"44":2,"45":13,"46":8,"47":3,"48":3,"49":7,"50":2,"51":2,"52":4,"53":3,"54":3,"55":8,"57":6,"58":4,"80":5,"81":16,"82":4,"83":8,"84":15,"85":9,"86":2,"87":2,"88":4,"93":1,"94":1,"95":5,"96":2,"97":2,"100":4,"101":4,"102":1,"103":1,"104":4,"105":4,"106":4,"109":15,"113":2,"114":9,"115":2,"116":2,"122":4,"123":4,"124":3,"125":7,"126":2,"127":2,"128":5,"129":4,"130":4,"131":3,"132":2,"133":1,"134":1,"135":7,"136":4,"137":4,"138":1,"139":1,"140":7,"141":4,"142":1,"143":1,"144":7,"145":2,"146":4,"147":4,"148":4}}],["2024",{"2":{"155":2,"162":2}}],["2020",{"2":{"155":1,"162":1}}],["2",{"0":{"27":1},"2":{"6":1,"9":1,"10":1,"35":1,"37":3,"38":2,"46":1,"83":3,"109":3,"130":3,"158":2,"161":2}}],["rmul",{"2":{"145":1}}],["rsub",{"2":{"141":1}}],["rights",{"2":{"155":1,"162":1}}],["right",{"2":{"37":1}}],["reference",{"0":{"164":1}}],["reserved",{"2":{"155":1,"162":1}}],["result",{"2":{"35":4}}],["realnumber",{"0":{"48":1,"61":1,"62":1,"113":1,"143":1,"145":1,"146":1,"147":1},"2":{"48":1,"113":1,"143":1,"145":1,"146":1,"147":1}}],["return",{"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"23":2,"34":2,"35":4,"37":1,"38":4,"43":1,"44":1,"45":5,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":3,"58":1,"81":4,"82":2,"83":2,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"95":4,"96":1,"97":1,"101":1,"104":1,"105":1,"106":1,"111":1,"114":2,"116":1,"117":1,"118":3,"119":3,"123":1,"124":1,"125":1,"126":1,"127":1,"129":1,"130":1,"131":1,"132":1,"135":2,"136":1,"137":3,"140":2,"141":1,"144":2,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1}}],["returns",{"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"34":1,"35":2,"37":1,"38":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"95":1,"101":1,"104":1,"105":1,"106":1,"111":1,"117":1,"118":1,"119":1,"123":1,"124":1,"125":1,"126":1,"127":1,"129":1,"130":1,"131":1,"135":1,"136":1,"140":1,"141":1,"144":1,"146":1,"158":1,"161":1}}],["range",{"2":{"158":2,"161":2}}],["rand",{"0":{"97":1},"2":{"97":1}}],["radius",{"0":{"158":1,"161":1},"2":{"158":7,"161":7}}],["radian=true",{"2":{"6":1,"7":1,"10":1,"17":1,"19":1,"20":1,"23":1,"82":1,"124":1}}],["radian",{"0":{"5":1},"2":{"5":6,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":2,"18":2,"19":2,"20":1,"23":3}}],["radd",{"2":{"137":1}}],["raise",{"0":{"115":1},"2":{"35":1,"45":1,"46":2,"82":1,"83":1,"84":1,"85":1,"95":1,"114":2,"115":2,"135":1,"140":1,"141":1,"144":1}}],["raises",{"2":{"35":1,"44":1,"45":1,"46":1,"82":1,"83":1,"84":1,"85":1}}],["ratio",{"0":{"27":1}}],[">",{"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"19":1,"20":1,"21":1,"22":1,"34":1,"35":5,"37":3,"38":6,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"96":1,"97":1,"101":1,"102":1,"103":1,"104":2,"106":3,"111":1,"117":1,"118":2,"119":5,"123":1,"124":1,"125":2,"126":1,"127":1,"129":1,"130":1,"131":1,"133":1,"134":1,"135":2,"137":2,"138":1,"139":1,"140":2,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1}}],["返回numpy数组",{"2":{"129":1}}],["返回如下行列式的结果",{"2":{"125":1}}],["返回",{"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"34":1,"35":1,"37":1,"38":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"95":1,"101":1,"111":1,"117":1,"118":1,"119":1,"123":1,"124":1,"125":1,"126":1,"127":1,"130":1,"131":1,"136":1,"158":1,"161":1}}],["cz",{"2":{"80":2}}],["clamp",{"0":{"111":1},"2":{"111":1,"158":1,"161":1}}],["classmethod",{"2":{"55":1,"56":1,"88":1,"89":2,"90":2,"91":2,"92":1}}],["class",{"0":{"3":1,"4":1,"32":1,"41":1,"79":1,"99":1,"108":1,"112":1,"121":1,"157":1,"160":1},"1":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"113":1,"114":1,"115":1,"116":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1},"2":{"106":2}}],["cls",{"0":{"56":1,"89":1,"90":1,"91":1,"92":1},"2":{"56":2,"89":2,"90":2,"91":2,"92":2}}],["cross",{"0":{"125":1},"2":{"45":4,"46":3,"47":1,"54":1,"84":1,"90":1,"91":1,"125":3,"126":1,"127":1}}],["c",{"0":{"80":1},"2":{"38":4,"80":5,"81":7,"83":2,"84":6,"85":2,"88":1,"89":3,"155":1,"162":1}}],["curried",{"2":{"38":6}}],["currying",{"2":{"38":2}}],["curry",{"0":{"38":1},"2":{"38":3}}],["curveequation",{"0":{"32":1},"1":{"33":1,"34":1},"2":{"39":1,"59":1}}],["cal",{"0":{"37":1,"44":1,"45":1,"46":1,"47":1,"82":1,"83":1,"84":1,"85":1,"86":1,"124":1},"2":{"37":1,"44":2,"45":1,"46":1,"47":1,"57":1,"82":2,"83":1,"84":1,"85":1,"86":1,"95":2,"97":1,"124":1}}],["callable",{"0":{"66":1,"67":1,"69":1,"70":1,"72":1,"73":1,"75":1,"76":1}}],["call",{"0":{"34":1},"2":{"34":1}}],["csc",{"0":{"16":1},"2":{"16":1}}],["copyright",{"2":{"155":1,"162":1}}],["coplanar",{"0":{"54":1},"2":{"45":1,"46":2,"54":1,"57":1}}],["coincident",{"2":{"85":1}}],["collinear",{"0":{"52":1},"2":{"52":1,"57":1}}],["complex",{"0":{"62":1}}],["complementary",{"0":{"6":1},"2":{"6":1,"82":1}}],["com",{"2":{"38":1,"155":1,"162":1}}],["const",{"0":{"24":1},"1":{"25":1,"26":1,"27":1,"28":1,"29":1,"30":1}}],["cot",{"0":{"14":1},"2":{"14":1}}],["cos",{"0":{"12":1},"2":{"12":2,"15":1,"158":2,"161":2}}],["phi",{"2":{"158":5,"161":5}}],["pycharm",{"2":{"155":1,"162":1}}],["py",{"2":{"155":1,"162":1}}],["python",{"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"21":1,"22":1,"56":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"102":1,"103":1,"129":1,"130":1,"131":1,"133":1,"134":1,"138":1,"139":1,"142":1,"143":1,"158":1,"161":1}}],["pythondef",{"2":{"5":1,"17":1,"18":1,"19":1,"20":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":2,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"95":1,"96":1,"97":1,"100":1,"101":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"132":1,"135":1,"136":1,"137":1,"140":1,"141":1,"144":1,"145":1,"146":1,"147":1,"148":1}}],["presets",{"0":{"155":1,"156":1,"159":1,"162":1},"1":{"157":1,"158":1,"160":1,"161":1}}],["property",{"2":{"5":1,"6":2,"7":2,"8":2,"9":2,"10":2,"11":2,"12":2,"13":2,"14":2,"15":2,"16":1,"87":1,"88":1,"128":1,"129":2,"130":2,"131":1}}],["p3",{"0":{"90":1},"2":{"90":4}}],["p2",{"0":{"56":1,"90":1,"109":1},"2":{"56":4,"58":2,"90":4,"109":9}}],["p1",{"0":{"56":1,"90":1,"109":1},"2":{"56":5,"58":2,"90":6,"109":9}}],["perpendicular",{"0":{"47":1},"2":{"47":1}}],["particle",{"0":{"153":1,"154":1}}],["partial",{"0":{"35":1},"2":{"35":6,"37":6}}],["param",{"2":{"109":4,"137":2}}],["parametric",{"0":{"49":1},"2":{"49":1,"85":1}}],["parallel",{"0":{"50":1,"51":1,"86":1,"87":1,"126":1,"127":1},"2":{"43":2,"45":1,"46":2,"50":2,"51":2,"52":2,"53":1,"57":1,"58":2,"84":2,"85":1,"86":1,"87":2,"95":1,"126":1,"127":1}}],["planes",{"2":{"84":1}}],["plane",{"0":{"78":1},"1":{"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1},"2":{"85":1}}],["plane3",{"0":{"79":1,"81":1,"82":1,"83":1,"84":1,"86":2,"87":1,"89":1,"90":1,"91":1,"92":1,"94":1},"1":{"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1},"2":{"39":1,"59":1,"81":1,"82":2,"83":2,"84":1,"86":3,"87":1,"89":1,"90":1,"91":1,"92":1,"94":1,"95":2,"114":1}}],["plus",{"2":{"35":3}}],["p",{"0":{"37":1},"2":{"37":21,"38":1,"104":10,"106":8,"135":4,"137":4,"140":4,"141":4}}],["points",{"0":{"56":1,"90":1},"2":{"56":1,"90":1}}],["point",{"0":{"42":1,"47":1,"48":1,"53":2,"86":1,"89":2,"92":2,"98":1},"1":{"99":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1},"2":{"42":5,"43":2,"45":5,"46":3,"47":6,"48":2,"49":3,"52":2,"53":6,"54":2,"55":3,"58":2,"85":3,"86":5,"89":7,"90":1,"91":6,"92":6}}],["point3",{"0":{"34":2,"37":1,"42":1,"45":1,"46":1,"47":1,"48":1,"53":1,"56":2,"57":1,"83":1,"85":2,"86":1,"89":1,"90":3,"92":1,"93":1,"97":1,"99":1,"101":1,"102":1,"103":2,"106":1,"109":2,"134":2,"137":2,"139":2,"141":1},"1":{"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1},"2":{"34":4,"37":1,"39":1,"42":1,"45":2,"46":1,"47":1,"48":1,"53":1,"56":2,"57":1,"59":1,"83":2,"84":1,"85":3,"86":1,"89":1,"90":3,"92":1,"93":1,"95":1,"97":2,"101":1,"102":1,"103":2,"104":1,"106":1,"109":3,"114":1,"134":2,"135":2,"137":3,"139":2,"140":2,"141":3,"158":3,"161":3}}],["positive",{"0":{"9":1},"2":{"6":1,"7":1,"9":1}}],["pi",{"0":{"25":2},"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"158":2,"161":2}}],["author",{"2":{"155":1,"162":1}}],["all",{"2":{"101":1,"114":1,"123":1,"155":1,"162":1}}],["acos",{"2":{"82":1,"124":1}}],["axis",{"0":{"150":1,"151":1,"152":1}}],["ax",{"2":{"80":2}}],["arccos",{"2":{"158":1,"161":1}}],["array",{"0":{"129":1},"2":{"84":6,"129":2,"158":6,"161":6}}],["arrayvar",{"0":{"64":2,"65":1,"67":2,"70":3,"73":4,"76":1}}],["area",{"2":{"158":2,"161":2}}],["are",{"2":{"46":2,"84":1,"85":1}}],["args2",{"2":{"38":2}}],["args",{"0":{"38":1},"2":{"5":1,"33":1,"34":1,"35":14,"37":1,"38":5,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"89":1,"90":1,"91":1,"92":1,"95":1,"100":1,"101":1,"104":1,"105":1,"106":1,"111":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"135":1,"136":1,"140":1,"141":1,"144":1,"146":1,"158":1,"161":1}}],["abs",{"0":{"132":1},"2":{"45":1,"83":1,"101":3,"114":1,"117":1,"119":1,"123":3,"132":1}}],["a",{"0":{"80":1},"2":{"38":4,"80":5,"81":7,"83":2,"84":12,"85":2,"88":1,"89":3}}],["aaa",{"2":{"36":1}}],["approx",{"0":{"30":1,"43":2,"50":1,"81":1,"101":2,"112":1,"117":2,"123":2,"126":2},"1":{"113":1,"114":1,"115":1,"116":1},"2":{"18":1,"43":3,"50":2,"81":10,"96":1,"101":1,"105":3,"114":4,"117":1,"123":1,"126":1,"127":1,"136":3}}],["add",{"2":{"17":1,"38":8,"102":1,"103":1,"104":1,"133":1,"134":1,"135":1}}],["and",{"0":{"57":1,"89":1,"92":1,"93":1,"94":1,"95":1},"2":{"43":1,"46":2,"52":1,"57":1,"58":1,"81":6,"84":4,"85":1,"86":1,"89":1,"90":1,"91":1,"92":2,"93":1,"94":1,"95":2,"105":2,"115":1,"135":1,"136":2,"140":1,"141":1,"144":1}}],["anyangle",{"0":{"4":1,"6":1,"7":1,"9":1,"10":1,"17":2,"19":2,"20":1,"21":1,"22":1,"44":1,"82":1,"124":1},"1":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1},"2":{"6":2,"7":2,"9":2,"10":2,"17":3,"19":3,"20":2,"21":1,"22":1,"23":2,"39":1,"44":1,"59":1,"82":2,"124":2}}],["angle",{"0":{"2":1,"3":1,"4":1,"44":1,"82":1,"124":1},"1":{"3":1,"4":1,"5":2,"6":2,"7":2,"8":2,"9":2,"10":2,"11":2,"12":2,"13":2,"14":2,"15":2,"16":2,"17":2,"18":2,"19":2,"20":2,"21":2,"22":2,"23":2},"2":{"44":2,"82":2,"124":1}}],["於github上查看",{"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1}}],["或包装一个实数",{"2":{"117":2}}],["或整数元组",{"2":{"35":2}}],["或",{"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1}}],["源碼",{"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1}}],["默认为否",{"2":{"5":2}}],["變數説明",{"2":{"5":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"89":1,"90":1,"91":1,"92":1,"95":1,"100":1,"101":1,"104":1,"105":1,"106":1,"111":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"135":1,"136":1,"140":1,"141":1,"144":1,"146":1,"158":1,"161":1}}],["file",{"2":{"155":1,"162":1}}],["from",{"0":{"56":1,"89":1,"90":1,"91":1,"92":1},"2":{"56":1,"86":1,"89":1,"90":2,"91":2,"92":2,"106":1}}],["frac",{"2":{"37":3}}],["f",{"2":{"37":4,"82":1,"83":1,"95":1,"115":1,"119":3,"135":1,"140":1,"141":1,"144":1}}],["format",{"0":{"119":1},"2":{"119":1}}],["for",{"2":{"34":1,"35":1,"95":1,"135":1,"140":1,"141":1,"144":1,"158":2,"161":2}}],["function",{"0":{"36":1},"1":{"37":1,"38":1}}],["func",{"0":{"33":3,"35":2,"37":1,"38":1},"2":{"33":15,"34":6,"35":16,"37":9,"38":6}}],["false",{"0":{"5":1,"118":1,"119":1},"2":{"81":1}}],["float=0",{"2":{"117":1}}],["float=1e",{"2":{"50":1}}],["float=approx",{"2":{"43":1,"101":1,"117":1,"123":1,"126":1}}],["float=epsilon",{"2":{"37":1}}],["float",{"0":{"5":1,"8":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"20":1,"21":1,"22":1,"37":1,"43":1,"45":1,"50":1,"61":1,"80":4,"83":1,"100":3,"101":1,"111":4,"117":3,"118":1,"119":1,"122":3,"123":1,"126":1,"130":1,"144":1,"158":2,"161":2},"2":{"5":1,"8":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"20":1,"21":1,"22":1,"45":1,"80":4,"83":1,"100":3,"111":4,"114":2,"117":1,"118":1,"119":1,"122":3,"130":1,"144":2,"158":2,"161":2}}],["==",{"2":{"34":1,"45":1,"54":1,"55":3,"85":1,"91":1,"95":1}}],["=",{"0":{"5":1,"17":1,"19":1,"20":1,"21":1,"22":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"35":1,"37":1,"43":1,"50":1,"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"101":1,"102":1,"103":1,"106":1,"117":2,"118":1,"119":1,"123":1,"126":1,"133":1,"134":1,"137":1,"138":1,"139":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"149":1,"150":1,"151":1,"152":1},"2":{"5":2,"33":3,"35":5,"37":5,"38":2,"42":2,"55":3,"56":1,"80":6,"81":6,"84":17,"85":2,"89":2,"90":3,"91":3,"100":3,"109":5,"113":1,"122":3,"128":4,"158":7,"161":7}}],["improve",{"2":{"164":1}}],["import",{"2":{"106":1}}],["i",{"2":{"158":4,"161":4}}],["invalid",{"2":{"35":1}}],["intersect",{"2":{"46":2}}],["intersection",{"0":{"46":1,"84":1,"85":1},"2":{"46":1,"57":1,"84":2,"85":1,"95":2,"97":1}}],["int",{"0":{"35":2,"61":1,"144":1},"2":{"35":3,"38":8,"114":2,"144":2,"158":1,"161":1}}],["in",{"2":{"34":1,"35":1,"158":2,"161":2}}],["init",{"0":{"5":1,"33":1,"42":1,"80":1,"100":1,"109":1,"113":1,"122":1},"2":{"5":1,"33":1,"42":1,"80":1,"100":1,"109":1,"113":1,"122":1,"155":1,"162":1}}],["if",{"2":{"5":1,"23":1,"34":1,"35":1,"45":2,"46":2,"55":3,"57":1,"81":1,"82":1,"83":1,"84":2,"85":1,"91":1,"95":3,"114":3,"118":2,"119":2,"135":1,"140":1,"141":1,"144":1}}],["isinstance",{"2":{"23":1,"35":2,"45":2,"82":2,"83":2,"95":2,"114":4,"135":2,"140":2,"141":1,"144":2}}],["is",{"0":{"5":1,"50":1,"51":1,"52":1,"53":1,"54":1,"87":1,"126":1,"127":1},"2":{"5":4,"6":1,"7":1,"10":1,"17":1,"19":1,"20":1,"23":1,"43":2,"45":2,"46":2,"50":2,"51":2,"52":3,"53":2,"54":1,"57":3,"58":2,"82":1,"84":1,"87":2,"95":1,"124":1,"126":1,"127":1}}],["model",{"0":{"156":1,"159":1},"1":{"157":1,"158":1,"160":1,"161":1}}],["midpoint",{"2":{"109":1}}],["min",{"0":{"111":1},"2":{"111":5}}],["minus",{"2":{"35":3}}],["minimum",{"0":{"9":1},"2":{"6":1,"7":1,"9":1}}],["multiarraysfunc",{"0":{"76":1,"77":1}}],["multisinglevarsfunc",{"0":{"75":1,"77":1}}],["multivarsfunc",{"0":{"35":2,"38":1,"77":1},"2":{"35":2,"38":1}}],["mul",{"2":{"20":1,"142":1,"143":1,"144":1,"145":1}}],["matmul",{"2":{"146":1}}],["math导入使用",{"2":{"39":1,"59":1}}],["math",{"0":{"2":1,"24":1,"25":1,"26":1,"27":1,"31":1,"36":1,"39":1,"40":1,"59":1,"60":2,"78":1,"98":1,"107":1,"110":1,"120":1},"1":{"3":1,"4":1,"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"32":1,"33":1,"34":1,"35":1,"37":1,"38":1,"41":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"61":2,"62":2,"63":2,"64":2,"65":2,"66":2,"67":2,"68":2,"69":2,"70":2,"71":2,"72":2,"73":2,"74":2,"75":2,"76":2,"77":2,"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"99":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"108":1,"109":1,"111":1,"112":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"121":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"150":1,"151":1,"152":1},"2":{"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"82":1,"124":1,"130":1}}],["max",{"0":{"111":1},"2":{"111":5}}],["maximum",{"0":{"10":1},"2":{"10":1}}],["mp",{"0":{"2":1,"24":1,"31":1,"36":1,"39":1,"40":1,"59":1,"60":2,"78":1,"98":1,"107":1,"110":1,"120":1},"1":{"3":1,"4":1,"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"32":1,"33":1,"34":1,"35":1,"37":1,"38":1,"41":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"61":2,"62":2,"63":2,"64":2,"65":2,"66":2,"67":2,"68":2,"69":2,"70":2,"71":2,"72":2,"73":2,"74":2,"75":2,"76":2,"77":2,"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"99":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"108":1,"109":1,"111":1,"112":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"121":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"150":1,"151":1,"152":1},"2":{"39":1,"59":1}}],["mbcp",{"0":{"0":1,"1":1,"2":1,"24":1,"31":1,"36":1,"39":1,"40":1,"59":1,"60":1,"78":1,"98":1,"107":1,"110":1,"120":1,"153":1,"154":1,"155":1,"156":1,"159":1,"162":1},"1":{"3":1,"4":1,"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"32":1,"33":1,"34":1,"35":1,"37":1,"38":1,"41":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"99":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"108":1,"109":1,"111":1,"112":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"121":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"150":1,"151":1,"152":1,"157":1,"158":1,"160":1,"161":1}}],["説明",{"2":{"0":1,"1":1,"2":1,"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"24":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"31":1,"33":1,"34":1,"35":1,"36":1,"37":1,"38":1,"39":1,"40":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"59":1,"60":1,"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"78":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"95":1,"98":1,"100":1,"101":1,"104":1,"105":1,"106":1,"107":1,"109":1,"110":1,"111":1,"117":1,"118":1,"119":1,"120":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"130":1,"131":1,"135":1,"136":1,"137":1,"140":1,"141":1,"144":1,"146":1,"149":1,"150":1,"151":1,"152":1,"153":1,"154":1,"155":1,"156":1,"158":1,"159":1,"161":1,"162":1}}]],"serializationVersion":2}';export{t as default};
diff --git a/assets/chunks/VPLocalSearchBox.DNFxhdpJ.js b/assets/chunks/VPLocalSearchBox.BHoT-Ww9.js
similarity index 99%
rename from assets/chunks/VPLocalSearchBox.DNFxhdpJ.js
rename to assets/chunks/VPLocalSearchBox.BHoT-Ww9.js
index e1b30aa..5df9dae 100644
--- a/assets/chunks/VPLocalSearchBox.DNFxhdpJ.js
+++ b/assets/chunks/VPLocalSearchBox.BHoT-Ww9.js
@@ -1,4 +1,4 @@
-var Ot=Object.defineProperty;var Rt=(a,e,t)=>e in a?Ot(a,e,{enumerable:!0,configurable:!0,writable:!0,value:t}):a[e]=t;var Me=(a,e,t)=>Rt(a,typeof e!="symbol"?e+"":e,t);import{X as ye,s as ne,h as ve,aj as tt,ak as Ct,al as Mt,v as $e,am as At,d as Lt,G as we,an as st,ao as Dt,ap as zt,x as Pt,aq as Vt,y as Ae,R as de,Q as _e,ar as jt,as as $t,Y as Bt,U as Wt,a1 as Kt,o as Q,b as Jt,j as x,a2 as Ut,k as D,at as qt,au as Gt,av as Qt,c as Z,n as nt,e as xe,E as it,F as rt,a as he,t as fe,aw as Ht,p as Yt,l as Zt,ax as at,ay as Xt,a8 as es,ae as ts,az as ss,_ as ns}from"./framework.DpC1ZpOZ.js";import{u as is,c as rs}from"./theme.BH7CkR6t.js";const as={en:()=>ye(()=>import("./@localSearchIndexen.Zti5Hkmr.js"),[]),ja:()=>ye(()=>import("./@localSearchIndexja.Dk7h50F0.js"),[]),root:()=>ye(()=>import("./@localSearchIndexroot.B_0oYmsz.js"),[]),zht:()=>ye(()=>import("./@localSearchIndexzht.swFDtkrQ.js"),[])};/*!
+var Ot=Object.defineProperty;var Rt=(a,e,t)=>e in a?Ot(a,e,{enumerable:!0,configurable:!0,writable:!0,value:t}):a[e]=t;var Me=(a,e,t)=>Rt(a,typeof e!="symbol"?e+"":e,t);import{X as ye,s as ne,h as ve,aj as tt,ak as Ct,al as Mt,v as $e,am as At,d as Lt,G as we,an as st,ao as Dt,ap as zt,x as Pt,aq as Vt,y as Ae,R as de,Q as _e,ar as jt,as as $t,Y as Bt,U as Wt,a1 as Kt,o as Q,b as Jt,j as x,a2 as Ut,k as D,at as qt,au as Gt,av as Qt,c as Z,n as nt,e as xe,E as it,F as rt,a as he,t as fe,aw as Ht,p as Yt,l as Zt,ax as at,ay as Xt,a8 as es,ae as ts,az as ss,_ as ns}from"./framework.DpC1ZpOZ.js";import{u as is,c as rs}from"./theme.B1OYTEE9.js";const as={en:()=>ye(()=>import("./@localSearchIndexen.BxNVpPSn.js"),[]),ja:()=>ye(()=>import("./@localSearchIndexja.U0mt0YIB.js"),[]),root:()=>ye(()=>import("./@localSearchIndexroot.98bqRrsH.js"),[]),zht:()=>ye(()=>import("./@localSearchIndexzht.B7_xczEa.js"),[])};/*!
 * tabbable 6.2.0
 * @license MIT, https://github.com/focus-trap/tabbable/blob/master/LICENSE
 */var gt=["input:not([inert])","select:not([inert])","textarea:not([inert])","a[href]:not([inert])","button:not([inert])","[tabindex]:not(slot):not([inert])","audio[controls]:not([inert])","video[controls]:not([inert])",'[contenteditable]:not([contenteditable="false"]):not([inert])',"details>summary:first-of-type:not([inert])","details:not([inert])"],Ne=gt.join(","),bt=typeof Element>"u",re=bt?function(){}:Element.prototype.matches||Element.prototype.msMatchesSelector||Element.prototype.webkitMatchesSelector,ke=!bt&&Element.prototype.getRootNode?function(a){var e;return a==null||(e=a.getRootNode)===null||e===void 0?void 0:e.call(a)}:function(a){return a==null?void 0:a.ownerDocument},Fe=function a(e,t){var s;t===void 0&&(t=!0);var n=e==null||(s=e.getAttribute)===null||s===void 0?void 0:s.call(e,"inert"),r=n===""||n==="true",i=r||t&&e&&a(e.parentNode);return i},os=function(e){var t,s=e==null||(t=e.getAttribute)===null||t===void 0?void 0:t.call(e,"contenteditable");return s===""||s==="true"},yt=function(e,t,s){if(Fe(e))return[];var n=Array.prototype.slice.apply(e.querySelectorAll(Ne));return t&&re.call(e,Ne)&&n.unshift(e),n=n.filter(s),n},wt=function a(e,t,s){for(var n=[],r=Array.from(e);r.length;){var i=r.shift();if(!Fe(i,!1))if(i.tagName==="SLOT"){var o=i.assignedElements(),c=o.length?o:i.children,l=a(c,!0,s);s.flatten?n.push.apply(n,l):n.push({scopeParent:i,candidates:l})}else{var h=re.call(i,Ne);h&&s.filter(i)&&(t||!e.includes(i))&&n.push(i);var v=i.shadowRoot||typeof s.getShadowRoot=="function"&&s.getShadowRoot(i),f=!Fe(v,!1)&&(!s.shadowRootFilter||s.shadowRootFilter(i));if(v&&f){var b=a(v===!0?i.children:v.children,!0,s);s.flatten?n.push.apply(n,b):n.push({scopeParent:i,candidates:b})}else r.unshift.apply(r,i.children)}}return n},_t=function(e){return!isNaN(parseInt(e.getAttribute("tabindex"),10))},ie=function(e){if(!e)throw new Error("No node provided");return e.tabIndex<0&&(/^(AUDIO|VIDEO|DETAILS)$/.test(e.tagName)||os(e))&&!_t(e)?0:e.tabIndex},cs=function(e,t){var s=ie(e);return s<0&&t&&!_t(e)?0:s},ls=function(e,t){return e.tabIndex===t.tabIndex?e.documentOrder-t.documentOrder:e.tabIndex-t.tabIndex},xt=function(e){return e.tagName==="INPUT"},us=function(e){return xt(e)&&e.type==="hidden"},ds=function(e){var t=e.tagName==="DETAILS"&&Array.prototype.slice.apply(e.children).some(function(s){return s.tagName==="SUMMARY"});return t},hs=function(e,t){for(var s=0;ssummary:first-of-type"),i=r?e.parentElement:e;if(re.call(i,"details:not([open]) *"))return!0;if(!s||s==="full"||s==="legacy-full"){if(typeof n=="function"){for(var o=e;e;){var c=e.parentElement,l=ke(e);if(c&&!c.shadowRoot&&n(c)===!0)return ot(e);e.assignedSlot?e=e.assignedSlot:!c&&l!==e.ownerDocument?e=l.host:e=c}e=o}if(ms(e))return!e.getClientRects().length;if(s!=="legacy-full")return!0}else if(s==="non-zero-area")return ot(e);return!1},bs=function(e){if(/^(INPUT|BUTTON|SELECT|TEXTAREA)$/.test(e.tagName))for(var t=e.parentElement;t;){if(t.tagName==="FIELDSET"&&t.disabled){for(var s=0;s=0)},ws=function a(e){var t=[],s=[];return e.forEach(function(n,r){var i=!!n.scopeParent,o=i?n.scopeParent:n,c=cs(o,i),l=i?a(n.candidates):o;c===0?i?t.push.apply(t,l):t.push(o):s.push({documentOrder:r,tabIndex:c,item:n,isScope:i,content:l})}),s.sort(ls).reduce(function(n,r){return r.isScope?n.push.apply(n,r.content):n.push(r.content),n},[]).concat(t)},_s=function(e,t){t=t||{};var s;return t.getShadowRoot?s=wt([e],t.includeContainer,{filter:Be.bind(null,t),flatten:!1,getShadowRoot:t.getShadowRoot,shadowRootFilter:ys}):s=yt(e,t.includeContainer,Be.bind(null,t)),ws(s)},xs=function(e,t){t=t||{};var s;return t.getShadowRoot?s=wt([e],t.includeContainer,{filter:Oe.bind(null,t),flatten:!0,getShadowRoot:t.getShadowRoot}):s=yt(e,t.includeContainer,Oe.bind(null,t)),s},ae=function(e,t){if(t=t||{},!e)throw new Error("No node provided");return re.call(e,Ne)===!1?!1:Be(t,e)},Ss=gt.concat("iframe").join(","),Le=function(e,t){if(t=t||{},!e)throw new Error("No node provided");return re.call(e,Ss)===!1?!1:Oe(t,e)};/*!
diff --git a/assets/chunks/theme.BH7CkR6t.js b/assets/chunks/theme.B1OYTEE9.js
similarity index 99%
rename from assets/chunks/theme.BH7CkR6t.js
rename to assets/chunks/theme.B1OYTEE9.js
index d985a7a..9232c37 100644
--- a/assets/chunks/theme.BH7CkR6t.js
+++ b/assets/chunks/theme.B1OYTEE9.js
@@ -1,2 +1,2 @@
-const __vite__mapDeps=(i,m=__vite__mapDeps,d=(m.f||(m.f=["assets/chunks/VPLocalSearchBox.DNFxhdpJ.js","assets/chunks/framework.DpC1ZpOZ.js"])))=>i.map(i=>d[i]);
-import{d as _,o as a,c,r as l,n as N,a as O,t as I,b as k,w as d,e as h,T as ve,_ as $,u as Ge,i as Ue,f as je,g as pe,h as y,j as v,k as r,p as C,l as H,m as K,q as ie,s as w,v as G,x as Z,y as W,z as fe,A as he,B as ze,C as qe,D as R,F as M,E,G as Pe,H as x,I as m,J as F,K as Ve,L as ee,M as q,N as te,O as Ke,P as Le,Q as le,R as We,S as Se,U as oe,V as Re,W as Je,X as Xe,Y as Te,Z as Ie,$ as Ye,a0 as Qe,a1 as Ze,a2 as xe,a3 as et}from"./framework.DpC1ZpOZ.js";const tt=_({__name:"VPBadge",props:{text:{},type:{default:"tip"}},setup(o){return(e,t)=>(a(),c("span",{class:N(["VPBadge",e.type])},[l(e.$slots,"default",{},()=>[O(I(e.text),1)])],2))}}),ot={key:0,class:"VPBackdrop"},nt=_({__name:"VPBackdrop",props:{show:{type:Boolean}},setup(o){return(e,t)=>(a(),k(ve,{name:"fade"},{default:d(()=>[e.show?(a(),c("div",ot)):h("",!0)]),_:1}))}}),st=$(nt,[["__scopeId","data-v-20b1d393"]]),P=Ge;function at(o,e){let t,s=!1;return()=>{t&&clearTimeout(t),s?t=setTimeout(o,e):(o(),(s=!0)&&setTimeout(()=>s=!1,e))}}function ce(o){return/^\//.test(o)?o:`/${o}`}function _e(o){const{pathname:e,search:t,hash:s,protocol:n}=new URL(o,"http://a.com");if(Ue(o)||o.startsWith("#")||!n.startsWith("http")||!je(e))return o;const{site:i}=P(),u=e.endsWith("/")||e.endsWith(".html")?o:o.replace(/(?:(^\.+)\/)?.*$/,`$1${e.replace(/(\.md)?$/,i.value.cleanUrls?"":".html")}${t}${s}`);return pe(u)}function X({correspondingLink:o=!1}={}){const{site:e,localeIndex:t,page:s,theme:n,hash:i}=P(),u=y(()=>{var p,g;return{label:(p=e.value.locales[t.value])==null?void 0:p.label,link:((g=e.value.locales[t.value])==null?void 0:g.link)||(t.value==="root"?"/":`/${t.value}/`)}});return{localeLinks:y(()=>Object.entries(e.value.locales).flatMap(([p,g])=>u.value.label===g.label?[]:{text:g.label,link:rt(g.link||(p==="root"?"/":`/${p}/`),n.value.i18nRouting!==!1&&o,s.value.relativePath.slice(u.value.link.length-1),!e.value.cleanUrls)+i.value})),currentLang:u}}function rt(o,e,t,s){return e?o.replace(/\/$/,"")+ce(t.replace(/(^|\/)index\.md$/,"$1").replace(/\.md$/,s?".html":"")):o}const it=o=>(C("data-v-21980364"),o=o(),H(),o),lt={class:"NotFound"},ct={class:"code"},ut={class:"title"},dt=it(()=>v("div",{class:"divider"},null,-1)),vt={class:"quote"},pt={class:"action"},ft=["href","aria-label"],ht=_({__name:"NotFound",setup(o){const{theme:e}=P(),{currentLang:t}=X();return(s,n)=>{var i,u,f,p,g;return a(),c("div",lt,[v("p",ct,I(((i=r(e).notFound)==null?void 0:i.code)??"404"),1),v("h1",ut,I(((u=r(e).notFound)==null?void 0:u.title)??"PAGE NOT FOUND"),1),dt,v("blockquote",vt,I(((f=r(e).notFound)==null?void 0:f.quote)??"But if you don't change your direction, and if you keep looking, you may end up where you are heading."),1),v("div",pt,[v("a",{class:"link",href:r(pe)(r(t).link),"aria-label":((p=r(e).notFound)==null?void 0:p.linkLabel)??"go to home"},I(((g=r(e).notFound)==null?void 0:g.linkText)??"Take me home"),9,ft)])])}}}),_t=$(ht,[["__scopeId","data-v-21980364"]]);function we(o,e){if(Array.isArray(o))return Y(o);if(o==null)return[];e=ce(e);const t=Object.keys(o).sort((n,i)=>i.split("/").length-n.split("/").length).find(n=>e.startsWith(ce(n))),s=t?o[t]:[];return Array.isArray(s)?Y(s):Y(s.items,s.base)}function mt(o){const e=[];let t=0;for(const s in o){const n=o[s];if(n.items){t=e.push(n);continue}e[t]||e.push({items:[]}),e[t].items.push(n)}return e}function kt(o){const e=[];function t(s){for(const n of s)n.text&&n.link&&e.push({text:n.text,link:n.link,docFooterText:n.docFooterText}),n.items&&t(n.items)}return t(o),e}function ue(o,e){return Array.isArray(e)?e.some(t=>ue(o,t)):K(o,e.link)?!0:e.items?ue(o,e.items):!1}function Y(o,e){return[...o].map(t=>{const s={...t},n=s.base||e;return n&&s.link&&(s.link=n+s.link),s.items&&(s.items=Y(s.items,n)),s})}function U(){const{frontmatter:o,page:e,theme:t}=P(),s=ie("(min-width: 960px)"),n=w(!1),i=y(()=>{const B=t.value.sidebar,S=e.value.relativePath;return B?we(B,S):[]}),u=w(i.value);G(i,(B,S)=>{JSON.stringify(B)!==JSON.stringify(S)&&(u.value=i.value)});const f=y(()=>o.value.sidebar!==!1&&u.value.length>0&&o.value.layout!=="home"),p=y(()=>g?o.value.aside==null?t.value.aside==="left":o.value.aside==="left":!1),g=y(()=>o.value.layout==="home"?!1:o.value.aside!=null?!!o.value.aside:t.value.aside!==!1),L=y(()=>f.value&&s.value),b=y(()=>f.value?mt(u.value):[]);function V(){n.value=!0}function T(){n.value=!1}function A(){n.value?T():V()}return{isOpen:n,sidebar:u,sidebarGroups:b,hasSidebar:f,hasAside:g,leftAside:p,isSidebarEnabled:L,open:V,close:T,toggle:A}}function bt(o,e){let t;Z(()=>{t=o.value?document.activeElement:void 0}),W(()=>{window.addEventListener("keyup",s)}),fe(()=>{window.removeEventListener("keyup",s)});function s(n){n.key==="Escape"&&o.value&&(e(),t==null||t.focus())}}function $t(o){const{page:e,hash:t}=P(),s=w(!1),n=y(()=>o.value.collapsed!=null),i=y(()=>!!o.value.link),u=w(!1),f=()=>{u.value=K(e.value.relativePath,o.value.link)};G([e,o,t],f),W(f);const p=y(()=>u.value?!0:o.value.items?ue(e.value.relativePath,o.value.items):!1),g=y(()=>!!(o.value.items&&o.value.items.length));Z(()=>{s.value=!!(n.value&&o.value.collapsed)}),he(()=>{(u.value||p.value)&&(s.value=!1)});function L(){n.value&&(s.value=!s.value)}return{collapsed:s,collapsible:n,isLink:i,isActiveLink:u,hasActiveLink:p,hasChildren:g,toggle:L}}function gt(){const{hasSidebar:o}=U(),e=ie("(min-width: 960px)"),t=ie("(min-width: 1280px)");return{isAsideEnabled:y(()=>!t.value&&!e.value?!1:o.value?t.value:e.value)}}const de=[];function Ne(o){return typeof o.outline=="object"&&!Array.isArray(o.outline)&&o.outline.label||o.outlineTitle||"On this page"}function me(o){const e=[...document.querySelectorAll(".VPDoc :where(h1,h2,h3,h4,h5,h6)")].filter(t=>t.id&&t.hasChildNodes()).map(t=>{const s=Number(t.tagName[1]);return{element:t,title:yt(t),link:"#"+t.id,level:s}});return Pt(e,o)}function yt(o){let e="";for(const t of o.childNodes)if(t.nodeType===1){if(t.classList.contains("VPBadge")||t.classList.contains("header-anchor")||t.classList.contains("ignore-header"))continue;e+=t.textContent}else t.nodeType===3&&(e+=t.textContent);return e.trim()}function Pt(o,e){if(e===!1)return[];const t=(typeof e=="object"&&!Array.isArray(e)?e.level:e)||2,[s,n]=typeof t=="number"?[t,t]:t==="deep"?[2,6]:t;o=o.filter(u=>u.level>=s&&u.level<=n),de.length=0;for(const{element:u,link:f}of o)de.push({element:u,link:f});const i=[];e:for(let u=0;u=0;p--){const g=o[p];if(g.level{requestAnimationFrame(i),window.addEventListener("scroll",s)}),ze(()=>{u(location.hash)}),fe(()=>{window.removeEventListener("scroll",s)});function i(){if(!t.value)return;const f=window.scrollY,p=window.innerHeight,g=document.body.offsetHeight,L=Math.abs(f+p-g)<1,b=de.map(({element:T,link:A})=>({link:A,top:Lt(T)})).filter(({top:T})=>!Number.isNaN(T)).sort((T,A)=>T.top-A.top);if(!b.length){u(null);return}if(f<1){u(null);return}if(L){u(b[b.length-1].link);return}let V=null;for(const{link:T,top:A}of b){if(A>f+qe()+4)break;V=T}u(V)}function u(f){n&&n.classList.remove("active"),f==null?n=null:n=o.value.querySelector(`a[href="${decodeURIComponent(f)}"]`);const p=n;p?(p.classList.add("active"),e.value.style.top=p.offsetTop+39+"px",e.value.style.opacity="1"):(e.value.style.top="33px",e.value.style.opacity="0")}}function Lt(o){let e=0;for(;o!==document.body;){if(o===null)return NaN;e+=o.offsetTop,o=o.offsetParent}return e}const St=["href","title"],Tt=_({__name:"VPDocOutlineItem",props:{headers:{},root:{type:Boolean}},setup(o){function e({target:t}){const s=t.href.split("#")[1],n=document.getElementById(decodeURIComponent(s));n==null||n.focus({preventScroll:!0})}return(t,s)=>{const n=R("VPDocOutlineItem",!0);return a(),c("ul",{class:N(["VPDocOutlineItem",t.root?"root":"nested"])},[(a(!0),c(M,null,E(t.headers,({children:i,link:u,title:f})=>(a(),c("li",null,[v("a",{class:"outline-link",href:u,onClick:e,title:f},I(f),9,St),i!=null&&i.length?(a(),k(n,{key:0,headers:i},null,8,["headers"])):h("",!0)]))),256))],2)}}}),Me=$(Tt,[["__scopeId","data-v-51c2c770"]]),It={class:"content"},wt={"aria-level":"2",class:"outline-title",id:"doc-outline-aria-label",role:"heading"},Nt=_({__name:"VPDocAsideOutline",setup(o){const{frontmatter:e,theme:t}=P(),s=Pe([]);x(()=>{s.value=me(e.value.outline??t.value.outline)});const n=w(),i=w();return Vt(n,i),(u,f)=>(a(),c("nav",{"aria-labelledby":"doc-outline-aria-label",class:N(["VPDocAsideOutline",{"has-outline":s.value.length>0}]),ref_key:"container",ref:n},[v("div",It,[v("div",{class:"outline-marker",ref_key:"marker",ref:i},null,512),v("div",wt,I(r(Ne)(r(t))),1),m(Me,{headers:s.value,root:!0},null,8,["headers"])])],2))}}),Mt=$(Nt,[["__scopeId","data-v-e7b12e6e"]]),At={class:"VPDocAsideCarbonAds"},Bt=_({__name:"VPDocAsideCarbonAds",props:{carbonAds:{}},setup(o){const e=()=>null;return(t,s)=>(a(),c("div",At,[m(r(e),{"carbon-ads":t.carbonAds},null,8,["carbon-ads"])]))}}),Ct=o=>(C("data-v-0ff3c77f"),o=o(),H(),o),Ht={class:"VPDocAside"},Et=Ct(()=>v("div",{class:"spacer"},null,-1)),Ft=_({__name:"VPDocAside",setup(o){const{theme:e}=P();return(t,s)=>(a(),c("div",Ht,[l(t.$slots,"aside-top",{},void 0,!0),l(t.$slots,"aside-outline-before",{},void 0,!0),m(Mt),l(t.$slots,"aside-outline-after",{},void 0,!0),Et,l(t.$slots,"aside-ads-before",{},void 0,!0),r(e).carbonAds?(a(),k(Bt,{key:0,"carbon-ads":r(e).carbonAds},null,8,["carbon-ads"])):h("",!0),l(t.$slots,"aside-ads-after",{},void 0,!0),l(t.$slots,"aside-bottom",{},void 0,!0)]))}}),Dt=$(Ft,[["__scopeId","data-v-0ff3c77f"]]);function Ot(){const{theme:o,page:e}=P();return y(()=>{const{text:t="Edit this page",pattern:s=""}=o.value.editLink||{};let n;return typeof s=="function"?n=s(e.value):n=s.replace(/:path/g,e.value.filePath),{url:n,text:t}})}function Gt(){const{page:o,theme:e,frontmatter:t}=P();return y(()=>{var g,L,b,V,T,A,B,S;const s=we(e.value.sidebar,o.value.relativePath),n=kt(s),i=Ut(n,j=>j.link.replace(/[?#].*$/,"")),u=i.findIndex(j=>K(o.value.relativePath,j.link)),f=((g=e.value.docFooter)==null?void 0:g.prev)===!1&&!t.value.prev||t.value.prev===!1,p=((L=e.value.docFooter)==null?void 0:L.next)===!1&&!t.value.next||t.value.next===!1;return{prev:f?void 0:{text:(typeof t.value.prev=="string"?t.value.prev:typeof t.value.prev=="object"?t.value.prev.text:void 0)??((b=i[u-1])==null?void 0:b.docFooterText)??((V=i[u-1])==null?void 0:V.text),link:(typeof t.value.prev=="object"?t.value.prev.link:void 0)??((T=i[u-1])==null?void 0:T.link)},next:p?void 0:{text:(typeof t.value.next=="string"?t.value.next:typeof t.value.next=="object"?t.value.next.text:void 0)??((A=i[u+1])==null?void 0:A.docFooterText)??((B=i[u+1])==null?void 0:B.text),link:(typeof t.value.next=="object"?t.value.next.link:void 0)??((S=i[u+1])==null?void 0:S.link)}}})}function Ut(o,e){const t=new Set;return o.filter(s=>{const n=e(s);return t.has(n)?!1:t.add(n)})}const D=_({__name:"VPLink",props:{tag:{},href:{},noIcon:{type:Boolean},target:{},rel:{}},setup(o){const e=o,t=y(()=>e.tag??(e.href?"a":"span")),s=y(()=>e.href&&Ve.test(e.href)||e.target==="_blank");return(n,i)=>(a(),k(F(t.value),{class:N(["VPLink",{link:n.href,"vp-external-link-icon":s.value,"no-icon":n.noIcon}]),href:n.href?r(_e)(n.href):void 0,target:n.target??(s.value?"_blank":void 0),rel:n.rel??(s.value?"noreferrer":void 0)},{default:d(()=>[l(n.$slots,"default")]),_:3},8,["class","href","target","rel"]))}}),jt={class:"VPLastUpdated"},zt=["datetime"],qt=_({__name:"VPDocFooterLastUpdated",setup(o){const{theme:e,page:t,lang:s}=P(),n=y(()=>new Date(t.value.lastUpdated)),i=y(()=>n.value.toISOString()),u=w("");return W(()=>{Z(()=>{var f,p,g;u.value=new Intl.DateTimeFormat((p=(f=e.value.lastUpdated)==null?void 0:f.formatOptions)!=null&&p.forceLocale?s.value:void 0,((g=e.value.lastUpdated)==null?void 0:g.formatOptions)??{dateStyle:"short",timeStyle:"short"}).format(n.value)})}),(f,p)=>{var g;return a(),c("p",jt,[O(I(((g=r(e).lastUpdated)==null?void 0:g.text)||r(e).lastUpdatedText||"Last updated")+": ",1),v("time",{datetime:i.value},I(u.value),9,zt)])}}}),Kt=$(qt,[["__scopeId","data-v-5cebc0fc"]]),Ae=o=>(C("data-v-a4b38bd6"),o=o(),H(),o),Wt={key:0,class:"VPDocFooter"},Rt={key:0,class:"edit-info"},Jt={key:0,class:"edit-link"},Xt=Ae(()=>v("span",{class:"vpi-square-pen edit-link-icon"},null,-1)),Yt={key:1,class:"last-updated"},Qt={key:1,class:"prev-next","aria-labelledby":"doc-footer-aria-label"},Zt=Ae(()=>v("span",{class:"visually-hidden",id:"doc-footer-aria-label"},"Pager",-1)),xt={class:"pager"},eo=["innerHTML"],to=["innerHTML"],oo={class:"pager"},no=["innerHTML"],so=["innerHTML"],ao=_({__name:"VPDocFooter",setup(o){const{theme:e,page:t,frontmatter:s}=P(),n=Ot(),i=Gt(),u=y(()=>e.value.editLink&&s.value.editLink!==!1),f=y(()=>t.value.lastUpdated),p=y(()=>u.value||f.value||i.value.prev||i.value.next);return(g,L)=>{var b,V,T,A;return p.value?(a(),c("footer",Wt,[l(g.$slots,"doc-footer-before",{},void 0,!0),u.value||f.value?(a(),c("div",Rt,[u.value?(a(),c("div",Jt,[m(D,{class:"edit-link-button",href:r(n).url,"no-icon":!0},{default:d(()=>[Xt,O(" "+I(r(n).text),1)]),_:1},8,["href"])])):h("",!0),f.value?(a(),c("div",Yt,[m(Kt)])):h("",!0)])):h("",!0),(b=r(i).prev)!=null&&b.link||(V=r(i).next)!=null&&V.link?(a(),c("nav",Qt,[Zt,v("div",xt,[(T=r(i).prev)!=null&&T.link?(a(),k(D,{key:0,class:"pager-link prev",href:r(i).prev.link},{default:d(()=>{var B;return[v("span",{class:"desc",innerHTML:((B=r(e).docFooter)==null?void 0:B.prev)||"Previous page"},null,8,eo),v("span",{class:"title",innerHTML:r(i).prev.text},null,8,to)]}),_:1},8,["href"])):h("",!0)]),v("div",oo,[(A=r(i).next)!=null&&A.link?(a(),k(D,{key:0,class:"pager-link next",href:r(i).next.link},{default:d(()=>{var B;return[v("span",{class:"desc",innerHTML:((B=r(e).docFooter)==null?void 0:B.next)||"Next page"},null,8,no),v("span",{class:"title",innerHTML:r(i).next.text},null,8,so)]}),_:1},8,["href"])):h("",!0)])])):h("",!0)])):h("",!0)}}}),ro=$(ao,[["__scopeId","data-v-a4b38bd6"]]),io=o=>(C("data-v-40342069"),o=o(),H(),o),lo={class:"container"},co=io(()=>v("div",{class:"aside-curtain"},null,-1)),uo={class:"aside-container"},vo={class:"aside-content"},po={class:"content"},fo={class:"content-container"},ho={class:"main"},_o=_({__name:"VPDoc",setup(o){const{theme:e}=P(),t=ee(),{hasSidebar:s,hasAside:n,leftAside:i}=U(),u=y(()=>t.path.replace(/[./]+/g,"_").replace(/_html$/,""));return(f,p)=>{const g=R("Content");return a(),c("div",{class:N(["VPDoc",{"has-sidebar":r(s),"has-aside":r(n)}])},[l(f.$slots,"doc-top",{},void 0,!0),v("div",lo,[r(n)?(a(),c("div",{key:0,class:N(["aside",{"left-aside":r(i)}])},[co,v("div",uo,[v("div",vo,[m(Dt,null,{"aside-top":d(()=>[l(f.$slots,"aside-top",{},void 0,!0)]),"aside-bottom":d(()=>[l(f.$slots,"aside-bottom",{},void 0,!0)]),"aside-outline-before":d(()=>[l(f.$slots,"aside-outline-before",{},void 0,!0)]),"aside-outline-after":d(()=>[l(f.$slots,"aside-outline-after",{},void 0,!0)]),"aside-ads-before":d(()=>[l(f.$slots,"aside-ads-before",{},void 0,!0)]),"aside-ads-after":d(()=>[l(f.$slots,"aside-ads-after",{},void 0,!0)]),_:3})])])],2)):h("",!0),v("div",po,[v("div",fo,[l(f.$slots,"doc-before",{},void 0,!0),v("main",ho,[m(g,{class:N(["vp-doc",[u.value,r(e).externalLinkIcon&&"external-link-icon-enabled"]])},null,8,["class"])]),m(ro,null,{"doc-footer-before":d(()=>[l(f.$slots,"doc-footer-before",{},void 0,!0)]),_:3}),l(f.$slots,"doc-after",{},void 0,!0)])])]),l(f.$slots,"doc-bottom",{},void 0,!0)],2)}}}),mo=$(_o,[["__scopeId","data-v-40342069"]]),ko=_({__name:"VPButton",props:{tag:{},size:{default:"medium"},theme:{default:"brand"},text:{},href:{},target:{},rel:{}},setup(o){const e=o,t=y(()=>e.href&&Ve.test(e.href)),s=y(()=>e.tag||e.href?"a":"button");return(n,i)=>(a(),k(F(s.value),{class:N(["VPButton",[n.size,n.theme]]),href:n.href?r(_e)(n.href):void 0,target:e.target??(t.value?"_blank":void 0),rel:e.rel??(t.value?"noreferrer":void 0)},{default:d(()=>[O(I(n.text),1)]),_:1},8,["class","href","target","rel"]))}}),bo=$(ko,[["__scopeId","data-v-885c6978"]]),$o=["src","alt"],go=_({inheritAttrs:!1,__name:"VPImage",props:{image:{},alt:{}},setup(o){return(e,t)=>{const s=R("VPImage",!0);return e.image?(a(),c(M,{key:0},[typeof e.image=="string"||"src"in e.image?(a(),c("img",q({key:0,class:"VPImage"},typeof e.image=="string"?e.$attrs:{...e.image,...e.$attrs},{src:r(pe)(typeof e.image=="string"?e.image:e.image.src),alt:e.alt??(typeof e.image=="string"?"":e.image.alt||"")}),null,16,$o)):(a(),c(M,{key:1},[m(s,q({class:"dark",image:e.image.dark,alt:e.image.alt},e.$attrs),null,16,["image","alt"]),m(s,q({class:"light",image:e.image.light,alt:e.image.alt},e.$attrs),null,16,["image","alt"])],64))],64)):h("",!0)}}}),Q=$(go,[["__scopeId","data-v-f925500d"]]),yo=o=>(C("data-v-325add7b"),o=o(),H(),o),Po={class:"container"},Vo={class:"main"},Lo={key:0,class:"name"},So=["innerHTML"],To=["innerHTML"],Io=["innerHTML"],wo={key:0,class:"actions"},No={key:0,class:"image"},Mo={class:"image-container"},Ao=yo(()=>v("div",{class:"image-bg"},null,-1)),Bo=_({__name:"VPHero",props:{name:{},text:{},tagline:{},image:{},actions:{}},setup(o){const e=te("hero-image-slot-exists");return(t,s)=>(a(),c("div",{class:N(["VPHero",{"has-image":t.image||r(e)}])},[v("div",Po,[v("div",Vo,[l(t.$slots,"home-hero-info-before",{},void 0,!0),l(t.$slots,"home-hero-info",{},()=>[t.name?(a(),c("h1",Lo,[v("span",{innerHTML:t.name,class:"clip"},null,8,So)])):h("",!0),t.text?(a(),c("p",{key:1,innerHTML:t.text,class:"text"},null,8,To)):h("",!0),t.tagline?(a(),c("p",{key:2,innerHTML:t.tagline,class:"tagline"},null,8,Io)):h("",!0)],!0),l(t.$slots,"home-hero-info-after",{},void 0,!0),t.actions?(a(),c("div",wo,[(a(!0),c(M,null,E(t.actions,n=>(a(),c("div",{key:n.link,class:"action"},[m(bo,{tag:"a",size:"medium",theme:n.theme,text:n.text,href:n.link,target:n.target,rel:n.rel},null,8,["theme","text","href","target","rel"])]))),128))])):h("",!0),l(t.$slots,"home-hero-actions-after",{},void 0,!0)]),t.image||r(e)?(a(),c("div",No,[v("div",Mo,[Ao,l(t.$slots,"home-hero-image",{},()=>[t.image?(a(),k(Q,{key:0,class:"image-src",image:t.image},null,8,["image"])):h("",!0)],!0)])])):h("",!0)])],2))}}),Co=$(Bo,[["__scopeId","data-v-325add7b"]]),Ho=_({__name:"VPHomeHero",setup(o){const{frontmatter:e}=P();return(t,s)=>r(e).hero?(a(),k(Co,{key:0,class:"VPHomeHero",name:r(e).hero.name,text:r(e).hero.text,tagline:r(e).hero.tagline,image:r(e).hero.image,actions:r(e).hero.actions},{"home-hero-info-before":d(()=>[l(t.$slots,"home-hero-info-before")]),"home-hero-info":d(()=>[l(t.$slots,"home-hero-info")]),"home-hero-info-after":d(()=>[l(t.$slots,"home-hero-info-after")]),"home-hero-actions-after":d(()=>[l(t.$slots,"home-hero-actions-after")]),"home-hero-image":d(()=>[l(t.$slots,"home-hero-image")]),_:3},8,["name","text","tagline","image","actions"])):h("",!0)}}),Eo=o=>(C("data-v-248ed6b6"),o=o(),H(),o),Fo={class:"box"},Do={key:0,class:"icon"},Oo=["innerHTML"],Go=["innerHTML"],Uo=["innerHTML"],jo={key:4,class:"link-text"},zo={class:"link-text-value"},qo=Eo(()=>v("span",{class:"vpi-arrow-right link-text-icon"},null,-1)),Ko=_({__name:"VPFeature",props:{icon:{},title:{},details:{},link:{},linkText:{},rel:{},target:{}},setup(o){return(e,t)=>(a(),k(D,{class:"VPFeature",href:e.link,rel:e.rel,target:e.target,"no-icon":!0,tag:e.link?"a":"div"},{default:d(()=>[v("article",Fo,[typeof e.icon=="object"&&e.icon.wrap?(a(),c("div",Do,[m(Q,{image:e.icon,alt:e.icon.alt,height:e.icon.height||48,width:e.icon.width||48},null,8,["image","alt","height","width"])])):typeof e.icon=="object"?(a(),k(Q,{key:1,image:e.icon,alt:e.icon.alt,height:e.icon.height||48,width:e.icon.width||48},null,8,["image","alt","height","width"])):e.icon?(a(),c("div",{key:2,class:"icon",innerHTML:e.icon},null,8,Oo)):h("",!0),v("h2",{class:"title",innerHTML:e.title},null,8,Go),e.details?(a(),c("p",{key:3,class:"details",innerHTML:e.details},null,8,Uo)):h("",!0),e.linkText?(a(),c("div",jo,[v("p",zo,[O(I(e.linkText)+" ",1),qo])])):h("",!0)])]),_:1},8,["href","rel","target","tag"]))}}),Wo=$(Ko,[["__scopeId","data-v-248ed6b6"]]),Ro={key:0,class:"VPFeatures"},Jo={class:"container"},Xo={class:"items"},Yo=_({__name:"VPFeatures",props:{features:{}},setup(o){const e=o,t=y(()=>{const s=e.features.length;if(s){if(s===2)return"grid-2";if(s===3)return"grid-3";if(s%3===0)return"grid-6";if(s>3)return"grid-4"}else return});return(s,n)=>s.features?(a(),c("div",Ro,[v("div",Jo,[v("div",Xo,[(a(!0),c(M,null,E(s.features,i=>(a(),c("div",{key:i.title,class:N(["item",[t.value]])},[m(Wo,{icon:i.icon,title:i.title,details:i.details,link:i.link,"link-text":i.linkText,rel:i.rel,target:i.target},null,8,["icon","title","details","link","link-text","rel","target"])],2))),128))])])])):h("",!0)}}),Qo=$(Yo,[["__scopeId","data-v-dbb08ed4"]]),Zo=_({__name:"VPHomeFeatures",setup(o){const{frontmatter:e}=P();return(t,s)=>r(e).features?(a(),k(Qo,{key:0,class:"VPHomeFeatures",features:r(e).features},null,8,["features"])):h("",!0)}}),xo=_({__name:"VPHomeContent",setup(o){const{width:e}=Ke({initialWidth:0,includeScrollbar:!1});return(t,s)=>(a(),c("div",{class:"vp-doc container",style:Le(r(e)?{"--vp-offset":`calc(50% - ${r(e)/2}px)`}:{})},[l(t.$slots,"default",{},void 0,!0)],4))}}),en=$(xo,[["__scopeId","data-v-bb690f02"]]),tn={class:"VPHome"},on=_({__name:"VPHome",setup(o){const{frontmatter:e}=P();return(t,s)=>{const n=R("Content");return a(),c("div",tn,[l(t.$slots,"home-hero-before",{},void 0,!0),m(Ho,null,{"home-hero-info-before":d(()=>[l(t.$slots,"home-hero-info-before",{},void 0,!0)]),"home-hero-info":d(()=>[l(t.$slots,"home-hero-info",{},void 0,!0)]),"home-hero-info-after":d(()=>[l(t.$slots,"home-hero-info-after",{},void 0,!0)]),"home-hero-actions-after":d(()=>[l(t.$slots,"home-hero-actions-after",{},void 0,!0)]),"home-hero-image":d(()=>[l(t.$slots,"home-hero-image",{},void 0,!0)]),_:3}),l(t.$slots,"home-hero-after",{},void 0,!0),l(t.$slots,"home-features-before",{},void 0,!0),m(Zo),l(t.$slots,"home-features-after",{},void 0,!0),r(e).markdownStyles!==!1?(a(),k(en,{key:0},{default:d(()=>[m(n)]),_:1})):(a(),k(n,{key:1}))])}}}),nn=$(on,[["__scopeId","data-v-972a96f9"]]),sn={},an={class:"VPPage"};function rn(o,e){const t=R("Content");return a(),c("div",an,[l(o.$slots,"page-top"),m(t),l(o.$slots,"page-bottom")])}const ln=$(sn,[["render",rn]]),cn=_({__name:"VPContent",setup(o){const{page:e,frontmatter:t}=P(),{hasSidebar:s}=U();return(n,i)=>(a(),c("div",{class:N(["VPContent",{"has-sidebar":r(s),"is-home":r(t).layout==="home"}]),id:"VPContent"},[r(e).isNotFound?l(n.$slots,"not-found",{key:0},()=>[m(_t)],!0):r(t).layout==="page"?(a(),k(ln,{key:1},{"page-top":d(()=>[l(n.$slots,"page-top",{},void 0,!0)]),"page-bottom":d(()=>[l(n.$slots,"page-bottom",{},void 0,!0)]),_:3})):r(t).layout==="home"?(a(),k(nn,{key:2},{"home-hero-before":d(()=>[l(n.$slots,"home-hero-before",{},void 0,!0)]),"home-hero-info-before":d(()=>[l(n.$slots,"home-hero-info-before",{},void 0,!0)]),"home-hero-info":d(()=>[l(n.$slots,"home-hero-info",{},void 0,!0)]),"home-hero-info-after":d(()=>[l(n.$slots,"home-hero-info-after",{},void 0,!0)]),"home-hero-actions-after":d(()=>[l(n.$slots,"home-hero-actions-after",{},void 0,!0)]),"home-hero-image":d(()=>[l(n.$slots,"home-hero-image",{},void 0,!0)]),"home-hero-after":d(()=>[l(n.$slots,"home-hero-after",{},void 0,!0)]),"home-features-before":d(()=>[l(n.$slots,"home-features-before",{},void 0,!0)]),"home-features-after":d(()=>[l(n.$slots,"home-features-after",{},void 0,!0)]),_:3})):r(t).layout&&r(t).layout!=="doc"?(a(),k(F(r(t).layout),{key:3})):(a(),k(mo,{key:4},{"doc-top":d(()=>[l(n.$slots,"doc-top",{},void 0,!0)]),"doc-bottom":d(()=>[l(n.$slots,"doc-bottom",{},void 0,!0)]),"doc-footer-before":d(()=>[l(n.$slots,"doc-footer-before",{},void 0,!0)]),"doc-before":d(()=>[l(n.$slots,"doc-before",{},void 0,!0)]),"doc-after":d(()=>[l(n.$slots,"doc-after",{},void 0,!0)]),"aside-top":d(()=>[l(n.$slots,"aside-top",{},void 0,!0)]),"aside-outline-before":d(()=>[l(n.$slots,"aside-outline-before",{},void 0,!0)]),"aside-outline-after":d(()=>[l(n.$slots,"aside-outline-after",{},void 0,!0)]),"aside-ads-before":d(()=>[l(n.$slots,"aside-ads-before",{},void 0,!0)]),"aside-ads-after":d(()=>[l(n.$slots,"aside-ads-after",{},void 0,!0)]),"aside-bottom":d(()=>[l(n.$slots,"aside-bottom",{},void 0,!0)]),_:3}))],2))}}),un=$(cn,[["__scopeId","data-v-ec7dbf3e"]]),dn={class:"container"},vn=["innerHTML"],pn=["innerHTML"],fn=_({__name:"VPFooter",setup(o){const{theme:e,frontmatter:t}=P(),{hasSidebar:s}=U();return(n,i)=>r(e).footer&&r(t).footer!==!1?(a(),c("footer",{key:0,class:N(["VPFooter",{"has-sidebar":r(s)}])},[v("div",dn,[r(e).footer.message?(a(),c("p",{key:0,class:"message",innerHTML:r(e).footer.message},null,8,vn)):h("",!0),r(e).footer.copyright?(a(),c("p",{key:1,class:"copyright",innerHTML:r(e).footer.copyright},null,8,pn)):h("",!0)])],2)):h("",!0)}}),hn=$(fn,[["__scopeId","data-v-e3ca6860"]]);function _n(){const{theme:o,frontmatter:e}=P(),t=Pe([]),s=y(()=>t.value.length>0);return x(()=>{t.value=me(e.value.outline??o.value.outline)}),{headers:t,hasLocalNav:s}}const mn=o=>(C("data-v-b418bf42"),o=o(),H(),o),kn={class:"menu-text"},bn=mn(()=>v("span",{class:"vpi-chevron-right icon"},null,-1)),$n={class:"header"},gn={class:"outline"},yn=_({__name:"VPLocalNavOutlineDropdown",props:{headers:{},navHeight:{}},setup(o){const e=o,{theme:t}=P(),s=w(!1),n=w(0),i=w(),u=w();function f(b){var V;(V=i.value)!=null&&V.contains(b.target)||(s.value=!1)}G(s,b=>{if(b){document.addEventListener("click",f);return}document.removeEventListener("click",f)}),le("Escape",()=>{s.value=!1}),x(()=>{s.value=!1});function p(){s.value=!s.value,n.value=window.innerHeight+Math.min(window.scrollY-e.navHeight,0)}function g(b){b.target.classList.contains("outline-link")&&(u.value&&(u.value.style.transition="none"),We(()=>{s.value=!1}))}function L(){s.value=!1,window.scrollTo({top:0,left:0,behavior:"smooth"})}return(b,V)=>(a(),c("div",{class:"VPLocalNavOutlineDropdown",style:Le({"--vp-vh":n.value+"px"}),ref_key:"main",ref:i},[b.headers.length>0?(a(),c("button",{key:0,onClick:p,class:N({open:s.value})},[v("span",kn,I(r(Ne)(r(t))),1),bn],2)):(a(),c("button",{key:1,onClick:L},I(r(t).returnToTopLabel||"Return to top"),1)),m(ve,{name:"flyout"},{default:d(()=>[s.value?(a(),c("div",{key:0,ref_key:"items",ref:u,class:"items",onClick:g},[v("div",$n,[v("a",{class:"top-link",href:"#",onClick:L},I(r(t).returnToTopLabel||"Return to top"),1)]),v("div",gn,[m(Me,{headers:b.headers},null,8,["headers"])])],512)):h("",!0)]),_:1})],4))}}),Pn=$(yn,[["__scopeId","data-v-b418bf42"]]),Vn=o=>(C("data-v-8af612ea"),o=o(),H(),o),Ln={class:"container"},Sn=["aria-expanded"],Tn=Vn(()=>v("span",{class:"vpi-align-left menu-icon"},null,-1)),In={class:"menu-text"},wn=_({__name:"VPLocalNav",props:{open:{type:Boolean}},emits:["open-menu"],setup(o){const{theme:e,frontmatter:t}=P(),{hasSidebar:s}=U(),{headers:n}=_n(),{y:i}=Se(),u=w(0);W(()=>{u.value=parseInt(getComputedStyle(document.documentElement).getPropertyValue("--vp-nav-height"))}),x(()=>{n.value=me(t.value.outline??e.value.outline)});const f=y(()=>n.value.length===0),p=y(()=>f.value&&!s.value),g=y(()=>({VPLocalNav:!0,"has-sidebar":s.value,empty:f.value,fixed:p.value}));return(L,b)=>r(t).layout!=="home"&&(!p.value||r(i)>=u.value)?(a(),c("div",{key:0,class:N(g.value)},[v("div",Ln,[r(s)?(a(),c("button",{key:0,class:"menu","aria-expanded":L.open,"aria-controls":"VPSidebarNav",onClick:b[0]||(b[0]=V=>L.$emit("open-menu"))},[Tn,v("span",In,I(r(e).sidebarMenuLabel||"Menu"),1)],8,Sn)):h("",!0),m(Pn,{headers:r(n),navHeight:u.value},null,8,["headers","navHeight"])])],2)):h("",!0)}}),Nn=$(wn,[["__scopeId","data-v-8af612ea"]]);function Mn(){const o=w(!1);function e(){o.value=!0,window.addEventListener("resize",n)}function t(){o.value=!1,window.removeEventListener("resize",n)}function s(){o.value?t():e()}function n(){window.outerWidth>=768&&t()}const i=ee();return G(()=>i.path,t),{isScreenOpen:o,openScreen:e,closeScreen:t,toggleScreen:s}}const An={},Bn={class:"VPSwitch",type:"button",role:"switch"},Cn={class:"check"},Hn={key:0,class:"icon"};function En(o,e){return a(),c("button",Bn,[v("span",Cn,[o.$slots.default?(a(),c("span",Hn,[l(o.$slots,"default",{},void 0,!0)])):h("",!0)])])}const Fn=$(An,[["render",En],["__scopeId","data-v-d82e607b"]]),Be=o=>(C("data-v-3a50aa5c"),o=o(),H(),o),Dn=Be(()=>v("span",{class:"vpi-sun sun"},null,-1)),On=Be(()=>v("span",{class:"vpi-moon moon"},null,-1)),Gn=_({__name:"VPSwitchAppearance",setup(o){const{isDark:e,theme:t}=P(),s=te("toggle-appearance",()=>{e.value=!e.value}),n=w("");return he(()=>{n.value=e.value?t.value.lightModeSwitchTitle||"Switch to light theme":t.value.darkModeSwitchTitle||"Switch to dark theme"}),(i,u)=>(a(),k(Fn,{title:n.value,class:"VPSwitchAppearance","aria-checked":r(e),onClick:r(s)},{default:d(()=>[Dn,On]),_:1},8,["title","aria-checked","onClick"]))}}),ke=$(Gn,[["__scopeId","data-v-3a50aa5c"]]),Un={key:0,class:"VPNavBarAppearance"},jn=_({__name:"VPNavBarAppearance",setup(o){const{site:e}=P();return(t,s)=>r(e).appearance&&r(e).appearance!=="force-dark"&&r(e).appearance!=="force-auto"?(a(),c("div",Un,[m(ke)])):h("",!0)}}),zn=$(jn,[["__scopeId","data-v-2a6692f8"]]),be=w();let Ce=!1,re=0;function qn(o){const e=w(!1);if(oe){!Ce&&Kn(),re++;const t=G(be,s=>{var n,i,u;s===o.el.value||(n=o.el.value)!=null&&n.contains(s)?(e.value=!0,(i=o.onFocus)==null||i.call(o)):(e.value=!1,(u=o.onBlur)==null||u.call(o))});fe(()=>{t(),re--,re||Wn()})}return Re(e)}function Kn(){document.addEventListener("focusin",He),Ce=!0,be.value=document.activeElement}function Wn(){document.removeEventListener("focusin",He)}function He(){be.value=document.activeElement}const Rn={class:"VPMenuLink"},Jn=_({__name:"VPMenuLink",props:{item:{}},setup(o){const{page:e}=P();return(t,s)=>(a(),c("div",Rn,[m(D,{class:N({active:r(K)(r(e).relativePath,t.item.activeMatch||t.item.link,!!t.item.activeMatch)}),href:t.item.link,target:t.item.target,rel:t.item.rel},{default:d(()=>[O(I(t.item.text),1)]),_:1},8,["class","href","target","rel"])]))}}),ne=$(Jn,[["__scopeId","data-v-79776a7a"]]),Xn={class:"VPMenuGroup"},Yn={key:0,class:"title"},Qn=_({__name:"VPMenuGroup",props:{text:{},items:{}},setup(o){return(e,t)=>(a(),c("div",Xn,[e.text?(a(),c("p",Yn,I(e.text),1)):h("",!0),(a(!0),c(M,null,E(e.items,s=>(a(),c(M,null,["link"in s?(a(),k(ne,{key:0,item:s},null,8,["item"])):h("",!0)],64))),256))]))}}),Zn=$(Qn,[["__scopeId","data-v-fbf15ead"]]),xn={class:"VPMenu"},es={key:0,class:"items"},ts=_({__name:"VPMenu",props:{items:{}},setup(o){return(e,t)=>(a(),c("div",xn,[e.items?(a(),c("div",es,[(a(!0),c(M,null,E(e.items,s=>(a(),c(M,{key:JSON.stringify(s)},["link"in s?(a(),k(ne,{key:0,item:s},null,8,["item"])):"component"in s?(a(),k(F(s.component),q({key:1,ref_for:!0},s.props),null,16)):(a(),k(Zn,{key:2,text:s.text,items:s.items},null,8,["text","items"]))],64))),128))])):h("",!0),l(e.$slots,"default",{},void 0,!0)]))}}),os=$(ts,[["__scopeId","data-v-9990563e"]]),ns=o=>(C("data-v-ec8c49bc"),o=o(),H(),o),ss=["aria-expanded","aria-label"],as={key:0,class:"text"},rs=["innerHTML"],is=ns(()=>v("span",{class:"vpi-chevron-down text-icon"},null,-1)),ls={key:1,class:"vpi-more-horizontal icon"},cs={class:"menu"},us=_({__name:"VPFlyout",props:{icon:{},button:{},label:{},items:{}},setup(o){const e=w(!1),t=w();qn({el:t,onBlur:s});function s(){e.value=!1}return(n,i)=>(a(),c("div",{class:"VPFlyout",ref_key:"el",ref:t,onMouseenter:i[1]||(i[1]=u=>e.value=!0),onMouseleave:i[2]||(i[2]=u=>e.value=!1)},[v("button",{type:"button",class:"button","aria-haspopup":"true","aria-expanded":e.value,"aria-label":n.label,onClick:i[0]||(i[0]=u=>e.value=!e.value)},[n.button||n.icon?(a(),c("span",as,[n.icon?(a(),c("span",{key:0,class:N([n.icon,"option-icon"])},null,2)):h("",!0),n.button?(a(),c("span",{key:1,innerHTML:n.button},null,8,rs)):h("",!0),is])):(a(),c("span",ls))],8,ss),v("div",cs,[m(os,{items:n.items},{default:d(()=>[l(n.$slots,"default",{},void 0,!0)]),_:3},8,["items"])])],544))}}),$e=$(us,[["__scopeId","data-v-ec8c49bc"]]),ds=["href","aria-label","innerHTML"],vs=_({__name:"VPSocialLink",props:{icon:{},link:{},ariaLabel:{}},setup(o){const e=o,t=y(()=>typeof e.icon=="object"?e.icon.svg:``);return(s,n)=>(a(),c("a",{class:"VPSocialLink no-icon",href:s.link,"aria-label":s.ariaLabel??(typeof s.icon=="string"?s.icon:""),target:"_blank",rel:"noopener",innerHTML:t.value},null,8,ds))}}),ps=$(vs,[["__scopeId","data-v-b0526bd7"]]),fs={class:"VPSocialLinks"},hs=_({__name:"VPSocialLinks",props:{links:{}},setup(o){return(e,t)=>(a(),c("div",fs,[(a(!0),c(M,null,E(e.links,({link:s,icon:n,ariaLabel:i})=>(a(),k(ps,{key:s,icon:n,link:s,ariaLabel:i},null,8,["icon","link","ariaLabel"]))),128))]))}}),ge=$(hs,[["__scopeId","data-v-fa18fe49"]]),_s={key:0,class:"group translations"},ms={class:"trans-title"},ks={key:1,class:"group"},bs={class:"item appearance"},$s={class:"label"},gs={class:"appearance-action"},ys={key:2,class:"group"},Ps={class:"item social-links"},Vs=_({__name:"VPNavBarExtra",setup(o){const{site:e,theme:t}=P(),{localeLinks:s,currentLang:n}=X({correspondingLink:!0}),i=y(()=>s.value.length&&n.value.label||e.value.appearance||t.value.socialLinks);return(u,f)=>i.value?(a(),k($e,{key:0,class:"VPNavBarExtra",label:"extra navigation"},{default:d(()=>[r(s).length&&r(n).label?(a(),c("div",_s,[v("p",ms,I(r(n).label),1),(a(!0),c(M,null,E(r(s),p=>(a(),k(ne,{key:p.link,item:p},null,8,["item"]))),128))])):h("",!0),r(e).appearance&&r(e).appearance!=="force-dark"&&r(e).appearance!=="force-auto"?(a(),c("div",ks,[v("div",bs,[v("p",$s,I(r(t).darkModeSwitchLabel||"Appearance"),1),v("div",gs,[m(ke)])])])):h("",!0),r(t).socialLinks?(a(),c("div",ys,[v("div",Ps,[m(ge,{class:"social-links-list",links:r(t).socialLinks},null,8,["links"])])])):h("",!0)]),_:1})):h("",!0)}}),Ls=$(Vs,[["__scopeId","data-v-2fc967b6"]]),Ss=o=>(C("data-v-be64de2d"),o=o(),H(),o),Ts=["aria-expanded"],Is=Ss(()=>v("span",{class:"container"},[v("span",{class:"top"}),v("span",{class:"middle"}),v("span",{class:"bottom"})],-1)),ws=[Is],Ns=_({__name:"VPNavBarHamburger",props:{active:{type:Boolean}},emits:["click"],setup(o){return(e,t)=>(a(),c("button",{type:"button",class:N(["VPNavBarHamburger",{active:e.active}]),"aria-label":"mobile navigation","aria-expanded":e.active,"aria-controls":"VPNavScreen",onClick:t[0]||(t[0]=s=>e.$emit("click"))},ws,10,Ts))}}),Ms=$(Ns,[["__scopeId","data-v-be64de2d"]]),As=["innerHTML"],Bs=_({__name:"VPNavBarMenuLink",props:{item:{}},setup(o){const{page:e}=P();return(t,s)=>(a(),k(D,{class:N({VPNavBarMenuLink:!0,active:r(K)(r(e).relativePath,t.item.activeMatch||t.item.link,!!t.item.activeMatch)}),href:t.item.link,noIcon:t.item.noIcon,target:t.item.target,rel:t.item.rel,tabindex:"0"},{default:d(()=>[v("span",{innerHTML:t.item.text},null,8,As)]),_:1},8,["class","href","noIcon","target","rel"]))}}),Cs=$(Bs,[["__scopeId","data-v-ad4a8b64"]]),Hs=_({__name:"VPNavBarMenuGroup",props:{item:{}},setup(o){const e=o,{page:t}=P(),s=i=>"component"in i?!1:"link"in i?K(t.value.relativePath,i.link,!!e.item.activeMatch):i.items.some(s),n=y(()=>s(e.item));return(i,u)=>(a(),k($e,{class:N({VPNavBarMenuGroup:!0,active:r(K)(r(t).relativePath,i.item.activeMatch,!!i.item.activeMatch)||n.value}),button:i.item.text,items:i.item.items},null,8,["class","button","items"]))}}),Es=o=>(C("data-v-0fb289c1"),o=o(),H(),o),Fs={key:0,"aria-labelledby":"main-nav-aria-label",class:"VPNavBarMenu"},Ds=Es(()=>v("span",{id:"main-nav-aria-label",class:"visually-hidden"}," Main Navigation ",-1)),Os=_({__name:"VPNavBarMenu",setup(o){const{theme:e}=P();return(t,s)=>r(e).nav?(a(),c("nav",Fs,[Ds,(a(!0),c(M,null,E(r(e).nav,n=>(a(),c(M,{key:JSON.stringify(n)},["link"in n?(a(),k(Cs,{key:0,item:n},null,8,["item"])):"component"in n?(a(),k(F(n.component),q({key:1,ref_for:!0},n.props),null,16)):(a(),k(Hs,{key:2,item:n},null,8,["item"]))],64))),128))])):h("",!0)}}),Gs=$(Os,[["__scopeId","data-v-0fb289c1"]]);function Us(o){const{localeIndex:e,theme:t}=P();function s(n){var A,B,S;const i=n.split("."),u=(A=t.value.search)==null?void 0:A.options,f=u&&typeof u=="object",p=f&&((S=(B=u.locales)==null?void 0:B[e.value])==null?void 0:S.translations)||null,g=f&&u.translations||null;let L=p,b=g,V=o;const T=i.pop();for(const j of i){let z=null;const J=V==null?void 0:V[j];J&&(z=V=J);const se=b==null?void 0:b[j];se&&(z=b=se);const ae=L==null?void 0:L[j];ae&&(z=L=ae),J||(V=z),se||(b=z),ae||(L=z)}return(L==null?void 0:L[T])??(b==null?void 0:b[T])??(V==null?void 0:V[T])??""}return s}const js=["aria-label"],zs={class:"DocSearch-Button-Container"},qs=v("span",{class:"vp-icon DocSearch-Search-Icon"},null,-1),Ks={class:"DocSearch-Button-Placeholder"},Ws=v("span",{class:"DocSearch-Button-Keys"},[v("kbd",{class:"DocSearch-Button-Key"}),v("kbd",{class:"DocSearch-Button-Key"},"K")],-1),ye=_({__name:"VPNavBarSearchButton",setup(o){const t=Us({button:{buttonText:"Search",buttonAriaLabel:"Search"}});return(s,n)=>(a(),c("button",{type:"button",class:"DocSearch DocSearch-Button","aria-label":r(t)("button.buttonAriaLabel")},[v("span",zs,[qs,v("span",Ks,I(r(t)("button.buttonText")),1)]),Ws],8,js))}}),Rs={class:"VPNavBarSearch"},Js={id:"local-search"},Xs={key:1,id:"docsearch"},Ys=_({__name:"VPNavBarSearch",setup(o){const e=Je(()=>Xe(()=>import("./VPLocalSearchBox.DNFxhdpJ.js"),__vite__mapDeps([0,1]))),t=()=>null,{theme:s}=P(),n=w(!1),i=w(!1);W(()=>{});function u(){n.value||(n.value=!0,setTimeout(f,16))}function f(){const b=new Event("keydown");b.key="k",b.metaKey=!0,window.dispatchEvent(b),setTimeout(()=>{document.querySelector(".DocSearch-Modal")||f()},16)}function p(b){const V=b.target,T=V.tagName;return V.isContentEditable||T==="INPUT"||T==="SELECT"||T==="TEXTAREA"}const g=w(!1);le("k",b=>{(b.ctrlKey||b.metaKey)&&(b.preventDefault(),g.value=!0)}),le("/",b=>{p(b)||(b.preventDefault(),g.value=!0)});const L="local";return(b,V)=>{var T;return a(),c("div",Rs,[r(L)==="local"?(a(),c(M,{key:0},[g.value?(a(),k(r(e),{key:0,onClose:V[0]||(V[0]=A=>g.value=!1)})):h("",!0),v("div",Js,[m(ye,{onClick:V[1]||(V[1]=A=>g.value=!0)})])],64)):r(L)==="algolia"?(a(),c(M,{key:1},[n.value?(a(),k(r(t),{key:0,algolia:((T=r(s).search)==null?void 0:T.options)??r(s).algolia,onVnodeBeforeMount:V[2]||(V[2]=A=>i.value=!0)},null,8,["algolia"])):h("",!0),i.value?h("",!0):(a(),c("div",Xs,[m(ye,{onClick:u})]))],64)):h("",!0)])}}}),Qs=_({__name:"VPNavBarSocialLinks",setup(o){const{theme:e}=P();return(t,s)=>r(e).socialLinks?(a(),k(ge,{key:0,class:"VPNavBarSocialLinks",links:r(e).socialLinks},null,8,["links"])):h("",!0)}}),Zs=$(Qs,[["__scopeId","data-v-f3b91b3a"]]),xs=["href","rel","target"],ea={key:1},ta={key:2},oa=_({__name:"VPNavBarTitle",setup(o){const{site:e,theme:t}=P(),{hasSidebar:s}=U(),{currentLang:n}=X(),i=y(()=>{var p;return typeof t.value.logoLink=="string"?t.value.logoLink:(p=t.value.logoLink)==null?void 0:p.link}),u=y(()=>{var p;return typeof t.value.logoLink=="string"||(p=t.value.logoLink)==null?void 0:p.rel}),f=y(()=>{var p;return typeof t.value.logoLink=="string"||(p=t.value.logoLink)==null?void 0:p.target});return(p,g)=>(a(),c("div",{class:N(["VPNavBarTitle",{"has-sidebar":r(s)}])},[v("a",{class:"title",href:i.value??r(_e)(r(n).link),rel:u.value,target:f.value},[l(p.$slots,"nav-bar-title-before",{},void 0,!0),r(t).logo?(a(),k(Q,{key:0,class:"logo",image:r(t).logo},null,8,["image"])):h("",!0),r(t).siteTitle?(a(),c("span",ea,I(r(t).siteTitle),1)):r(t).siteTitle===void 0?(a(),c("span",ta,I(r(e).title),1)):h("",!0),l(p.$slots,"nav-bar-title-after",{},void 0,!0)],8,xs)],2))}}),na=$(oa,[["__scopeId","data-v-10b95b50"]]),sa={class:"items"},aa={class:"title"},ra=_({__name:"VPNavBarTranslations",setup(o){const{theme:e}=P(),{localeLinks:t,currentLang:s}=X({correspondingLink:!0});return(n,i)=>r(t).length&&r(s).label?(a(),k($e,{key:0,class:"VPNavBarTranslations",icon:"vpi-languages",label:r(e).langMenuLabel||"Change language"},{default:d(()=>[v("div",sa,[v("p",aa,I(r(s).label),1),(a(!0),c(M,null,E(r(t),u=>(a(),k(ne,{key:u.link,item:u},null,8,["item"]))),128))])]),_:1},8,["label"])):h("",!0)}}),ia=$(ra,[["__scopeId","data-v-cd7b67e8"]]),la=o=>(C("data-v-1303e283"),o=o(),H(),o),ca={class:"wrapper"},ua={class:"container"},da={class:"title"},va={class:"content"},pa={class:"content-body"},fa=la(()=>v("div",{class:"divider"},[v("div",{class:"divider-line"})],-1)),ha=_({__name:"VPNavBar",props:{isScreenOpen:{type:Boolean}},emits:["toggle-screen"],setup(o){const e=o,{y:t}=Se(),{hasSidebar:s}=U(),{frontmatter:n}=P(),i=w({});return he(()=>{i.value={"has-sidebar":s.value,home:n.value.layout==="home",top:t.value===0,"screen-open":e.isScreenOpen}}),(u,f)=>(a(),c("div",{class:N(["VPNavBar",i.value])},[v("div",ca,[v("div",ua,[v("div",da,[m(na,null,{"nav-bar-title-before":d(()=>[l(u.$slots,"nav-bar-title-before",{},void 0,!0)]),"nav-bar-title-after":d(()=>[l(u.$slots,"nav-bar-title-after",{},void 0,!0)]),_:3})]),v("div",va,[v("div",pa,[l(u.$slots,"nav-bar-content-before",{},void 0,!0),m(Ys,{class:"search"}),m(Gs,{class:"menu"}),m(ia,{class:"translations"}),m(zn,{class:"appearance"}),m(Zs,{class:"social-links"}),m(Ls,{class:"extra"}),l(u.$slots,"nav-bar-content-after",{},void 0,!0),m(Ms,{class:"hamburger",active:u.isScreenOpen,onClick:f[0]||(f[0]=p=>u.$emit("toggle-screen"))},null,8,["active"])])])])]),fa],2))}}),_a=$(ha,[["__scopeId","data-v-1303e283"]]),ma={key:0,class:"VPNavScreenAppearance"},ka={class:"text"},ba=_({__name:"VPNavScreenAppearance",setup(o){const{site:e,theme:t}=P();return(s,n)=>r(e).appearance&&r(e).appearance!=="force-dark"&&r(e).appearance!=="force-auto"?(a(),c("div",ma,[v("p",ka,I(r(t).darkModeSwitchLabel||"Appearance"),1),m(ke)])):h("",!0)}}),$a=$(ba,[["__scopeId","data-v-79da70de"]]),ga=_({__name:"VPNavScreenMenuLink",props:{item:{}},setup(o){const e=te("close-screen");return(t,s)=>(a(),k(D,{class:"VPNavScreenMenuLink",href:t.item.link,target:t.item.target,rel:t.item.rel,onClick:r(e),innerHTML:t.item.text},null,8,["href","target","rel","onClick","innerHTML"]))}}),ya=$(ga,[["__scopeId","data-v-9a3ef902"]]),Pa=_({__name:"VPNavScreenMenuGroupLink",props:{item:{}},setup(o){const e=te("close-screen");return(t,s)=>(a(),k(D,{class:"VPNavScreenMenuGroupLink",href:t.item.link,target:t.item.target,rel:t.item.rel,onClick:r(e)},{default:d(()=>[O(I(t.item.text),1)]),_:1},8,["href","target","rel","onClick"]))}}),Ee=$(Pa,[["__scopeId","data-v-03f7344f"]]),Va={class:"VPNavScreenMenuGroupSection"},La={key:0,class:"title"},Sa=_({__name:"VPNavScreenMenuGroupSection",props:{text:{},items:{}},setup(o){return(e,t)=>(a(),c("div",Va,[e.text?(a(),c("p",La,I(e.text),1)):h("",!0),(a(!0),c(M,null,E(e.items,s=>(a(),k(Ee,{key:s.text,item:s},null,8,["item"]))),128))]))}}),Ta=$(Sa,[["__scopeId","data-v-3b79ab2a"]]),Ia=o=>(C("data-v-496537ac"),o=o(),H(),o),wa=["aria-controls","aria-expanded"],Na=["innerHTML"],Ma=Ia(()=>v("span",{class:"vpi-plus button-icon"},null,-1)),Aa=["id"],Ba={key:0,class:"item"},Ca={key:1,class:"item"},Ha={key:2,class:"group"},Ea=_({__name:"VPNavScreenMenuGroup",props:{text:{},items:{}},setup(o){const e=o,t=w(!1),s=y(()=>`NavScreenGroup-${e.text.replace(" ","-").toLowerCase()}`);function n(){t.value=!t.value}return(i,u)=>(a(),c("div",{class:N(["VPNavScreenMenuGroup",{open:t.value}])},[v("button",{class:"button","aria-controls":s.value,"aria-expanded":t.value,onClick:n},[v("span",{class:"button-text",innerHTML:i.text},null,8,Na),Ma],8,wa),v("div",{id:s.value,class:"items"},[(a(!0),c(M,null,E(i.items,f=>(a(),c(M,{key:JSON.stringify(f)},["link"in f?(a(),c("div",Ba,[m(Ee,{item:f},null,8,["item"])])):"component"in f?(a(),c("div",Ca,[(a(),k(F(f.component),q({ref_for:!0},f.props,{"screen-menu":""}),null,16))])):(a(),c("div",Ha,[m(Ta,{text:f.text,items:f.items},null,8,["text","items"])]))],64))),128))],8,Aa)],2))}}),Fa=$(Ea,[["__scopeId","data-v-496537ac"]]),Da={key:0,class:"VPNavScreenMenu"},Oa=_({__name:"VPNavScreenMenu",setup(o){const{theme:e}=P();return(t,s)=>r(e).nav?(a(),c("nav",Da,[(a(!0),c(M,null,E(r(e).nav,n=>(a(),c(M,{key:JSON.stringify(n)},["link"in n?(a(),k(ya,{key:0,item:n},null,8,["item"])):"component"in n?(a(),k(F(n.component),q({key:1,ref_for:!0},n.props,{"screen-menu":""}),null,16)):(a(),k(Fa,{key:2,text:n.text||"",items:n.items},null,8,["text","items"]))],64))),128))])):h("",!0)}}),Ga=_({__name:"VPNavScreenSocialLinks",setup(o){const{theme:e}=P();return(t,s)=>r(e).socialLinks?(a(),k(ge,{key:0,class:"VPNavScreenSocialLinks",links:r(e).socialLinks},null,8,["links"])):h("",!0)}}),Fe=o=>(C("data-v-c618ff37"),o=o(),H(),o),Ua=Fe(()=>v("span",{class:"vpi-languages icon lang"},null,-1)),ja=Fe(()=>v("span",{class:"vpi-chevron-down icon chevron"},null,-1)),za={class:"list"},qa=_({__name:"VPNavScreenTranslations",setup(o){const{localeLinks:e,currentLang:t}=X({correspondingLink:!0}),s=w(!1);function n(){s.value=!s.value}return(i,u)=>r(e).length&&r(t).label?(a(),c("div",{key:0,class:N(["VPNavScreenTranslations",{open:s.value}])},[v("button",{class:"title",onClick:n},[Ua,O(" "+I(r(t).label)+" ",1),ja]),v("ul",za,[(a(!0),c(M,null,E(r(e),f=>(a(),c("li",{key:f.link,class:"item"},[m(D,{class:"link",href:f.link},{default:d(()=>[O(I(f.text),1)]),_:2},1032,["href"])]))),128))])],2)):h("",!0)}}),Ka=$(qa,[["__scopeId","data-v-c618ff37"]]),Wa={class:"container"},Ra=_({__name:"VPNavScreen",props:{open:{type:Boolean}},setup(o){const e=w(null),t=Te(oe?document.body:null);return(s,n)=>(a(),k(ve,{name:"fade",onEnter:n[0]||(n[0]=i=>t.value=!0),onAfterLeave:n[1]||(n[1]=i=>t.value=!1)},{default:d(()=>[s.open?(a(),c("div",{key:0,class:"VPNavScreen",ref_key:"screen",ref:e,id:"VPNavScreen"},[v("div",Wa,[l(s.$slots,"nav-screen-content-before",{},void 0,!0),m(Oa,{class:"menu"}),m(Ka,{class:"translations"}),m($a,{class:"appearance"}),m(Ga,{class:"social-links"}),l(s.$slots,"nav-screen-content-after",{},void 0,!0)])],512)):h("",!0)]),_:3}))}}),Ja=$(Ra,[["__scopeId","data-v-c3a48aed"]]),Xa={key:0,class:"VPNav"},Ya=_({__name:"VPNav",setup(o){const{isScreenOpen:e,closeScreen:t,toggleScreen:s}=Mn(),{frontmatter:n}=P(),i=y(()=>n.value.navbar!==!1);return Ie("close-screen",t),Z(()=>{oe&&document.documentElement.classList.toggle("hide-nav",!i.value)}),(u,f)=>i.value?(a(),c("header",Xa,[m(_a,{"is-screen-open":r(e),onToggleScreen:r(s)},{"nav-bar-title-before":d(()=>[l(u.$slots,"nav-bar-title-before",{},void 0,!0)]),"nav-bar-title-after":d(()=>[l(u.$slots,"nav-bar-title-after",{},void 0,!0)]),"nav-bar-content-before":d(()=>[l(u.$slots,"nav-bar-content-before",{},void 0,!0)]),"nav-bar-content-after":d(()=>[l(u.$slots,"nav-bar-content-after",{},void 0,!0)]),_:3},8,["is-screen-open","onToggleScreen"]),m(Ja,{open:r(e)},{"nav-screen-content-before":d(()=>[l(u.$slots,"nav-screen-content-before",{},void 0,!0)]),"nav-screen-content-after":d(()=>[l(u.$slots,"nav-screen-content-after",{},void 0,!0)]),_:3},8,["open"])])):h("",!0)}}),Qa=$(Ya,[["__scopeId","data-v-2a4e514e"]]),De=o=>(C("data-v-9035698b"),o=o(),H(),o),Za=["role","tabindex"],xa=De(()=>v("div",{class:"indicator"},null,-1)),er=De(()=>v("span",{class:"vpi-chevron-right caret-icon"},null,-1)),tr=[er],or={key:1,class:"items"},nr=_({__name:"VPSidebarItem",props:{item:{},depth:{}},setup(o){const e=o,{collapsed:t,collapsible:s,isLink:n,isActiveLink:i,hasActiveLink:u,hasChildren:f,toggle:p}=$t(y(()=>e.item)),g=y(()=>f.value?"section":"div"),L=y(()=>n.value?"a":"div"),b=y(()=>f.value?e.depth+2===7?"p":`h${e.depth+2}`:"p"),V=y(()=>n.value?void 0:"button"),T=y(()=>[[`level-${e.depth}`],{collapsible:s.value},{collapsed:t.value},{"is-link":n.value},{"is-active":i.value},{"has-active":u.value}]);function A(S){"key"in S&&S.key!=="Enter"||!e.item.link&&p()}function B(){e.item.link&&p()}return(S,j)=>{const z=R("VPSidebarItem",!0);return a(),k(F(g.value),{class:N(["VPSidebarItem",T.value])},{default:d(()=>[S.item.text?(a(),c("div",q({key:0,class:"item",role:V.value},Qe(S.item.items?{click:A,keydown:A}:{},!0),{tabindex:S.item.items&&0}),[xa,S.item.link?(a(),k(D,{key:0,tag:L.value,class:"link",href:S.item.link,rel:S.item.rel,target:S.item.target},{default:d(()=>[(a(),k(F(b.value),{class:"text",innerHTML:S.item.text},null,8,["innerHTML"]))]),_:1},8,["tag","href","rel","target"])):(a(),k(F(b.value),{key:1,class:"text",innerHTML:S.item.text},null,8,["innerHTML"])),S.item.collapsed!=null&&S.item.items&&S.item.items.length?(a(),c("div",{key:2,class:"caret",role:"button","aria-label":"toggle section",onClick:B,onKeydown:Ye(B,["enter"]),tabindex:"0"},tr,32)):h("",!0)],16,Za)):h("",!0),S.item.items&&S.item.items.length?(a(),c("div",or,[S.depth<5?(a(!0),c(M,{key:0},E(S.item.items,J=>(a(),k(z,{key:J.text,item:J,depth:S.depth+1},null,8,["item","depth"]))),128)):h("",!0)])):h("",!0)]),_:1},8,["class"])}}}),sr=$(nr,[["__scopeId","data-v-9035698b"]]),ar=_({__name:"VPSidebarGroup",props:{items:{}},setup(o){const e=w(!0);let t=null;return W(()=>{t=setTimeout(()=>{t=null,e.value=!1},300)}),Ze(()=>{t!=null&&(clearTimeout(t),t=null)}),(s,n)=>(a(!0),c(M,null,E(s.items,i=>(a(),c("div",{key:i.text,class:N(["group",{"no-transition":e.value}])},[m(sr,{item:i,depth:0},null,8,["item"])],2))),128))}}),rr=$(ar,[["__scopeId","data-v-c3eaeb1a"]]),Oe=o=>(C("data-v-edd7de80"),o=o(),H(),o),ir=Oe(()=>v("div",{class:"curtain"},null,-1)),lr={class:"nav",id:"VPSidebarNav","aria-labelledby":"sidebar-aria-label",tabindex:"-1"},cr=Oe(()=>v("span",{class:"visually-hidden",id:"sidebar-aria-label"}," Sidebar Navigation ",-1)),ur=_({__name:"VPSidebar",props:{open:{type:Boolean}},setup(o){const{sidebarGroups:e,hasSidebar:t}=U(),s=o,n=w(null),i=Te(oe?document.body:null);G([s,n],()=>{var f;s.open?(i.value=!0,(f=n.value)==null||f.focus()):i.value=!1},{immediate:!0,flush:"post"});const u=w(0);return G(e,()=>{u.value+=1},{deep:!0}),(f,p)=>r(t)?(a(),c("aside",{key:0,class:N(["VPSidebar",{open:f.open}]),ref_key:"navEl",ref:n,onClick:p[0]||(p[0]=xe(()=>{},["stop"]))},[ir,v("nav",lr,[cr,l(f.$slots,"sidebar-nav-before",{},void 0,!0),(a(),k(rr,{items:r(e),key:u.value},null,8,["items"])),l(f.$slots,"sidebar-nav-after",{},void 0,!0)])],2)):h("",!0)}}),dr=$(ur,[["__scopeId","data-v-edd7de80"]]),vr=_({__name:"VPSkipLink",setup(o){const e=ee(),t=w();G(()=>e.path,()=>t.value.focus());function s({target:n}){const i=document.getElementById(decodeURIComponent(n.hash).slice(1));if(i){const u=()=>{i.removeAttribute("tabindex"),i.removeEventListener("blur",u)};i.setAttribute("tabindex","-1"),i.addEventListener("blur",u),i.focus(),window.scrollTo(0,0)}}return(n,i)=>(a(),c(M,null,[v("span",{ref_key:"backToTop",ref:t,tabindex:"-1"},null,512),v("a",{href:"#VPContent",class:"VPSkipLink visually-hidden",onClick:s}," Skip to content ")],64))}}),pr=$(vr,[["__scopeId","data-v-3e86afbf"]]),fr=_({__name:"Layout",setup(o){const{isOpen:e,open:t,close:s}=U(),n=ee();G(()=>n.path,s),bt(e,s);const{frontmatter:i}=P(),u=et(),f=y(()=>!!u["home-hero-image"]);return Ie("hero-image-slot-exists",f),(p,g)=>{const L=R("Content");return r(i).layout!==!1?(a(),c("div",{key:0,class:N(["Layout",r(i).pageClass])},[l(p.$slots,"layout-top",{},void 0,!0),m(pr),m(st,{class:"backdrop",show:r(e),onClick:r(s)},null,8,["show","onClick"]),m(Qa,null,{"nav-bar-title-before":d(()=>[l(p.$slots,"nav-bar-title-before",{},void 0,!0)]),"nav-bar-title-after":d(()=>[l(p.$slots,"nav-bar-title-after",{},void 0,!0)]),"nav-bar-content-before":d(()=>[l(p.$slots,"nav-bar-content-before",{},void 0,!0)]),"nav-bar-content-after":d(()=>[l(p.$slots,"nav-bar-content-after",{},void 0,!0)]),"nav-screen-content-before":d(()=>[l(p.$slots,"nav-screen-content-before",{},void 0,!0)]),"nav-screen-content-after":d(()=>[l(p.$slots,"nav-screen-content-after",{},void 0,!0)]),_:3}),m(Nn,{open:r(e),onOpenMenu:r(t)},null,8,["open","onOpenMenu"]),m(dr,{open:r(e)},{"sidebar-nav-before":d(()=>[l(p.$slots,"sidebar-nav-before",{},void 0,!0)]),"sidebar-nav-after":d(()=>[l(p.$slots,"sidebar-nav-after",{},void 0,!0)]),_:3},8,["open"]),m(un,null,{"page-top":d(()=>[l(p.$slots,"page-top",{},void 0,!0)]),"page-bottom":d(()=>[l(p.$slots,"page-bottom",{},void 0,!0)]),"not-found":d(()=>[l(p.$slots,"not-found",{},void 0,!0)]),"home-hero-before":d(()=>[l(p.$slots,"home-hero-before",{},void 0,!0)]),"home-hero-info-before":d(()=>[l(p.$slots,"home-hero-info-before",{},void 0,!0)]),"home-hero-info":d(()=>[l(p.$slots,"home-hero-info",{},void 0,!0)]),"home-hero-info-after":d(()=>[l(p.$slots,"home-hero-info-after",{},void 0,!0)]),"home-hero-actions-after":d(()=>[l(p.$slots,"home-hero-actions-after",{},void 0,!0)]),"home-hero-image":d(()=>[l(p.$slots,"home-hero-image",{},void 0,!0)]),"home-hero-after":d(()=>[l(p.$slots,"home-hero-after",{},void 0,!0)]),"home-features-before":d(()=>[l(p.$slots,"home-features-before",{},void 0,!0)]),"home-features-after":d(()=>[l(p.$slots,"home-features-after",{},void 0,!0)]),"doc-footer-before":d(()=>[l(p.$slots,"doc-footer-before",{},void 0,!0)]),"doc-before":d(()=>[l(p.$slots,"doc-before",{},void 0,!0)]),"doc-after":d(()=>[l(p.$slots,"doc-after",{},void 0,!0)]),"doc-top":d(()=>[l(p.$slots,"doc-top",{},void 0,!0)]),"doc-bottom":d(()=>[l(p.$slots,"doc-bottom",{},void 0,!0)]),"aside-top":d(()=>[l(p.$slots,"aside-top",{},void 0,!0)]),"aside-bottom":d(()=>[l(p.$slots,"aside-bottom",{},void 0,!0)]),"aside-outline-before":d(()=>[l(p.$slots,"aside-outline-before",{},void 0,!0)]),"aside-outline-after":d(()=>[l(p.$slots,"aside-outline-after",{},void 0,!0)]),"aside-ads-before":d(()=>[l(p.$slots,"aside-ads-before",{},void 0,!0)]),"aside-ads-after":d(()=>[l(p.$slots,"aside-ads-after",{},void 0,!0)]),_:3}),m(hn),l(p.$slots,"layout-bottom",{},void 0,!0)],2)):(a(),k(L,{key:1}))}}}),hr=$(fr,[["__scopeId","data-v-22f859ac"]]),mr={Layout:hr,enhanceApp:({app:o})=>{o.component("Badge",tt)}};export{Us as c,mr as t,P as u};
+const __vite__mapDeps=(i,m=__vite__mapDeps,d=(m.f||(m.f=["assets/chunks/VPLocalSearchBox.BHoT-Ww9.js","assets/chunks/framework.DpC1ZpOZ.js"])))=>i.map(i=>d[i]);
+import{d as _,o as a,c,r as l,n as N,a as O,t as I,b as k,w as d,e as h,T as ve,_ as $,u as Ge,i as Ue,f as je,g as pe,h as y,j as v,k as r,p as C,l as H,m as K,q as ie,s as w,v as G,x as Z,y as W,z as fe,A as he,B as ze,C as qe,D as R,F as M,E,G as Pe,H as x,I as m,J as F,K as Ve,L as ee,M as q,N as te,O as Ke,P as Le,Q as le,R as We,S as Se,U as oe,V as Re,W as Je,X as Xe,Y as Te,Z as Ie,$ as Ye,a0 as Qe,a1 as Ze,a2 as xe,a3 as et}from"./framework.DpC1ZpOZ.js";const tt=_({__name:"VPBadge",props:{text:{},type:{default:"tip"}},setup(o){return(e,t)=>(a(),c("span",{class:N(["VPBadge",e.type])},[l(e.$slots,"default",{},()=>[O(I(e.text),1)])],2))}}),ot={key:0,class:"VPBackdrop"},nt=_({__name:"VPBackdrop",props:{show:{type:Boolean}},setup(o){return(e,t)=>(a(),k(ve,{name:"fade"},{default:d(()=>[e.show?(a(),c("div",ot)):h("",!0)]),_:1}))}}),st=$(nt,[["__scopeId","data-v-20b1d393"]]),P=Ge;function at(o,e){let t,s=!1;return()=>{t&&clearTimeout(t),s?t=setTimeout(o,e):(o(),(s=!0)&&setTimeout(()=>s=!1,e))}}function ce(o){return/^\//.test(o)?o:`/${o}`}function _e(o){const{pathname:e,search:t,hash:s,protocol:n}=new URL(o,"http://a.com");if(Ue(o)||o.startsWith("#")||!n.startsWith("http")||!je(e))return o;const{site:i}=P(),u=e.endsWith("/")||e.endsWith(".html")?o:o.replace(/(?:(^\.+)\/)?.*$/,`$1${e.replace(/(\.md)?$/,i.value.cleanUrls?"":".html")}${t}${s}`);return pe(u)}function X({correspondingLink:o=!1}={}){const{site:e,localeIndex:t,page:s,theme:n,hash:i}=P(),u=y(()=>{var p,g;return{label:(p=e.value.locales[t.value])==null?void 0:p.label,link:((g=e.value.locales[t.value])==null?void 0:g.link)||(t.value==="root"?"/":`/${t.value}/`)}});return{localeLinks:y(()=>Object.entries(e.value.locales).flatMap(([p,g])=>u.value.label===g.label?[]:{text:g.label,link:rt(g.link||(p==="root"?"/":`/${p}/`),n.value.i18nRouting!==!1&&o,s.value.relativePath.slice(u.value.link.length-1),!e.value.cleanUrls)+i.value})),currentLang:u}}function rt(o,e,t,s){return e?o.replace(/\/$/,"")+ce(t.replace(/(^|\/)index\.md$/,"$1").replace(/\.md$/,s?".html":"")):o}const it=o=>(C("data-v-21980364"),o=o(),H(),o),lt={class:"NotFound"},ct={class:"code"},ut={class:"title"},dt=it(()=>v("div",{class:"divider"},null,-1)),vt={class:"quote"},pt={class:"action"},ft=["href","aria-label"],ht=_({__name:"NotFound",setup(o){const{theme:e}=P(),{currentLang:t}=X();return(s,n)=>{var i,u,f,p,g;return a(),c("div",lt,[v("p",ct,I(((i=r(e).notFound)==null?void 0:i.code)??"404"),1),v("h1",ut,I(((u=r(e).notFound)==null?void 0:u.title)??"PAGE NOT FOUND"),1),dt,v("blockquote",vt,I(((f=r(e).notFound)==null?void 0:f.quote)??"But if you don't change your direction, and if you keep looking, you may end up where you are heading."),1),v("div",pt,[v("a",{class:"link",href:r(pe)(r(t).link),"aria-label":((p=r(e).notFound)==null?void 0:p.linkLabel)??"go to home"},I(((g=r(e).notFound)==null?void 0:g.linkText)??"Take me home"),9,ft)])])}}}),_t=$(ht,[["__scopeId","data-v-21980364"]]);function we(o,e){if(Array.isArray(o))return Y(o);if(o==null)return[];e=ce(e);const t=Object.keys(o).sort((n,i)=>i.split("/").length-n.split("/").length).find(n=>e.startsWith(ce(n))),s=t?o[t]:[];return Array.isArray(s)?Y(s):Y(s.items,s.base)}function mt(o){const e=[];let t=0;for(const s in o){const n=o[s];if(n.items){t=e.push(n);continue}e[t]||e.push({items:[]}),e[t].items.push(n)}return e}function kt(o){const e=[];function t(s){for(const n of s)n.text&&n.link&&e.push({text:n.text,link:n.link,docFooterText:n.docFooterText}),n.items&&t(n.items)}return t(o),e}function ue(o,e){return Array.isArray(e)?e.some(t=>ue(o,t)):K(o,e.link)?!0:e.items?ue(o,e.items):!1}function Y(o,e){return[...o].map(t=>{const s={...t},n=s.base||e;return n&&s.link&&(s.link=n+s.link),s.items&&(s.items=Y(s.items,n)),s})}function U(){const{frontmatter:o,page:e,theme:t}=P(),s=ie("(min-width: 960px)"),n=w(!1),i=y(()=>{const B=t.value.sidebar,S=e.value.relativePath;return B?we(B,S):[]}),u=w(i.value);G(i,(B,S)=>{JSON.stringify(B)!==JSON.stringify(S)&&(u.value=i.value)});const f=y(()=>o.value.sidebar!==!1&&u.value.length>0&&o.value.layout!=="home"),p=y(()=>g?o.value.aside==null?t.value.aside==="left":o.value.aside==="left":!1),g=y(()=>o.value.layout==="home"?!1:o.value.aside!=null?!!o.value.aside:t.value.aside!==!1),L=y(()=>f.value&&s.value),b=y(()=>f.value?mt(u.value):[]);function V(){n.value=!0}function T(){n.value=!1}function A(){n.value?T():V()}return{isOpen:n,sidebar:u,sidebarGroups:b,hasSidebar:f,hasAside:g,leftAside:p,isSidebarEnabled:L,open:V,close:T,toggle:A}}function bt(o,e){let t;Z(()=>{t=o.value?document.activeElement:void 0}),W(()=>{window.addEventListener("keyup",s)}),fe(()=>{window.removeEventListener("keyup",s)});function s(n){n.key==="Escape"&&o.value&&(e(),t==null||t.focus())}}function $t(o){const{page:e,hash:t}=P(),s=w(!1),n=y(()=>o.value.collapsed!=null),i=y(()=>!!o.value.link),u=w(!1),f=()=>{u.value=K(e.value.relativePath,o.value.link)};G([e,o,t],f),W(f);const p=y(()=>u.value?!0:o.value.items?ue(e.value.relativePath,o.value.items):!1),g=y(()=>!!(o.value.items&&o.value.items.length));Z(()=>{s.value=!!(n.value&&o.value.collapsed)}),he(()=>{(u.value||p.value)&&(s.value=!1)});function L(){n.value&&(s.value=!s.value)}return{collapsed:s,collapsible:n,isLink:i,isActiveLink:u,hasActiveLink:p,hasChildren:g,toggle:L}}function gt(){const{hasSidebar:o}=U(),e=ie("(min-width: 960px)"),t=ie("(min-width: 1280px)");return{isAsideEnabled:y(()=>!t.value&&!e.value?!1:o.value?t.value:e.value)}}const de=[];function Ne(o){return typeof o.outline=="object"&&!Array.isArray(o.outline)&&o.outline.label||o.outlineTitle||"On this page"}function me(o){const e=[...document.querySelectorAll(".VPDoc :where(h1,h2,h3,h4,h5,h6)")].filter(t=>t.id&&t.hasChildNodes()).map(t=>{const s=Number(t.tagName[1]);return{element:t,title:yt(t),link:"#"+t.id,level:s}});return Pt(e,o)}function yt(o){let e="";for(const t of o.childNodes)if(t.nodeType===1){if(t.classList.contains("VPBadge")||t.classList.contains("header-anchor")||t.classList.contains("ignore-header"))continue;e+=t.textContent}else t.nodeType===3&&(e+=t.textContent);return e.trim()}function Pt(o,e){if(e===!1)return[];const t=(typeof e=="object"&&!Array.isArray(e)?e.level:e)||2,[s,n]=typeof t=="number"?[t,t]:t==="deep"?[2,6]:t;o=o.filter(u=>u.level>=s&&u.level<=n),de.length=0;for(const{element:u,link:f}of o)de.push({element:u,link:f});const i=[];e:for(let u=0;u=0;p--){const g=o[p];if(g.level{requestAnimationFrame(i),window.addEventListener("scroll",s)}),ze(()=>{u(location.hash)}),fe(()=>{window.removeEventListener("scroll",s)});function i(){if(!t.value)return;const f=window.scrollY,p=window.innerHeight,g=document.body.offsetHeight,L=Math.abs(f+p-g)<1,b=de.map(({element:T,link:A})=>({link:A,top:Lt(T)})).filter(({top:T})=>!Number.isNaN(T)).sort((T,A)=>T.top-A.top);if(!b.length){u(null);return}if(f<1){u(null);return}if(L){u(b[b.length-1].link);return}let V=null;for(const{link:T,top:A}of b){if(A>f+qe()+4)break;V=T}u(V)}function u(f){n&&n.classList.remove("active"),f==null?n=null:n=o.value.querySelector(`a[href="${decodeURIComponent(f)}"]`);const p=n;p?(p.classList.add("active"),e.value.style.top=p.offsetTop+39+"px",e.value.style.opacity="1"):(e.value.style.top="33px",e.value.style.opacity="0")}}function Lt(o){let e=0;for(;o!==document.body;){if(o===null)return NaN;e+=o.offsetTop,o=o.offsetParent}return e}const St=["href","title"],Tt=_({__name:"VPDocOutlineItem",props:{headers:{},root:{type:Boolean}},setup(o){function e({target:t}){const s=t.href.split("#")[1],n=document.getElementById(decodeURIComponent(s));n==null||n.focus({preventScroll:!0})}return(t,s)=>{const n=R("VPDocOutlineItem",!0);return a(),c("ul",{class:N(["VPDocOutlineItem",t.root?"root":"nested"])},[(a(!0),c(M,null,E(t.headers,({children:i,link:u,title:f})=>(a(),c("li",null,[v("a",{class:"outline-link",href:u,onClick:e,title:f},I(f),9,St),i!=null&&i.length?(a(),k(n,{key:0,headers:i},null,8,["headers"])):h("",!0)]))),256))],2)}}}),Me=$(Tt,[["__scopeId","data-v-51c2c770"]]),It={class:"content"},wt={"aria-level":"2",class:"outline-title",id:"doc-outline-aria-label",role:"heading"},Nt=_({__name:"VPDocAsideOutline",setup(o){const{frontmatter:e,theme:t}=P(),s=Pe([]);x(()=>{s.value=me(e.value.outline??t.value.outline)});const n=w(),i=w();return Vt(n,i),(u,f)=>(a(),c("nav",{"aria-labelledby":"doc-outline-aria-label",class:N(["VPDocAsideOutline",{"has-outline":s.value.length>0}]),ref_key:"container",ref:n},[v("div",It,[v("div",{class:"outline-marker",ref_key:"marker",ref:i},null,512),v("div",wt,I(r(Ne)(r(t))),1),m(Me,{headers:s.value,root:!0},null,8,["headers"])])],2))}}),Mt=$(Nt,[["__scopeId","data-v-e7b12e6e"]]),At={class:"VPDocAsideCarbonAds"},Bt=_({__name:"VPDocAsideCarbonAds",props:{carbonAds:{}},setup(o){const e=()=>null;return(t,s)=>(a(),c("div",At,[m(r(e),{"carbon-ads":t.carbonAds},null,8,["carbon-ads"])]))}}),Ct=o=>(C("data-v-0ff3c77f"),o=o(),H(),o),Ht={class:"VPDocAside"},Et=Ct(()=>v("div",{class:"spacer"},null,-1)),Ft=_({__name:"VPDocAside",setup(o){const{theme:e}=P();return(t,s)=>(a(),c("div",Ht,[l(t.$slots,"aside-top",{},void 0,!0),l(t.$slots,"aside-outline-before",{},void 0,!0),m(Mt),l(t.$slots,"aside-outline-after",{},void 0,!0),Et,l(t.$slots,"aside-ads-before",{},void 0,!0),r(e).carbonAds?(a(),k(Bt,{key:0,"carbon-ads":r(e).carbonAds},null,8,["carbon-ads"])):h("",!0),l(t.$slots,"aside-ads-after",{},void 0,!0),l(t.$slots,"aside-bottom",{},void 0,!0)]))}}),Dt=$(Ft,[["__scopeId","data-v-0ff3c77f"]]);function Ot(){const{theme:o,page:e}=P();return y(()=>{const{text:t="Edit this page",pattern:s=""}=o.value.editLink||{};let n;return typeof s=="function"?n=s(e.value):n=s.replace(/:path/g,e.value.filePath),{url:n,text:t}})}function Gt(){const{page:o,theme:e,frontmatter:t}=P();return y(()=>{var g,L,b,V,T,A,B,S;const s=we(e.value.sidebar,o.value.relativePath),n=kt(s),i=Ut(n,j=>j.link.replace(/[?#].*$/,"")),u=i.findIndex(j=>K(o.value.relativePath,j.link)),f=((g=e.value.docFooter)==null?void 0:g.prev)===!1&&!t.value.prev||t.value.prev===!1,p=((L=e.value.docFooter)==null?void 0:L.next)===!1&&!t.value.next||t.value.next===!1;return{prev:f?void 0:{text:(typeof t.value.prev=="string"?t.value.prev:typeof t.value.prev=="object"?t.value.prev.text:void 0)??((b=i[u-1])==null?void 0:b.docFooterText)??((V=i[u-1])==null?void 0:V.text),link:(typeof t.value.prev=="object"?t.value.prev.link:void 0)??((T=i[u-1])==null?void 0:T.link)},next:p?void 0:{text:(typeof t.value.next=="string"?t.value.next:typeof t.value.next=="object"?t.value.next.text:void 0)??((A=i[u+1])==null?void 0:A.docFooterText)??((B=i[u+1])==null?void 0:B.text),link:(typeof t.value.next=="object"?t.value.next.link:void 0)??((S=i[u+1])==null?void 0:S.link)}}})}function Ut(o,e){const t=new Set;return o.filter(s=>{const n=e(s);return t.has(n)?!1:t.add(n)})}const D=_({__name:"VPLink",props:{tag:{},href:{},noIcon:{type:Boolean},target:{},rel:{}},setup(o){const e=o,t=y(()=>e.tag??(e.href?"a":"span")),s=y(()=>e.href&&Ve.test(e.href)||e.target==="_blank");return(n,i)=>(a(),k(F(t.value),{class:N(["VPLink",{link:n.href,"vp-external-link-icon":s.value,"no-icon":n.noIcon}]),href:n.href?r(_e)(n.href):void 0,target:n.target??(s.value?"_blank":void 0),rel:n.rel??(s.value?"noreferrer":void 0)},{default:d(()=>[l(n.$slots,"default")]),_:3},8,["class","href","target","rel"]))}}),jt={class:"VPLastUpdated"},zt=["datetime"],qt=_({__name:"VPDocFooterLastUpdated",setup(o){const{theme:e,page:t,lang:s}=P(),n=y(()=>new Date(t.value.lastUpdated)),i=y(()=>n.value.toISOString()),u=w("");return W(()=>{Z(()=>{var f,p,g;u.value=new Intl.DateTimeFormat((p=(f=e.value.lastUpdated)==null?void 0:f.formatOptions)!=null&&p.forceLocale?s.value:void 0,((g=e.value.lastUpdated)==null?void 0:g.formatOptions)??{dateStyle:"short",timeStyle:"short"}).format(n.value)})}),(f,p)=>{var g;return a(),c("p",jt,[O(I(((g=r(e).lastUpdated)==null?void 0:g.text)||r(e).lastUpdatedText||"Last updated")+": ",1),v("time",{datetime:i.value},I(u.value),9,zt)])}}}),Kt=$(qt,[["__scopeId","data-v-5cebc0fc"]]),Ae=o=>(C("data-v-a4b38bd6"),o=o(),H(),o),Wt={key:0,class:"VPDocFooter"},Rt={key:0,class:"edit-info"},Jt={key:0,class:"edit-link"},Xt=Ae(()=>v("span",{class:"vpi-square-pen edit-link-icon"},null,-1)),Yt={key:1,class:"last-updated"},Qt={key:1,class:"prev-next","aria-labelledby":"doc-footer-aria-label"},Zt=Ae(()=>v("span",{class:"visually-hidden",id:"doc-footer-aria-label"},"Pager",-1)),xt={class:"pager"},eo=["innerHTML"],to=["innerHTML"],oo={class:"pager"},no=["innerHTML"],so=["innerHTML"],ao=_({__name:"VPDocFooter",setup(o){const{theme:e,page:t,frontmatter:s}=P(),n=Ot(),i=Gt(),u=y(()=>e.value.editLink&&s.value.editLink!==!1),f=y(()=>t.value.lastUpdated),p=y(()=>u.value||f.value||i.value.prev||i.value.next);return(g,L)=>{var b,V,T,A;return p.value?(a(),c("footer",Wt,[l(g.$slots,"doc-footer-before",{},void 0,!0),u.value||f.value?(a(),c("div",Rt,[u.value?(a(),c("div",Jt,[m(D,{class:"edit-link-button",href:r(n).url,"no-icon":!0},{default:d(()=>[Xt,O(" "+I(r(n).text),1)]),_:1},8,["href"])])):h("",!0),f.value?(a(),c("div",Yt,[m(Kt)])):h("",!0)])):h("",!0),(b=r(i).prev)!=null&&b.link||(V=r(i).next)!=null&&V.link?(a(),c("nav",Qt,[Zt,v("div",xt,[(T=r(i).prev)!=null&&T.link?(a(),k(D,{key:0,class:"pager-link prev",href:r(i).prev.link},{default:d(()=>{var B;return[v("span",{class:"desc",innerHTML:((B=r(e).docFooter)==null?void 0:B.prev)||"Previous page"},null,8,eo),v("span",{class:"title",innerHTML:r(i).prev.text},null,8,to)]}),_:1},8,["href"])):h("",!0)]),v("div",oo,[(A=r(i).next)!=null&&A.link?(a(),k(D,{key:0,class:"pager-link next",href:r(i).next.link},{default:d(()=>{var B;return[v("span",{class:"desc",innerHTML:((B=r(e).docFooter)==null?void 0:B.next)||"Next page"},null,8,no),v("span",{class:"title",innerHTML:r(i).next.text},null,8,so)]}),_:1},8,["href"])):h("",!0)])])):h("",!0)])):h("",!0)}}}),ro=$(ao,[["__scopeId","data-v-a4b38bd6"]]),io=o=>(C("data-v-40342069"),o=o(),H(),o),lo={class:"container"},co=io(()=>v("div",{class:"aside-curtain"},null,-1)),uo={class:"aside-container"},vo={class:"aside-content"},po={class:"content"},fo={class:"content-container"},ho={class:"main"},_o=_({__name:"VPDoc",setup(o){const{theme:e}=P(),t=ee(),{hasSidebar:s,hasAside:n,leftAside:i}=U(),u=y(()=>t.path.replace(/[./]+/g,"_").replace(/_html$/,""));return(f,p)=>{const g=R("Content");return a(),c("div",{class:N(["VPDoc",{"has-sidebar":r(s),"has-aside":r(n)}])},[l(f.$slots,"doc-top",{},void 0,!0),v("div",lo,[r(n)?(a(),c("div",{key:0,class:N(["aside",{"left-aside":r(i)}])},[co,v("div",uo,[v("div",vo,[m(Dt,null,{"aside-top":d(()=>[l(f.$slots,"aside-top",{},void 0,!0)]),"aside-bottom":d(()=>[l(f.$slots,"aside-bottom",{},void 0,!0)]),"aside-outline-before":d(()=>[l(f.$slots,"aside-outline-before",{},void 0,!0)]),"aside-outline-after":d(()=>[l(f.$slots,"aside-outline-after",{},void 0,!0)]),"aside-ads-before":d(()=>[l(f.$slots,"aside-ads-before",{},void 0,!0)]),"aside-ads-after":d(()=>[l(f.$slots,"aside-ads-after",{},void 0,!0)]),_:3})])])],2)):h("",!0),v("div",po,[v("div",fo,[l(f.$slots,"doc-before",{},void 0,!0),v("main",ho,[m(g,{class:N(["vp-doc",[u.value,r(e).externalLinkIcon&&"external-link-icon-enabled"]])},null,8,["class"])]),m(ro,null,{"doc-footer-before":d(()=>[l(f.$slots,"doc-footer-before",{},void 0,!0)]),_:3}),l(f.$slots,"doc-after",{},void 0,!0)])])]),l(f.$slots,"doc-bottom",{},void 0,!0)],2)}}}),mo=$(_o,[["__scopeId","data-v-40342069"]]),ko=_({__name:"VPButton",props:{tag:{},size:{default:"medium"},theme:{default:"brand"},text:{},href:{},target:{},rel:{}},setup(o){const e=o,t=y(()=>e.href&&Ve.test(e.href)),s=y(()=>e.tag||e.href?"a":"button");return(n,i)=>(a(),k(F(s.value),{class:N(["VPButton",[n.size,n.theme]]),href:n.href?r(_e)(n.href):void 0,target:e.target??(t.value?"_blank":void 0),rel:e.rel??(t.value?"noreferrer":void 0)},{default:d(()=>[O(I(n.text),1)]),_:1},8,["class","href","target","rel"]))}}),bo=$(ko,[["__scopeId","data-v-885c6978"]]),$o=["src","alt"],go=_({inheritAttrs:!1,__name:"VPImage",props:{image:{},alt:{}},setup(o){return(e,t)=>{const s=R("VPImage",!0);return e.image?(a(),c(M,{key:0},[typeof e.image=="string"||"src"in e.image?(a(),c("img",q({key:0,class:"VPImage"},typeof e.image=="string"?e.$attrs:{...e.image,...e.$attrs},{src:r(pe)(typeof e.image=="string"?e.image:e.image.src),alt:e.alt??(typeof e.image=="string"?"":e.image.alt||"")}),null,16,$o)):(a(),c(M,{key:1},[m(s,q({class:"dark",image:e.image.dark,alt:e.image.alt},e.$attrs),null,16,["image","alt"]),m(s,q({class:"light",image:e.image.light,alt:e.image.alt},e.$attrs),null,16,["image","alt"])],64))],64)):h("",!0)}}}),Q=$(go,[["__scopeId","data-v-f925500d"]]),yo=o=>(C("data-v-325add7b"),o=o(),H(),o),Po={class:"container"},Vo={class:"main"},Lo={key:0,class:"name"},So=["innerHTML"],To=["innerHTML"],Io=["innerHTML"],wo={key:0,class:"actions"},No={key:0,class:"image"},Mo={class:"image-container"},Ao=yo(()=>v("div",{class:"image-bg"},null,-1)),Bo=_({__name:"VPHero",props:{name:{},text:{},tagline:{},image:{},actions:{}},setup(o){const e=te("hero-image-slot-exists");return(t,s)=>(a(),c("div",{class:N(["VPHero",{"has-image":t.image||r(e)}])},[v("div",Po,[v("div",Vo,[l(t.$slots,"home-hero-info-before",{},void 0,!0),l(t.$slots,"home-hero-info",{},()=>[t.name?(a(),c("h1",Lo,[v("span",{innerHTML:t.name,class:"clip"},null,8,So)])):h("",!0),t.text?(a(),c("p",{key:1,innerHTML:t.text,class:"text"},null,8,To)):h("",!0),t.tagline?(a(),c("p",{key:2,innerHTML:t.tagline,class:"tagline"},null,8,Io)):h("",!0)],!0),l(t.$slots,"home-hero-info-after",{},void 0,!0),t.actions?(a(),c("div",wo,[(a(!0),c(M,null,E(t.actions,n=>(a(),c("div",{key:n.link,class:"action"},[m(bo,{tag:"a",size:"medium",theme:n.theme,text:n.text,href:n.link,target:n.target,rel:n.rel},null,8,["theme","text","href","target","rel"])]))),128))])):h("",!0),l(t.$slots,"home-hero-actions-after",{},void 0,!0)]),t.image||r(e)?(a(),c("div",No,[v("div",Mo,[Ao,l(t.$slots,"home-hero-image",{},()=>[t.image?(a(),k(Q,{key:0,class:"image-src",image:t.image},null,8,["image"])):h("",!0)],!0)])])):h("",!0)])],2))}}),Co=$(Bo,[["__scopeId","data-v-325add7b"]]),Ho=_({__name:"VPHomeHero",setup(o){const{frontmatter:e}=P();return(t,s)=>r(e).hero?(a(),k(Co,{key:0,class:"VPHomeHero",name:r(e).hero.name,text:r(e).hero.text,tagline:r(e).hero.tagline,image:r(e).hero.image,actions:r(e).hero.actions},{"home-hero-info-before":d(()=>[l(t.$slots,"home-hero-info-before")]),"home-hero-info":d(()=>[l(t.$slots,"home-hero-info")]),"home-hero-info-after":d(()=>[l(t.$slots,"home-hero-info-after")]),"home-hero-actions-after":d(()=>[l(t.$slots,"home-hero-actions-after")]),"home-hero-image":d(()=>[l(t.$slots,"home-hero-image")]),_:3},8,["name","text","tagline","image","actions"])):h("",!0)}}),Eo=o=>(C("data-v-248ed6b6"),o=o(),H(),o),Fo={class:"box"},Do={key:0,class:"icon"},Oo=["innerHTML"],Go=["innerHTML"],Uo=["innerHTML"],jo={key:4,class:"link-text"},zo={class:"link-text-value"},qo=Eo(()=>v("span",{class:"vpi-arrow-right link-text-icon"},null,-1)),Ko=_({__name:"VPFeature",props:{icon:{},title:{},details:{},link:{},linkText:{},rel:{},target:{}},setup(o){return(e,t)=>(a(),k(D,{class:"VPFeature",href:e.link,rel:e.rel,target:e.target,"no-icon":!0,tag:e.link?"a":"div"},{default:d(()=>[v("article",Fo,[typeof e.icon=="object"&&e.icon.wrap?(a(),c("div",Do,[m(Q,{image:e.icon,alt:e.icon.alt,height:e.icon.height||48,width:e.icon.width||48},null,8,["image","alt","height","width"])])):typeof e.icon=="object"?(a(),k(Q,{key:1,image:e.icon,alt:e.icon.alt,height:e.icon.height||48,width:e.icon.width||48},null,8,["image","alt","height","width"])):e.icon?(a(),c("div",{key:2,class:"icon",innerHTML:e.icon},null,8,Oo)):h("",!0),v("h2",{class:"title",innerHTML:e.title},null,8,Go),e.details?(a(),c("p",{key:3,class:"details",innerHTML:e.details},null,8,Uo)):h("",!0),e.linkText?(a(),c("div",jo,[v("p",zo,[O(I(e.linkText)+" ",1),qo])])):h("",!0)])]),_:1},8,["href","rel","target","tag"]))}}),Wo=$(Ko,[["__scopeId","data-v-248ed6b6"]]),Ro={key:0,class:"VPFeatures"},Jo={class:"container"},Xo={class:"items"},Yo=_({__name:"VPFeatures",props:{features:{}},setup(o){const e=o,t=y(()=>{const s=e.features.length;if(s){if(s===2)return"grid-2";if(s===3)return"grid-3";if(s%3===0)return"grid-6";if(s>3)return"grid-4"}else return});return(s,n)=>s.features?(a(),c("div",Ro,[v("div",Jo,[v("div",Xo,[(a(!0),c(M,null,E(s.features,i=>(a(),c("div",{key:i.title,class:N(["item",[t.value]])},[m(Wo,{icon:i.icon,title:i.title,details:i.details,link:i.link,"link-text":i.linkText,rel:i.rel,target:i.target},null,8,["icon","title","details","link","link-text","rel","target"])],2))),128))])])])):h("",!0)}}),Qo=$(Yo,[["__scopeId","data-v-dbb08ed4"]]),Zo=_({__name:"VPHomeFeatures",setup(o){const{frontmatter:e}=P();return(t,s)=>r(e).features?(a(),k(Qo,{key:0,class:"VPHomeFeatures",features:r(e).features},null,8,["features"])):h("",!0)}}),xo=_({__name:"VPHomeContent",setup(o){const{width:e}=Ke({initialWidth:0,includeScrollbar:!1});return(t,s)=>(a(),c("div",{class:"vp-doc container",style:Le(r(e)?{"--vp-offset":`calc(50% - ${r(e)/2}px)`}:{})},[l(t.$slots,"default",{},void 0,!0)],4))}}),en=$(xo,[["__scopeId","data-v-bb690f02"]]),tn={class:"VPHome"},on=_({__name:"VPHome",setup(o){const{frontmatter:e}=P();return(t,s)=>{const n=R("Content");return a(),c("div",tn,[l(t.$slots,"home-hero-before",{},void 0,!0),m(Ho,null,{"home-hero-info-before":d(()=>[l(t.$slots,"home-hero-info-before",{},void 0,!0)]),"home-hero-info":d(()=>[l(t.$slots,"home-hero-info",{},void 0,!0)]),"home-hero-info-after":d(()=>[l(t.$slots,"home-hero-info-after",{},void 0,!0)]),"home-hero-actions-after":d(()=>[l(t.$slots,"home-hero-actions-after",{},void 0,!0)]),"home-hero-image":d(()=>[l(t.$slots,"home-hero-image",{},void 0,!0)]),_:3}),l(t.$slots,"home-hero-after",{},void 0,!0),l(t.$slots,"home-features-before",{},void 0,!0),m(Zo),l(t.$slots,"home-features-after",{},void 0,!0),r(e).markdownStyles!==!1?(a(),k(en,{key:0},{default:d(()=>[m(n)]),_:1})):(a(),k(n,{key:1}))])}}}),nn=$(on,[["__scopeId","data-v-972a96f9"]]),sn={},an={class:"VPPage"};function rn(o,e){const t=R("Content");return a(),c("div",an,[l(o.$slots,"page-top"),m(t),l(o.$slots,"page-bottom")])}const ln=$(sn,[["render",rn]]),cn=_({__name:"VPContent",setup(o){const{page:e,frontmatter:t}=P(),{hasSidebar:s}=U();return(n,i)=>(a(),c("div",{class:N(["VPContent",{"has-sidebar":r(s),"is-home":r(t).layout==="home"}]),id:"VPContent"},[r(e).isNotFound?l(n.$slots,"not-found",{key:0},()=>[m(_t)],!0):r(t).layout==="page"?(a(),k(ln,{key:1},{"page-top":d(()=>[l(n.$slots,"page-top",{},void 0,!0)]),"page-bottom":d(()=>[l(n.$slots,"page-bottom",{},void 0,!0)]),_:3})):r(t).layout==="home"?(a(),k(nn,{key:2},{"home-hero-before":d(()=>[l(n.$slots,"home-hero-before",{},void 0,!0)]),"home-hero-info-before":d(()=>[l(n.$slots,"home-hero-info-before",{},void 0,!0)]),"home-hero-info":d(()=>[l(n.$slots,"home-hero-info",{},void 0,!0)]),"home-hero-info-after":d(()=>[l(n.$slots,"home-hero-info-after",{},void 0,!0)]),"home-hero-actions-after":d(()=>[l(n.$slots,"home-hero-actions-after",{},void 0,!0)]),"home-hero-image":d(()=>[l(n.$slots,"home-hero-image",{},void 0,!0)]),"home-hero-after":d(()=>[l(n.$slots,"home-hero-after",{},void 0,!0)]),"home-features-before":d(()=>[l(n.$slots,"home-features-before",{},void 0,!0)]),"home-features-after":d(()=>[l(n.$slots,"home-features-after",{},void 0,!0)]),_:3})):r(t).layout&&r(t).layout!=="doc"?(a(),k(F(r(t).layout),{key:3})):(a(),k(mo,{key:4},{"doc-top":d(()=>[l(n.$slots,"doc-top",{},void 0,!0)]),"doc-bottom":d(()=>[l(n.$slots,"doc-bottom",{},void 0,!0)]),"doc-footer-before":d(()=>[l(n.$slots,"doc-footer-before",{},void 0,!0)]),"doc-before":d(()=>[l(n.$slots,"doc-before",{},void 0,!0)]),"doc-after":d(()=>[l(n.$slots,"doc-after",{},void 0,!0)]),"aside-top":d(()=>[l(n.$slots,"aside-top",{},void 0,!0)]),"aside-outline-before":d(()=>[l(n.$slots,"aside-outline-before",{},void 0,!0)]),"aside-outline-after":d(()=>[l(n.$slots,"aside-outline-after",{},void 0,!0)]),"aside-ads-before":d(()=>[l(n.$slots,"aside-ads-before",{},void 0,!0)]),"aside-ads-after":d(()=>[l(n.$slots,"aside-ads-after",{},void 0,!0)]),"aside-bottom":d(()=>[l(n.$slots,"aside-bottom",{},void 0,!0)]),_:3}))],2))}}),un=$(cn,[["__scopeId","data-v-ec7dbf3e"]]),dn={class:"container"},vn=["innerHTML"],pn=["innerHTML"],fn=_({__name:"VPFooter",setup(o){const{theme:e,frontmatter:t}=P(),{hasSidebar:s}=U();return(n,i)=>r(e).footer&&r(t).footer!==!1?(a(),c("footer",{key:0,class:N(["VPFooter",{"has-sidebar":r(s)}])},[v("div",dn,[r(e).footer.message?(a(),c("p",{key:0,class:"message",innerHTML:r(e).footer.message},null,8,vn)):h("",!0),r(e).footer.copyright?(a(),c("p",{key:1,class:"copyright",innerHTML:r(e).footer.copyright},null,8,pn)):h("",!0)])],2)):h("",!0)}}),hn=$(fn,[["__scopeId","data-v-e3ca6860"]]);function _n(){const{theme:o,frontmatter:e}=P(),t=Pe([]),s=y(()=>t.value.length>0);return x(()=>{t.value=me(e.value.outline??o.value.outline)}),{headers:t,hasLocalNav:s}}const mn=o=>(C("data-v-b418bf42"),o=o(),H(),o),kn={class:"menu-text"},bn=mn(()=>v("span",{class:"vpi-chevron-right icon"},null,-1)),$n={class:"header"},gn={class:"outline"},yn=_({__name:"VPLocalNavOutlineDropdown",props:{headers:{},navHeight:{}},setup(o){const e=o,{theme:t}=P(),s=w(!1),n=w(0),i=w(),u=w();function f(b){var V;(V=i.value)!=null&&V.contains(b.target)||(s.value=!1)}G(s,b=>{if(b){document.addEventListener("click",f);return}document.removeEventListener("click",f)}),le("Escape",()=>{s.value=!1}),x(()=>{s.value=!1});function p(){s.value=!s.value,n.value=window.innerHeight+Math.min(window.scrollY-e.navHeight,0)}function g(b){b.target.classList.contains("outline-link")&&(u.value&&(u.value.style.transition="none"),We(()=>{s.value=!1}))}function L(){s.value=!1,window.scrollTo({top:0,left:0,behavior:"smooth"})}return(b,V)=>(a(),c("div",{class:"VPLocalNavOutlineDropdown",style:Le({"--vp-vh":n.value+"px"}),ref_key:"main",ref:i},[b.headers.length>0?(a(),c("button",{key:0,onClick:p,class:N({open:s.value})},[v("span",kn,I(r(Ne)(r(t))),1),bn],2)):(a(),c("button",{key:1,onClick:L},I(r(t).returnToTopLabel||"Return to top"),1)),m(ve,{name:"flyout"},{default:d(()=>[s.value?(a(),c("div",{key:0,ref_key:"items",ref:u,class:"items",onClick:g},[v("div",$n,[v("a",{class:"top-link",href:"#",onClick:L},I(r(t).returnToTopLabel||"Return to top"),1)]),v("div",gn,[m(Me,{headers:b.headers},null,8,["headers"])])],512)):h("",!0)]),_:1})],4))}}),Pn=$(yn,[["__scopeId","data-v-b418bf42"]]),Vn=o=>(C("data-v-8af612ea"),o=o(),H(),o),Ln={class:"container"},Sn=["aria-expanded"],Tn=Vn(()=>v("span",{class:"vpi-align-left menu-icon"},null,-1)),In={class:"menu-text"},wn=_({__name:"VPLocalNav",props:{open:{type:Boolean}},emits:["open-menu"],setup(o){const{theme:e,frontmatter:t}=P(),{hasSidebar:s}=U(),{headers:n}=_n(),{y:i}=Se(),u=w(0);W(()=>{u.value=parseInt(getComputedStyle(document.documentElement).getPropertyValue("--vp-nav-height"))}),x(()=>{n.value=me(t.value.outline??e.value.outline)});const f=y(()=>n.value.length===0),p=y(()=>f.value&&!s.value),g=y(()=>({VPLocalNav:!0,"has-sidebar":s.value,empty:f.value,fixed:p.value}));return(L,b)=>r(t).layout!=="home"&&(!p.value||r(i)>=u.value)?(a(),c("div",{key:0,class:N(g.value)},[v("div",Ln,[r(s)?(a(),c("button",{key:0,class:"menu","aria-expanded":L.open,"aria-controls":"VPSidebarNav",onClick:b[0]||(b[0]=V=>L.$emit("open-menu"))},[Tn,v("span",In,I(r(e).sidebarMenuLabel||"Menu"),1)],8,Sn)):h("",!0),m(Pn,{headers:r(n),navHeight:u.value},null,8,["headers","navHeight"])])],2)):h("",!0)}}),Nn=$(wn,[["__scopeId","data-v-8af612ea"]]);function Mn(){const o=w(!1);function e(){o.value=!0,window.addEventListener("resize",n)}function t(){o.value=!1,window.removeEventListener("resize",n)}function s(){o.value?t():e()}function n(){window.outerWidth>=768&&t()}const i=ee();return G(()=>i.path,t),{isScreenOpen:o,openScreen:e,closeScreen:t,toggleScreen:s}}const An={},Bn={class:"VPSwitch",type:"button",role:"switch"},Cn={class:"check"},Hn={key:0,class:"icon"};function En(o,e){return a(),c("button",Bn,[v("span",Cn,[o.$slots.default?(a(),c("span",Hn,[l(o.$slots,"default",{},void 0,!0)])):h("",!0)])])}const Fn=$(An,[["render",En],["__scopeId","data-v-d82e607b"]]),Be=o=>(C("data-v-3a50aa5c"),o=o(),H(),o),Dn=Be(()=>v("span",{class:"vpi-sun sun"},null,-1)),On=Be(()=>v("span",{class:"vpi-moon moon"},null,-1)),Gn=_({__name:"VPSwitchAppearance",setup(o){const{isDark:e,theme:t}=P(),s=te("toggle-appearance",()=>{e.value=!e.value}),n=w("");return he(()=>{n.value=e.value?t.value.lightModeSwitchTitle||"Switch to light theme":t.value.darkModeSwitchTitle||"Switch to dark theme"}),(i,u)=>(a(),k(Fn,{title:n.value,class:"VPSwitchAppearance","aria-checked":r(e),onClick:r(s)},{default:d(()=>[Dn,On]),_:1},8,["title","aria-checked","onClick"]))}}),ke=$(Gn,[["__scopeId","data-v-3a50aa5c"]]),Un={key:0,class:"VPNavBarAppearance"},jn=_({__name:"VPNavBarAppearance",setup(o){const{site:e}=P();return(t,s)=>r(e).appearance&&r(e).appearance!=="force-dark"&&r(e).appearance!=="force-auto"?(a(),c("div",Un,[m(ke)])):h("",!0)}}),zn=$(jn,[["__scopeId","data-v-2a6692f8"]]),be=w();let Ce=!1,re=0;function qn(o){const e=w(!1);if(oe){!Ce&&Kn(),re++;const t=G(be,s=>{var n,i,u;s===o.el.value||(n=o.el.value)!=null&&n.contains(s)?(e.value=!0,(i=o.onFocus)==null||i.call(o)):(e.value=!1,(u=o.onBlur)==null||u.call(o))});fe(()=>{t(),re--,re||Wn()})}return Re(e)}function Kn(){document.addEventListener("focusin",He),Ce=!0,be.value=document.activeElement}function Wn(){document.removeEventListener("focusin",He)}function He(){be.value=document.activeElement}const Rn={class:"VPMenuLink"},Jn=_({__name:"VPMenuLink",props:{item:{}},setup(o){const{page:e}=P();return(t,s)=>(a(),c("div",Rn,[m(D,{class:N({active:r(K)(r(e).relativePath,t.item.activeMatch||t.item.link,!!t.item.activeMatch)}),href:t.item.link,target:t.item.target,rel:t.item.rel},{default:d(()=>[O(I(t.item.text),1)]),_:1},8,["class","href","target","rel"])]))}}),ne=$(Jn,[["__scopeId","data-v-79776a7a"]]),Xn={class:"VPMenuGroup"},Yn={key:0,class:"title"},Qn=_({__name:"VPMenuGroup",props:{text:{},items:{}},setup(o){return(e,t)=>(a(),c("div",Xn,[e.text?(a(),c("p",Yn,I(e.text),1)):h("",!0),(a(!0),c(M,null,E(e.items,s=>(a(),c(M,null,["link"in s?(a(),k(ne,{key:0,item:s},null,8,["item"])):h("",!0)],64))),256))]))}}),Zn=$(Qn,[["__scopeId","data-v-fbf15ead"]]),xn={class:"VPMenu"},es={key:0,class:"items"},ts=_({__name:"VPMenu",props:{items:{}},setup(o){return(e,t)=>(a(),c("div",xn,[e.items?(a(),c("div",es,[(a(!0),c(M,null,E(e.items,s=>(a(),c(M,{key:JSON.stringify(s)},["link"in s?(a(),k(ne,{key:0,item:s},null,8,["item"])):"component"in s?(a(),k(F(s.component),q({key:1,ref_for:!0},s.props),null,16)):(a(),k(Zn,{key:2,text:s.text,items:s.items},null,8,["text","items"]))],64))),128))])):h("",!0),l(e.$slots,"default",{},void 0,!0)]))}}),os=$(ts,[["__scopeId","data-v-9990563e"]]),ns=o=>(C("data-v-ec8c49bc"),o=o(),H(),o),ss=["aria-expanded","aria-label"],as={key:0,class:"text"},rs=["innerHTML"],is=ns(()=>v("span",{class:"vpi-chevron-down text-icon"},null,-1)),ls={key:1,class:"vpi-more-horizontal icon"},cs={class:"menu"},us=_({__name:"VPFlyout",props:{icon:{},button:{},label:{},items:{}},setup(o){const e=w(!1),t=w();qn({el:t,onBlur:s});function s(){e.value=!1}return(n,i)=>(a(),c("div",{class:"VPFlyout",ref_key:"el",ref:t,onMouseenter:i[1]||(i[1]=u=>e.value=!0),onMouseleave:i[2]||(i[2]=u=>e.value=!1)},[v("button",{type:"button",class:"button","aria-haspopup":"true","aria-expanded":e.value,"aria-label":n.label,onClick:i[0]||(i[0]=u=>e.value=!e.value)},[n.button||n.icon?(a(),c("span",as,[n.icon?(a(),c("span",{key:0,class:N([n.icon,"option-icon"])},null,2)):h("",!0),n.button?(a(),c("span",{key:1,innerHTML:n.button},null,8,rs)):h("",!0),is])):(a(),c("span",ls))],8,ss),v("div",cs,[m(os,{items:n.items},{default:d(()=>[l(n.$slots,"default",{},void 0,!0)]),_:3},8,["items"])])],544))}}),$e=$(us,[["__scopeId","data-v-ec8c49bc"]]),ds=["href","aria-label","innerHTML"],vs=_({__name:"VPSocialLink",props:{icon:{},link:{},ariaLabel:{}},setup(o){const e=o,t=y(()=>typeof e.icon=="object"?e.icon.svg:``);return(s,n)=>(a(),c("a",{class:"VPSocialLink no-icon",href:s.link,"aria-label":s.ariaLabel??(typeof s.icon=="string"?s.icon:""),target:"_blank",rel:"noopener",innerHTML:t.value},null,8,ds))}}),ps=$(vs,[["__scopeId","data-v-b0526bd7"]]),fs={class:"VPSocialLinks"},hs=_({__name:"VPSocialLinks",props:{links:{}},setup(o){return(e,t)=>(a(),c("div",fs,[(a(!0),c(M,null,E(e.links,({link:s,icon:n,ariaLabel:i})=>(a(),k(ps,{key:s,icon:n,link:s,ariaLabel:i},null,8,["icon","link","ariaLabel"]))),128))]))}}),ge=$(hs,[["__scopeId","data-v-fa18fe49"]]),_s={key:0,class:"group translations"},ms={class:"trans-title"},ks={key:1,class:"group"},bs={class:"item appearance"},$s={class:"label"},gs={class:"appearance-action"},ys={key:2,class:"group"},Ps={class:"item social-links"},Vs=_({__name:"VPNavBarExtra",setup(o){const{site:e,theme:t}=P(),{localeLinks:s,currentLang:n}=X({correspondingLink:!0}),i=y(()=>s.value.length&&n.value.label||e.value.appearance||t.value.socialLinks);return(u,f)=>i.value?(a(),k($e,{key:0,class:"VPNavBarExtra",label:"extra navigation"},{default:d(()=>[r(s).length&&r(n).label?(a(),c("div",_s,[v("p",ms,I(r(n).label),1),(a(!0),c(M,null,E(r(s),p=>(a(),k(ne,{key:p.link,item:p},null,8,["item"]))),128))])):h("",!0),r(e).appearance&&r(e).appearance!=="force-dark"&&r(e).appearance!=="force-auto"?(a(),c("div",ks,[v("div",bs,[v("p",$s,I(r(t).darkModeSwitchLabel||"Appearance"),1),v("div",gs,[m(ke)])])])):h("",!0),r(t).socialLinks?(a(),c("div",ys,[v("div",Ps,[m(ge,{class:"social-links-list",links:r(t).socialLinks},null,8,["links"])])])):h("",!0)]),_:1})):h("",!0)}}),Ls=$(Vs,[["__scopeId","data-v-2fc967b6"]]),Ss=o=>(C("data-v-be64de2d"),o=o(),H(),o),Ts=["aria-expanded"],Is=Ss(()=>v("span",{class:"container"},[v("span",{class:"top"}),v("span",{class:"middle"}),v("span",{class:"bottom"})],-1)),ws=[Is],Ns=_({__name:"VPNavBarHamburger",props:{active:{type:Boolean}},emits:["click"],setup(o){return(e,t)=>(a(),c("button",{type:"button",class:N(["VPNavBarHamburger",{active:e.active}]),"aria-label":"mobile navigation","aria-expanded":e.active,"aria-controls":"VPNavScreen",onClick:t[0]||(t[0]=s=>e.$emit("click"))},ws,10,Ts))}}),Ms=$(Ns,[["__scopeId","data-v-be64de2d"]]),As=["innerHTML"],Bs=_({__name:"VPNavBarMenuLink",props:{item:{}},setup(o){const{page:e}=P();return(t,s)=>(a(),k(D,{class:N({VPNavBarMenuLink:!0,active:r(K)(r(e).relativePath,t.item.activeMatch||t.item.link,!!t.item.activeMatch)}),href:t.item.link,noIcon:t.item.noIcon,target:t.item.target,rel:t.item.rel,tabindex:"0"},{default:d(()=>[v("span",{innerHTML:t.item.text},null,8,As)]),_:1},8,["class","href","noIcon","target","rel"]))}}),Cs=$(Bs,[["__scopeId","data-v-ad4a8b64"]]),Hs=_({__name:"VPNavBarMenuGroup",props:{item:{}},setup(o){const e=o,{page:t}=P(),s=i=>"component"in i?!1:"link"in i?K(t.value.relativePath,i.link,!!e.item.activeMatch):i.items.some(s),n=y(()=>s(e.item));return(i,u)=>(a(),k($e,{class:N({VPNavBarMenuGroup:!0,active:r(K)(r(t).relativePath,i.item.activeMatch,!!i.item.activeMatch)||n.value}),button:i.item.text,items:i.item.items},null,8,["class","button","items"]))}}),Es=o=>(C("data-v-0fb289c1"),o=o(),H(),o),Fs={key:0,"aria-labelledby":"main-nav-aria-label",class:"VPNavBarMenu"},Ds=Es(()=>v("span",{id:"main-nav-aria-label",class:"visually-hidden"}," Main Navigation ",-1)),Os=_({__name:"VPNavBarMenu",setup(o){const{theme:e}=P();return(t,s)=>r(e).nav?(a(),c("nav",Fs,[Ds,(a(!0),c(M,null,E(r(e).nav,n=>(a(),c(M,{key:JSON.stringify(n)},["link"in n?(a(),k(Cs,{key:0,item:n},null,8,["item"])):"component"in n?(a(),k(F(n.component),q({key:1,ref_for:!0},n.props),null,16)):(a(),k(Hs,{key:2,item:n},null,8,["item"]))],64))),128))])):h("",!0)}}),Gs=$(Os,[["__scopeId","data-v-0fb289c1"]]);function Us(o){const{localeIndex:e,theme:t}=P();function s(n){var A,B,S;const i=n.split("."),u=(A=t.value.search)==null?void 0:A.options,f=u&&typeof u=="object",p=f&&((S=(B=u.locales)==null?void 0:B[e.value])==null?void 0:S.translations)||null,g=f&&u.translations||null;let L=p,b=g,V=o;const T=i.pop();for(const j of i){let z=null;const J=V==null?void 0:V[j];J&&(z=V=J);const se=b==null?void 0:b[j];se&&(z=b=se);const ae=L==null?void 0:L[j];ae&&(z=L=ae),J||(V=z),se||(b=z),ae||(L=z)}return(L==null?void 0:L[T])??(b==null?void 0:b[T])??(V==null?void 0:V[T])??""}return s}const js=["aria-label"],zs={class:"DocSearch-Button-Container"},qs=v("span",{class:"vp-icon DocSearch-Search-Icon"},null,-1),Ks={class:"DocSearch-Button-Placeholder"},Ws=v("span",{class:"DocSearch-Button-Keys"},[v("kbd",{class:"DocSearch-Button-Key"}),v("kbd",{class:"DocSearch-Button-Key"},"K")],-1),ye=_({__name:"VPNavBarSearchButton",setup(o){const t=Us({button:{buttonText:"Search",buttonAriaLabel:"Search"}});return(s,n)=>(a(),c("button",{type:"button",class:"DocSearch DocSearch-Button","aria-label":r(t)("button.buttonAriaLabel")},[v("span",zs,[qs,v("span",Ks,I(r(t)("button.buttonText")),1)]),Ws],8,js))}}),Rs={class:"VPNavBarSearch"},Js={id:"local-search"},Xs={key:1,id:"docsearch"},Ys=_({__name:"VPNavBarSearch",setup(o){const e=Je(()=>Xe(()=>import("./VPLocalSearchBox.BHoT-Ww9.js"),__vite__mapDeps([0,1]))),t=()=>null,{theme:s}=P(),n=w(!1),i=w(!1);W(()=>{});function u(){n.value||(n.value=!0,setTimeout(f,16))}function f(){const b=new Event("keydown");b.key="k",b.metaKey=!0,window.dispatchEvent(b),setTimeout(()=>{document.querySelector(".DocSearch-Modal")||f()},16)}function p(b){const V=b.target,T=V.tagName;return V.isContentEditable||T==="INPUT"||T==="SELECT"||T==="TEXTAREA"}const g=w(!1);le("k",b=>{(b.ctrlKey||b.metaKey)&&(b.preventDefault(),g.value=!0)}),le("/",b=>{p(b)||(b.preventDefault(),g.value=!0)});const L="local";return(b,V)=>{var T;return a(),c("div",Rs,[r(L)==="local"?(a(),c(M,{key:0},[g.value?(a(),k(r(e),{key:0,onClose:V[0]||(V[0]=A=>g.value=!1)})):h("",!0),v("div",Js,[m(ye,{onClick:V[1]||(V[1]=A=>g.value=!0)})])],64)):r(L)==="algolia"?(a(),c(M,{key:1},[n.value?(a(),k(r(t),{key:0,algolia:((T=r(s).search)==null?void 0:T.options)??r(s).algolia,onVnodeBeforeMount:V[2]||(V[2]=A=>i.value=!0)},null,8,["algolia"])):h("",!0),i.value?h("",!0):(a(),c("div",Xs,[m(ye,{onClick:u})]))],64)):h("",!0)])}}}),Qs=_({__name:"VPNavBarSocialLinks",setup(o){const{theme:e}=P();return(t,s)=>r(e).socialLinks?(a(),k(ge,{key:0,class:"VPNavBarSocialLinks",links:r(e).socialLinks},null,8,["links"])):h("",!0)}}),Zs=$(Qs,[["__scopeId","data-v-f3b91b3a"]]),xs=["href","rel","target"],ea={key:1},ta={key:2},oa=_({__name:"VPNavBarTitle",setup(o){const{site:e,theme:t}=P(),{hasSidebar:s}=U(),{currentLang:n}=X(),i=y(()=>{var p;return typeof t.value.logoLink=="string"?t.value.logoLink:(p=t.value.logoLink)==null?void 0:p.link}),u=y(()=>{var p;return typeof t.value.logoLink=="string"||(p=t.value.logoLink)==null?void 0:p.rel}),f=y(()=>{var p;return typeof t.value.logoLink=="string"||(p=t.value.logoLink)==null?void 0:p.target});return(p,g)=>(a(),c("div",{class:N(["VPNavBarTitle",{"has-sidebar":r(s)}])},[v("a",{class:"title",href:i.value??r(_e)(r(n).link),rel:u.value,target:f.value},[l(p.$slots,"nav-bar-title-before",{},void 0,!0),r(t).logo?(a(),k(Q,{key:0,class:"logo",image:r(t).logo},null,8,["image"])):h("",!0),r(t).siteTitle?(a(),c("span",ea,I(r(t).siteTitle),1)):r(t).siteTitle===void 0?(a(),c("span",ta,I(r(e).title),1)):h("",!0),l(p.$slots,"nav-bar-title-after",{},void 0,!0)],8,xs)],2))}}),na=$(oa,[["__scopeId","data-v-10b95b50"]]),sa={class:"items"},aa={class:"title"},ra=_({__name:"VPNavBarTranslations",setup(o){const{theme:e}=P(),{localeLinks:t,currentLang:s}=X({correspondingLink:!0});return(n,i)=>r(t).length&&r(s).label?(a(),k($e,{key:0,class:"VPNavBarTranslations",icon:"vpi-languages",label:r(e).langMenuLabel||"Change language"},{default:d(()=>[v("div",sa,[v("p",aa,I(r(s).label),1),(a(!0),c(M,null,E(r(t),u=>(a(),k(ne,{key:u.link,item:u},null,8,["item"]))),128))])]),_:1},8,["label"])):h("",!0)}}),ia=$(ra,[["__scopeId","data-v-cd7b67e8"]]),la=o=>(C("data-v-1303e283"),o=o(),H(),o),ca={class:"wrapper"},ua={class:"container"},da={class:"title"},va={class:"content"},pa={class:"content-body"},fa=la(()=>v("div",{class:"divider"},[v("div",{class:"divider-line"})],-1)),ha=_({__name:"VPNavBar",props:{isScreenOpen:{type:Boolean}},emits:["toggle-screen"],setup(o){const e=o,{y:t}=Se(),{hasSidebar:s}=U(),{frontmatter:n}=P(),i=w({});return he(()=>{i.value={"has-sidebar":s.value,home:n.value.layout==="home",top:t.value===0,"screen-open":e.isScreenOpen}}),(u,f)=>(a(),c("div",{class:N(["VPNavBar",i.value])},[v("div",ca,[v("div",ua,[v("div",da,[m(na,null,{"nav-bar-title-before":d(()=>[l(u.$slots,"nav-bar-title-before",{},void 0,!0)]),"nav-bar-title-after":d(()=>[l(u.$slots,"nav-bar-title-after",{},void 0,!0)]),_:3})]),v("div",va,[v("div",pa,[l(u.$slots,"nav-bar-content-before",{},void 0,!0),m(Ys,{class:"search"}),m(Gs,{class:"menu"}),m(ia,{class:"translations"}),m(zn,{class:"appearance"}),m(Zs,{class:"social-links"}),m(Ls,{class:"extra"}),l(u.$slots,"nav-bar-content-after",{},void 0,!0),m(Ms,{class:"hamburger",active:u.isScreenOpen,onClick:f[0]||(f[0]=p=>u.$emit("toggle-screen"))},null,8,["active"])])])])]),fa],2))}}),_a=$(ha,[["__scopeId","data-v-1303e283"]]),ma={key:0,class:"VPNavScreenAppearance"},ka={class:"text"},ba=_({__name:"VPNavScreenAppearance",setup(o){const{site:e,theme:t}=P();return(s,n)=>r(e).appearance&&r(e).appearance!=="force-dark"&&r(e).appearance!=="force-auto"?(a(),c("div",ma,[v("p",ka,I(r(t).darkModeSwitchLabel||"Appearance"),1),m(ke)])):h("",!0)}}),$a=$(ba,[["__scopeId","data-v-79da70de"]]),ga=_({__name:"VPNavScreenMenuLink",props:{item:{}},setup(o){const e=te("close-screen");return(t,s)=>(a(),k(D,{class:"VPNavScreenMenuLink",href:t.item.link,target:t.item.target,rel:t.item.rel,onClick:r(e),innerHTML:t.item.text},null,8,["href","target","rel","onClick","innerHTML"]))}}),ya=$(ga,[["__scopeId","data-v-9a3ef902"]]),Pa=_({__name:"VPNavScreenMenuGroupLink",props:{item:{}},setup(o){const e=te("close-screen");return(t,s)=>(a(),k(D,{class:"VPNavScreenMenuGroupLink",href:t.item.link,target:t.item.target,rel:t.item.rel,onClick:r(e)},{default:d(()=>[O(I(t.item.text),1)]),_:1},8,["href","target","rel","onClick"]))}}),Ee=$(Pa,[["__scopeId","data-v-03f7344f"]]),Va={class:"VPNavScreenMenuGroupSection"},La={key:0,class:"title"},Sa=_({__name:"VPNavScreenMenuGroupSection",props:{text:{},items:{}},setup(o){return(e,t)=>(a(),c("div",Va,[e.text?(a(),c("p",La,I(e.text),1)):h("",!0),(a(!0),c(M,null,E(e.items,s=>(a(),k(Ee,{key:s.text,item:s},null,8,["item"]))),128))]))}}),Ta=$(Sa,[["__scopeId","data-v-3b79ab2a"]]),Ia=o=>(C("data-v-496537ac"),o=o(),H(),o),wa=["aria-controls","aria-expanded"],Na=["innerHTML"],Ma=Ia(()=>v("span",{class:"vpi-plus button-icon"},null,-1)),Aa=["id"],Ba={key:0,class:"item"},Ca={key:1,class:"item"},Ha={key:2,class:"group"},Ea=_({__name:"VPNavScreenMenuGroup",props:{text:{},items:{}},setup(o){const e=o,t=w(!1),s=y(()=>`NavScreenGroup-${e.text.replace(" ","-").toLowerCase()}`);function n(){t.value=!t.value}return(i,u)=>(a(),c("div",{class:N(["VPNavScreenMenuGroup",{open:t.value}])},[v("button",{class:"button","aria-controls":s.value,"aria-expanded":t.value,onClick:n},[v("span",{class:"button-text",innerHTML:i.text},null,8,Na),Ma],8,wa),v("div",{id:s.value,class:"items"},[(a(!0),c(M,null,E(i.items,f=>(a(),c(M,{key:JSON.stringify(f)},["link"in f?(a(),c("div",Ba,[m(Ee,{item:f},null,8,["item"])])):"component"in f?(a(),c("div",Ca,[(a(),k(F(f.component),q({ref_for:!0},f.props,{"screen-menu":""}),null,16))])):(a(),c("div",Ha,[m(Ta,{text:f.text,items:f.items},null,8,["text","items"])]))],64))),128))],8,Aa)],2))}}),Fa=$(Ea,[["__scopeId","data-v-496537ac"]]),Da={key:0,class:"VPNavScreenMenu"},Oa=_({__name:"VPNavScreenMenu",setup(o){const{theme:e}=P();return(t,s)=>r(e).nav?(a(),c("nav",Da,[(a(!0),c(M,null,E(r(e).nav,n=>(a(),c(M,{key:JSON.stringify(n)},["link"in n?(a(),k(ya,{key:0,item:n},null,8,["item"])):"component"in n?(a(),k(F(n.component),q({key:1,ref_for:!0},n.props,{"screen-menu":""}),null,16)):(a(),k(Fa,{key:2,text:n.text||"",items:n.items},null,8,["text","items"]))],64))),128))])):h("",!0)}}),Ga=_({__name:"VPNavScreenSocialLinks",setup(o){const{theme:e}=P();return(t,s)=>r(e).socialLinks?(a(),k(ge,{key:0,class:"VPNavScreenSocialLinks",links:r(e).socialLinks},null,8,["links"])):h("",!0)}}),Fe=o=>(C("data-v-c618ff37"),o=o(),H(),o),Ua=Fe(()=>v("span",{class:"vpi-languages icon lang"},null,-1)),ja=Fe(()=>v("span",{class:"vpi-chevron-down icon chevron"},null,-1)),za={class:"list"},qa=_({__name:"VPNavScreenTranslations",setup(o){const{localeLinks:e,currentLang:t}=X({correspondingLink:!0}),s=w(!1);function n(){s.value=!s.value}return(i,u)=>r(e).length&&r(t).label?(a(),c("div",{key:0,class:N(["VPNavScreenTranslations",{open:s.value}])},[v("button",{class:"title",onClick:n},[Ua,O(" "+I(r(t).label)+" ",1),ja]),v("ul",za,[(a(!0),c(M,null,E(r(e),f=>(a(),c("li",{key:f.link,class:"item"},[m(D,{class:"link",href:f.link},{default:d(()=>[O(I(f.text),1)]),_:2},1032,["href"])]))),128))])],2)):h("",!0)}}),Ka=$(qa,[["__scopeId","data-v-c618ff37"]]),Wa={class:"container"},Ra=_({__name:"VPNavScreen",props:{open:{type:Boolean}},setup(o){const e=w(null),t=Te(oe?document.body:null);return(s,n)=>(a(),k(ve,{name:"fade",onEnter:n[0]||(n[0]=i=>t.value=!0),onAfterLeave:n[1]||(n[1]=i=>t.value=!1)},{default:d(()=>[s.open?(a(),c("div",{key:0,class:"VPNavScreen",ref_key:"screen",ref:e,id:"VPNavScreen"},[v("div",Wa,[l(s.$slots,"nav-screen-content-before",{},void 0,!0),m(Oa,{class:"menu"}),m(Ka,{class:"translations"}),m($a,{class:"appearance"}),m(Ga,{class:"social-links"}),l(s.$slots,"nav-screen-content-after",{},void 0,!0)])],512)):h("",!0)]),_:3}))}}),Ja=$(Ra,[["__scopeId","data-v-c3a48aed"]]),Xa={key:0,class:"VPNav"},Ya=_({__name:"VPNav",setup(o){const{isScreenOpen:e,closeScreen:t,toggleScreen:s}=Mn(),{frontmatter:n}=P(),i=y(()=>n.value.navbar!==!1);return Ie("close-screen",t),Z(()=>{oe&&document.documentElement.classList.toggle("hide-nav",!i.value)}),(u,f)=>i.value?(a(),c("header",Xa,[m(_a,{"is-screen-open":r(e),onToggleScreen:r(s)},{"nav-bar-title-before":d(()=>[l(u.$slots,"nav-bar-title-before",{},void 0,!0)]),"nav-bar-title-after":d(()=>[l(u.$slots,"nav-bar-title-after",{},void 0,!0)]),"nav-bar-content-before":d(()=>[l(u.$slots,"nav-bar-content-before",{},void 0,!0)]),"nav-bar-content-after":d(()=>[l(u.$slots,"nav-bar-content-after",{},void 0,!0)]),_:3},8,["is-screen-open","onToggleScreen"]),m(Ja,{open:r(e)},{"nav-screen-content-before":d(()=>[l(u.$slots,"nav-screen-content-before",{},void 0,!0)]),"nav-screen-content-after":d(()=>[l(u.$slots,"nav-screen-content-after",{},void 0,!0)]),_:3},8,["open"])])):h("",!0)}}),Qa=$(Ya,[["__scopeId","data-v-2a4e514e"]]),De=o=>(C("data-v-9035698b"),o=o(),H(),o),Za=["role","tabindex"],xa=De(()=>v("div",{class:"indicator"},null,-1)),er=De(()=>v("span",{class:"vpi-chevron-right caret-icon"},null,-1)),tr=[er],or={key:1,class:"items"},nr=_({__name:"VPSidebarItem",props:{item:{},depth:{}},setup(o){const e=o,{collapsed:t,collapsible:s,isLink:n,isActiveLink:i,hasActiveLink:u,hasChildren:f,toggle:p}=$t(y(()=>e.item)),g=y(()=>f.value?"section":"div"),L=y(()=>n.value?"a":"div"),b=y(()=>f.value?e.depth+2===7?"p":`h${e.depth+2}`:"p"),V=y(()=>n.value?void 0:"button"),T=y(()=>[[`level-${e.depth}`],{collapsible:s.value},{collapsed:t.value},{"is-link":n.value},{"is-active":i.value},{"has-active":u.value}]);function A(S){"key"in S&&S.key!=="Enter"||!e.item.link&&p()}function B(){e.item.link&&p()}return(S,j)=>{const z=R("VPSidebarItem",!0);return a(),k(F(g.value),{class:N(["VPSidebarItem",T.value])},{default:d(()=>[S.item.text?(a(),c("div",q({key:0,class:"item",role:V.value},Qe(S.item.items?{click:A,keydown:A}:{},!0),{tabindex:S.item.items&&0}),[xa,S.item.link?(a(),k(D,{key:0,tag:L.value,class:"link",href:S.item.link,rel:S.item.rel,target:S.item.target},{default:d(()=>[(a(),k(F(b.value),{class:"text",innerHTML:S.item.text},null,8,["innerHTML"]))]),_:1},8,["tag","href","rel","target"])):(a(),k(F(b.value),{key:1,class:"text",innerHTML:S.item.text},null,8,["innerHTML"])),S.item.collapsed!=null&&S.item.items&&S.item.items.length?(a(),c("div",{key:2,class:"caret",role:"button","aria-label":"toggle section",onClick:B,onKeydown:Ye(B,["enter"]),tabindex:"0"},tr,32)):h("",!0)],16,Za)):h("",!0),S.item.items&&S.item.items.length?(a(),c("div",or,[S.depth<5?(a(!0),c(M,{key:0},E(S.item.items,J=>(a(),k(z,{key:J.text,item:J,depth:S.depth+1},null,8,["item","depth"]))),128)):h("",!0)])):h("",!0)]),_:1},8,["class"])}}}),sr=$(nr,[["__scopeId","data-v-9035698b"]]),ar=_({__name:"VPSidebarGroup",props:{items:{}},setup(o){const e=w(!0);let t=null;return W(()=>{t=setTimeout(()=>{t=null,e.value=!1},300)}),Ze(()=>{t!=null&&(clearTimeout(t),t=null)}),(s,n)=>(a(!0),c(M,null,E(s.items,i=>(a(),c("div",{key:i.text,class:N(["group",{"no-transition":e.value}])},[m(sr,{item:i,depth:0},null,8,["item"])],2))),128))}}),rr=$(ar,[["__scopeId","data-v-c3eaeb1a"]]),Oe=o=>(C("data-v-edd7de80"),o=o(),H(),o),ir=Oe(()=>v("div",{class:"curtain"},null,-1)),lr={class:"nav",id:"VPSidebarNav","aria-labelledby":"sidebar-aria-label",tabindex:"-1"},cr=Oe(()=>v("span",{class:"visually-hidden",id:"sidebar-aria-label"}," Sidebar Navigation ",-1)),ur=_({__name:"VPSidebar",props:{open:{type:Boolean}},setup(o){const{sidebarGroups:e,hasSidebar:t}=U(),s=o,n=w(null),i=Te(oe?document.body:null);G([s,n],()=>{var f;s.open?(i.value=!0,(f=n.value)==null||f.focus()):i.value=!1},{immediate:!0,flush:"post"});const u=w(0);return G(e,()=>{u.value+=1},{deep:!0}),(f,p)=>r(t)?(a(),c("aside",{key:0,class:N(["VPSidebar",{open:f.open}]),ref_key:"navEl",ref:n,onClick:p[0]||(p[0]=xe(()=>{},["stop"]))},[ir,v("nav",lr,[cr,l(f.$slots,"sidebar-nav-before",{},void 0,!0),(a(),k(rr,{items:r(e),key:u.value},null,8,["items"])),l(f.$slots,"sidebar-nav-after",{},void 0,!0)])],2)):h("",!0)}}),dr=$(ur,[["__scopeId","data-v-edd7de80"]]),vr=_({__name:"VPSkipLink",setup(o){const e=ee(),t=w();G(()=>e.path,()=>t.value.focus());function s({target:n}){const i=document.getElementById(decodeURIComponent(n.hash).slice(1));if(i){const u=()=>{i.removeAttribute("tabindex"),i.removeEventListener("blur",u)};i.setAttribute("tabindex","-1"),i.addEventListener("blur",u),i.focus(),window.scrollTo(0,0)}}return(n,i)=>(a(),c(M,null,[v("span",{ref_key:"backToTop",ref:t,tabindex:"-1"},null,512),v("a",{href:"#VPContent",class:"VPSkipLink visually-hidden",onClick:s}," Skip to content ")],64))}}),pr=$(vr,[["__scopeId","data-v-3e86afbf"]]),fr=_({__name:"Layout",setup(o){const{isOpen:e,open:t,close:s}=U(),n=ee();G(()=>n.path,s),bt(e,s);const{frontmatter:i}=P(),u=et(),f=y(()=>!!u["home-hero-image"]);return Ie("hero-image-slot-exists",f),(p,g)=>{const L=R("Content");return r(i).layout!==!1?(a(),c("div",{key:0,class:N(["Layout",r(i).pageClass])},[l(p.$slots,"layout-top",{},void 0,!0),m(pr),m(st,{class:"backdrop",show:r(e),onClick:r(s)},null,8,["show","onClick"]),m(Qa,null,{"nav-bar-title-before":d(()=>[l(p.$slots,"nav-bar-title-before",{},void 0,!0)]),"nav-bar-title-after":d(()=>[l(p.$slots,"nav-bar-title-after",{},void 0,!0)]),"nav-bar-content-before":d(()=>[l(p.$slots,"nav-bar-content-before",{},void 0,!0)]),"nav-bar-content-after":d(()=>[l(p.$slots,"nav-bar-content-after",{},void 0,!0)]),"nav-screen-content-before":d(()=>[l(p.$slots,"nav-screen-content-before",{},void 0,!0)]),"nav-screen-content-after":d(()=>[l(p.$slots,"nav-screen-content-after",{},void 0,!0)]),_:3}),m(Nn,{open:r(e),onOpenMenu:r(t)},null,8,["open","onOpenMenu"]),m(dr,{open:r(e)},{"sidebar-nav-before":d(()=>[l(p.$slots,"sidebar-nav-before",{},void 0,!0)]),"sidebar-nav-after":d(()=>[l(p.$slots,"sidebar-nav-after",{},void 0,!0)]),_:3},8,["open"]),m(un,null,{"page-top":d(()=>[l(p.$slots,"page-top",{},void 0,!0)]),"page-bottom":d(()=>[l(p.$slots,"page-bottom",{},void 0,!0)]),"not-found":d(()=>[l(p.$slots,"not-found",{},void 0,!0)]),"home-hero-before":d(()=>[l(p.$slots,"home-hero-before",{},void 0,!0)]),"home-hero-info-before":d(()=>[l(p.$slots,"home-hero-info-before",{},void 0,!0)]),"home-hero-info":d(()=>[l(p.$slots,"home-hero-info",{},void 0,!0)]),"home-hero-info-after":d(()=>[l(p.$slots,"home-hero-info-after",{},void 0,!0)]),"home-hero-actions-after":d(()=>[l(p.$slots,"home-hero-actions-after",{},void 0,!0)]),"home-hero-image":d(()=>[l(p.$slots,"home-hero-image",{},void 0,!0)]),"home-hero-after":d(()=>[l(p.$slots,"home-hero-after",{},void 0,!0)]),"home-features-before":d(()=>[l(p.$slots,"home-features-before",{},void 0,!0)]),"home-features-after":d(()=>[l(p.$slots,"home-features-after",{},void 0,!0)]),"doc-footer-before":d(()=>[l(p.$slots,"doc-footer-before",{},void 0,!0)]),"doc-before":d(()=>[l(p.$slots,"doc-before",{},void 0,!0)]),"doc-after":d(()=>[l(p.$slots,"doc-after",{},void 0,!0)]),"doc-top":d(()=>[l(p.$slots,"doc-top",{},void 0,!0)]),"doc-bottom":d(()=>[l(p.$slots,"doc-bottom",{},void 0,!0)]),"aside-top":d(()=>[l(p.$slots,"aside-top",{},void 0,!0)]),"aside-bottom":d(()=>[l(p.$slots,"aside-bottom",{},void 0,!0)]),"aside-outline-before":d(()=>[l(p.$slots,"aside-outline-before",{},void 0,!0)]),"aside-outline-after":d(()=>[l(p.$slots,"aside-outline-after",{},void 0,!0)]),"aside-ads-before":d(()=>[l(p.$slots,"aside-ads-before",{},void 0,!0)]),"aside-ads-after":d(()=>[l(p.$slots,"aside-ads-after",{},void 0,!0)]),_:3}),m(hn),l(p.$slots,"layout-bottom",{},void 0,!0)],2)):(a(),k(L,{key:1}))}}}),hr=$(fr,[["__scopeId","data-v-22f859ac"]]),mr={Layout:hr,enhanceApp:({app:o})=>{o.component("Badge",tt)}};export{Us as c,mr as t,P as u};
diff --git a/assets/en_api_api.md.CH3w1csg.js b/assets/en_api_api.md.CH3w1csg.js
new file mode 100644
index 0000000..9471c4a
--- /dev/null
+++ b/assets/en_api_api.md.CH3w1csg.js
@@ -0,0 +1 @@
+import{_ as t,c as s,o as c,j as e,a}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp","description":"","frontmatter":{"title":"mbcp","collapsed":true},"headers":[],"relativePath":"en/api/api.md","filePath":"en/api/api.md","lastUpdated":null}'),n={name:"en/api/api.md"},o=e("h1",{id:"mbcp",tabindex:"-1"},[a("mbcp "),e("a",{class:"header-anchor",href:"#mbcp","aria-label":'Permalink to "mbcp"'},"​")],-1),p=e("p",null,[e("strong",null,"Description"),a(": 本模块塞了一些预设的粒子生成器")],-1),r=[o,p];function i(l,d,_,m,h,f){return c(),s("div",null,r)}const x=t(n,[["render",i]]);export{b as __pageData,x as default};
diff --git a/assets/en_api_api.md.CH3w1csg.lean.js b/assets/en_api_api.md.CH3w1csg.lean.js
new file mode 100644
index 0000000..9471c4a
--- /dev/null
+++ b/assets/en_api_api.md.CH3w1csg.lean.js
@@ -0,0 +1 @@
+import{_ as t,c as s,o as c,j as e,a}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp","description":"","frontmatter":{"title":"mbcp","collapsed":true},"headers":[],"relativePath":"en/api/api.md","filePath":"en/api/api.md","lastUpdated":null}'),n={name:"en/api/api.md"},o=e("h1",{id:"mbcp",tabindex:"-1"},[a("mbcp "),e("a",{class:"header-anchor",href:"#mbcp","aria-label":'Permalink to "mbcp"'},"​")],-1),p=e("p",null,[e("strong",null,"Description"),a(": 本模块塞了一些预设的粒子生成器")],-1),r=[o,p];function i(l,d,_,m,h,f){return c(),s("div",null,r)}const x=t(n,[["render",i]]);export{b as __pageData,x as default};
diff --git a/assets/en_api_api.md.DNV43Nd2.js b/assets/en_api_api.md.DNV43Nd2.js
deleted file mode 100644
index 59f86d7..0000000
--- a/assets/en_api_api.md.DNV43Nd2.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as t,c as s,o as n,j as e,a}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp","description":"","frontmatter":{"title":"mbcp","editLink":false,"collapsed":true},"headers":[],"relativePath":"en/api/api.md","filePath":"en/api/api.md","lastUpdated":null}'),c={name:"en/api/api.md"},o=e("h1",{id:"mbcp",tabindex:"-1"},[a("mbcp "),e("a",{class:"header-anchor",href:"#mbcp","aria-label":'Permalink to "mbcp"'},"​")],-1),i=e("p",null,[e("strong",null,"Description"),a(": 本模块塞了一些预设的粒子生成器")],-1),p=[o,i];function r(l,d,_,m,h,f){return n(),s("div",null,p)}const x=t(c,[["render",r]]);export{b as __pageData,x as default};
diff --git a/assets/en_api_api.md.DNV43Nd2.lean.js b/assets/en_api_api.md.DNV43Nd2.lean.js
deleted file mode 100644
index 59f86d7..0000000
--- a/assets/en_api_api.md.DNV43Nd2.lean.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as t,c as s,o as n,j as e,a}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp","description":"","frontmatter":{"title":"mbcp","editLink":false,"collapsed":true},"headers":[],"relativePath":"en/api/api.md","filePath":"en/api/api.md","lastUpdated":null}'),c={name:"en/api/api.md"},o=e("h1",{id:"mbcp",tabindex:"-1"},[a("mbcp "),e("a",{class:"header-anchor",href:"#mbcp","aria-label":'Permalink to "mbcp"'},"​")],-1),i=e("p",null,[e("strong",null,"Description"),a(": 本模块塞了一些预设的粒子生成器")],-1),p=[o,i];function r(l,d,_,m,h,f){return n(),s("div",null,p)}const x=t(c,[["render",r]]);export{b as __pageData,x as default};
diff --git a/assets/en_api_index.md.CcTWWu9r.js b/assets/en_api_index.md.CcTWWu9r.js
new file mode 100644
index 0000000..f1c79a0
--- /dev/null
+++ b/assets/en_api_index.md.CcTWWu9r.js
@@ -0,0 +1 @@
+import{_ as a,c as n,o as s,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp","description":"","frontmatter":{"title":"mbcp","collapsed":true},"headers":[],"relativePath":"en/api/index.md","filePath":"en/api/index.md","lastUpdated":1724915255000}'),c={name:"en/api/index.md"},o=e("h1",{id:"mbcp",tabindex:"-1"},[t("mbcp "),e("a",{class:"header-anchor",href:"#mbcp","aria-label":'Permalink to "mbcp"'},"​")],-1),r=e("p",null,[e("strong",null,"Description"),t(": 本模块塞了一些预设的粒子生成器")],-1),i=[o,r];function d(p,l,_,m,h,f){return s(),n("div",null,i)}const u=a(c,[["render",d]]);export{b as __pageData,u as default};
diff --git a/assets/en_api_index.md.CcTWWu9r.lean.js b/assets/en_api_index.md.CcTWWu9r.lean.js
new file mode 100644
index 0000000..f1c79a0
--- /dev/null
+++ b/assets/en_api_index.md.CcTWWu9r.lean.js
@@ -0,0 +1 @@
+import{_ as a,c as n,o as s,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp","description":"","frontmatter":{"title":"mbcp","collapsed":true},"headers":[],"relativePath":"en/api/index.md","filePath":"en/api/index.md","lastUpdated":1724915255000}'),c={name:"en/api/index.md"},o=e("h1",{id:"mbcp",tabindex:"-1"},[t("mbcp "),e("a",{class:"header-anchor",href:"#mbcp","aria-label":'Permalink to "mbcp"'},"​")],-1),r=e("p",null,[e("strong",null,"Description"),t(": 本模块塞了一些预设的粒子生成器")],-1),i=[o,r];function d(p,l,_,m,h,f){return s(),n("div",null,i)}const u=a(c,[["render",d]]);export{b as __pageData,u as default};
diff --git a/assets/en_api_index.md.rIvJ-tI-.js b/assets/en_api_index.md.rIvJ-tI-.js
deleted file mode 100644
index f2bf2f5..0000000
--- a/assets/en_api_index.md.rIvJ-tI-.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as a,c as n,o as s,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp","description":"","frontmatter":{"title":"mbcp","editLink":false,"collapsed":true},"headers":[],"relativePath":"en/api/index.md","filePath":"en/api/index.md","lastUpdated":1724915255000}'),c={name:"en/api/index.md"},o=e("h1",{id:"mbcp",tabindex:"-1"},[t("mbcp "),e("a",{class:"header-anchor",href:"#mbcp","aria-label":'Permalink to "mbcp"'},"​")],-1),i=e("p",null,[e("strong",null,"Description"),t(": 本模块塞了一些预设的粒子生成器")],-1),r=[o,i];function d(p,l,_,m,h,f){return s(),n("div",null,r)}const u=a(c,[["render",d]]);export{b as __pageData,u as default};
diff --git a/assets/en_api_index.md.rIvJ-tI-.lean.js b/assets/en_api_index.md.rIvJ-tI-.lean.js
deleted file mode 100644
index f2bf2f5..0000000
--- a/assets/en_api_index.md.rIvJ-tI-.lean.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as a,c as n,o as s,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp","description":"","frontmatter":{"title":"mbcp","editLink":false,"collapsed":true},"headers":[],"relativePath":"en/api/index.md","filePath":"en/api/index.md","lastUpdated":1724915255000}'),c={name:"en/api/index.md"},o=e("h1",{id:"mbcp",tabindex:"-1"},[t("mbcp "),e("a",{class:"header-anchor",href:"#mbcp","aria-label":'Permalink to "mbcp"'},"​")],-1),i=e("p",null,[e("strong",null,"Description"),t(": 本模块塞了一些预设的粒子生成器")],-1),r=[o,i];function d(p,l,_,m,h,f){return s(),n("div",null,r)}const u=a(c,[["render",d]]);export{b as __pageData,u as default};
diff --git a/assets/en_api_mp_math_angle.md.BWpDhXE0.lean.js b/assets/en_api_mp_math_angle.md.BWpDhXE0.lean.js
deleted file mode 100644
index eb72703..0000000
--- a/assets/en_api_mp_math_angle.md.BWpDhXE0.lean.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const c=JSON.parse('{"title":"mbcp.mp_math.angle","description":"","frontmatter":{"title":"mbcp.mp_math.angle","editLink":false},"headers":[],"relativePath":"en/api/mp_math/angle.md","filePath":"en/api/mp_math/angle.md","lastUpdated":1724915255000}'),t={name:"en/api/mp_math/angle.md"},e=n("",80),l=[e];function h(p,k,r,d,o,g){return a(),i("div",null,l)}const F=s(t,[["render",h]]);export{c as __pageData,F as default};
diff --git a/assets/en_api_mp_math_angle.md.BWpDhXE0.js b/assets/en_api_mp_math_angle.md.yv5orygX.js
similarity index 94%
rename from assets/en_api_mp_math_angle.md.BWpDhXE0.js
rename to assets/en_api_mp_math_angle.md.yv5orygX.js
index d4b3e77..a4213ac 100644
--- a/assets/en_api_mp_math_angle.md.BWpDhXE0.js
+++ b/assets/en_api_mp_math_angle.md.yv5orygX.js
@@ -1,4 +1,4 @@
-import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const c=JSON.parse('{"title":"mbcp.mp_math.angle","description":"","frontmatter":{"title":"mbcp.mp_math.angle","editLink":false},"headers":[],"relativePath":"en/api/mp_math/angle.md","filePath":"en/api/mp_math/angle.md","lastUpdated":1724915255000}'),t={name:"en/api/mp_math/angle.md"},e=n(`

mbcp.mp_math.angle

Description: 本模块定义了角度相关的类

class Angle

class AnyAngle(Angle)

def __init__(self, value: float, is_radian: bool = False)

Description: 任意角度。

Arguments:

  • value: 角度或弧度值
  • is_radian: 是否为弧度,默认为否
Source code or View on GitHub
python
def __init__(self, value: float, is_radian: bool=False):
+import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const c=JSON.parse('{"title":"mbcp.mp_math.angle","description":"","frontmatter":{"title":"mbcp.mp_math.angle"},"headers":[],"relativePath":"en/api/mp_math/angle.md","filePath":"en/api/mp_math/angle.md","lastUpdated":1724915255000}'),t={name:"en/api/mp_math/angle.md"},e=n(`

mbcp.mp_math.angle

Description: 本模块定义了角度相关的类

class Angle

class AnyAngle(Angle)

def __init__(self, value: float, is_radian: bool = False)

Description: 任意角度。

Arguments:

  • value: 角度或弧度值
  • is_radian: 是否为弧度,默认为否
Source code or View on GitHub
python
def __init__(self, value: float, is_radian: bool=False):
     """
         任意角度。
         Args:
diff --git a/assets/en_api_mp_math_angle.md.yv5orygX.lean.js b/assets/en_api_mp_math_angle.md.yv5orygX.lean.js
new file mode 100644
index 0000000..2e888ac
--- /dev/null
+++ b/assets/en_api_mp_math_angle.md.yv5orygX.lean.js
@@ -0,0 +1 @@
+import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const c=JSON.parse('{"title":"mbcp.mp_math.angle","description":"","frontmatter":{"title":"mbcp.mp_math.angle"},"headers":[],"relativePath":"en/api/mp_math/angle.md","filePath":"en/api/mp_math/angle.md","lastUpdated":1724915255000}'),t={name:"en/api/mp_math/angle.md"},e=n("",80),l=[e];function h(p,k,r,d,o,g){return a(),i("div",null,l)}const F=s(t,[["render",h]]);export{c as __pageData,F as default};
diff --git a/assets/en_api_mp_math_const.md.C7RPr8Yw.js b/assets/en_api_mp_math_const.md.C7RPr8Yw.js
deleted file mode 100644
index aae7bc0..0000000
--- a/assets/en_api_mp_math_const.md.C7RPr8Yw.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as a,c as t,o as e,a4 as o}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math.const","description":"","frontmatter":{"title":"mbcp.mp_math.const","editLink":false},"headers":[],"relativePath":"en/api/mp_math/const.md","filePath":"en/api/mp_math/const.md","lastUpdated":1724915255000}'),r={name:"en/api/mp_math/const.md"},i=o('

mbcp.mp_math.const

Description: 本模块定义了一些常用的常量

var PI = math.pi

  • Description: 常量 π

var E = math.e

  • Description: 自然对数的底 exp(1)

var GOLDEN_RATIO = (1 + math.sqrt(5)) / 2

  • Description: 黄金分割比

var GAMMA = 0.5772156649015329

  • Description: 欧拉常数

var EPSILON = 0.0001

  • Description: 精度误差

var APPROX = 0.001

  • Description: 约等于判定误差
',14),c=[i];function n(s,l,d,h,m,p){return e(),t("div",null,c)}const v=a(r,[["render",n]]);export{u as __pageData,v as default}; diff --git a/assets/en_api_mp_math_const.md.C7RPr8Yw.lean.js b/assets/en_api_mp_math_const.md.C7RPr8Yw.lean.js deleted file mode 100644 index 751bc32..0000000 --- a/assets/en_api_mp_math_const.md.C7RPr8Yw.lean.js +++ /dev/null @@ -1 +0,0 @@ -import{_ as a,c as t,o as e,a4 as o}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math.const","description":"","frontmatter":{"title":"mbcp.mp_math.const","editLink":false},"headers":[],"relativePath":"en/api/mp_math/const.md","filePath":"en/api/mp_math/const.md","lastUpdated":1724915255000}'),r={name:"en/api/mp_math/const.md"},i=o("",14),c=[i];function n(s,l,d,h,m,p){return e(),t("div",null,c)}const v=a(r,[["render",n]]);export{u as __pageData,v as default}; diff --git a/assets/en_api_mp_math_const.md.CwN5-LSI.js b/assets/en_api_mp_math_const.md.CwN5-LSI.js new file mode 100644 index 0000000..92e8cfe --- /dev/null +++ b/assets/en_api_mp_math_const.md.CwN5-LSI.js @@ -0,0 +1 @@ +import{_ as a,c as t,o as e,a4 as o}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math.const","description":"","frontmatter":{"title":"mbcp.mp_math.const"},"headers":[],"relativePath":"en/api/mp_math/const.md","filePath":"en/api/mp_math/const.md","lastUpdated":1724915255000}'),r={name:"en/api/mp_math/const.md"},i=o('

mbcp.mp_math.const

Description: 本模块定义了一些常用的常量

var PI = math.pi

  • Description: 常量 π

var E = math.e

  • Description: 自然对数的底 exp(1)

var GOLDEN_RATIO = (1 + math.sqrt(5)) / 2

  • Description: 黄金分割比

var GAMMA = 0.5772156649015329

  • Description: 欧拉常数

var EPSILON = 0.0001

  • Description: 精度误差

var APPROX = 0.001

  • Description: 约等于判定误差
',14),c=[i];function n(s,l,d,h,m,p){return e(),t("div",null,c)}const v=a(r,[["render",n]]);export{u as __pageData,v as default}; diff --git a/assets/en_api_mp_math_const.md.CwN5-LSI.lean.js b/assets/en_api_mp_math_const.md.CwN5-LSI.lean.js new file mode 100644 index 0000000..b85104a --- /dev/null +++ b/assets/en_api_mp_math_const.md.CwN5-LSI.lean.js @@ -0,0 +1 @@ +import{_ as a,c as t,o as e,a4 as o}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math.const","description":"","frontmatter":{"title":"mbcp.mp_math.const"},"headers":[],"relativePath":"en/api/mp_math/const.md","filePath":"en/api/mp_math/const.md","lastUpdated":1724915255000}'),r={name:"en/api/mp_math/const.md"},i=o("",14),c=[i];function n(s,l,d,h,m,p){return e(),t("div",null,c)}const v=a(r,[["render",n]]);export{u as __pageData,v as default}; diff --git a/assets/en_api_mp_math_equation.md.Q3edAlTb.js b/assets/en_api_mp_math_equation.md.DwwuRd9E.js similarity index 89% rename from assets/en_api_mp_math_equation.md.Q3edAlTb.js rename to assets/en_api_mp_math_equation.md.DwwuRd9E.js index 61bc8ba..3319319 100644 --- a/assets/en_api_mp_math_equation.md.Q3edAlTb.js +++ b/assets/en_api_mp_math_equation.md.DwwuRd9E.js @@ -1,4 +1,4 @@ -import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math.equation","description":"","frontmatter":{"title":"mbcp.mp_math.equation","editLink":false},"headers":[],"relativePath":"en/api/mp_math/equation.md","filePath":"en/api/mp_math/equation.md","lastUpdated":1724915255000}'),t={name:"en/api/mp_math/equation.md"},l=n(`

mbcp.mp_math.equation

Description: 本模块定义了方程相关的类和函数以及一些常用的数学函数

class CurveEquation

def __init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc)

Description: 曲线方程。

Arguments:

  • x_func: x函数
  • y_func: y函数
  • z_func: z函数
Source code or View on GitHub
python
def __init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc):
+import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math.equation","description":"","frontmatter":{"title":"mbcp.mp_math.equation"},"headers":[],"relativePath":"en/api/mp_math/equation.md","filePath":"en/api/mp_math/equation.md","lastUpdated":1724915255000}'),t={name:"en/api/mp_math/equation.md"},l=n(`

mbcp.mp_math.equation

Description: 本模块定义了方程相关的类和函数以及一些常用的数学函数

class CurveEquation

def __init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc)

Description: 曲线方程。

Arguments:

  • x_func: x函数
  • y_func: y函数
  • z_func: z函数
Source code or View on GitHub
python
def __init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc):
     """
         曲线方程。
         Args:
diff --git a/assets/en_api_mp_math_equation.md.DwwuRd9E.lean.js b/assets/en_api_mp_math_equation.md.DwwuRd9E.lean.js
new file mode 100644
index 0000000..df3eb01
--- /dev/null
+++ b/assets/en_api_mp_math_equation.md.DwwuRd9E.lean.js
@@ -0,0 +1 @@
+import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math.equation","description":"","frontmatter":{"title":"mbcp.mp_math.equation"},"headers":[],"relativePath":"en/api/mp_math/equation.md","filePath":"en/api/mp_math/equation.md","lastUpdated":1724915255000}'),t={name:"en/api/mp_math/equation.md"},l=n("",23),p=[l];function h(e,k,r,E,d,g){return a(),i("div",null,p)}const F=s(t,[["render",h]]);export{u as __pageData,F as default};
diff --git a/assets/en_api_mp_math_equation.md.Q3edAlTb.lean.js b/assets/en_api_mp_math_equation.md.Q3edAlTb.lean.js
deleted file mode 100644
index c9b2387..0000000
--- a/assets/en_api_mp_math_equation.md.Q3edAlTb.lean.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math.equation","description":"","frontmatter":{"title":"mbcp.mp_math.equation","editLink":false},"headers":[],"relativePath":"en/api/mp_math/equation.md","filePath":"en/api/mp_math/equation.md","lastUpdated":1724915255000}'),t={name:"en/api/mp_math/equation.md"},l=n("",23),p=[l];function h(e,k,r,E,d,g){return a(),i("div",null,p)}const F=s(t,[["render",h]]);export{u as __pageData,F as default};
diff --git a/assets/en_api_mp_math_function.md.n3_MFy8m.js b/assets/en_api_mp_math_function.md.n3_MFy8m.js
new file mode 100644
index 0000000..cb27b76
--- /dev/null
+++ b/assets/en_api_mp_math_function.md.n3_MFy8m.js
@@ -0,0 +1,42 @@
+import{_ as l,c as t,j as s,a as n,a4 as a,o as i}from"./chunks/framework.DpC1ZpOZ.js";const Z=JSON.parse('{"title":"mbcp.mp_math.function","description":"","frontmatter":{"title":"mbcp.mp_math.function"},"headers":[],"relativePath":"en/api/mp_math/function.md","filePath":"en/api/mp_math/function.md","lastUpdated":null}'),e={name:"en/api/mp_math/function.md"},Q=a('

mbcp.mp_math.function

Description: AAA

def cal_gradient_3vf(func: ThreeSingleVarsFunc, p: Point3, epsilon: float = EPSILON) -> Vector3

Description: 计算三元函数在某点的梯度向量。

',4),T={class:"tip custom-block github-alert"},h=s("p",{class:"custom-block-title"},"TIP",-1),p={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},r={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.471ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 3744.3 1000","aria-hidden":"true"},d=a('',1),o=[d],k=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"f"),s("mo",{stretchy:"false"},"("),s("mi",null,"x"),s("mo",null,","),s("mi",null,"y"),s("mo",null,","),s("mi",null,"z"),s("mo",{stretchy:"false"},")")])],-1),m={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},g={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.19ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 4504 1000","aria-hidden":"true"},c=a('',1),y=[c],u=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mo",{stretchy:"false"},"("),s("msub",null,[s("mi",null,"x"),s("mn",null,"0")]),s("mo",null,","),s("msub",null,[s("mi",null,"y"),s("mn",null,"0")]),s("mo",null,","),s("msub",null,[s("mi",null,"z"),s("mn",null,"0")]),s("mo",{stretchy:"false"},")")])],-1),E={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},F={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-1.469ex"},xmlns:"http://www.w3.org/2000/svg",width:"29.427ex",height:"4.07ex",role:"img",focusable:"false",viewBox:"0 -1149.5 13006.8 1799","aria-hidden":"true"},f=a('',1),_=[f],C=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",{mathvariant:"normal"},"∇"),s("mi",null,"f"),s("mo",{stretchy:"false"},"("),s("msub",null,[s("mi",null,"x"),s("mn",null,"0")]),s("mo",null,","),s("msub",null,[s("mi",null,"y"),s("mn",null,"0")]),s("mo",null,","),s("msub",null,[s("mi",null,"z"),s("mn",null,"0")]),s("mo",{stretchy:"false"},")"),s("mo",null,"="),s("mrow",{"data-mjx-texclass":"INNER"},[s("mo",{"data-mjx-texclass":"OPEN"},"("),s("mfrac",null,[s("mrow",null,[s("mi",null,"∂"),s("mi",null,"f")]),s("mrow",null,[s("mi",null,"∂"),s("mi",null,"x")])]),s("mo",null,","),s("mfrac",null,[s("mrow",null,[s("mi",null,"∂"),s("mi",null,"f")]),s("mrow",null,[s("mi",null,"∂"),s("mi",null,"y")])]),s("mo",null,","),s("mfrac",null,[s("mrow",null,[s("mi",null,"∂"),s("mi",null,"f")]),s("mrow",null,[s("mi",null,"∂"),s("mi",null,"z")])]),s("mo",{"data-mjx-texclass":"CLOSE"},")")])])],-1),w=a(`

Arguments:

  • func: 三元函数
  • p: 点
  • epsilon: 偏移量

Return: 梯度

Source code or View on GitHub
python
def cal_gradient_3vf(func: ThreeSingleVarsFunc, p: Point3, epsilon: float=EPSILON) -> Vector3:
+    """
+    计算三元函数在某点的梯度向量。
+    > [!tip]
+    > 已知一个函数$f(x, y, z)$,则其在点$(x_0, y_0, z_0)$处的梯度向量为:
+    $\\\\nabla f(x_0, y_0, z_0) = \\\\left(\\\\frac{\\\\partial f}{\\\\partial x}, \\\\frac{\\\\partial f}{\\\\partial y}, \\\\frac{\\\\partial f}{\\\\partial z}\\\\right)$
+    Args:
+        func: 三元函数
+        p: 点
+        epsilon: 偏移量
+    Returns:
+        梯度
+    """
+    dx = (func(p.x + epsilon, p.y, p.z) - func(p.x - epsilon, p.y, p.z)) / (2 * epsilon)
+    dy = (func(p.x, p.y + epsilon, p.z) - func(p.x, p.y - epsilon, p.z)) / (2 * epsilon)
+    dz = (func(p.x, p.y, p.z + epsilon) - func(p.x, p.y, p.z - epsilon)) / (2 * epsilon)
+    return Vector3(dx, dy, dz)

def curry(func: MultiVarsFunc, *args: Var) -> OneVarFunc

Description: 对多参数函数进行柯里化。

TIP

有关函数柯里化,可参考函数式编程--柯理化(Currying)

Arguments:

  • func: 函数
  • *args: 参数

Return: 柯里化后的函数

Examples:

python
def add(a: int, b: int, c: int) -> int:
+    return a + b + c
+add_curried = curry(add, 1, 2)
+add_curried(3)  # 6
Source code or View on GitHub
python
def curry(func: MultiVarsFunc, *args: Var) -> OneVarFunc:
+    """
+    对多参数函数进行柯里化。
+    > [!tip]
+    > 有关函数柯里化,可参考[函数式编程--柯理化(Currying)](https://zhuanlan.zhihu.com/p/355859667)
+    Args:
+        func: 函数
+        *args: 参数
+    Returns:
+        柯里化后的函数
+    Examples:
+        \`\`\`python
+        def add(a: int, b: int, c: int) -> int:
+            return a + b + c
+        add_curried = curry(add, 1, 2)
+        add_curried(3)  # 6
+        \`\`\`
+    """
+
+    def curried_func(*args2: Var) -> Var:
+        """@litedoc-hide"""
+        return func(*args, *args2)
+    return curried_func
`,13);function x(b,L,H,B,M,D){return i(),t("div",null,[Q,s("div",T,[h,s("p",null,[n("已知一个函数"),s("mjx-container",p,[(i(),t("svg",r,o)),k]),n(",则其在点"),s("mjx-container",m,[(i(),t("svg",g,y)),u]),n("处的梯度向量为: "),s("mjx-container",E,[(i(),t("svg",F,_)),C])])]),w])}const A=l(e,[["render",x]]);export{Z as __pageData,A as default}; diff --git a/assets/en_api_mp_math_function.md.n3_MFy8m.lean.js b/assets/en_api_mp_math_function.md.n3_MFy8m.lean.js new file mode 100644 index 0000000..1c45cee --- /dev/null +++ b/assets/en_api_mp_math_function.md.n3_MFy8m.lean.js @@ -0,0 +1 @@ +import{_ as l,c as t,j as s,a as n,a4 as a,o as i}from"./chunks/framework.DpC1ZpOZ.js";const Z=JSON.parse('{"title":"mbcp.mp_math.function","description":"","frontmatter":{"title":"mbcp.mp_math.function"},"headers":[],"relativePath":"en/api/mp_math/function.md","filePath":"en/api/mp_math/function.md","lastUpdated":null}'),e={name:"en/api/mp_math/function.md"},Q=a("",4),T={class:"tip custom-block github-alert"},h=s("p",{class:"custom-block-title"},"TIP",-1),p={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},r={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.471ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 3744.3 1000","aria-hidden":"true"},d=a("",1),o=[d],k=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"f"),s("mo",{stretchy:"false"},"("),s("mi",null,"x"),s("mo",null,","),s("mi",null,"y"),s("mo",null,","),s("mi",null,"z"),s("mo",{stretchy:"false"},")")])],-1),m={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},g={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.19ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 4504 1000","aria-hidden":"true"},c=a("",1),y=[c],u=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mo",{stretchy:"false"},"("),s("msub",null,[s("mi",null,"x"),s("mn",null,"0")]),s("mo",null,","),s("msub",null,[s("mi",null,"y"),s("mn",null,"0")]),s("mo",null,","),s("msub",null,[s("mi",null,"z"),s("mn",null,"0")]),s("mo",{stretchy:"false"},")")])],-1),E={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},F={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-1.469ex"},xmlns:"http://www.w3.org/2000/svg",width:"29.427ex",height:"4.07ex",role:"img",focusable:"false",viewBox:"0 -1149.5 13006.8 1799","aria-hidden":"true"},f=a("",1),_=[f],C=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",{mathvariant:"normal"},"∇"),s("mi",null,"f"),s("mo",{stretchy:"false"},"("),s("msub",null,[s("mi",null,"x"),s("mn",null,"0")]),s("mo",null,","),s("msub",null,[s("mi",null,"y"),s("mn",null,"0")]),s("mo",null,","),s("msub",null,[s("mi",null,"z"),s("mn",null,"0")]),s("mo",{stretchy:"false"},")"),s("mo",null,"="),s("mrow",{"data-mjx-texclass":"INNER"},[s("mo",{"data-mjx-texclass":"OPEN"},"("),s("mfrac",null,[s("mrow",null,[s("mi",null,"∂"),s("mi",null,"f")]),s("mrow",null,[s("mi",null,"∂"),s("mi",null,"x")])]),s("mo",null,","),s("mfrac",null,[s("mrow",null,[s("mi",null,"∂"),s("mi",null,"f")]),s("mrow",null,[s("mi",null,"∂"),s("mi",null,"y")])]),s("mo",null,","),s("mfrac",null,[s("mrow",null,[s("mi",null,"∂"),s("mi",null,"f")]),s("mrow",null,[s("mi",null,"∂"),s("mi",null,"z")])]),s("mo",{"data-mjx-texclass":"CLOSE"},")")])])],-1),w=a("",13);function x(b,L,H,B,M,D){return i(),t("div",null,[Q,s("div",T,[h,s("p",null,[n("已知一个函数"),s("mjx-container",p,[(i(),t("svg",r,o)),k]),n(",则其在点"),s("mjx-container",m,[(i(),t("svg",g,y)),u]),n("处的梯度向量为: "),s("mjx-container",E,[(i(),t("svg",F,_)),C])])]),w])}const A=l(e,[["render",x]]);export{Z as __pageData,A as default}; diff --git a/assets/en_api_mp_math_function.md.sTyZQ9Kp.js b/assets/en_api_mp_math_function.md.sTyZQ9Kp.js deleted file mode 100644 index 393f145..0000000 --- a/assets/en_api_mp_math_function.md.sTyZQ9Kp.js +++ /dev/null @@ -1,42 +0,0 @@ -import{_ as l,c as t,j as s,a as n,a4 as a,o as i}from"./chunks/framework.DpC1ZpOZ.js";const Z=JSON.parse('{"title":"mbcp.mp_math.function","description":"","frontmatter":{"title":"mbcp.mp_math.function","editLink":false},"headers":[],"relativePath":"en/api/mp_math/function.md","filePath":"en/api/mp_math/function.md","lastUpdated":null}'),e={name:"en/api/mp_math/function.md"},Q=a('

mbcp.mp_math.function

Description: AAA

def cal_gradient_3vf(func: ThreeSingleVarsFunc, p: Point3, epsilon: float = EPSILON) -> Vector3

Description: 计算三元函数在某点的梯度向量。

',4),T={class:"tip custom-block github-alert"},h=s("p",{class:"custom-block-title"},"TIP",-1),p={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},r={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.471ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 3744.3 1000","aria-hidden":"true"},d=a('',1),o=[d],k=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"f"),s("mo",{stretchy:"false"},"("),s("mi",null,"x"),s("mo",null,","),s("mi",null,"y"),s("mo",null,","),s("mi",null,"z"),s("mo",{stretchy:"false"},")")])],-1),m={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},g={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.19ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 4504 1000","aria-hidden":"true"},c=a('',1),y=[c],u=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mo",{stretchy:"false"},"("),s("msub",null,[s("mi",null,"x"),s("mn",null,"0")]),s("mo",null,","),s("msub",null,[s("mi",null,"y"),s("mn",null,"0")]),s("mo",null,","),s("msub",null,[s("mi",null,"z"),s("mn",null,"0")]),s("mo",{stretchy:"false"},")")])],-1),E={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},F={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-1.469ex"},xmlns:"http://www.w3.org/2000/svg",width:"29.427ex",height:"4.07ex",role:"img",focusable:"false",viewBox:"0 -1149.5 13006.8 1799","aria-hidden":"true"},f=a('',1),_=[f],C=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",{mathvariant:"normal"},"∇"),s("mi",null,"f"),s("mo",{stretchy:"false"},"("),s("msub",null,[s("mi",null,"x"),s("mn",null,"0")]),s("mo",null,","),s("msub",null,[s("mi",null,"y"),s("mn",null,"0")]),s("mo",null,","),s("msub",null,[s("mi",null,"z"),s("mn",null,"0")]),s("mo",{stretchy:"false"},")"),s("mo",null,"="),s("mrow",{"data-mjx-texclass":"INNER"},[s("mo",{"data-mjx-texclass":"OPEN"},"("),s("mfrac",null,[s("mrow",null,[s("mi",null,"∂"),s("mi",null,"f")]),s("mrow",null,[s("mi",null,"∂"),s("mi",null,"x")])]),s("mo",null,","),s("mfrac",null,[s("mrow",null,[s("mi",null,"∂"),s("mi",null,"f")]),s("mrow",null,[s("mi",null,"∂"),s("mi",null,"y")])]),s("mo",null,","),s("mfrac",null,[s("mrow",null,[s("mi",null,"∂"),s("mi",null,"f")]),s("mrow",null,[s("mi",null,"∂"),s("mi",null,"z")])]),s("mo",{"data-mjx-texclass":"CLOSE"},")")])])],-1),w=a(`

Arguments:

  • func: 三元函数
  • p: 点
  • epsilon: 偏移量

Return: 梯度

Source code or View on GitHub
python
def cal_gradient_3vf(func: ThreeSingleVarsFunc, p: Point3, epsilon: float=EPSILON) -> Vector3:
-    """
-    计算三元函数在某点的梯度向量。
-    > [!tip]
-    > 已知一个函数$f(x, y, z)$,则其在点$(x_0, y_0, z_0)$处的梯度向量为:
-    $\\\\nabla f(x_0, y_0, z_0) = \\\\left(\\\\frac{\\\\partial f}{\\\\partial x}, \\\\frac{\\\\partial f}{\\\\partial y}, \\\\frac{\\\\partial f}{\\\\partial z}\\\\right)$
-    Args:
-        func: 三元函数
-        p: 点
-        epsilon: 偏移量
-    Returns:
-        梯度
-    """
-    dx = (func(p.x + epsilon, p.y, p.z) - func(p.x - epsilon, p.y, p.z)) / (2 * epsilon)
-    dy = (func(p.x, p.y + epsilon, p.z) - func(p.x, p.y - epsilon, p.z)) / (2 * epsilon)
-    dz = (func(p.x, p.y, p.z + epsilon) - func(p.x, p.y, p.z - epsilon)) / (2 * epsilon)
-    return Vector3(dx, dy, dz)

def curry(func: MultiVarsFunc, *args: Var) -> OneVarFunc

Description: 对多参数函数进行柯里化。

TIP

有关函数柯里化,可参考函数式编程--柯理化(Currying)

Arguments:

  • func: 函数
  • *args: 参数

Return: 柯里化后的函数

Examples:

python
def add(a: int, b: int, c: int) -> int:
-    return a + b + c
-add_curried = curry(add, 1, 2)
-add_curried(3)  # 6
Source code or View on GitHub
python
def curry(func: MultiVarsFunc, *args: Var) -> OneVarFunc:
-    """
-    对多参数函数进行柯里化。
-    > [!tip]
-    > 有关函数柯里化,可参考[函数式编程--柯理化(Currying)](https://zhuanlan.zhihu.com/p/355859667)
-    Args:
-        func: 函数
-        *args: 参数
-    Returns:
-        柯里化后的函数
-    Examples:
-        \`\`\`python
-        def add(a: int, b: int, c: int) -> int:
-            return a + b + c
-        add_curried = curry(add, 1, 2)
-        add_curried(3)  # 6
-        \`\`\`
-    """
-
-    def curried_func(*args2: Var) -> Var:
-        """@litedoc-hide"""
-        return func(*args, *args2)
-    return curried_func
`,13);function x(b,L,H,B,M,D){return i(),t("div",null,[Q,s("div",T,[h,s("p",null,[n("已知一个函数"),s("mjx-container",p,[(i(),t("svg",r,o)),k]),n(",则其在点"),s("mjx-container",m,[(i(),t("svg",g,y)),u]),n("处的梯度向量为: "),s("mjx-container",E,[(i(),t("svg",F,_)),C])])]),w])}const A=l(e,[["render",x]]);export{Z as __pageData,A as default}; diff --git a/assets/en_api_mp_math_function.md.sTyZQ9Kp.lean.js b/assets/en_api_mp_math_function.md.sTyZQ9Kp.lean.js deleted file mode 100644 index 9ecfafa..0000000 --- a/assets/en_api_mp_math_function.md.sTyZQ9Kp.lean.js +++ /dev/null @@ -1 +0,0 @@ -import{_ as l,c as t,j as s,a as n,a4 as a,o as i}from"./chunks/framework.DpC1ZpOZ.js";const Z=JSON.parse('{"title":"mbcp.mp_math.function","description":"","frontmatter":{"title":"mbcp.mp_math.function","editLink":false},"headers":[],"relativePath":"en/api/mp_math/function.md","filePath":"en/api/mp_math/function.md","lastUpdated":null}'),e={name:"en/api/mp_math/function.md"},Q=a("",4),T={class:"tip custom-block github-alert"},h=s("p",{class:"custom-block-title"},"TIP",-1),p={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},r={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.471ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 3744.3 1000","aria-hidden":"true"},d=a("",1),o=[d],k=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"f"),s("mo",{stretchy:"false"},"("),s("mi",null,"x"),s("mo",null,","),s("mi",null,"y"),s("mo",null,","),s("mi",null,"z"),s("mo",{stretchy:"false"},")")])],-1),m={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},g={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.19ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 4504 1000","aria-hidden":"true"},c=a("",1),y=[c],u=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mo",{stretchy:"false"},"("),s("msub",null,[s("mi",null,"x"),s("mn",null,"0")]),s("mo",null,","),s("msub",null,[s("mi",null,"y"),s("mn",null,"0")]),s("mo",null,","),s("msub",null,[s("mi",null,"z"),s("mn",null,"0")]),s("mo",{stretchy:"false"},")")])],-1),E={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},F={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-1.469ex"},xmlns:"http://www.w3.org/2000/svg",width:"29.427ex",height:"4.07ex",role:"img",focusable:"false",viewBox:"0 -1149.5 13006.8 1799","aria-hidden":"true"},f=a("",1),_=[f],C=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",{mathvariant:"normal"},"∇"),s("mi",null,"f"),s("mo",{stretchy:"false"},"("),s("msub",null,[s("mi",null,"x"),s("mn",null,"0")]),s("mo",null,","),s("msub",null,[s("mi",null,"y"),s("mn",null,"0")]),s("mo",null,","),s("msub",null,[s("mi",null,"z"),s("mn",null,"0")]),s("mo",{stretchy:"false"},")"),s("mo",null,"="),s("mrow",{"data-mjx-texclass":"INNER"},[s("mo",{"data-mjx-texclass":"OPEN"},"("),s("mfrac",null,[s("mrow",null,[s("mi",null,"∂"),s("mi",null,"f")]),s("mrow",null,[s("mi",null,"∂"),s("mi",null,"x")])]),s("mo",null,","),s("mfrac",null,[s("mrow",null,[s("mi",null,"∂"),s("mi",null,"f")]),s("mrow",null,[s("mi",null,"∂"),s("mi",null,"y")])]),s("mo",null,","),s("mfrac",null,[s("mrow",null,[s("mi",null,"∂"),s("mi",null,"f")]),s("mrow",null,[s("mi",null,"∂"),s("mi",null,"z")])]),s("mo",{"data-mjx-texclass":"CLOSE"},")")])])],-1),w=a("",13);function x(b,L,H,B,M,D){return i(),t("div",null,[Q,s("div",T,[h,s("p",null,[n("已知一个函数"),s("mjx-container",p,[(i(),t("svg",r,o)),k]),n(",则其在点"),s("mjx-container",m,[(i(),t("svg",g,y)),u]),n("处的梯度向量为: "),s("mjx-container",E,[(i(),t("svg",F,_)),C])])]),w])}const A=l(e,[["render",x]]);export{Z as __pageData,A as default}; diff --git a/assets/en_api_mp_math_index.md.ChUIwSIA.js b/assets/en_api_mp_math_index.md.ChUIwSIA.js new file mode 100644 index 0000000..261fbc2 --- /dev/null +++ b/assets/en_api_mp_math_index.md.ChUIwSIA.js @@ -0,0 +1 @@ +import{_ as e,c as t,o as a,a4 as o}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math","description":"","frontmatter":{"title":"mbcp.mp_math","collapsed":true},"headers":[],"relativePath":"en/api/mp_math/index.md","filePath":"en/api/mp_math/index.md","lastUpdated":1724915255000}'),c={name:"en/api/mp_math/index.md"},i=o('

mbcp.mp_math

Description: 本包定义了一些常用的导入,可直接从mbcp.mp_math导入使用 导入的类有:

  • AnyAngle:任意角
  • CurveEquation:曲线方程
  • Line3:三维直线
  • Plane3:三维平面
  • Point3:三维点
  • Segment3:三维线段
  • Vector3:三维向量
',3),d=[i];function m(n,p,l,_,r,s){return a(),t("div",null,d)}const b=e(c,[["render",m]]);export{u as __pageData,b as default}; diff --git a/assets/en_api_mp_math_index.md.ChUIwSIA.lean.js b/assets/en_api_mp_math_index.md.ChUIwSIA.lean.js new file mode 100644 index 0000000..6602e28 --- /dev/null +++ b/assets/en_api_mp_math_index.md.ChUIwSIA.lean.js @@ -0,0 +1 @@ +import{_ as e,c as t,o as a,a4 as o}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math","description":"","frontmatter":{"title":"mbcp.mp_math","collapsed":true},"headers":[],"relativePath":"en/api/mp_math/index.md","filePath":"en/api/mp_math/index.md","lastUpdated":1724915255000}'),c={name:"en/api/mp_math/index.md"},i=o("",3),d=[i];function m(n,p,l,_,r,s){return a(),t("div",null,d)}const b=e(c,[["render",m]]);export{u as __pageData,b as default}; diff --git a/assets/en_api_mp_math_index.md.DRjWG5hd.js b/assets/en_api_mp_math_index.md.DRjWG5hd.js deleted file mode 100644 index 1cea85a..0000000 --- a/assets/en_api_mp_math_index.md.DRjWG5hd.js +++ /dev/null @@ -1 +0,0 @@ -import{_ as e,c as t,o as a,a4 as o}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math","description":"","frontmatter":{"title":"mbcp.mp_math","editLink":false,"collapsed":true},"headers":[],"relativePath":"en/api/mp_math/index.md","filePath":"en/api/mp_math/index.md","lastUpdated":1724915255000}'),c={name:"en/api/mp_math/index.md"},i=o('

mbcp.mp_math

Description: 本包定义了一些常用的导入,可直接从mbcp.mp_math导入使用 导入的类有:

  • AnyAngle:任意角
  • CurveEquation:曲线方程
  • Line3:三维直线
  • Plane3:三维平面
  • Point3:三维点
  • Segment3:三维线段
  • Vector3:三维向量
',3),d=[i];function n(m,l,p,_,r,s){return a(),t("div",null,d)}const f=e(c,[["render",n]]);export{u as __pageData,f as default}; diff --git a/assets/en_api_mp_math_index.md.DRjWG5hd.lean.js b/assets/en_api_mp_math_index.md.DRjWG5hd.lean.js deleted file mode 100644 index 930745f..0000000 --- a/assets/en_api_mp_math_index.md.DRjWG5hd.lean.js +++ /dev/null @@ -1 +0,0 @@ -import{_ as e,c as t,o as a,a4 as o}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math","description":"","frontmatter":{"title":"mbcp.mp_math","editLink":false,"collapsed":true},"headers":[],"relativePath":"en/api/mp_math/index.md","filePath":"en/api/mp_math/index.md","lastUpdated":1724915255000}'),c={name:"en/api/mp_math/index.md"},i=o("",3),d=[i];function n(m,l,p,_,r,s){return a(),t("div",null,d)}const f=e(c,[["render",n]]);export{u as __pageData,f as default}; diff --git a/assets/en_api_mp_math_line.md.BeveAfEc.lean.js b/assets/en_api_mp_math_line.md.BeveAfEc.lean.js deleted file mode 100644 index 342b8a7..0000000 --- a/assets/en_api_mp_math_line.md.BeveAfEc.lean.js +++ /dev/null @@ -1 +0,0 @@ -import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const E=JSON.parse('{"title":"mbcp.mp_math.line","description":"","frontmatter":{"title":"mbcp.mp_math.line","editLink":false},"headers":[],"relativePath":"en/api/mp_math/line.md","filePath":"en/api/mp_math/line.md","lastUpdated":1724915255000}'),t={name:"en/api/mp_math/line.md"},l=n("",107),e=[l];function p(h,k,r,o,d,g){return a(),i("div",null,e)}const c=s(t,[["render",p]]);export{E as __pageData,c as default}; diff --git a/assets/en_api_mp_math_line.md.BeveAfEc.js b/assets/en_api_mp_math_line.md.CsLkFBW5.js similarity index 96% rename from assets/en_api_mp_math_line.md.BeveAfEc.js rename to assets/en_api_mp_math_line.md.CsLkFBW5.js index dc10426..82426bd 100644 --- a/assets/en_api_mp_math_line.md.BeveAfEc.js +++ b/assets/en_api_mp_math_line.md.CsLkFBW5.js @@ -1,4 +1,4 @@ -import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const E=JSON.parse('{"title":"mbcp.mp_math.line","description":"","frontmatter":{"title":"mbcp.mp_math.line","editLink":false},"headers":[],"relativePath":"en/api/mp_math/line.md","filePath":"en/api/mp_math/line.md","lastUpdated":1724915255000}'),t={name:"en/api/mp_math/line.md"},l=n(`

mbcp.mp_math.line

Description: 本模块定义了三维空间中的直线类

class Line3

def __init__(self, point: Point3, direction: Vector3)

Description: 三维空间中的直线。由一个点和一个方向向量确定。

Arguments:

  • point: 直线上的一点
  • direction: 直线的方向向量
Source code or View on GitHub
python
def __init__(self, point: 'Point3', direction: 'Vector3'):
+import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const E=JSON.parse('{"title":"mbcp.mp_math.line","description":"","frontmatter":{"title":"mbcp.mp_math.line"},"headers":[],"relativePath":"en/api/mp_math/line.md","filePath":"en/api/mp_math/line.md","lastUpdated":1724915255000}'),t={name:"en/api/mp_math/line.md"},l=n(`

mbcp.mp_math.line

Description: 本模块定义了三维空间中的直线类

class Line3

def __init__(self, point: Point3, direction: Vector3)

Description: 三维空间中的直线。由一个点和一个方向向量确定。

Arguments:

  • point: 直线上的一点
  • direction: 直线的方向向量
Source code or View on GitHub
python
def __init__(self, point: 'Point3', direction: 'Vector3'):
     """
         三维空间中的直线。由一个点和一个方向向量确定。
         Args:
diff --git a/assets/en_api_mp_math_line.md.CsLkFBW5.lean.js b/assets/en_api_mp_math_line.md.CsLkFBW5.lean.js
new file mode 100644
index 0000000..de6a1d0
--- /dev/null
+++ b/assets/en_api_mp_math_line.md.CsLkFBW5.lean.js
@@ -0,0 +1 @@
+import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const E=JSON.parse('{"title":"mbcp.mp_math.line","description":"","frontmatter":{"title":"mbcp.mp_math.line"},"headers":[],"relativePath":"en/api/mp_math/line.md","filePath":"en/api/mp_math/line.md","lastUpdated":1724915255000}'),t={name:"en/api/mp_math/line.md"},l=n("",107),e=[l];function p(h,k,r,o,d,g){return a(),i("div",null,e)}const c=s(t,[["render",p]]);export{E as __pageData,c as default};
diff --git a/assets/en_api_mp_math_mp_math.md.Bg5eFIMk.js b/assets/en_api_mp_math_mp_math.md.Bg5eFIMk.js
deleted file mode 100644
index b5a7c62..0000000
--- a/assets/en_api_mp_math_mp_math.md.Bg5eFIMk.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as e,c as t,o as a,a4 as o}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math","description":"","frontmatter":{"title":"mbcp.mp_math","editLink":false,"collapsed":true},"headers":[],"relativePath":"en/api/mp_math/mp_math.md","filePath":"en/api/mp_math/mp_math.md","lastUpdated":null}'),c={name:"en/api/mp_math/mp_math.md"},m=o('

mbcp.mp_math

Description: 本包定义了一些常用的导入,可直接从mbcp.mp_math导入使用 导入的类有:

  • AnyAngle:任意角
  • CurveEquation:曲线方程
  • Line3:三维直线
  • Plane3:三维平面
  • Point3:三维点
  • Segment3:三维线段
  • Vector3:三维向量
',3),i=[m];function p(_,l,d,n,r,s){return a(),t("div",null,i)}const f=e(c,[["render",p]]);export{u as __pageData,f as default}; diff --git a/assets/en_api_mp_math_mp_math.md.Bg5eFIMk.lean.js b/assets/en_api_mp_math_mp_math.md.Bg5eFIMk.lean.js deleted file mode 100644 index 907ac7d..0000000 --- a/assets/en_api_mp_math_mp_math.md.Bg5eFIMk.lean.js +++ /dev/null @@ -1 +0,0 @@ -import{_ as e,c as t,o as a,a4 as o}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math","description":"","frontmatter":{"title":"mbcp.mp_math","editLink":false,"collapsed":true},"headers":[],"relativePath":"en/api/mp_math/mp_math.md","filePath":"en/api/mp_math/mp_math.md","lastUpdated":null}'),c={name:"en/api/mp_math/mp_math.md"},m=o("",3),i=[m];function p(_,l,d,n,r,s){return a(),t("div",null,i)}const f=e(c,[["render",p]]);export{u as __pageData,f as default}; diff --git a/assets/en_api_mp_math_mp_math.md.DJS2qf3J.js b/assets/en_api_mp_math_mp_math.md.DJS2qf3J.js new file mode 100644 index 0000000..da7c8c4 --- /dev/null +++ b/assets/en_api_mp_math_mp_math.md.DJS2qf3J.js @@ -0,0 +1 @@ +import{_ as e,c as t,o as a,a4 as o}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math","description":"","frontmatter":{"title":"mbcp.mp_math","collapsed":true},"headers":[],"relativePath":"en/api/mp_math/mp_math.md","filePath":"en/api/mp_math/mp_math.md","lastUpdated":null}'),c={name:"en/api/mp_math/mp_math.md"},m=o('

mbcp.mp_math

Description: 本包定义了一些常用的导入,可直接从mbcp.mp_math导入使用 导入的类有:

  • AnyAngle:任意角
  • CurveEquation:曲线方程
  • Line3:三维直线
  • Plane3:三维平面
  • Point3:三维点
  • Segment3:三维线段
  • Vector3:三维向量
',3),i=[m];function p(_,l,d,n,r,s){return a(),t("div",null,i)}const b=e(c,[["render",p]]);export{u as __pageData,b as default}; diff --git a/assets/en_api_mp_math_mp_math.md.DJS2qf3J.lean.js b/assets/en_api_mp_math_mp_math.md.DJS2qf3J.lean.js new file mode 100644 index 0000000..57c0bf3 --- /dev/null +++ b/assets/en_api_mp_math_mp_math.md.DJS2qf3J.lean.js @@ -0,0 +1 @@ +import{_ as e,c as t,o as a,a4 as o}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math","description":"","frontmatter":{"title":"mbcp.mp_math","collapsed":true},"headers":[],"relativePath":"en/api/mp_math/mp_math.md","filePath":"en/api/mp_math/mp_math.md","lastUpdated":null}'),c={name:"en/api/mp_math/mp_math.md"},m=o("",3),i=[m];function p(_,l,d,n,r,s){return a(),t("div",null,i)}const b=e(c,[["render",p]]);export{u as __pageData,b as default}; diff --git a/assets/en_api_mp_math_mp_math_typing.md.BR4PPCj-.js b/assets/en_api_mp_math_mp_math_typing.md.BR4PPCj-.js new file mode 100644 index 0000000..ff816a9 --- /dev/null +++ b/assets/en_api_mp_math_mp_math_typing.md.BR4PPCj-.js @@ -0,0 +1 @@ +import{_ as a,c as r,o as e,a4 as l}from"./chunks/framework.DpC1ZpOZ.js";const h=JSON.parse('{"title":"mbcp.mp_math.mp_math_typing","description":"","frontmatter":{"title":"mbcp.mp_math.mp_math_typing"},"headers":[],"relativePath":"en/api/mp_math/mp_math_typing.md","filePath":"en/api/mp_math/mp_math_typing.md","lastUpdated":1724915255000}'),n={name:"en/api/mp_math/mp_math_typing.md"},i=l('

mbcp.mp_math.mp_math_typing

Description: 本模块用于内部类型提示

var RealNumber = int | float

  • Type: TypeAlias

  • Description: 实数

var Number = RealNumber | complex

  • Type: TypeAlias

  • Description: 数

var SingleVar = TypeVar('SingleVar', bound=Number)

  • Description: 单变量

var ArrayVar = TypeVar('ArrayVar', bound=Iterable[Number])

  • Description: 数组变量

var Var = SingleVar | ArrayVar

  • Type: TypeAlias

  • Description: 变量

var OneSingleVarFunc = Callable[[SingleVar], SingleVar]

  • Type: TypeAlias

  • Description: 一元单变量函数

var OneArrayFunc = Callable[[ArrayVar], ArrayVar]

  • Type: TypeAlias

  • Description: 一元数组函数

var OneVarFunc = OneSingleVarFunc | OneArrayFunc

  • Type: TypeAlias

  • Description: 一元函数

var TwoSingleVarsFunc = Callable[[SingleVar, SingleVar], SingleVar]

  • Type: TypeAlias

  • Description: 二元单变量函数

var TwoArraysFunc = Callable[[ArrayVar, ArrayVar], ArrayVar]

  • Type: TypeAlias

  • Description: 二元数组函数

var TwoVarsFunc = TwoSingleVarsFunc | TwoArraysFunc

  • Type: TypeAlias

  • Description: 二元函数

var ThreeSingleVarsFunc = Callable[[SingleVar, SingleVar, SingleVar], SingleVar]

  • Type: TypeAlias

  • Description: 三元单变量函数

var ThreeArraysFunc = Callable[[ArrayVar, ArrayVar, ArrayVar], ArrayVar]

  • Type: TypeAlias

  • Description: 三元数组函数

var ThreeVarsFunc = ThreeSingleVarsFunc | ThreeArraysFunc

  • Type: TypeAlias

  • Description: 三元函数

var MultiSingleVarsFunc = Callable[..., SingleVar]

  • Type: TypeAlias

  • Description: 多元单变量函数

var MultiArraysFunc = Callable[..., ArrayVar]

  • Type: TypeAlias

  • Description: 多元数组函数

var MultiVarsFunc = MultiSingleVarsFunc | MultiArraysFunc

  • Type: TypeAlias

  • Description: 多元函数

',36),o=[i];function c(t,s,u,d,p,g){return e(),r("div",null,o)}const y=a(n,[["render",c]]);export{h as __pageData,y as default}; diff --git a/assets/en_api_mp_math_mp_math_typing.md.BR4PPCj-.lean.js b/assets/en_api_mp_math_mp_math_typing.md.BR4PPCj-.lean.js new file mode 100644 index 0000000..3960463 --- /dev/null +++ b/assets/en_api_mp_math_mp_math_typing.md.BR4PPCj-.lean.js @@ -0,0 +1 @@ +import{_ as a,c as r,o as e,a4 as l}from"./chunks/framework.DpC1ZpOZ.js";const h=JSON.parse('{"title":"mbcp.mp_math.mp_math_typing","description":"","frontmatter":{"title":"mbcp.mp_math.mp_math_typing"},"headers":[],"relativePath":"en/api/mp_math/mp_math_typing.md","filePath":"en/api/mp_math/mp_math_typing.md","lastUpdated":1724915255000}'),n={name:"en/api/mp_math/mp_math_typing.md"},i=l("",36),o=[i];function c(t,s,u,d,p,g){return e(),r("div",null,o)}const y=a(n,[["render",c]]);export{h as __pageData,y as default}; diff --git a/assets/en_api_mp_math_mp_math_typing.md.By9al44H.js b/assets/en_api_mp_math_mp_math_typing.md.By9al44H.js deleted file mode 100644 index 59ac73b..0000000 --- a/assets/en_api_mp_math_mp_math_typing.md.By9al44H.js +++ /dev/null @@ -1 +0,0 @@ -import{_ as a,c as r,o as e,a4 as l}from"./chunks/framework.DpC1ZpOZ.js";const h=JSON.parse('{"title":"mbcp.mp_math.mp_math_typing","description":"","frontmatter":{"title":"mbcp.mp_math.mp_math_typing","editLink":false},"headers":[],"relativePath":"en/api/mp_math/mp_math_typing.md","filePath":"en/api/mp_math/mp_math_typing.md","lastUpdated":1724915255000}'),n={name:"en/api/mp_math/mp_math_typing.md"},i=l('

mbcp.mp_math.mp_math_typing

Description: 本模块用于内部类型提示

var RealNumber = int | float

  • Type: TypeAlias

  • Description: 实数

var Number = RealNumber | complex

  • Type: TypeAlias

  • Description: 数

var SingleVar = TypeVar('SingleVar', bound=Number)

  • Description: 单变量

var ArrayVar = TypeVar('ArrayVar', bound=Iterable[Number])

  • Description: 数组变量

var Var = SingleVar | ArrayVar

  • Type: TypeAlias

  • Description: 变量

var OneSingleVarFunc = Callable[[SingleVar], SingleVar]

  • Type: TypeAlias

  • Description: 一元单变量函数

var OneArrayFunc = Callable[[ArrayVar], ArrayVar]

  • Type: TypeAlias

  • Description: 一元数组函数

var OneVarFunc = OneSingleVarFunc | OneArrayFunc

  • Type: TypeAlias

  • Description: 一元函数

var TwoSingleVarsFunc = Callable[[SingleVar, SingleVar], SingleVar]

  • Type: TypeAlias

  • Description: 二元单变量函数

var TwoArraysFunc = Callable[[ArrayVar, ArrayVar], ArrayVar]

  • Type: TypeAlias

  • Description: 二元数组函数

var TwoVarsFunc = TwoSingleVarsFunc | TwoArraysFunc

  • Type: TypeAlias

  • Description: 二元函数

var ThreeSingleVarsFunc = Callable[[SingleVar, SingleVar, SingleVar], SingleVar]

  • Type: TypeAlias

  • Description: 三元单变量函数

var ThreeArraysFunc = Callable[[ArrayVar, ArrayVar, ArrayVar], ArrayVar]

  • Type: TypeAlias

  • Description: 三元数组函数

var ThreeVarsFunc = ThreeSingleVarsFunc | ThreeArraysFunc

  • Type: TypeAlias

  • Description: 三元函数

var MultiSingleVarsFunc = Callable[..., SingleVar]

  • Type: TypeAlias

  • Description: 多元单变量函数

var MultiArraysFunc = Callable[..., ArrayVar]

  • Type: TypeAlias

  • Description: 多元数组函数

var MultiVarsFunc = MultiSingleVarsFunc | MultiArraysFunc

  • Type: TypeAlias

  • Description: 多元函数

',36),o=[i];function t(c,s,u,d,p,g){return e(),r("div",null,o)}const y=a(n,[["render",t]]);export{h as __pageData,y as default}; diff --git a/assets/en_api_mp_math_mp_math_typing.md.By9al44H.lean.js b/assets/en_api_mp_math_mp_math_typing.md.By9al44H.lean.js deleted file mode 100644 index d21dfcb..0000000 --- a/assets/en_api_mp_math_mp_math_typing.md.By9al44H.lean.js +++ /dev/null @@ -1 +0,0 @@ -import{_ as a,c as r,o as e,a4 as l}from"./chunks/framework.DpC1ZpOZ.js";const h=JSON.parse('{"title":"mbcp.mp_math.mp_math_typing","description":"","frontmatter":{"title":"mbcp.mp_math.mp_math_typing","editLink":false},"headers":[],"relativePath":"en/api/mp_math/mp_math_typing.md","filePath":"en/api/mp_math/mp_math_typing.md","lastUpdated":1724915255000}'),n={name:"en/api/mp_math/mp_math_typing.md"},i=l("",36),o=[i];function t(c,s,u,d,p,g){return e(),r("div",null,o)}const y=a(n,[["render",t]]);export{h as __pageData,y as default}; diff --git a/assets/en_api_mp_math_plane.md.DS5OUSgQ.lean.js b/assets/en_api_mp_math_plane.md.DS5OUSgQ.lean.js deleted file mode 100644 index 1ab4771..0000000 --- a/assets/en_api_mp_math_plane.md.DS5OUSgQ.lean.js +++ /dev/null @@ -1 +0,0 @@ -import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const y=JSON.parse('{"title":"mbcp.mp_math.plane","description":"","frontmatter":{"title":"mbcp.mp_math.plane","editLink":false},"headers":[],"relativePath":"en/api/mp_math/plane.md","filePath":"en/api/mp_math/plane.md","lastUpdated":1724915255000}'),l={name:"en/api/mp_math/plane.md"},t=n("",105),h=[t];function p(e,k,r,d,E,o){return a(),i("div",null,h)}const F=s(l,[["render",p]]);export{y as __pageData,F as default}; diff --git a/assets/en_api_mp_math_plane.md.DS5OUSgQ.js b/assets/en_api_mp_math_plane.md.DjH7GwuZ.js similarity index 96% rename from assets/en_api_mp_math_plane.md.DS5OUSgQ.js rename to assets/en_api_mp_math_plane.md.DjH7GwuZ.js index a3e657b..f980837 100644 --- a/assets/en_api_mp_math_plane.md.DS5OUSgQ.js +++ b/assets/en_api_mp_math_plane.md.DjH7GwuZ.js @@ -1,4 +1,4 @@ -import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const y=JSON.parse('{"title":"mbcp.mp_math.plane","description":"","frontmatter":{"title":"mbcp.mp_math.plane","editLink":false},"headers":[],"relativePath":"en/api/mp_math/plane.md","filePath":"en/api/mp_math/plane.md","lastUpdated":1724915255000}'),l={name:"en/api/mp_math/plane.md"},t=n(`

mbcp.mp_math.plane

Description: 本模块定义了三维空间中的平面类

class Plane3

def __init__(self, a: float, b: float, c: float, d: float)

Description: 平面方程:ax + by + cz + d = 0

Arguments:

  • a: x系数
  • b: y系数
  • c: z系数
  • d: 常数项
Source code or View on GitHub
python
def __init__(self, a: float, b: float, c: float, d: float):
+import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const y=JSON.parse('{"title":"mbcp.mp_math.plane","description":"","frontmatter":{"title":"mbcp.mp_math.plane"},"headers":[],"relativePath":"en/api/mp_math/plane.md","filePath":"en/api/mp_math/plane.md","lastUpdated":1724915255000}'),l={name:"en/api/mp_math/plane.md"},t=n(`

mbcp.mp_math.plane

Description: 本模块定义了三维空间中的平面类

class Plane3

def __init__(self, a: float, b: float, c: float, d: float)

Description: 平面方程:ax + by + cz + d = 0

Arguments:

  • a: x系数
  • b: y系数
  • c: z系数
  • d: 常数项
Source code or View on GitHub
python
def __init__(self, a: float, b: float, c: float, d: float):
     """
         平面方程:ax + by + cz + d = 0
         Args:
diff --git a/assets/en_api_mp_math_plane.md.DjH7GwuZ.lean.js b/assets/en_api_mp_math_plane.md.DjH7GwuZ.lean.js
new file mode 100644
index 0000000..2639b52
--- /dev/null
+++ b/assets/en_api_mp_math_plane.md.DjH7GwuZ.lean.js
@@ -0,0 +1 @@
+import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const y=JSON.parse('{"title":"mbcp.mp_math.plane","description":"","frontmatter":{"title":"mbcp.mp_math.plane"},"headers":[],"relativePath":"en/api/mp_math/plane.md","filePath":"en/api/mp_math/plane.md","lastUpdated":1724915255000}'),l={name:"en/api/mp_math/plane.md"},t=n("",105),h=[t];function p(e,k,r,d,E,o){return a(),i("div",null,h)}const F=s(l,[["render",p]]);export{y as __pageData,F as default};
diff --git a/assets/en_api_mp_math_point.md.mIUs1IAB.js b/assets/en_api_mp_math_point.md.BWVvxLrx.js
similarity index 89%
rename from assets/en_api_mp_math_point.md.mIUs1IAB.js
rename to assets/en_api_mp_math_point.md.BWVvxLrx.js
index d2014d6..a2e8fe5 100644
--- a/assets/en_api_mp_math_point.md.mIUs1IAB.js
+++ b/assets/en_api_mp_math_point.md.BWVvxLrx.js
@@ -1,4 +1,4 @@
-import{_ as s,c as i,o as a,a4 as t}from"./chunks/framework.DpC1ZpOZ.js";const c=JSON.parse('{"title":"mbcp.mp_math.point","description":"","frontmatter":{"title":"mbcp.mp_math.point","editLink":false},"headers":[],"relativePath":"en/api/mp_math/point.md","filePath":"en/api/mp_math/point.md","lastUpdated":1724915255000}'),n={name:"en/api/mp_math/point.md"},e=t(`

mbcp.mp_math.point

Description: 本模块定义了三维空间中点的类。

class Point3

def __init__(self, x: float, y: float, z: float)

Description: 笛卡尔坐标系中的点。

Arguments:

  • x: x 坐标
  • y: y 坐标
  • z: z 坐标
Source code or View on GitHub
python
def __init__(self, x: float, y: float, z: float):
+import{_ as s,c as i,o as a,a4 as t}from"./chunks/framework.DpC1ZpOZ.js";const c=JSON.parse('{"title":"mbcp.mp_math.point","description":"","frontmatter":{"title":"mbcp.mp_math.point"},"headers":[],"relativePath":"en/api/mp_math/point.md","filePath":"en/api/mp_math/point.md","lastUpdated":1724915255000}'),n={name:"en/api/mp_math/point.md"},e=t(`

mbcp.mp_math.point

Description: 本模块定义了三维空间中点的类。

class Point3

def __init__(self, x: float, y: float, z: float)

Description: 笛卡尔坐标系中的点。

Arguments:

  • x: x 坐标
  • y: y 坐标
  • z: z 坐标
Source code or View on GitHub
python
def __init__(self, x: float, y: float, z: float):
     """
         笛卡尔坐标系中的点。
         Args:
diff --git a/assets/en_api_mp_math_point.md.BWVvxLrx.lean.js b/assets/en_api_mp_math_point.md.BWVvxLrx.lean.js
new file mode 100644
index 0000000..508da3a
--- /dev/null
+++ b/assets/en_api_mp_math_point.md.BWVvxLrx.lean.js
@@ -0,0 +1 @@
+import{_ as s,c as i,o as a,a4 as t}from"./chunks/framework.DpC1ZpOZ.js";const c=JSON.parse('{"title":"mbcp.mp_math.point","description":"","frontmatter":{"title":"mbcp.mp_math.point"},"headers":[],"relativePath":"en/api/mp_math/point.md","filePath":"en/api/mp_math/point.md","lastUpdated":1724915255000}'),n={name:"en/api/mp_math/point.md"},e=t("",36),l=[e];function h(p,k,o,r,d,g){return a(),i("div",null,l)}const y=s(n,[["render",h]]);export{c as __pageData,y as default};
diff --git a/assets/en_api_mp_math_point.md.mIUs1IAB.lean.js b/assets/en_api_mp_math_point.md.mIUs1IAB.lean.js
deleted file mode 100644
index a38cc2c..0000000
--- a/assets/en_api_mp_math_point.md.mIUs1IAB.lean.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as s,c as i,o as a,a4 as t}from"./chunks/framework.DpC1ZpOZ.js";const c=JSON.parse('{"title":"mbcp.mp_math.point","description":"","frontmatter":{"title":"mbcp.mp_math.point","editLink":false},"headers":[],"relativePath":"en/api/mp_math/point.md","filePath":"en/api/mp_math/point.md","lastUpdated":1724915255000}'),n={name:"en/api/mp_math/point.md"},e=t("",36),l=[e];function h(p,k,o,r,d,g){return a(),i("div",null,l)}const y=s(n,[["render",h]]);export{c as __pageData,y as default};
diff --git a/assets/en_api_mp_math_segment.md.l3KDDWfs.js b/assets/en_api_mp_math_segment.md.BE8bo5x9.js
similarity index 69%
rename from assets/en_api_mp_math_segment.md.l3KDDWfs.js
rename to assets/en_api_mp_math_segment.md.BE8bo5x9.js
index 82fdb17..8fd8a59 100644
--- a/assets/en_api_mp_math_segment.md.l3KDDWfs.js
+++ b/assets/en_api_mp_math_segment.md.BE8bo5x9.js
@@ -1,4 +1,4 @@
-import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const F=JSON.parse('{"title":"mbcp.mp_math.segment","description":"","frontmatter":{"title":"mbcp.mp_math.segment","editLink":false},"headers":[],"relativePath":"en/api/mp_math/segment.md","filePath":"en/api/mp_math/segment.md","lastUpdated":1724915255000}'),t={name:"en/api/mp_math/segment.md"},p=n(`

mbcp.mp_math.segment

Description: 本模块定义了三维空间中的线段类

class Segment3

def __init__(self, p1: Point3, p2: Point3)

Description: 三维空间中的线段。 :param p1: :param p2:

Source code or View on GitHub
python
def __init__(self, p1: 'Point3', p2: 'Point3'):
+import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const F=JSON.parse('{"title":"mbcp.mp_math.segment","description":"","frontmatter":{"title":"mbcp.mp_math.segment"},"headers":[],"relativePath":"en/api/mp_math/segment.md","filePath":"en/api/mp_math/segment.md","lastUpdated":1724915255000}'),t={name:"en/api/mp_math/segment.md"},p=n(`

mbcp.mp_math.segment

Description: 本模块定义了三维空间中的线段类

class Segment3

def __init__(self, p1: Point3, p2: Point3)

Description: 三维空间中的线段。 :param p1: :param p2:

Source code or View on GitHub
python
def __init__(self, p1: 'Point3', p2: 'Point3'):
     """
         三维空间中的线段。
         :param p1:
diff --git a/assets/en_api_mp_math_segment.md.BE8bo5x9.lean.js b/assets/en_api_mp_math_segment.md.BE8bo5x9.lean.js
new file mode 100644
index 0000000..1cde0f9
--- /dev/null
+++ b/assets/en_api_mp_math_segment.md.BE8bo5x9.lean.js
@@ -0,0 +1 @@
+import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const F=JSON.parse('{"title":"mbcp.mp_math.segment","description":"","frontmatter":{"title":"mbcp.mp_math.segment"},"headers":[],"relativePath":"en/api/mp_math/segment.md","filePath":"en/api/mp_math/segment.md","lastUpdated":1724915255000}'),t={name:"en/api/mp_math/segment.md"},p=n("",6),h=[p];function e(l,k,r,d,E,g){return a(),i("div",null,h)}const y=s(t,[["render",e]]);export{F as __pageData,y as default};
diff --git a/assets/en_api_mp_math_segment.md.l3KDDWfs.lean.js b/assets/en_api_mp_math_segment.md.l3KDDWfs.lean.js
deleted file mode 100644
index e794590..0000000
--- a/assets/en_api_mp_math_segment.md.l3KDDWfs.lean.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const F=JSON.parse('{"title":"mbcp.mp_math.segment","description":"","frontmatter":{"title":"mbcp.mp_math.segment","editLink":false},"headers":[],"relativePath":"en/api/mp_math/segment.md","filePath":"en/api/mp_math/segment.md","lastUpdated":1724915255000}'),t={name:"en/api/mp_math/segment.md"},p=n("",6),h=[p];function e(l,k,r,d,E,g){return a(),i("div",null,h)}const y=s(t,[["render",e]]);export{F as __pageData,y as default};
diff --git a/assets/en_api_mp_math_utils.md.BrPHvGZ2.js b/assets/en_api_mp_math_utils.md.BTOp0Uzp.js
similarity index 91%
rename from assets/en_api_mp_math_utils.md.BrPHvGZ2.js
rename to assets/en_api_mp_math_utils.md.BTOp0Uzp.js
index 2a641d4..cee67d9 100644
--- a/assets/en_api_mp_math_utils.md.BrPHvGZ2.js
+++ b/assets/en_api_mp_math_utils.md.BTOp0Uzp.js
@@ -1,4 +1,4 @@
-import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const F=JSON.parse('{"title":"mbcp.mp_math.utils","description":"","frontmatter":{"title":"mbcp.mp_math.utils","editLink":false},"headers":[],"relativePath":"en/api/mp_math/utils.md","filePath":"en/api/mp_math/utils.md","lastUpdated":1724915255000}'),t={name:"en/api/mp_math/utils.md"},l=n(`

mbcp.mp_math.utils

Description: 本模块定义了一些常用的工具函数

def clamp(x: float, min_: float, max_: float) -> float

Description: 区间限定函数

Arguments:

  • x: 待限定的值
  • min_: 最小值
  • max_: 最大值

Return: 限制后的值

Source code or View on GitHub
python
def clamp(x: float, min_: float, max_: float) -> float:
+import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const F=JSON.parse('{"title":"mbcp.mp_math.utils","description":"","frontmatter":{"title":"mbcp.mp_math.utils"},"headers":[],"relativePath":"en/api/mp_math/utils.md","filePath":"en/api/mp_math/utils.md","lastUpdated":1724915255000}'),t={name:"en/api/mp_math/utils.md"},l=n(`

mbcp.mp_math.utils

Description: 本模块定义了一些常用的工具函数

def clamp(x: float, min_: float, max_: float) -> float

Description: 区间限定函数

Arguments:

  • x: 待限定的值
  • min_: 最小值
  • max_: 最大值

Return: 限制后的值

Source code or View on GitHub
python
def clamp(x: float, min_: float, max_: float) -> float:
     """
     区间限定函数
     Args:
diff --git a/assets/en_api_mp_math_utils.md.BTOp0Uzp.lean.js b/assets/en_api_mp_math_utils.md.BTOp0Uzp.lean.js
new file mode 100644
index 0000000..4b5a1d4
--- /dev/null
+++ b/assets/en_api_mp_math_utils.md.BTOp0Uzp.lean.js
@@ -0,0 +1 @@
+import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const F=JSON.parse('{"title":"mbcp.mp_math.utils","description":"","frontmatter":{"title":"mbcp.mp_math.utils"},"headers":[],"relativePath":"en/api/mp_math/utils.md","filePath":"en/api/mp_math/utils.md","lastUpdated":1724915255000}'),t={name:"en/api/mp_math/utils.md"},l=n("",35),h=[l];function e(p,k,r,o,d,g){return a(),i("div",null,h)}const E=s(t,[["render",e]]);export{F as __pageData,E as default};
diff --git a/assets/en_api_mp_math_utils.md.BrPHvGZ2.lean.js b/assets/en_api_mp_math_utils.md.BrPHvGZ2.lean.js
deleted file mode 100644
index 1303577..0000000
--- a/assets/en_api_mp_math_utils.md.BrPHvGZ2.lean.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const F=JSON.parse('{"title":"mbcp.mp_math.utils","description":"","frontmatter":{"title":"mbcp.mp_math.utils","editLink":false},"headers":[],"relativePath":"en/api/mp_math/utils.md","filePath":"en/api/mp_math/utils.md","lastUpdated":1724915255000}'),t={name:"en/api/mp_math/utils.md"},l=n("",35),h=[l];function e(p,k,r,o,d,g){return a(),i("div",null,h)}const E=s(t,[["render",e]]);export{F as __pageData,E as default};
diff --git a/assets/en_api_mp_math_vector.md.BkOb6w9W.js b/assets/en_api_mp_math_vector.md.BND_-HDs.js
similarity index 97%
rename from assets/en_api_mp_math_vector.md.BkOb6w9W.js
rename to assets/en_api_mp_math_vector.md.BND_-HDs.js
index 4d499ba..a6dfc23 100644
--- a/assets/en_api_mp_math_vector.md.BkOb6w9W.js
+++ b/assets/en_api_mp_math_vector.md.BND_-HDs.js
@@ -1,4 +1,4 @@
-import{_ as s,c as i,o as a,a4 as t}from"./chunks/framework.DpC1ZpOZ.js";const c=JSON.parse('{"title":"mbcp.mp_math.vector","description":"","frontmatter":{"title":"mbcp.mp_math.vector","editLink":false},"headers":[],"relativePath":"en/api/mp_math/vector.md","filePath":"en/api/mp_math/vector.md","lastUpdated":1724915255000}'),n={name:"en/api/mp_math/vector.md"},e=t(`

mbcp.mp_math.vector

Description: 本模块定义了3维向量的类Vector3,以及一些常用的向量。

class Vector3

def __init__(self, x: float, y: float, z: float)

Description: 3维向量

Arguments:

  • x: x轴分量
  • y: y轴分量
  • z: z轴分量
Source code or View on GitHub
python
def __init__(self, x: float, y: float, z: float):
+import{_ as s,c as i,o as a,a4 as t}from"./chunks/framework.DpC1ZpOZ.js";const c=JSON.parse('{"title":"mbcp.mp_math.vector","description":"","frontmatter":{"title":"mbcp.mp_math.vector"},"headers":[],"relativePath":"en/api/mp_math/vector.md","filePath":"en/api/mp_math/vector.md","lastUpdated":1724915255000}'),n={name:"en/api/mp_math/vector.md"},e=t(`

mbcp.mp_math.vector

Description: 本模块定义了3维向量的类Vector3,以及一些常用的向量。

class Vector3

def __init__(self, x: float, y: float, z: float)

Description: 3维向量

Arguments:

  • x: x轴分量
  • y: y轴分量
  • z: z轴分量
Source code or View on GitHub
python
def __init__(self, x: float, y: float, z: float):
     """
         3维向量
         Args:
diff --git a/assets/en_api_mp_math_vector.md.BND_-HDs.lean.js b/assets/en_api_mp_math_vector.md.BND_-HDs.lean.js
new file mode 100644
index 0000000..af17dce
--- /dev/null
+++ b/assets/en_api_mp_math_vector.md.BND_-HDs.lean.js
@@ -0,0 +1 @@
+import{_ as s,c as i,o as a,a4 as t}from"./chunks/framework.DpC1ZpOZ.js";const c=JSON.parse('{"title":"mbcp.mp_math.vector","description":"","frontmatter":{"title":"mbcp.mp_math.vector"},"headers":[],"relativePath":"en/api/mp_math/vector.md","filePath":"en/api/mp_math/vector.md","lastUpdated":1724915255000}'),n={name:"en/api/mp_math/vector.md"},e=t("",127),h=[e];function l(p,k,r,o,d,g){return a(),i("div",null,h)}const y=s(n,[["render",l]]);export{c as __pageData,y as default};
diff --git a/assets/en_api_mp_math_vector.md.BkOb6w9W.lean.js b/assets/en_api_mp_math_vector.md.BkOb6w9W.lean.js
deleted file mode 100644
index efd9c12..0000000
--- a/assets/en_api_mp_math_vector.md.BkOb6w9W.lean.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as s,c as i,o as a,a4 as t}from"./chunks/framework.DpC1ZpOZ.js";const c=JSON.parse('{"title":"mbcp.mp_math.vector","description":"","frontmatter":{"title":"mbcp.mp_math.vector","editLink":false},"headers":[],"relativePath":"en/api/mp_math/vector.md","filePath":"en/api/mp_math/vector.md","lastUpdated":1724915255000}'),n={name:"en/api/mp_math/vector.md"},e=t("",127),h=[e];function l(p,k,r,o,d,g){return a(),i("div",null,h)}const y=s(n,[["render",l]]);export{c as __pageData,y as default};
diff --git a/assets/en_api_particle_index.md.LU1iJ7Ch.js b/assets/en_api_particle_index.md.LU1iJ7Ch.js
deleted file mode 100644
index c6d008d..0000000
--- a/assets/en_api_particle_index.md.LU1iJ7Ch.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as a,c,o as i,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp.particle","description":"","frontmatter":{"title":"mbcp.particle","editLink":false,"collapsed":true},"headers":[],"relativePath":"en/api/particle/index.md","filePath":"en/api/particle/index.md","lastUpdated":1724915255000}'),r={name:"en/api/particle/index.md"},n=e("h1",{id:"mbcp-particle",tabindex:"-1"},[t("mbcp.particle "),e("a",{class:"header-anchor",href:"#mbcp-particle","aria-label":'Permalink to "mbcp.particle"'},"​")],-1),p=e("p",null,[e("strong",null,"Description"),t(": 本模块定义了粒子生成相关的工具")],-1),s=[n,p];function l(o,d,_,m,h,f){return i(),c("div",null,s)}const u=a(r,[["render",l]]);export{b as __pageData,u as default};
diff --git a/assets/en_api_particle_index.md.LU1iJ7Ch.lean.js b/assets/en_api_particle_index.md.LU1iJ7Ch.lean.js
deleted file mode 100644
index c6d008d..0000000
--- a/assets/en_api_particle_index.md.LU1iJ7Ch.lean.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as a,c,o as i,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp.particle","description":"","frontmatter":{"title":"mbcp.particle","editLink":false,"collapsed":true},"headers":[],"relativePath":"en/api/particle/index.md","filePath":"en/api/particle/index.md","lastUpdated":1724915255000}'),r={name:"en/api/particle/index.md"},n=e("h1",{id:"mbcp-particle",tabindex:"-1"},[t("mbcp.particle "),e("a",{class:"header-anchor",href:"#mbcp-particle","aria-label":'Permalink to "mbcp.particle"'},"​")],-1),p=e("p",null,[e("strong",null,"Description"),t(": 本模块定义了粒子生成相关的工具")],-1),s=[n,p];function l(o,d,_,m,h,f){return i(),c("div",null,s)}const u=a(r,[["render",l]]);export{b as __pageData,u as default};
diff --git a/assets/en_api_particle_index.md._wUK3v42.js b/assets/en_api_particle_index.md._wUK3v42.js
new file mode 100644
index 0000000..583357a
--- /dev/null
+++ b/assets/en_api_particle_index.md._wUK3v42.js
@@ -0,0 +1 @@
+import{_ as a,c,o as r,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp.particle","description":"","frontmatter":{"title":"mbcp.particle","collapsed":true},"headers":[],"relativePath":"en/api/particle/index.md","filePath":"en/api/particle/index.md","lastUpdated":1724915255000}'),i={name:"en/api/particle/index.md"},n=e("h1",{id:"mbcp-particle",tabindex:"-1"},[t("mbcp.particle "),e("a",{class:"header-anchor",href:"#mbcp-particle","aria-label":'Permalink to "mbcp.particle"'},"​")],-1),p=e("p",null,[e("strong",null,"Description"),t(": 本模块定义了粒子生成相关的工具")],-1),s=[n,p];function l(o,d,_,m,h,f){return r(),c("div",null,s)}const u=a(i,[["render",l]]);export{b as __pageData,u as default};
diff --git a/assets/en_api_particle_index.md._wUK3v42.lean.js b/assets/en_api_particle_index.md._wUK3v42.lean.js
new file mode 100644
index 0000000..583357a
--- /dev/null
+++ b/assets/en_api_particle_index.md._wUK3v42.lean.js
@@ -0,0 +1 @@
+import{_ as a,c,o as r,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp.particle","description":"","frontmatter":{"title":"mbcp.particle","collapsed":true},"headers":[],"relativePath":"en/api/particle/index.md","filePath":"en/api/particle/index.md","lastUpdated":1724915255000}'),i={name:"en/api/particle/index.md"},n=e("h1",{id:"mbcp-particle",tabindex:"-1"},[t("mbcp.particle "),e("a",{class:"header-anchor",href:"#mbcp-particle","aria-label":'Permalink to "mbcp.particle"'},"​")],-1),p=e("p",null,[e("strong",null,"Description"),t(": 本模块定义了粒子生成相关的工具")],-1),s=[n,p];function l(o,d,_,m,h,f){return r(),c("div",null,s)}const u=a(i,[["render",l]]);export{b as __pageData,u as default};
diff --git a/assets/en_api_particle_particle.md.BFOr8qjE.js b/assets/en_api_particle_particle.md.BFOr8qjE.js
deleted file mode 100644
index 354dc17..0000000
--- a/assets/en_api_particle_particle.md.BFOr8qjE.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as a,c,o as r,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp.particle","description":"","frontmatter":{"title":"mbcp.particle","editLink":false,"collapsed":true},"headers":[],"relativePath":"en/api/particle/particle.md","filePath":"en/api/particle/particle.md","lastUpdated":null}'),i={name:"en/api/particle/particle.md"},l=e("h1",{id:"mbcp-particle",tabindex:"-1"},[t("mbcp.particle "),e("a",{class:"header-anchor",href:"#mbcp-particle","aria-label":'Permalink to "mbcp.particle"'},"​")],-1),p=e("p",null,[e("strong",null,"Description"),t(": 本模块定义了粒子生成相关的工具")],-1),s=[l,p];function n(o,d,_,m,h,f){return r(),c("div",null,s)}const x=a(i,[["render",n]]);export{b as __pageData,x as default};
diff --git a/assets/en_api_particle_particle.md.BFOr8qjE.lean.js b/assets/en_api_particle_particle.md.BFOr8qjE.lean.js
deleted file mode 100644
index 354dc17..0000000
--- a/assets/en_api_particle_particle.md.BFOr8qjE.lean.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as a,c,o as r,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp.particle","description":"","frontmatter":{"title":"mbcp.particle","editLink":false,"collapsed":true},"headers":[],"relativePath":"en/api/particle/particle.md","filePath":"en/api/particle/particle.md","lastUpdated":null}'),i={name:"en/api/particle/particle.md"},l=e("h1",{id:"mbcp-particle",tabindex:"-1"},[t("mbcp.particle "),e("a",{class:"header-anchor",href:"#mbcp-particle","aria-label":'Permalink to "mbcp.particle"'},"​")],-1),p=e("p",null,[e("strong",null,"Description"),t(": 本模块定义了粒子生成相关的工具")],-1),s=[l,p];function n(o,d,_,m,h,f){return r(),c("div",null,s)}const x=a(i,[["render",n]]);export{b as __pageData,x as default};
diff --git a/assets/en_api_particle_particle.md.C-miN5aa.js b/assets/en_api_particle_particle.md.C-miN5aa.js
new file mode 100644
index 0000000..56b5227
--- /dev/null
+++ b/assets/en_api_particle_particle.md.C-miN5aa.js
@@ -0,0 +1 @@
+import{_ as a,c,o as r,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp.particle","description":"","frontmatter":{"title":"mbcp.particle","collapsed":true},"headers":[],"relativePath":"en/api/particle/particle.md","filePath":"en/api/particle/particle.md","lastUpdated":null}'),p={name:"en/api/particle/particle.md"},i=e("h1",{id:"mbcp-particle",tabindex:"-1"},[t("mbcp.particle "),e("a",{class:"header-anchor",href:"#mbcp-particle","aria-label":'Permalink to "mbcp.particle"'},"​")],-1),l=e("p",null,[e("strong",null,"Description"),t(": 本模块定义了粒子生成相关的工具")],-1),s=[i,l];function n(o,d,_,m,h,f){return r(),c("div",null,s)}const x=a(p,[["render",n]]);export{b as __pageData,x as default};
diff --git a/assets/en_api_particle_particle.md.C-miN5aa.lean.js b/assets/en_api_particle_particle.md.C-miN5aa.lean.js
new file mode 100644
index 0000000..56b5227
--- /dev/null
+++ b/assets/en_api_particle_particle.md.C-miN5aa.lean.js
@@ -0,0 +1 @@
+import{_ as a,c,o as r,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp.particle","description":"","frontmatter":{"title":"mbcp.particle","collapsed":true},"headers":[],"relativePath":"en/api/particle/particle.md","filePath":"en/api/particle/particle.md","lastUpdated":null}'),p={name:"en/api/particle/particle.md"},i=e("h1",{id:"mbcp-particle",tabindex:"-1"},[t("mbcp.particle "),e("a",{class:"header-anchor",href:"#mbcp-particle","aria-label":'Permalink to "mbcp.particle"'},"​")],-1),l=e("p",null,[e("strong",null,"Description"),t(": 本模块定义了粒子生成相关的工具")],-1),s=[i,l];function n(o,d,_,m,h,f){return r(),c("div",null,s)}const x=a(p,[["render",n]]);export{b as __pageData,x as default};
diff --git a/assets/en_api_presets_index.md.93s9NTDq.js b/assets/en_api_presets_index.md.93s9NTDq.js
new file mode 100644
index 0000000..8963f8d
--- /dev/null
+++ b/assets/en_api_presets_index.md.93s9NTDq.js
@@ -0,0 +1 @@
+import{_ as s,c as a,o,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp.presets","description":"","frontmatter":{"title":"mbcp.presets","collapsed":true},"headers":[],"relativePath":"en/api/presets/index.md","filePath":"en/api/presets/index.md","lastUpdated":1724915255000}'),r={name:"en/api/presets/index.md"},n=e("h1",{id:"mbcp-presets",tabindex:"-1"},[t("mbcp.presets "),e("a",{class:"header-anchor",href:"#mbcp-presets","aria-label":'Permalink to "mbcp.presets"'},"​")],-1),i=e("p",null,[e("strong",null,"Description"),t(": Copyright (C) 2020-2024 LiteyukiStudio. All Rights Reserved")],-1),p=e("p",null,[t("@Time : 2024/8/12 下午9:12 @Author : snowykami @Email : "),e("a",{href:"mailto:snowykami@outlook.com",target:"_blank",rel:"noreferrer"},"snowykami@outlook.com"),t(" @File : "),e("strong",null,"init"),t(".py @Software: PyCharm")],-1),l=[n,i,p];function c(d,m,_,h,u,f){return o(),a("div",null,l)}const x=s(r,[["render",c]]);export{b as __pageData,x as default};
diff --git a/assets/en_api_presets_index.md.93s9NTDq.lean.js b/assets/en_api_presets_index.md.93s9NTDq.lean.js
new file mode 100644
index 0000000..8963f8d
--- /dev/null
+++ b/assets/en_api_presets_index.md.93s9NTDq.lean.js
@@ -0,0 +1 @@
+import{_ as s,c as a,o,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp.presets","description":"","frontmatter":{"title":"mbcp.presets","collapsed":true},"headers":[],"relativePath":"en/api/presets/index.md","filePath":"en/api/presets/index.md","lastUpdated":1724915255000}'),r={name:"en/api/presets/index.md"},n=e("h1",{id:"mbcp-presets",tabindex:"-1"},[t("mbcp.presets "),e("a",{class:"header-anchor",href:"#mbcp-presets","aria-label":'Permalink to "mbcp.presets"'},"​")],-1),i=e("p",null,[e("strong",null,"Description"),t(": Copyright (C) 2020-2024 LiteyukiStudio. All Rights Reserved")],-1),p=e("p",null,[t("@Time : 2024/8/12 下午9:12 @Author : snowykami @Email : "),e("a",{href:"mailto:snowykami@outlook.com",target:"_blank",rel:"noreferrer"},"snowykami@outlook.com"),t(" @File : "),e("strong",null,"init"),t(".py @Software: PyCharm")],-1),l=[n,i,p];function c(d,m,_,h,u,f){return o(),a("div",null,l)}const x=s(r,[["render",c]]);export{b as __pageData,x as default};
diff --git a/assets/en_api_presets_index.md.BrQ3Pk92.js b/assets/en_api_presets_index.md.BrQ3Pk92.js
deleted file mode 100644
index 95358d7..0000000
--- a/assets/en_api_presets_index.md.BrQ3Pk92.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as s,c as a,o,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp.presets","description":"","frontmatter":{"title":"mbcp.presets","editLink":false,"collapsed":true},"headers":[],"relativePath":"en/api/presets/index.md","filePath":"en/api/presets/index.md","lastUpdated":1724915255000}'),r={name:"en/api/presets/index.md"},i=e("h1",{id:"mbcp-presets",tabindex:"-1"},[t("mbcp.presets "),e("a",{class:"header-anchor",href:"#mbcp-presets","aria-label":'Permalink to "mbcp.presets"'},"​")],-1),n=e("p",null,[e("strong",null,"Description"),t(": Copyright (C) 2020-2024 LiteyukiStudio. All Rights Reserved")],-1),p=e("p",null,[t("@Time : 2024/8/12 下午9:12 @Author : snowykami @Email : "),e("a",{href:"mailto:snowykami@outlook.com",target:"_blank",rel:"noreferrer"},"snowykami@outlook.com"),t(" @File : "),e("strong",null,"init"),t(".py @Software: PyCharm")],-1),l=[i,n,p];function c(d,m,_,h,u,f){return o(),a("div",null,l)}const x=s(r,[["render",c]]);export{b as __pageData,x as default};
diff --git a/assets/en_api_presets_index.md.BrQ3Pk92.lean.js b/assets/en_api_presets_index.md.BrQ3Pk92.lean.js
deleted file mode 100644
index 95358d7..0000000
--- a/assets/en_api_presets_index.md.BrQ3Pk92.lean.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as s,c as a,o,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp.presets","description":"","frontmatter":{"title":"mbcp.presets","editLink":false,"collapsed":true},"headers":[],"relativePath":"en/api/presets/index.md","filePath":"en/api/presets/index.md","lastUpdated":1724915255000}'),r={name:"en/api/presets/index.md"},i=e("h1",{id:"mbcp-presets",tabindex:"-1"},[t("mbcp.presets "),e("a",{class:"header-anchor",href:"#mbcp-presets","aria-label":'Permalink to "mbcp.presets"'},"​")],-1),n=e("p",null,[e("strong",null,"Description"),t(": Copyright (C) 2020-2024 LiteyukiStudio. All Rights Reserved")],-1),p=e("p",null,[t("@Time : 2024/8/12 下午9:12 @Author : snowykami @Email : "),e("a",{href:"mailto:snowykami@outlook.com",target:"_blank",rel:"noreferrer"},"snowykami@outlook.com"),t(" @File : "),e("strong",null,"init"),t(".py @Software: PyCharm")],-1),l=[i,n,p];function c(d,m,_,h,u,f){return o(),a("div",null,l)}const x=s(r,[["render",c]]);export{b as __pageData,x as default};
diff --git a/assets/en_api_presets_model_index.md.D-C7zM8U.lean.js b/assets/en_api_presets_model_index.md.D-C7zM8U.lean.js
deleted file mode 100644
index 5de3422..0000000
--- a/assets/en_api_presets_model_index.md.D-C7zM8U.lean.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const y=JSON.parse('{"title":"mbcp.presets.model","description":"","frontmatter":{"title":"mbcp.presets.model","editLink":false,"collapsed":true},"headers":[],"relativePath":"en/api/presets/model/index.md","filePath":"en/api/presets/model/index.md","lastUpdated":1724915255000}'),t={name:"en/api/presets/model/index.md"},h=n("",10),l=[h];function p(e,k,r,d,E,o){return a(),i("div",null,l)}const c=s(t,[["render",p]]);export{y as __pageData,c as default};
diff --git a/assets/en_api_presets_model_model.md.DaWJcWmr.js b/assets/en_api_presets_model_index.md.Dcjf9yDt.js
similarity index 79%
rename from assets/en_api_presets_model_model.md.DaWJcWmr.js
rename to assets/en_api_presets_model_index.md.Dcjf9yDt.js
index d1d88f6..d7df7f9 100644
--- a/assets/en_api_presets_model_model.md.DaWJcWmr.js
+++ b/assets/en_api_presets_model_index.md.Dcjf9yDt.js
@@ -1,4 +1,4 @@
-import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const y=JSON.parse('{"title":"mbcp.presets.model","description":"","frontmatter":{"title":"mbcp.presets.model","editLink":false,"collapsed":true},"headers":[],"relativePath":"en/api/presets/model/model.md","filePath":"en/api/presets/model/model.md","lastUpdated":null}'),t={name:"en/api/presets/model/model.md"},h=n(`

mbcp.presets.model

Description: 几何模型点集

class GeometricModels

@staticmethod

def sphere(radius: float, density: float)

Description: 生成球体上的点集。

Arguments:

  • radius:
  • density:

Return: List[Point3]: 球体上的点集。

Source code or View on GitHub
python
@staticmethod
+import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const y=JSON.parse('{"title":"mbcp.presets.model","description":"","frontmatter":{"title":"mbcp.presets.model","collapsed":true},"headers":[],"relativePath":"en/api/presets/model/index.md","filePath":"en/api/presets/model/index.md","lastUpdated":1724915255000}'),t={name:"en/api/presets/model/index.md"},h=n(`

mbcp.presets.model

Description: 几何模型点集

class GeometricModels

@staticmethod

def sphere(radius: float, density: float)

Description: 生成球体上的点集。

Arguments:

  • radius:
  • density:

Return: List[Point3]: 球体上的点集。

Source code or View on GitHub
python
@staticmethod
 def sphere(radius: float, density: float):
     """
         生成球体上的点集。
diff --git a/assets/en_api_presets_model_index.md.Dcjf9yDt.lean.js b/assets/en_api_presets_model_index.md.Dcjf9yDt.lean.js
new file mode 100644
index 0000000..f72be9e
--- /dev/null
+++ b/assets/en_api_presets_model_index.md.Dcjf9yDt.lean.js
@@ -0,0 +1 @@
+import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const y=JSON.parse('{"title":"mbcp.presets.model","description":"","frontmatter":{"title":"mbcp.presets.model","collapsed":true},"headers":[],"relativePath":"en/api/presets/model/index.md","filePath":"en/api/presets/model/index.md","lastUpdated":1724915255000}'),t={name:"en/api/presets/model/index.md"},h=n("",10),l=[h];function p(e,k,r,d,E,o){return a(),i("div",null,l)}const c=s(t,[["render",p]]);export{y as __pageData,c as default};
diff --git a/assets/en_api_presets_model_model.md.DaWJcWmr.lean.js b/assets/en_api_presets_model_model.md.DaWJcWmr.lean.js
deleted file mode 100644
index 344cf31..0000000
--- a/assets/en_api_presets_model_model.md.DaWJcWmr.lean.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const y=JSON.parse('{"title":"mbcp.presets.model","description":"","frontmatter":{"title":"mbcp.presets.model","editLink":false,"collapsed":true},"headers":[],"relativePath":"en/api/presets/model/model.md","filePath":"en/api/presets/model/model.md","lastUpdated":null}'),t={name:"en/api/presets/model/model.md"},h=n("",10),l=[h];function p(e,k,r,d,E,o){return a(),i("div",null,l)}const c=s(t,[["render",p]]);export{y as __pageData,c as default};
diff --git a/assets/en_api_presets_model_index.md.D-C7zM8U.js b/assets/en_api_presets_model_model.md.NeRZCRe5.js
similarity index 79%
rename from assets/en_api_presets_model_index.md.D-C7zM8U.js
rename to assets/en_api_presets_model_model.md.NeRZCRe5.js
index c9084dc..52930bd 100644
--- a/assets/en_api_presets_model_index.md.D-C7zM8U.js
+++ b/assets/en_api_presets_model_model.md.NeRZCRe5.js
@@ -1,4 +1,4 @@
-import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const y=JSON.parse('{"title":"mbcp.presets.model","description":"","frontmatter":{"title":"mbcp.presets.model","editLink":false,"collapsed":true},"headers":[],"relativePath":"en/api/presets/model/index.md","filePath":"en/api/presets/model/index.md","lastUpdated":1724915255000}'),t={name:"en/api/presets/model/index.md"},h=n(`

mbcp.presets.model

Description: 几何模型点集

class GeometricModels

@staticmethod

def sphere(radius: float, density: float)

Description: 生成球体上的点集。

Arguments:

  • radius:
  • density:

Return: List[Point3]: 球体上的点集。

Source code or View on GitHub
python
@staticmethod
+import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const y=JSON.parse('{"title":"mbcp.presets.model","description":"","frontmatter":{"title":"mbcp.presets.model","collapsed":true},"headers":[],"relativePath":"en/api/presets/model/model.md","filePath":"en/api/presets/model/model.md","lastUpdated":null}'),t={name:"en/api/presets/model/model.md"},h=n(`

mbcp.presets.model

Description: 几何模型点集

class GeometricModels

@staticmethod

def sphere(radius: float, density: float)

Description: 生成球体上的点集。

Arguments:

  • radius:
  • density:

Return: List[Point3]: 球体上的点集。

Source code or View on GitHub
python
@staticmethod
 def sphere(radius: float, density: float):
     """
         生成球体上的点集。
diff --git a/assets/en_api_presets_model_model.md.NeRZCRe5.lean.js b/assets/en_api_presets_model_model.md.NeRZCRe5.lean.js
new file mode 100644
index 0000000..07f9a36
--- /dev/null
+++ b/assets/en_api_presets_model_model.md.NeRZCRe5.lean.js
@@ -0,0 +1 @@
+import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const y=JSON.parse('{"title":"mbcp.presets.model","description":"","frontmatter":{"title":"mbcp.presets.model","collapsed":true},"headers":[],"relativePath":"en/api/presets/model/model.md","filePath":"en/api/presets/model/model.md","lastUpdated":null}'),t={name:"en/api/presets/model/model.md"},h=n("",10),l=[h];function p(e,k,r,d,E,o){return a(),i("div",null,l)}const c=s(t,[["render",p]]);export{y as __pageData,c as default};
diff --git a/assets/en_api_presets_presets.md.D2NLt3Ov.js b/assets/en_api_presets_presets.md.D2NLt3Ov.js
new file mode 100644
index 0000000..8f6217a
--- /dev/null
+++ b/assets/en_api_presets_presets.md.D2NLt3Ov.js
@@ -0,0 +1 @@
+import{_ as s,c as r,o as a,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp.presets","description":"","frontmatter":{"title":"mbcp.presets","collapsed":true},"headers":[],"relativePath":"en/api/presets/presets.md","filePath":"en/api/presets/presets.md","lastUpdated":null}'),o={name:"en/api/presets/presets.md"},n=e("h1",{id:"mbcp-presets",tabindex:"-1"},[t("mbcp.presets "),e("a",{class:"header-anchor",href:"#mbcp-presets","aria-label":'Permalink to "mbcp.presets"'},"​")],-1),p=e("p",null,[e("strong",null,"Description"),t(": Copyright (C) 2020-2024 LiteyukiStudio. All Rights Reserved")],-1),i=e("p",null,[t("@Time : 2024/8/12 下午9:12 @Author : snowykami @Email : "),e("a",{href:"mailto:snowykami@outlook.com",target:"_blank",rel:"noreferrer"},"snowykami@outlook.com"),t(" @File : "),e("strong",null,"init"),t(".py @Software: PyCharm")],-1),l=[n,p,i];function c(m,d,_,h,u,f){return a(),r("div",null,l)}const y=s(o,[["render",c]]);export{b as __pageData,y as default};
diff --git a/assets/en_api_presets_presets.md.D2NLt3Ov.lean.js b/assets/en_api_presets_presets.md.D2NLt3Ov.lean.js
new file mode 100644
index 0000000..8f6217a
--- /dev/null
+++ b/assets/en_api_presets_presets.md.D2NLt3Ov.lean.js
@@ -0,0 +1 @@
+import{_ as s,c as r,o as a,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp.presets","description":"","frontmatter":{"title":"mbcp.presets","collapsed":true},"headers":[],"relativePath":"en/api/presets/presets.md","filePath":"en/api/presets/presets.md","lastUpdated":null}'),o={name:"en/api/presets/presets.md"},n=e("h1",{id:"mbcp-presets",tabindex:"-1"},[t("mbcp.presets "),e("a",{class:"header-anchor",href:"#mbcp-presets","aria-label":'Permalink to "mbcp.presets"'},"​")],-1),p=e("p",null,[e("strong",null,"Description"),t(": Copyright (C) 2020-2024 LiteyukiStudio. All Rights Reserved")],-1),i=e("p",null,[t("@Time : 2024/8/12 下午9:12 @Author : snowykami @Email : "),e("a",{href:"mailto:snowykami@outlook.com",target:"_blank",rel:"noreferrer"},"snowykami@outlook.com"),t(" @File : "),e("strong",null,"init"),t(".py @Software: PyCharm")],-1),l=[n,p,i];function c(m,d,_,h,u,f){return a(),r("div",null,l)}const y=s(o,[["render",c]]);export{b as __pageData,y as default};
diff --git a/assets/en_api_presets_presets.md.OKzOdeyi.js b/assets/en_api_presets_presets.md.OKzOdeyi.js
deleted file mode 100644
index 78fe242..0000000
--- a/assets/en_api_presets_presets.md.OKzOdeyi.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as s,c as r,o as a,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp.presets","description":"","frontmatter":{"title":"mbcp.presets","editLink":false,"collapsed":true},"headers":[],"relativePath":"en/api/presets/presets.md","filePath":"en/api/presets/presets.md","lastUpdated":null}'),o={name:"en/api/presets/presets.md"},n=e("h1",{id:"mbcp-presets",tabindex:"-1"},[t("mbcp.presets "),e("a",{class:"header-anchor",href:"#mbcp-presets","aria-label":'Permalink to "mbcp.presets"'},"​")],-1),i=e("p",null,[e("strong",null,"Description"),t(": Copyright (C) 2020-2024 LiteyukiStudio. All Rights Reserved")],-1),p=e("p",null,[t("@Time : 2024/8/12 下午9:12 @Author : snowykami @Email : "),e("a",{href:"mailto:snowykami@outlook.com",target:"_blank",rel:"noreferrer"},"snowykami@outlook.com"),t(" @File : "),e("strong",null,"init"),t(".py @Software: PyCharm")],-1),l=[n,i,p];function c(d,m,_,h,u,f){return a(),r("div",null,l)}const y=s(o,[["render",c]]);export{b as __pageData,y as default};
diff --git a/assets/en_api_presets_presets.md.OKzOdeyi.lean.js b/assets/en_api_presets_presets.md.OKzOdeyi.lean.js
deleted file mode 100644
index 78fe242..0000000
--- a/assets/en_api_presets_presets.md.OKzOdeyi.lean.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as s,c as r,o as a,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp.presets","description":"","frontmatter":{"title":"mbcp.presets","editLink":false,"collapsed":true},"headers":[],"relativePath":"en/api/presets/presets.md","filePath":"en/api/presets/presets.md","lastUpdated":null}'),o={name:"en/api/presets/presets.md"},n=e("h1",{id:"mbcp-presets",tabindex:"-1"},[t("mbcp.presets "),e("a",{class:"header-anchor",href:"#mbcp-presets","aria-label":'Permalink to "mbcp.presets"'},"​")],-1),i=e("p",null,[e("strong",null,"Description"),t(": Copyright (C) 2020-2024 LiteyukiStudio. All Rights Reserved")],-1),p=e("p",null,[t("@Time : 2024/8/12 下午9:12 @Author : snowykami @Email : "),e("a",{href:"mailto:snowykami@outlook.com",target:"_blank",rel:"noreferrer"},"snowykami@outlook.com"),t(" @File : "),e("strong",null,"init"),t(".py @Software: PyCharm")],-1),l=[n,i,p];function c(d,m,_,h,u,f){return a(),r("div",null,l)}const y=s(o,[["render",c]]);export{b as __pageData,y as default};
diff --git a/assets/ja_api_api.md.CUi97znf.js b/assets/ja_api_api.md.CUi97znf.js
new file mode 100644
index 0000000..8b676c8
--- /dev/null
+++ b/assets/ja_api_api.md.CUi97znf.js
@@ -0,0 +1 @@
+import{_ as t,c as s,o as c,j as a,a as e}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp","description":"","frontmatter":{"title":"mbcp","collapsed":true},"headers":[],"relativePath":"ja/api/api.md","filePath":"ja/api/api.md","lastUpdated":null}'),o={name:"ja/api/api.md"},p=a("h1",{id:"mbcp",tabindex:"-1"},[e("mbcp "),a("a",{class:"header-anchor",href:"#mbcp","aria-label":'Permalink to "mbcp"'},"​")],-1),r=a("p",null,[a("strong",null,"説明"),e(": 本模块塞了一些预设的粒子生成器")],-1),n=[p,r];function i(l,d,_,m,h,f){return c(),s("div",null,n)}const x=t(o,[["render",i]]);export{b as __pageData,x as default};
diff --git a/assets/ja_api_api.md.CUi97znf.lean.js b/assets/ja_api_api.md.CUi97znf.lean.js
new file mode 100644
index 0000000..8b676c8
--- /dev/null
+++ b/assets/ja_api_api.md.CUi97znf.lean.js
@@ -0,0 +1 @@
+import{_ as t,c as s,o as c,j as a,a as e}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp","description":"","frontmatter":{"title":"mbcp","collapsed":true},"headers":[],"relativePath":"ja/api/api.md","filePath":"ja/api/api.md","lastUpdated":null}'),o={name:"ja/api/api.md"},p=a("h1",{id:"mbcp",tabindex:"-1"},[e("mbcp "),a("a",{class:"header-anchor",href:"#mbcp","aria-label":'Permalink to "mbcp"'},"​")],-1),r=a("p",null,[a("strong",null,"説明"),e(": 本模块塞了一些预设的粒子生成器")],-1),n=[p,r];function i(l,d,_,m,h,f){return c(),s("div",null,n)}const x=t(o,[["render",i]]);export{b as __pageData,x as default};
diff --git a/assets/ja_api_api.md.asJZCXie.js b/assets/ja_api_api.md.asJZCXie.js
deleted file mode 100644
index f042f9e..0000000
--- a/assets/ja_api_api.md.asJZCXie.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as t,c as s,o as c,j as a,a as e}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp","description":"","frontmatter":{"title":"mbcp","editLink":false,"collapsed":true},"headers":[],"relativePath":"ja/api/api.md","filePath":"ja/api/api.md","lastUpdated":null}'),o={name:"ja/api/api.md"},i=a("h1",{id:"mbcp",tabindex:"-1"},[e("mbcp "),a("a",{class:"header-anchor",href:"#mbcp","aria-label":'Permalink to "mbcp"'},"​")],-1),n=a("p",null,[a("strong",null,"説明"),e(": 本模块塞了一些预设的粒子生成器")],-1),p=[i,n];function r(l,d,_,m,h,f){return c(),s("div",null,p)}const x=t(o,[["render",r]]);export{b as __pageData,x as default};
diff --git a/assets/ja_api_api.md.asJZCXie.lean.js b/assets/ja_api_api.md.asJZCXie.lean.js
deleted file mode 100644
index f042f9e..0000000
--- a/assets/ja_api_api.md.asJZCXie.lean.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as t,c as s,o as c,j as a,a as e}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp","description":"","frontmatter":{"title":"mbcp","editLink":false,"collapsed":true},"headers":[],"relativePath":"ja/api/api.md","filePath":"ja/api/api.md","lastUpdated":null}'),o={name:"ja/api/api.md"},i=a("h1",{id:"mbcp",tabindex:"-1"},[e("mbcp "),a("a",{class:"header-anchor",href:"#mbcp","aria-label":'Permalink to "mbcp"'},"​")],-1),n=a("p",null,[a("strong",null,"説明"),e(": 本模块塞了一些预设的粒子生成器")],-1),p=[i,n];function r(l,d,_,m,h,f){return c(),s("div",null,p)}const x=t(o,[["render",r]]);export{b as __pageData,x as default};
diff --git a/assets/ja_api_index.md.BkN-pZ-z.js b/assets/ja_api_index.md.BkN-pZ-z.js
deleted file mode 100644
index aa3e42e..0000000
--- a/assets/ja_api_index.md.BkN-pZ-z.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as t,c as s,o as n,j as e,a}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp","description":"","frontmatter":{"title":"mbcp","editLink":false,"collapsed":true},"headers":[],"relativePath":"ja/api/index.md","filePath":"ja/api/index.md","lastUpdated":1724915255000}'),c={name:"ja/api/index.md"},o=e("h1",{id:"mbcp",tabindex:"-1"},[a("mbcp "),e("a",{class:"header-anchor",href:"#mbcp","aria-label":'Permalink to "mbcp"'},"​")],-1),i=e("p",null,[e("strong",null,"説明"),a(": 本模块塞了一些预设的粒子生成器")],-1),r=[o,i];function d(p,l,_,m,h,f){return n(),s("div",null,r)}const u=t(c,[["render",d]]);export{b as __pageData,u as default};
diff --git a/assets/ja_api_index.md.BkN-pZ-z.lean.js b/assets/ja_api_index.md.BkN-pZ-z.lean.js
deleted file mode 100644
index aa3e42e..0000000
--- a/assets/ja_api_index.md.BkN-pZ-z.lean.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as t,c as s,o as n,j as e,a}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp","description":"","frontmatter":{"title":"mbcp","editLink":false,"collapsed":true},"headers":[],"relativePath":"ja/api/index.md","filePath":"ja/api/index.md","lastUpdated":1724915255000}'),c={name:"ja/api/index.md"},o=e("h1",{id:"mbcp",tabindex:"-1"},[a("mbcp "),e("a",{class:"header-anchor",href:"#mbcp","aria-label":'Permalink to "mbcp"'},"​")],-1),i=e("p",null,[e("strong",null,"説明"),a(": 本模块塞了一些预设的粒子生成器")],-1),r=[o,i];function d(p,l,_,m,h,f){return n(),s("div",null,r)}const u=t(c,[["render",d]]);export{b as __pageData,u as default};
diff --git a/assets/ja_api_index.md.Bq-UqhKm.js b/assets/ja_api_index.md.Bq-UqhKm.js
new file mode 100644
index 0000000..1076c1c
--- /dev/null
+++ b/assets/ja_api_index.md.Bq-UqhKm.js
@@ -0,0 +1 @@
+import{_ as t,c as s,o as c,j as e,a}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp","description":"","frontmatter":{"title":"mbcp","collapsed":true},"headers":[],"relativePath":"ja/api/index.md","filePath":"ja/api/index.md","lastUpdated":1724915255000}'),n={name:"ja/api/index.md"},o=e("h1",{id:"mbcp",tabindex:"-1"},[a("mbcp "),e("a",{class:"header-anchor",href:"#mbcp","aria-label":'Permalink to "mbcp"'},"​")],-1),r=e("p",null,[e("strong",null,"説明"),a(": 本模块塞了一些预设的粒子生成器")],-1),d=[o,r];function i(p,l,_,m,h,f){return c(),s("div",null,d)}const u=t(n,[["render",i]]);export{b as __pageData,u as default};
diff --git a/assets/ja_api_index.md.Bq-UqhKm.lean.js b/assets/ja_api_index.md.Bq-UqhKm.lean.js
new file mode 100644
index 0000000..1076c1c
--- /dev/null
+++ b/assets/ja_api_index.md.Bq-UqhKm.lean.js
@@ -0,0 +1 @@
+import{_ as t,c as s,o as c,j as e,a}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp","description":"","frontmatter":{"title":"mbcp","collapsed":true},"headers":[],"relativePath":"ja/api/index.md","filePath":"ja/api/index.md","lastUpdated":1724915255000}'),n={name:"ja/api/index.md"},o=e("h1",{id:"mbcp",tabindex:"-1"},[a("mbcp "),e("a",{class:"header-anchor",href:"#mbcp","aria-label":'Permalink to "mbcp"'},"​")],-1),r=e("p",null,[e("strong",null,"説明"),a(": 本模块塞了一些预设的粒子生成器")],-1),d=[o,r];function i(p,l,_,m,h,f){return c(),s("div",null,d)}const u=t(n,[["render",i]]);export{b as __pageData,u as default};
diff --git a/assets/ja_api_mp_math_angle.md.Q4KOkl4D.js b/assets/ja_api_mp_math_angle.md.COKT-3q5.js
similarity index 94%
rename from assets/ja_api_mp_math_angle.md.Q4KOkl4D.js
rename to assets/ja_api_mp_math_angle.md.COKT-3q5.js
index 22493ba..9c8faad 100644
--- a/assets/ja_api_mp_math_angle.md.Q4KOkl4D.js
+++ b/assets/ja_api_mp_math_angle.md.COKT-3q5.js
@@ -1,4 +1,4 @@
-import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const c=JSON.parse('{"title":"mbcp.mp_math.angle","description":"","frontmatter":{"title":"mbcp.mp_math.angle","editLink":false},"headers":[],"relativePath":"ja/api/mp_math/angle.md","filePath":"ja/api/mp_math/angle.md","lastUpdated":1724915255000}'),t={name:"ja/api/mp_math/angle.md"},e=n(`

mbcp.mp_math.angle

説明: 本模块定义了角度相关的类

class Angle

class AnyAngle(Angle)

def __init__(self, value: float, is_radian: bool = False)

説明: 任意角度。

引数:

  • value: 角度或弧度值
  • is_radian: 是否为弧度,默认为否
ソースコード または GitHubで表示
python
def __init__(self, value: float, is_radian: bool=False):
+import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const c=JSON.parse('{"title":"mbcp.mp_math.angle","description":"","frontmatter":{"title":"mbcp.mp_math.angle"},"headers":[],"relativePath":"ja/api/mp_math/angle.md","filePath":"ja/api/mp_math/angle.md","lastUpdated":1724915255000}'),t={name:"ja/api/mp_math/angle.md"},e=n(`

mbcp.mp_math.angle

説明: 本模块定义了角度相关的类

class Angle

class AnyAngle(Angle)

def __init__(self, value: float, is_radian: bool = False)

説明: 任意角度。

引数:

  • value: 角度或弧度值
  • is_radian: 是否为弧度,默认为否
ソースコード または GitHubで表示
python
def __init__(self, value: float, is_radian: bool=False):
     """
         任意角度。
         Args:
diff --git a/assets/ja_api_mp_math_angle.md.COKT-3q5.lean.js b/assets/ja_api_mp_math_angle.md.COKT-3q5.lean.js
new file mode 100644
index 0000000..d35c76b
--- /dev/null
+++ b/assets/ja_api_mp_math_angle.md.COKT-3q5.lean.js
@@ -0,0 +1 @@
+import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const c=JSON.parse('{"title":"mbcp.mp_math.angle","description":"","frontmatter":{"title":"mbcp.mp_math.angle"},"headers":[],"relativePath":"ja/api/mp_math/angle.md","filePath":"ja/api/mp_math/angle.md","lastUpdated":1724915255000}'),t={name:"ja/api/mp_math/angle.md"},e=n("",80),l=[e];function h(p,k,r,d,g,o){return a(),i("div",null,l)}const F=s(t,[["render",h]]);export{c as __pageData,F as default};
diff --git a/assets/ja_api_mp_math_angle.md.Q4KOkl4D.lean.js b/assets/ja_api_mp_math_angle.md.Q4KOkl4D.lean.js
deleted file mode 100644
index bfbf181..0000000
--- a/assets/ja_api_mp_math_angle.md.Q4KOkl4D.lean.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const c=JSON.parse('{"title":"mbcp.mp_math.angle","description":"","frontmatter":{"title":"mbcp.mp_math.angle","editLink":false},"headers":[],"relativePath":"ja/api/mp_math/angle.md","filePath":"ja/api/mp_math/angle.md","lastUpdated":1724915255000}'),t={name:"ja/api/mp_math/angle.md"},e=n("",80),l=[e];function h(p,k,r,d,g,o){return a(),i("div",null,l)}const F=s(t,[["render",h]]);export{c as __pageData,F as default};
diff --git a/assets/ja_api_mp_math_const.md.B4Hx0PDl.js b/assets/ja_api_mp_math_const.md.B4Hx0PDl.js
new file mode 100644
index 0000000..2e8fcd3
--- /dev/null
+++ b/assets/ja_api_mp_math_const.md.B4Hx0PDl.js
@@ -0,0 +1 @@
+import{_ as a,c as t,o as e,a4 as o}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math.const","description":"","frontmatter":{"title":"mbcp.mp_math.const"},"headers":[],"relativePath":"ja/api/mp_math/const.md","filePath":"ja/api/mp_math/const.md","lastUpdated":1724915255000}'),r={name:"ja/api/mp_math/const.md"},c=o('

mbcp.mp_math.const

説明: 本模块定义了一些常用的常量

var PI = math.pi

  • 説明: 常量 π

var E = math.e

  • 説明: 自然对数的底 exp(1)

var GOLDEN_RATIO = (1 + math.sqrt(5)) / 2

  • 説明: 黄金分割比

var GAMMA = 0.5772156649015329

  • 説明: 欧拉常数

var EPSILON = 0.0001

  • 説明: 精度误差

var APPROX = 0.001

  • 説明: 约等于判定误差
',14),i=[c];function l(n,s,d,h,m,p){return e(),t("div",null,i)}const v=a(r,[["render",l]]);export{u as __pageData,v as default}; diff --git a/assets/ja_api_mp_math_const.md.B4Hx0PDl.lean.js b/assets/ja_api_mp_math_const.md.B4Hx0PDl.lean.js new file mode 100644 index 0000000..92480dd --- /dev/null +++ b/assets/ja_api_mp_math_const.md.B4Hx0PDl.lean.js @@ -0,0 +1 @@ +import{_ as a,c as t,o as e,a4 as o}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math.const","description":"","frontmatter":{"title":"mbcp.mp_math.const"},"headers":[],"relativePath":"ja/api/mp_math/const.md","filePath":"ja/api/mp_math/const.md","lastUpdated":1724915255000}'),r={name:"ja/api/mp_math/const.md"},c=o("",14),i=[c];function l(n,s,d,h,m,p){return e(),t("div",null,i)}const v=a(r,[["render",l]]);export{u as __pageData,v as default}; diff --git a/assets/ja_api_mp_math_const.md.qnersNfK.js b/assets/ja_api_mp_math_const.md.qnersNfK.js deleted file mode 100644 index 5bc5f7e..0000000 --- a/assets/ja_api_mp_math_const.md.qnersNfK.js +++ /dev/null @@ -1 +0,0 @@ -import{_ as a,c as t,o as e,a4 as o}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math.const","description":"","frontmatter":{"title":"mbcp.mp_math.const","editLink":false},"headers":[],"relativePath":"ja/api/mp_math/const.md","filePath":"ja/api/mp_math/const.md","lastUpdated":1724915255000}'),r={name:"ja/api/mp_math/const.md"},c=o('

mbcp.mp_math.const

説明: 本模块定义了一些常用的常量

var PI = math.pi

  • 説明: 常量 π

var E = math.e

  • 説明: 自然对数的底 exp(1)

var GOLDEN_RATIO = (1 + math.sqrt(5)) / 2

  • 説明: 黄金分割比

var GAMMA = 0.5772156649015329

  • 説明: 欧拉常数

var EPSILON = 0.0001

  • 説明: 精度误差

var APPROX = 0.001

  • 説明: 约等于判定误差
',14),i=[c];function l(n,s,d,h,m,p){return e(),t("div",null,i)}const v=a(r,[["render",l]]);export{u as __pageData,v as default}; diff --git a/assets/ja_api_mp_math_const.md.qnersNfK.lean.js b/assets/ja_api_mp_math_const.md.qnersNfK.lean.js deleted file mode 100644 index 4f9a585..0000000 --- a/assets/ja_api_mp_math_const.md.qnersNfK.lean.js +++ /dev/null @@ -1 +0,0 @@ -import{_ as a,c as t,o as e,a4 as o}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math.const","description":"","frontmatter":{"title":"mbcp.mp_math.const","editLink":false},"headers":[],"relativePath":"ja/api/mp_math/const.md","filePath":"ja/api/mp_math/const.md","lastUpdated":1724915255000}'),r={name:"ja/api/mp_math/const.md"},c=o("",14),i=[c];function l(n,s,d,h,m,p){return e(),t("div",null,i)}const v=a(r,[["render",l]]);export{u as __pageData,v as default}; diff --git a/assets/ja_api_mp_math_equation.md.Cr5pOveT.js b/assets/ja_api_mp_math_equation.md.ByVCwmo8.js similarity index 89% rename from assets/ja_api_mp_math_equation.md.Cr5pOveT.js rename to assets/ja_api_mp_math_equation.md.ByVCwmo8.js index efbcd9b..3b49bb0 100644 --- a/assets/ja_api_mp_math_equation.md.Cr5pOveT.js +++ b/assets/ja_api_mp_math_equation.md.ByVCwmo8.js @@ -1,4 +1,4 @@ -import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math.equation","description":"","frontmatter":{"title":"mbcp.mp_math.equation","editLink":false},"headers":[],"relativePath":"ja/api/mp_math/equation.md","filePath":"ja/api/mp_math/equation.md","lastUpdated":1724915255000}'),t={name:"ja/api/mp_math/equation.md"},l=n(`

mbcp.mp_math.equation

説明: 本模块定义了方程相关的类和函数以及一些常用的数学函数

class CurveEquation

def __init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc)

説明: 曲线方程。

引数:

  • x_func: x函数
  • y_func: y函数
  • z_func: z函数
ソースコード または GitHubで表示
python
def __init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc):
+import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math.equation","description":"","frontmatter":{"title":"mbcp.mp_math.equation"},"headers":[],"relativePath":"ja/api/mp_math/equation.md","filePath":"ja/api/mp_math/equation.md","lastUpdated":1724915255000}'),t={name:"ja/api/mp_math/equation.md"},l=n(`

mbcp.mp_math.equation

説明: 本模块定义了方程相关的类和函数以及一些常用的数学函数

class CurveEquation

def __init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc)

説明: 曲线方程。

引数:

  • x_func: x函数
  • y_func: y函数
  • z_func: z函数
ソースコード または GitHubで表示
python
def __init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc):
     """
         曲线方程。
         Args:
diff --git a/assets/ja_api_mp_math_equation.md.ByVCwmo8.lean.js b/assets/ja_api_mp_math_equation.md.ByVCwmo8.lean.js
new file mode 100644
index 0000000..001e210
--- /dev/null
+++ b/assets/ja_api_mp_math_equation.md.ByVCwmo8.lean.js
@@ -0,0 +1 @@
+import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math.equation","description":"","frontmatter":{"title":"mbcp.mp_math.equation"},"headers":[],"relativePath":"ja/api/mp_math/equation.md","filePath":"ja/api/mp_math/equation.md","lastUpdated":1724915255000}'),t={name:"ja/api/mp_math/equation.md"},l=n("",23),p=[l];function h(k,e,r,E,d,g){return a(),i("div",null,p)}const F=s(t,[["render",h]]);export{u as __pageData,F as default};
diff --git a/assets/ja_api_mp_math_equation.md.Cr5pOveT.lean.js b/assets/ja_api_mp_math_equation.md.Cr5pOveT.lean.js
deleted file mode 100644
index 28870fe..0000000
--- a/assets/ja_api_mp_math_equation.md.Cr5pOveT.lean.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math.equation","description":"","frontmatter":{"title":"mbcp.mp_math.equation","editLink":false},"headers":[],"relativePath":"ja/api/mp_math/equation.md","filePath":"ja/api/mp_math/equation.md","lastUpdated":1724915255000}'),t={name:"ja/api/mp_math/equation.md"},l=n("",23),p=[l];function h(k,e,r,E,d,g){return a(),i("div",null,p)}const F=s(t,[["render",h]]);export{u as __pageData,F as default};
diff --git a/assets/ja_api_mp_math_function.md.DOkBmQkF.js b/assets/ja_api_mp_math_function.md.DOkBmQkF.js
new file mode 100644
index 0000000..5b96a9c
--- /dev/null
+++ b/assets/ja_api_mp_math_function.md.DOkBmQkF.js
@@ -0,0 +1,42 @@
+import{_ as l,c as t,j as s,a as n,a4 as a,o as i}from"./chunks/framework.DpC1ZpOZ.js";const Z=JSON.parse('{"title":"mbcp.mp_math.function","description":"","frontmatter":{"title":"mbcp.mp_math.function"},"headers":[],"relativePath":"ja/api/mp_math/function.md","filePath":"ja/api/mp_math/function.md","lastUpdated":null}'),e={name:"ja/api/mp_math/function.md"},Q=a('

mbcp.mp_math.function

説明: AAA

def cal_gradient_3vf(func: ThreeSingleVarsFunc, p: Point3, epsilon: float = EPSILON) -> Vector3

説明: 计算三元函数在某点的梯度向量。

',4),T={class:"tip custom-block github-alert"},h=s("p",{class:"custom-block-title"},"TIP",-1),p={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},r={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.471ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 3744.3 1000","aria-hidden":"true"},d=a('',1),k=[d],o=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"f"),s("mo",{stretchy:"false"},"("),s("mi",null,"x"),s("mo",null,","),s("mi",null,"y"),s("mo",null,","),s("mi",null,"z"),s("mo",{stretchy:"false"},")")])],-1),m={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},g={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.19ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 4504 1000","aria-hidden":"true"},c=a('',1),y=[c],u=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mo",{stretchy:"false"},"("),s("msub",null,[s("mi",null,"x"),s("mn",null,"0")]),s("mo",null,","),s("msub",null,[s("mi",null,"y"),s("mn",null,"0")]),s("mo",null,","),s("msub",null,[s("mi",null,"z"),s("mn",null,"0")]),s("mo",{stretchy:"false"},")")])],-1),E={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},F={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-1.469ex"},xmlns:"http://www.w3.org/2000/svg",width:"29.427ex",height:"4.07ex",role:"img",focusable:"false",viewBox:"0 -1149.5 13006.8 1799","aria-hidden":"true"},f=a('',1),_=[f],C=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",{mathvariant:"normal"},"∇"),s("mi",null,"f"),s("mo",{stretchy:"false"},"("),s("msub",null,[s("mi",null,"x"),s("mn",null,"0")]),s("mo",null,","),s("msub",null,[s("mi",null,"y"),s("mn",null,"0")]),s("mo",null,","),s("msub",null,[s("mi",null,"z"),s("mn",null,"0")]),s("mo",{stretchy:"false"},")"),s("mo",null,"="),s("mrow",{"data-mjx-texclass":"INNER"},[s("mo",{"data-mjx-texclass":"OPEN"},"("),s("mfrac",null,[s("mrow",null,[s("mi",null,"∂"),s("mi",null,"f")]),s("mrow",null,[s("mi",null,"∂"),s("mi",null,"x")])]),s("mo",null,","),s("mfrac",null,[s("mrow",null,[s("mi",null,"∂"),s("mi",null,"f")]),s("mrow",null,[s("mi",null,"∂"),s("mi",null,"y")])]),s("mo",null,","),s("mfrac",null,[s("mrow",null,[s("mi",null,"∂"),s("mi",null,"f")]),s("mrow",null,[s("mi",null,"∂"),s("mi",null,"z")])]),s("mo",{"data-mjx-texclass":"CLOSE"},")")])])],-1),w=a(`

引数:

  • func: 三元函数
  • p: 点
  • epsilon: 偏移量

戻り値: 梯度

ソースコード または GitHubで表示
python
def cal_gradient_3vf(func: ThreeSingleVarsFunc, p: Point3, epsilon: float=EPSILON) -> Vector3:
+    """
+    计算三元函数在某点的梯度向量。
+    > [!tip]
+    > 已知一个函数$f(x, y, z)$,则其在点$(x_0, y_0, z_0)$处的梯度向量为:
+    $\\\\nabla f(x_0, y_0, z_0) = \\\\left(\\\\frac{\\\\partial f}{\\\\partial x}, \\\\frac{\\\\partial f}{\\\\partial y}, \\\\frac{\\\\partial f}{\\\\partial z}\\\\right)$
+    Args:
+        func: 三元函数
+        p: 点
+        epsilon: 偏移量
+    Returns:
+        梯度
+    """
+    dx = (func(p.x + epsilon, p.y, p.z) - func(p.x - epsilon, p.y, p.z)) / (2 * epsilon)
+    dy = (func(p.x, p.y + epsilon, p.z) - func(p.x, p.y - epsilon, p.z)) / (2 * epsilon)
+    dz = (func(p.x, p.y, p.z + epsilon) - func(p.x, p.y, p.z - epsilon)) / (2 * epsilon)
+    return Vector3(dx, dy, dz)

def curry(func: MultiVarsFunc, *args: Var) -> OneVarFunc

説明: 对多参数函数进行柯里化。

TIP

有关函数柯里化,可参考函数式编程--柯理化(Currying)

引数:

  • func: 函数
  • *args: 参数

戻り値: 柯里化后的函数

:

python
def add(a: int, b: int, c: int) -> int:
+    return a + b + c
+add_curried = curry(add, 1, 2)
+add_curried(3)  # 6
ソースコード または GitHubで表示
python
def curry(func: MultiVarsFunc, *args: Var) -> OneVarFunc:
+    """
+    对多参数函数进行柯里化。
+    > [!tip]
+    > 有关函数柯里化,可参考[函数式编程--柯理化(Currying)](https://zhuanlan.zhihu.com/p/355859667)
+    Args:
+        func: 函数
+        *args: 参数
+    Returns:
+        柯里化后的函数
+    Examples:
+        \`\`\`python
+        def add(a: int, b: int, c: int) -> int:
+            return a + b + c
+        add_curried = curry(add, 1, 2)
+        add_curried(3)  # 6
+        \`\`\`
+    """
+
+    def curried_func(*args2: Var) -> Var:
+        """@litedoc-hide"""
+        return func(*args, *args2)
+    return curried_func
`,13);function x(b,L,H,B,M,D){return i(),t("div",null,[Q,s("div",T,[h,s("p",null,[n("已知一个函数"),s("mjx-container",p,[(i(),t("svg",r,k)),o]),n(",则其在点"),s("mjx-container",m,[(i(),t("svg",g,y)),u]),n("处的梯度向量为: "),s("mjx-container",E,[(i(),t("svg",F,_)),C])])]),w])}const A=l(e,[["render",x]]);export{Z as __pageData,A as default}; diff --git a/assets/ja_api_mp_math_function.md.DOkBmQkF.lean.js b/assets/ja_api_mp_math_function.md.DOkBmQkF.lean.js new file mode 100644 index 0000000..c1f031f --- /dev/null +++ b/assets/ja_api_mp_math_function.md.DOkBmQkF.lean.js @@ -0,0 +1 @@ +import{_ as l,c as t,j as s,a as n,a4 as a,o as i}from"./chunks/framework.DpC1ZpOZ.js";const Z=JSON.parse('{"title":"mbcp.mp_math.function","description":"","frontmatter":{"title":"mbcp.mp_math.function"},"headers":[],"relativePath":"ja/api/mp_math/function.md","filePath":"ja/api/mp_math/function.md","lastUpdated":null}'),e={name:"ja/api/mp_math/function.md"},Q=a("",4),T={class:"tip custom-block github-alert"},h=s("p",{class:"custom-block-title"},"TIP",-1),p={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},r={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.471ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 3744.3 1000","aria-hidden":"true"},d=a("",1),k=[d],o=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"f"),s("mo",{stretchy:"false"},"("),s("mi",null,"x"),s("mo",null,","),s("mi",null,"y"),s("mo",null,","),s("mi",null,"z"),s("mo",{stretchy:"false"},")")])],-1),m={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},g={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.19ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 4504 1000","aria-hidden":"true"},c=a("",1),y=[c],u=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mo",{stretchy:"false"},"("),s("msub",null,[s("mi",null,"x"),s("mn",null,"0")]),s("mo",null,","),s("msub",null,[s("mi",null,"y"),s("mn",null,"0")]),s("mo",null,","),s("msub",null,[s("mi",null,"z"),s("mn",null,"0")]),s("mo",{stretchy:"false"},")")])],-1),E={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},F={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-1.469ex"},xmlns:"http://www.w3.org/2000/svg",width:"29.427ex",height:"4.07ex",role:"img",focusable:"false",viewBox:"0 -1149.5 13006.8 1799","aria-hidden":"true"},f=a("",1),_=[f],C=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",{mathvariant:"normal"},"∇"),s("mi",null,"f"),s("mo",{stretchy:"false"},"("),s("msub",null,[s("mi",null,"x"),s("mn",null,"0")]),s("mo",null,","),s("msub",null,[s("mi",null,"y"),s("mn",null,"0")]),s("mo",null,","),s("msub",null,[s("mi",null,"z"),s("mn",null,"0")]),s("mo",{stretchy:"false"},")"),s("mo",null,"="),s("mrow",{"data-mjx-texclass":"INNER"},[s("mo",{"data-mjx-texclass":"OPEN"},"("),s("mfrac",null,[s("mrow",null,[s("mi",null,"∂"),s("mi",null,"f")]),s("mrow",null,[s("mi",null,"∂"),s("mi",null,"x")])]),s("mo",null,","),s("mfrac",null,[s("mrow",null,[s("mi",null,"∂"),s("mi",null,"f")]),s("mrow",null,[s("mi",null,"∂"),s("mi",null,"y")])]),s("mo",null,","),s("mfrac",null,[s("mrow",null,[s("mi",null,"∂"),s("mi",null,"f")]),s("mrow",null,[s("mi",null,"∂"),s("mi",null,"z")])]),s("mo",{"data-mjx-texclass":"CLOSE"},")")])])],-1),w=a("",13);function x(b,L,H,B,M,D){return i(),t("div",null,[Q,s("div",T,[h,s("p",null,[n("已知一个函数"),s("mjx-container",p,[(i(),t("svg",r,k)),o]),n(",则其在点"),s("mjx-container",m,[(i(),t("svg",g,y)),u]),n("处的梯度向量为: "),s("mjx-container",E,[(i(),t("svg",F,_)),C])])]),w])}const A=l(e,[["render",x]]);export{Z as __pageData,A as default}; diff --git a/assets/ja_api_mp_math_function.md.xybs8Koc.js b/assets/ja_api_mp_math_function.md.xybs8Koc.js deleted file mode 100644 index 1ec8808..0000000 --- a/assets/ja_api_mp_math_function.md.xybs8Koc.js +++ /dev/null @@ -1,42 +0,0 @@ -import{_ as l,c as t,j as s,a as n,a4 as a,o as i}from"./chunks/framework.DpC1ZpOZ.js";const Z=JSON.parse('{"title":"mbcp.mp_math.function","description":"","frontmatter":{"title":"mbcp.mp_math.function","editLink":false},"headers":[],"relativePath":"ja/api/mp_math/function.md","filePath":"ja/api/mp_math/function.md","lastUpdated":null}'),e={name:"ja/api/mp_math/function.md"},Q=a('

mbcp.mp_math.function

説明: AAA

def cal_gradient_3vf(func: ThreeSingleVarsFunc, p: Point3, epsilon: float = EPSILON) -> Vector3

説明: 计算三元函数在某点的梯度向量。

',4),T={class:"tip custom-block github-alert"},h=s("p",{class:"custom-block-title"},"TIP",-1),p={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},r={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.471ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 3744.3 1000","aria-hidden":"true"},d=a('',1),k=[d],o=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"f"),s("mo",{stretchy:"false"},"("),s("mi",null,"x"),s("mo",null,","),s("mi",null,"y"),s("mo",null,","),s("mi",null,"z"),s("mo",{stretchy:"false"},")")])],-1),m={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},g={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.19ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 4504 1000","aria-hidden":"true"},c=a('',1),y=[c],u=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mo",{stretchy:"false"},"("),s("msub",null,[s("mi",null,"x"),s("mn",null,"0")]),s("mo",null,","),s("msub",null,[s("mi",null,"y"),s("mn",null,"0")]),s("mo",null,","),s("msub",null,[s("mi",null,"z"),s("mn",null,"0")]),s("mo",{stretchy:"false"},")")])],-1),E={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},F={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-1.469ex"},xmlns:"http://www.w3.org/2000/svg",width:"29.427ex",height:"4.07ex",role:"img",focusable:"false",viewBox:"0 -1149.5 13006.8 1799","aria-hidden":"true"},f=a('',1),_=[f],C=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",{mathvariant:"normal"},"∇"),s("mi",null,"f"),s("mo",{stretchy:"false"},"("),s("msub",null,[s("mi",null,"x"),s("mn",null,"0")]),s("mo",null,","),s("msub",null,[s("mi",null,"y"),s("mn",null,"0")]),s("mo",null,","),s("msub",null,[s("mi",null,"z"),s("mn",null,"0")]),s("mo",{stretchy:"false"},")"),s("mo",null,"="),s("mrow",{"data-mjx-texclass":"INNER"},[s("mo",{"data-mjx-texclass":"OPEN"},"("),s("mfrac",null,[s("mrow",null,[s("mi",null,"∂"),s("mi",null,"f")]),s("mrow",null,[s("mi",null,"∂"),s("mi",null,"x")])]),s("mo",null,","),s("mfrac",null,[s("mrow",null,[s("mi",null,"∂"),s("mi",null,"f")]),s("mrow",null,[s("mi",null,"∂"),s("mi",null,"y")])]),s("mo",null,","),s("mfrac",null,[s("mrow",null,[s("mi",null,"∂"),s("mi",null,"f")]),s("mrow",null,[s("mi",null,"∂"),s("mi",null,"z")])]),s("mo",{"data-mjx-texclass":"CLOSE"},")")])])],-1),w=a(`

引数:

  • func: 三元函数
  • p: 点
  • epsilon: 偏移量

戻り値: 梯度

ソースコード または GitHubで表示
python
def cal_gradient_3vf(func: ThreeSingleVarsFunc, p: Point3, epsilon: float=EPSILON) -> Vector3:
-    """
-    计算三元函数在某点的梯度向量。
-    > [!tip]
-    > 已知一个函数$f(x, y, z)$,则其在点$(x_0, y_0, z_0)$处的梯度向量为:
-    $\\\\nabla f(x_0, y_0, z_0) = \\\\left(\\\\frac{\\\\partial f}{\\\\partial x}, \\\\frac{\\\\partial f}{\\\\partial y}, \\\\frac{\\\\partial f}{\\\\partial z}\\\\right)$
-    Args:
-        func: 三元函数
-        p: 点
-        epsilon: 偏移量
-    Returns:
-        梯度
-    """
-    dx = (func(p.x + epsilon, p.y, p.z) - func(p.x - epsilon, p.y, p.z)) / (2 * epsilon)
-    dy = (func(p.x, p.y + epsilon, p.z) - func(p.x, p.y - epsilon, p.z)) / (2 * epsilon)
-    dz = (func(p.x, p.y, p.z + epsilon) - func(p.x, p.y, p.z - epsilon)) / (2 * epsilon)
-    return Vector3(dx, dy, dz)

def curry(func: MultiVarsFunc, *args: Var) -> OneVarFunc

説明: 对多参数函数进行柯里化。

TIP

有关函数柯里化,可参考函数式编程--柯理化(Currying)

引数:

  • func: 函数
  • *args: 参数

戻り値: 柯里化后的函数

:

python
def add(a: int, b: int, c: int) -> int:
-    return a + b + c
-add_curried = curry(add, 1, 2)
-add_curried(3)  # 6
ソースコード または GitHubで表示
python
def curry(func: MultiVarsFunc, *args: Var) -> OneVarFunc:
-    """
-    对多参数函数进行柯里化。
-    > [!tip]
-    > 有关函数柯里化,可参考[函数式编程--柯理化(Currying)](https://zhuanlan.zhihu.com/p/355859667)
-    Args:
-        func: 函数
-        *args: 参数
-    Returns:
-        柯里化后的函数
-    Examples:
-        \`\`\`python
-        def add(a: int, b: int, c: int) -> int:
-            return a + b + c
-        add_curried = curry(add, 1, 2)
-        add_curried(3)  # 6
-        \`\`\`
-    """
-
-    def curried_func(*args2: Var) -> Var:
-        """@litedoc-hide"""
-        return func(*args, *args2)
-    return curried_func
`,13);function x(b,L,H,B,M,D){return i(),t("div",null,[Q,s("div",T,[h,s("p",null,[n("已知一个函数"),s("mjx-container",p,[(i(),t("svg",r,k)),o]),n(",则其在点"),s("mjx-container",m,[(i(),t("svg",g,y)),u]),n("处的梯度向量为: "),s("mjx-container",E,[(i(),t("svg",F,_)),C])])]),w])}const A=l(e,[["render",x]]);export{Z as __pageData,A as default}; diff --git a/assets/ja_api_mp_math_function.md.xybs8Koc.lean.js b/assets/ja_api_mp_math_function.md.xybs8Koc.lean.js deleted file mode 100644 index ec49151..0000000 --- a/assets/ja_api_mp_math_function.md.xybs8Koc.lean.js +++ /dev/null @@ -1 +0,0 @@ -import{_ as l,c as t,j as s,a as n,a4 as a,o as i}from"./chunks/framework.DpC1ZpOZ.js";const Z=JSON.parse('{"title":"mbcp.mp_math.function","description":"","frontmatter":{"title":"mbcp.mp_math.function","editLink":false},"headers":[],"relativePath":"ja/api/mp_math/function.md","filePath":"ja/api/mp_math/function.md","lastUpdated":null}'),e={name:"ja/api/mp_math/function.md"},Q=a("",4),T={class:"tip custom-block github-alert"},h=s("p",{class:"custom-block-title"},"TIP",-1),p={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},r={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.471ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 3744.3 1000","aria-hidden":"true"},d=a("",1),k=[d],o=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"f"),s("mo",{stretchy:"false"},"("),s("mi",null,"x"),s("mo",null,","),s("mi",null,"y"),s("mo",null,","),s("mi",null,"z"),s("mo",{stretchy:"false"},")")])],-1),m={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},g={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.19ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 4504 1000","aria-hidden":"true"},c=a("",1),y=[c],u=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mo",{stretchy:"false"},"("),s("msub",null,[s("mi",null,"x"),s("mn",null,"0")]),s("mo",null,","),s("msub",null,[s("mi",null,"y"),s("mn",null,"0")]),s("mo",null,","),s("msub",null,[s("mi",null,"z"),s("mn",null,"0")]),s("mo",{stretchy:"false"},")")])],-1),E={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},F={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-1.469ex"},xmlns:"http://www.w3.org/2000/svg",width:"29.427ex",height:"4.07ex",role:"img",focusable:"false",viewBox:"0 -1149.5 13006.8 1799","aria-hidden":"true"},f=a("",1),_=[f],C=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",{mathvariant:"normal"},"∇"),s("mi",null,"f"),s("mo",{stretchy:"false"},"("),s("msub",null,[s("mi",null,"x"),s("mn",null,"0")]),s("mo",null,","),s("msub",null,[s("mi",null,"y"),s("mn",null,"0")]),s("mo",null,","),s("msub",null,[s("mi",null,"z"),s("mn",null,"0")]),s("mo",{stretchy:"false"},")"),s("mo",null,"="),s("mrow",{"data-mjx-texclass":"INNER"},[s("mo",{"data-mjx-texclass":"OPEN"},"("),s("mfrac",null,[s("mrow",null,[s("mi",null,"∂"),s("mi",null,"f")]),s("mrow",null,[s("mi",null,"∂"),s("mi",null,"x")])]),s("mo",null,","),s("mfrac",null,[s("mrow",null,[s("mi",null,"∂"),s("mi",null,"f")]),s("mrow",null,[s("mi",null,"∂"),s("mi",null,"y")])]),s("mo",null,","),s("mfrac",null,[s("mrow",null,[s("mi",null,"∂"),s("mi",null,"f")]),s("mrow",null,[s("mi",null,"∂"),s("mi",null,"z")])]),s("mo",{"data-mjx-texclass":"CLOSE"},")")])])],-1),w=a("",13);function x(b,L,H,B,M,D){return i(),t("div",null,[Q,s("div",T,[h,s("p",null,[n("已知一个函数"),s("mjx-container",p,[(i(),t("svg",r,k)),o]),n(",则其在点"),s("mjx-container",m,[(i(),t("svg",g,y)),u]),n("处的梯度向量为: "),s("mjx-container",E,[(i(),t("svg",F,_)),C])])]),w])}const A=l(e,[["render",x]]);export{Z as __pageData,A as default}; diff --git a/assets/ja_api_mp_math_index.md.8LkEwDIJ.js b/assets/ja_api_mp_math_index.md.8LkEwDIJ.js new file mode 100644 index 0000000..ffdd2b6 --- /dev/null +++ b/assets/ja_api_mp_math_index.md.8LkEwDIJ.js @@ -0,0 +1 @@ +import{_ as e,c as t,o as a,a4 as o}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math","description":"","frontmatter":{"title":"mbcp.mp_math","collapsed":true},"headers":[],"relativePath":"ja/api/mp_math/index.md","filePath":"ja/api/mp_math/index.md","lastUpdated":1724915255000}'),c={name:"ja/api/mp_math/index.md"},i=o('

mbcp.mp_math

説明: 本包定义了一些常用的导入,可直接从mbcp.mp_math导入使用 导入的类有:

  • AnyAngle:任意角
  • CurveEquation:曲线方程
  • Line3:三维直线
  • Plane3:三维平面
  • Point3:三维点
  • Segment3:三维线段
  • Vector3:三维向量
',3),d=[i];function m(l,p,_,n,r,s){return a(),t("div",null,d)}const b=e(c,[["render",m]]);export{u as __pageData,b as default}; diff --git a/assets/ja_api_mp_math_index.md.8LkEwDIJ.lean.js b/assets/ja_api_mp_math_index.md.8LkEwDIJ.lean.js new file mode 100644 index 0000000..93f874b --- /dev/null +++ b/assets/ja_api_mp_math_index.md.8LkEwDIJ.lean.js @@ -0,0 +1 @@ +import{_ as e,c as t,o as a,a4 as o}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math","description":"","frontmatter":{"title":"mbcp.mp_math","collapsed":true},"headers":[],"relativePath":"ja/api/mp_math/index.md","filePath":"ja/api/mp_math/index.md","lastUpdated":1724915255000}'),c={name:"ja/api/mp_math/index.md"},i=o("",3),d=[i];function m(l,p,_,n,r,s){return a(),t("div",null,d)}const b=e(c,[["render",m]]);export{u as __pageData,b as default}; diff --git a/assets/ja_api_mp_math_index.md.CRjx8TkH.js b/assets/ja_api_mp_math_index.md.CRjx8TkH.js deleted file mode 100644 index 9fedd6e..0000000 --- a/assets/ja_api_mp_math_index.md.CRjx8TkH.js +++ /dev/null @@ -1 +0,0 @@ -import{_ as e,c as t,o as a,a4 as o}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math","description":"","frontmatter":{"title":"mbcp.mp_math","editLink":false,"collapsed":true},"headers":[],"relativePath":"ja/api/mp_math/index.md","filePath":"ja/api/mp_math/index.md","lastUpdated":1724915255000}'),c={name:"ja/api/mp_math/index.md"},i=o('

mbcp.mp_math

説明: 本包定义了一些常用的导入,可直接从mbcp.mp_math导入使用 导入的类有:

  • AnyAngle:任意角
  • CurveEquation:曲线方程
  • Line3:三维直线
  • Plane3:三维平面
  • Point3:三维点
  • Segment3:三维线段
  • Vector3:三维向量
',3),d=[i];function m(l,n,p,_,r,s){return a(),t("div",null,d)}const f=e(c,[["render",m]]);export{u as __pageData,f as default}; diff --git a/assets/ja_api_mp_math_index.md.CRjx8TkH.lean.js b/assets/ja_api_mp_math_index.md.CRjx8TkH.lean.js deleted file mode 100644 index 4d944ac..0000000 --- a/assets/ja_api_mp_math_index.md.CRjx8TkH.lean.js +++ /dev/null @@ -1 +0,0 @@ -import{_ as e,c as t,o as a,a4 as o}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math","description":"","frontmatter":{"title":"mbcp.mp_math","editLink":false,"collapsed":true},"headers":[],"relativePath":"ja/api/mp_math/index.md","filePath":"ja/api/mp_math/index.md","lastUpdated":1724915255000}'),c={name:"ja/api/mp_math/index.md"},i=o("",3),d=[i];function m(l,n,p,_,r,s){return a(),t("div",null,d)}const f=e(c,[["render",m]]);export{u as __pageData,f as default}; diff --git a/assets/ja_api_mp_math_line.md.B06TZxOj.lean.js b/assets/ja_api_mp_math_line.md.B06TZxOj.lean.js deleted file mode 100644 index dcf1bbc..0000000 --- a/assets/ja_api_mp_math_line.md.B06TZxOj.lean.js +++ /dev/null @@ -1 +0,0 @@ -import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const E=JSON.parse('{"title":"mbcp.mp_math.line","description":"","frontmatter":{"title":"mbcp.mp_math.line","editLink":false},"headers":[],"relativePath":"ja/api/mp_math/line.md","filePath":"ja/api/mp_math/line.md","lastUpdated":1724915255000}'),t={name:"ja/api/mp_math/line.md"},l=n("",107),p=[l];function e(h,k,r,o,d,g){return a(),i("div",null,p)}const y=s(t,[["render",e]]);export{E as __pageData,y as default}; diff --git a/assets/ja_api_mp_math_line.md.B06TZxOj.js b/assets/ja_api_mp_math_line.md.qbPLxepH.js similarity index 96% rename from assets/ja_api_mp_math_line.md.B06TZxOj.js rename to assets/ja_api_mp_math_line.md.qbPLxepH.js index 55952ee..2da2a52 100644 --- a/assets/ja_api_mp_math_line.md.B06TZxOj.js +++ b/assets/ja_api_mp_math_line.md.qbPLxepH.js @@ -1,4 +1,4 @@ -import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const E=JSON.parse('{"title":"mbcp.mp_math.line","description":"","frontmatter":{"title":"mbcp.mp_math.line","editLink":false},"headers":[],"relativePath":"ja/api/mp_math/line.md","filePath":"ja/api/mp_math/line.md","lastUpdated":1724915255000}'),t={name:"ja/api/mp_math/line.md"},l=n(`

mbcp.mp_math.line

説明: 本模块定义了三维空间中的直线类

class Line3

def __init__(self, point: Point3, direction: Vector3)

説明: 三维空间中的直线。由一个点和一个方向向量确定。

引数:

  • point: 直线上的一点
  • direction: 直线的方向向量
ソースコード または GitHubで表示
python
def __init__(self, point: 'Point3', direction: 'Vector3'):
+import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const E=JSON.parse('{"title":"mbcp.mp_math.line","description":"","frontmatter":{"title":"mbcp.mp_math.line"},"headers":[],"relativePath":"ja/api/mp_math/line.md","filePath":"ja/api/mp_math/line.md","lastUpdated":1724915255000}'),t={name:"ja/api/mp_math/line.md"},l=n(`

mbcp.mp_math.line

説明: 本模块定义了三维空间中的直线类

class Line3

def __init__(self, point: Point3, direction: Vector3)

説明: 三维空间中的直线。由一个点和一个方向向量确定。

引数:

  • point: 直线上的一点
  • direction: 直线的方向向量
ソースコード または GitHubで表示
python
def __init__(self, point: 'Point3', direction: 'Vector3'):
     """
         三维空间中的直线。由一个点和一个方向向量确定。
         Args:
diff --git a/assets/ja_api_mp_math_line.md.qbPLxepH.lean.js b/assets/ja_api_mp_math_line.md.qbPLxepH.lean.js
new file mode 100644
index 0000000..ad7820c
--- /dev/null
+++ b/assets/ja_api_mp_math_line.md.qbPLxepH.lean.js
@@ -0,0 +1 @@
+import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const E=JSON.parse('{"title":"mbcp.mp_math.line","description":"","frontmatter":{"title":"mbcp.mp_math.line"},"headers":[],"relativePath":"ja/api/mp_math/line.md","filePath":"ja/api/mp_math/line.md","lastUpdated":1724915255000}'),t={name:"ja/api/mp_math/line.md"},l=n("",107),p=[l];function e(h,k,r,o,d,g){return a(),i("div",null,p)}const y=s(t,[["render",e]]);export{E as __pageData,y as default};
diff --git a/assets/ja_api_mp_math_mp_math.md.BBRkfUbW.js b/assets/ja_api_mp_math_mp_math.md.BBRkfUbW.js
deleted file mode 100644
index 6e914c0..0000000
--- a/assets/ja_api_mp_math_mp_math.md.BBRkfUbW.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as e,c as t,o as a,a4 as o}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math","description":"","frontmatter":{"title":"mbcp.mp_math","editLink":false,"collapsed":true},"headers":[],"relativePath":"ja/api/mp_math/mp_math.md","filePath":"ja/api/mp_math/mp_math.md","lastUpdated":null}'),c={name:"ja/api/mp_math/mp_math.md"},m=o('

mbcp.mp_math

説明: 本包定义了一些常用的导入,可直接从mbcp.mp_math导入使用 导入的类有:

  • AnyAngle:任意角
  • CurveEquation:曲线方程
  • Line3:三维直线
  • Plane3:三维平面
  • Point3:三维点
  • Segment3:三维线段
  • Vector3:三维向量
',3),i=[m];function p(_,l,d,n,r,s){return a(),t("div",null,i)}const f=e(c,[["render",p]]);export{u as __pageData,f as default}; diff --git a/assets/ja_api_mp_math_mp_math.md.BBRkfUbW.lean.js b/assets/ja_api_mp_math_mp_math.md.BBRkfUbW.lean.js deleted file mode 100644 index 5713cb9..0000000 --- a/assets/ja_api_mp_math_mp_math.md.BBRkfUbW.lean.js +++ /dev/null @@ -1 +0,0 @@ -import{_ as e,c as t,o as a,a4 as o}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math","description":"","frontmatter":{"title":"mbcp.mp_math","editLink":false,"collapsed":true},"headers":[],"relativePath":"ja/api/mp_math/mp_math.md","filePath":"ja/api/mp_math/mp_math.md","lastUpdated":null}'),c={name:"ja/api/mp_math/mp_math.md"},m=o("",3),i=[m];function p(_,l,d,n,r,s){return a(),t("div",null,i)}const f=e(c,[["render",p]]);export{u as __pageData,f as default}; diff --git a/assets/ja_api_mp_math_mp_math.md.DK0nb8oY.js b/assets/ja_api_mp_math_mp_math.md.DK0nb8oY.js new file mode 100644 index 0000000..93adbb5 --- /dev/null +++ b/assets/ja_api_mp_math_mp_math.md.DK0nb8oY.js @@ -0,0 +1 @@ +import{_ as e,c as t,o as a,a4 as o}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math","description":"","frontmatter":{"title":"mbcp.mp_math","collapsed":true},"headers":[],"relativePath":"ja/api/mp_math/mp_math.md","filePath":"ja/api/mp_math/mp_math.md","lastUpdated":null}'),c={name:"ja/api/mp_math/mp_math.md"},m=o('

mbcp.mp_math

説明: 本包定义了一些常用的导入,可直接从mbcp.mp_math导入使用 导入的类有:

  • AnyAngle:任意角
  • CurveEquation:曲线方程
  • Line3:三维直线
  • Plane3:三维平面
  • Point3:三维点
  • Segment3:三维线段
  • Vector3:三维向量
',3),p=[m];function _(i,l,d,n,r,s){return a(),t("div",null,p)}const b=e(c,[["render",_]]);export{u as __pageData,b as default}; diff --git a/assets/ja_api_mp_math_mp_math.md.DK0nb8oY.lean.js b/assets/ja_api_mp_math_mp_math.md.DK0nb8oY.lean.js new file mode 100644 index 0000000..65e69a1 --- /dev/null +++ b/assets/ja_api_mp_math_mp_math.md.DK0nb8oY.lean.js @@ -0,0 +1 @@ +import{_ as e,c as t,o as a,a4 as o}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math","description":"","frontmatter":{"title":"mbcp.mp_math","collapsed":true},"headers":[],"relativePath":"ja/api/mp_math/mp_math.md","filePath":"ja/api/mp_math/mp_math.md","lastUpdated":null}'),c={name:"ja/api/mp_math/mp_math.md"},m=o("",3),p=[m];function _(i,l,d,n,r,s){return a(),t("div",null,p)}const b=e(c,[["render",_]]);export{u as __pageData,b as default}; diff --git a/assets/ja_api_mp_math_mp_math_typing.md.B48JOb28.js b/assets/ja_api_mp_math_mp_math_typing.md.B48JOb28.js deleted file mode 100644 index 678ada7..0000000 --- a/assets/ja_api_mp_math_mp_math_typing.md.B48JOb28.js +++ /dev/null @@ -1 +0,0 @@ -import{_ as a,c as r,o as e,a4 as l}from"./chunks/framework.DpC1ZpOZ.js";const h=JSON.parse('{"title":"mbcp.mp_math.mp_math_typing","description":"","frontmatter":{"title":"mbcp.mp_math.mp_math_typing","editLink":false},"headers":[],"relativePath":"ja/api/mp_math/mp_math_typing.md","filePath":"ja/api/mp_math/mp_math_typing.md","lastUpdated":1724915255000}'),n={name:"ja/api/mp_math/mp_math_typing.md"},o=l('

mbcp.mp_math.mp_math_typing

説明: 本模块用于内部类型提示

var RealNumber = int | float

  • タイプ: TypeAlias

  • 説明: 实数

var Number = RealNumber | complex

  • タイプ: TypeAlias

  • 説明: 数

var SingleVar = TypeVar('SingleVar', bound=Number)

  • 説明: 单变量

var ArrayVar = TypeVar('ArrayVar', bound=Iterable[Number])

  • 説明: 数组变量

var Var = SingleVar | ArrayVar

  • タイプ: TypeAlias

  • 説明: 变量

var OneSingleVarFunc = Callable[[SingleVar], SingleVar]

  • タイプ: TypeAlias

  • 説明: 一元单变量函数

var OneArrayFunc = Callable[[ArrayVar], ArrayVar]

  • タイプ: TypeAlias

  • 説明: 一元数组函数

var OneVarFunc = OneSingleVarFunc | OneArrayFunc

  • タイプ: TypeAlias

  • 説明: 一元函数

var TwoSingleVarsFunc = Callable[[SingleVar, SingleVar], SingleVar]

  • タイプ: TypeAlias

  • 説明: 二元单变量函数

var TwoArraysFunc = Callable[[ArrayVar, ArrayVar], ArrayVar]

  • タイプ: TypeAlias

  • 説明: 二元数组函数

var TwoVarsFunc = TwoSingleVarsFunc | TwoArraysFunc

  • タイプ: TypeAlias

  • 説明: 二元函数

var ThreeSingleVarsFunc = Callable[[SingleVar, SingleVar, SingleVar], SingleVar]

  • タイプ: TypeAlias

  • 説明: 三元单变量函数

var ThreeArraysFunc = Callable[[ArrayVar, ArrayVar, ArrayVar], ArrayVar]

  • タイプ: TypeAlias

  • 説明: 三元数组函数

var ThreeVarsFunc = ThreeSingleVarsFunc | ThreeArraysFunc

  • タイプ: TypeAlias

  • 説明: 三元函数

var MultiSingleVarsFunc = Callable[..., SingleVar]

  • タイプ: TypeAlias

  • 説明: 多元单变量函数

var MultiArraysFunc = Callable[..., ArrayVar]

  • タイプ: TypeAlias

  • 説明: 多元数组函数

var MultiVarsFunc = MultiSingleVarsFunc | MultiArraysFunc

  • タイプ: TypeAlias

  • 説明: 多元函数

',36),i=[o];function t(c,s,u,d,g,v){return e(),r("div",null,i)}const y=a(n,[["render",t]]);export{h as __pageData,y as default}; diff --git a/assets/ja_api_mp_math_mp_math_typing.md.B48JOb28.lean.js b/assets/ja_api_mp_math_mp_math_typing.md.B48JOb28.lean.js deleted file mode 100644 index 667f2f6..0000000 --- a/assets/ja_api_mp_math_mp_math_typing.md.B48JOb28.lean.js +++ /dev/null @@ -1 +0,0 @@ -import{_ as a,c as r,o as e,a4 as l}from"./chunks/framework.DpC1ZpOZ.js";const h=JSON.parse('{"title":"mbcp.mp_math.mp_math_typing","description":"","frontmatter":{"title":"mbcp.mp_math.mp_math_typing","editLink":false},"headers":[],"relativePath":"ja/api/mp_math/mp_math_typing.md","filePath":"ja/api/mp_math/mp_math_typing.md","lastUpdated":1724915255000}'),n={name:"ja/api/mp_math/mp_math_typing.md"},o=l("",36),i=[o];function t(c,s,u,d,g,v){return e(),r("div",null,i)}const y=a(n,[["render",t]]);export{h as __pageData,y as default}; diff --git a/assets/ja_api_mp_math_mp_math_typing.md.CWgc3ohG.js b/assets/ja_api_mp_math_mp_math_typing.md.CWgc3ohG.js new file mode 100644 index 0000000..8c016e5 --- /dev/null +++ b/assets/ja_api_mp_math_mp_math_typing.md.CWgc3ohG.js @@ -0,0 +1 @@ +import{_ as a,c as r,o as e,a4 as l}from"./chunks/framework.DpC1ZpOZ.js";const h=JSON.parse('{"title":"mbcp.mp_math.mp_math_typing","description":"","frontmatter":{"title":"mbcp.mp_math.mp_math_typing"},"headers":[],"relativePath":"ja/api/mp_math/mp_math_typing.md","filePath":"ja/api/mp_math/mp_math_typing.md","lastUpdated":1724915255000}'),n={name:"ja/api/mp_math/mp_math_typing.md"},o=l('

mbcp.mp_math.mp_math_typing

説明: 本模块用于内部类型提示

var RealNumber = int | float

  • タイプ: TypeAlias

  • 説明: 实数

var Number = RealNumber | complex

  • タイプ: TypeAlias

  • 説明: 数

var SingleVar = TypeVar('SingleVar', bound=Number)

  • 説明: 单变量

var ArrayVar = TypeVar('ArrayVar', bound=Iterable[Number])

  • 説明: 数组变量

var Var = SingleVar | ArrayVar

  • タイプ: TypeAlias

  • 説明: 变量

var OneSingleVarFunc = Callable[[SingleVar], SingleVar]

  • タイプ: TypeAlias

  • 説明: 一元单变量函数

var OneArrayFunc = Callable[[ArrayVar], ArrayVar]

  • タイプ: TypeAlias

  • 説明: 一元数组函数

var OneVarFunc = OneSingleVarFunc | OneArrayFunc

  • タイプ: TypeAlias

  • 説明: 一元函数

var TwoSingleVarsFunc = Callable[[SingleVar, SingleVar], SingleVar]

  • タイプ: TypeAlias

  • 説明: 二元单变量函数

var TwoArraysFunc = Callable[[ArrayVar, ArrayVar], ArrayVar]

  • タイプ: TypeAlias

  • 説明: 二元数组函数

var TwoVarsFunc = TwoSingleVarsFunc | TwoArraysFunc

  • タイプ: TypeAlias

  • 説明: 二元函数

var ThreeSingleVarsFunc = Callable[[SingleVar, SingleVar, SingleVar], SingleVar]

  • タイプ: TypeAlias

  • 説明: 三元单变量函数

var ThreeArraysFunc = Callable[[ArrayVar, ArrayVar, ArrayVar], ArrayVar]

  • タイプ: TypeAlias

  • 説明: 三元数组函数

var ThreeVarsFunc = ThreeSingleVarsFunc | ThreeArraysFunc

  • タイプ: TypeAlias

  • 説明: 三元函数

var MultiSingleVarsFunc = Callable[..., SingleVar]

  • タイプ: TypeAlias

  • 説明: 多元单变量函数

var MultiArraysFunc = Callable[..., ArrayVar]

  • タイプ: TypeAlias

  • 説明: 多元数组函数

var MultiVarsFunc = MultiSingleVarsFunc | MultiArraysFunc

  • タイプ: TypeAlias

  • 説明: 多元函数

',36),i=[o];function c(t,s,u,d,g,v){return e(),r("div",null,i)}const y=a(n,[["render",c]]);export{h as __pageData,y as default}; diff --git a/assets/ja_api_mp_math_mp_math_typing.md.CWgc3ohG.lean.js b/assets/ja_api_mp_math_mp_math_typing.md.CWgc3ohG.lean.js new file mode 100644 index 0000000..edc83fa --- /dev/null +++ b/assets/ja_api_mp_math_mp_math_typing.md.CWgc3ohG.lean.js @@ -0,0 +1 @@ +import{_ as a,c as r,o as e,a4 as l}from"./chunks/framework.DpC1ZpOZ.js";const h=JSON.parse('{"title":"mbcp.mp_math.mp_math_typing","description":"","frontmatter":{"title":"mbcp.mp_math.mp_math_typing"},"headers":[],"relativePath":"ja/api/mp_math/mp_math_typing.md","filePath":"ja/api/mp_math/mp_math_typing.md","lastUpdated":1724915255000}'),n={name:"ja/api/mp_math/mp_math_typing.md"},o=l("",36),i=[o];function c(t,s,u,d,g,v){return e(),r("div",null,i)}const y=a(n,[["render",c]]);export{h as __pageData,y as default}; diff --git a/assets/ja_api_mp_math_plane.md.BsI6AccW.js b/assets/ja_api_mp_math_plane.md.BJFpJM2I.js similarity index 96% rename from assets/ja_api_mp_math_plane.md.BsI6AccW.js rename to assets/ja_api_mp_math_plane.md.BJFpJM2I.js index 03f0220..f1e71b2 100644 --- a/assets/ja_api_mp_math_plane.md.BsI6AccW.js +++ b/assets/ja_api_mp_math_plane.md.BJFpJM2I.js @@ -1,4 +1,4 @@ -import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const y=JSON.parse('{"title":"mbcp.mp_math.plane","description":"","frontmatter":{"title":"mbcp.mp_math.plane","editLink":false},"headers":[],"relativePath":"ja/api/mp_math/plane.md","filePath":"ja/api/mp_math/plane.md","lastUpdated":1724915255000}'),l={name:"ja/api/mp_math/plane.md"},t=n(`

mbcp.mp_math.plane

説明: 本模块定义了三维空间中的平面类

class Plane3

def __init__(self, a: float, b: float, c: float, d: float)

説明: 平面方程:ax + by + cz + d = 0

引数:

  • a: x系数
  • b: y系数
  • c: z系数
  • d: 常数项
ソースコード または GitHubで表示
python
def __init__(self, a: float, b: float, c: float, d: float):
+import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const y=JSON.parse('{"title":"mbcp.mp_math.plane","description":"","frontmatter":{"title":"mbcp.mp_math.plane"},"headers":[],"relativePath":"ja/api/mp_math/plane.md","filePath":"ja/api/mp_math/plane.md","lastUpdated":1724915255000}'),l={name:"ja/api/mp_math/plane.md"},t=n(`

mbcp.mp_math.plane

説明: 本模块定义了三维空间中的平面类

class Plane3

def __init__(self, a: float, b: float, c: float, d: float)

説明: 平面方程:ax + by + cz + d = 0

引数:

  • a: x系数
  • b: y系数
  • c: z系数
  • d: 常数项
ソースコード または GitHubで表示
python
def __init__(self, a: float, b: float, c: float, d: float):
     """
         平面方程:ax + by + cz + d = 0
         Args:
diff --git a/assets/ja_api_mp_math_plane.md.BJFpJM2I.lean.js b/assets/ja_api_mp_math_plane.md.BJFpJM2I.lean.js
new file mode 100644
index 0000000..c1fc9fc
--- /dev/null
+++ b/assets/ja_api_mp_math_plane.md.BJFpJM2I.lean.js
@@ -0,0 +1 @@
+import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const y=JSON.parse('{"title":"mbcp.mp_math.plane","description":"","frontmatter":{"title":"mbcp.mp_math.plane"},"headers":[],"relativePath":"ja/api/mp_math/plane.md","filePath":"ja/api/mp_math/plane.md","lastUpdated":1724915255000}'),l={name:"ja/api/mp_math/plane.md"},t=n("",105),h=[t];function p(k,e,r,d,E,o){return a(),i("div",null,h)}const F=s(l,[["render",p]]);export{y as __pageData,F as default};
diff --git a/assets/ja_api_mp_math_plane.md.BsI6AccW.lean.js b/assets/ja_api_mp_math_plane.md.BsI6AccW.lean.js
deleted file mode 100644
index 8397133..0000000
--- a/assets/ja_api_mp_math_plane.md.BsI6AccW.lean.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const y=JSON.parse('{"title":"mbcp.mp_math.plane","description":"","frontmatter":{"title":"mbcp.mp_math.plane","editLink":false},"headers":[],"relativePath":"ja/api/mp_math/plane.md","filePath":"ja/api/mp_math/plane.md","lastUpdated":1724915255000}'),l={name:"ja/api/mp_math/plane.md"},t=n("",105),h=[t];function p(k,e,r,d,E,o){return a(),i("div",null,h)}const F=s(l,[["render",p]]);export{y as __pageData,F as default};
diff --git a/assets/ja_api_mp_math_point.md.BaRaB4F7.js b/assets/ja_api_mp_math_point.md.0YsozwPt.js
similarity index 89%
rename from assets/ja_api_mp_math_point.md.BaRaB4F7.js
rename to assets/ja_api_mp_math_point.md.0YsozwPt.js
index d397181..dd11473 100644
--- a/assets/ja_api_mp_math_point.md.BaRaB4F7.js
+++ b/assets/ja_api_mp_math_point.md.0YsozwPt.js
@@ -1,4 +1,4 @@
-import{_ as s,c as i,o as a,a4 as t}from"./chunks/framework.DpC1ZpOZ.js";const y=JSON.parse('{"title":"mbcp.mp_math.point","description":"","frontmatter":{"title":"mbcp.mp_math.point","editLink":false},"headers":[],"relativePath":"ja/api/mp_math/point.md","filePath":"ja/api/mp_math/point.md","lastUpdated":1724915255000}'),n={name:"ja/api/mp_math/point.md"},l=t(`

mbcp.mp_math.point

説明: 本模块定义了三维空间中点的类。

class Point3

def __init__(self, x: float, y: float, z: float)

説明: 笛卡尔坐标系中的点。

引数:

  • x: x 坐标
  • y: y 坐标
  • z: z 坐标
ソースコード または GitHubで表示
python
def __init__(self, x: float, y: float, z: float):
+import{_ as s,c as i,o as a,a4 as t}from"./chunks/framework.DpC1ZpOZ.js";const y=JSON.parse('{"title":"mbcp.mp_math.point","description":"","frontmatter":{"title":"mbcp.mp_math.point"},"headers":[],"relativePath":"ja/api/mp_math/point.md","filePath":"ja/api/mp_math/point.md","lastUpdated":1724915255000}'),n={name:"ja/api/mp_math/point.md"},l=t(`

mbcp.mp_math.point

説明: 本模块定义了三维空间中点的类。

class Point3

def __init__(self, x: float, y: float, z: float)

説明: 笛卡尔坐标系中的点。

引数:

  • x: x 坐标
  • y: y 坐标
  • z: z 坐标
ソースコード または GitHubで表示
python
def __init__(self, x: float, y: float, z: float):
     """
         笛卡尔坐标系中的点。
         Args:
diff --git a/assets/ja_api_mp_math_point.md.0YsozwPt.lean.js b/assets/ja_api_mp_math_point.md.0YsozwPt.lean.js
new file mode 100644
index 0000000..1b8469d
--- /dev/null
+++ b/assets/ja_api_mp_math_point.md.0YsozwPt.lean.js
@@ -0,0 +1 @@
+import{_ as s,c as i,o as a,a4 as t}from"./chunks/framework.DpC1ZpOZ.js";const y=JSON.parse('{"title":"mbcp.mp_math.point","description":"","frontmatter":{"title":"mbcp.mp_math.point"},"headers":[],"relativePath":"ja/api/mp_math/point.md","filePath":"ja/api/mp_math/point.md","lastUpdated":1724915255000}'),n={name:"ja/api/mp_math/point.md"},l=t("",36),h=[l];function p(e,k,r,o,d,g){return a(),i("div",null,h)}const c=s(n,[["render",p]]);export{y as __pageData,c as default};
diff --git a/assets/ja_api_mp_math_point.md.BaRaB4F7.lean.js b/assets/ja_api_mp_math_point.md.BaRaB4F7.lean.js
deleted file mode 100644
index 9e8f76f..0000000
--- a/assets/ja_api_mp_math_point.md.BaRaB4F7.lean.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as s,c as i,o as a,a4 as t}from"./chunks/framework.DpC1ZpOZ.js";const y=JSON.parse('{"title":"mbcp.mp_math.point","description":"","frontmatter":{"title":"mbcp.mp_math.point","editLink":false},"headers":[],"relativePath":"ja/api/mp_math/point.md","filePath":"ja/api/mp_math/point.md","lastUpdated":1724915255000}'),n={name:"ja/api/mp_math/point.md"},l=t("",36),h=[l];function p(e,k,r,o,d,g){return a(),i("div",null,h)}const c=s(n,[["render",p]]);export{y as __pageData,c as default};
diff --git a/assets/zht_api_mp_math_segment.md.CGlDPyId.js b/assets/ja_api_mp_math_segment.md.BnrDCNWp.js
similarity index 69%
rename from assets/zht_api_mp_math_segment.md.CGlDPyId.js
rename to assets/ja_api_mp_math_segment.md.BnrDCNWp.js
index a420271..97f3ee5 100644
--- a/assets/zht_api_mp_math_segment.md.CGlDPyId.js
+++ b/assets/ja_api_mp_math_segment.md.BnrDCNWp.js
@@ -1,4 +1,4 @@
-import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const o=JSON.parse('{"title":"mbcp.mp_math.segment","description":"","frontmatter":{"title":"mbcp.mp_math.segment","editLink":false},"headers":[],"relativePath":"zht/api/mp_math/segment.md","filePath":"zht/api/mp_math/segment.md","lastUpdated":1724915255000}'),t={name:"zht/api/mp_math/segment.md"},p=n(`

mbcp.mp_math.segment

説明: 本模块定义了三维空间中的线段类

class Segment3

def __init__(self, p1: Point3, p2: Point3)

説明: 三维空间中的线段。 :param p1: :param p2:

源碼於GitHub上查看
python
def __init__(self, p1: 'Point3', p2: 'Point3'):
+import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const o=JSON.parse('{"title":"mbcp.mp_math.segment","description":"","frontmatter":{"title":"mbcp.mp_math.segment"},"headers":[],"relativePath":"ja/api/mp_math/segment.md","filePath":"ja/api/mp_math/segment.md","lastUpdated":1724915255000}'),t={name:"ja/api/mp_math/segment.md"},p=n(`

mbcp.mp_math.segment

説明: 本模块定义了三维空间中的线段类

class Segment3

def __init__(self, p1: Point3, p2: Point3)

説明: 三维空间中的线段。 :param p1: :param p2:

ソースコード または GitHubで表示
python
def __init__(self, p1: 'Point3', p2: 'Point3'):
     """
         三维空间中的线段。
         :param p1:
diff --git a/assets/ja_api_mp_math_segment.md.BnrDCNWp.lean.js b/assets/ja_api_mp_math_segment.md.BnrDCNWp.lean.js
new file mode 100644
index 0000000..b9bfe09
--- /dev/null
+++ b/assets/ja_api_mp_math_segment.md.BnrDCNWp.lean.js
@@ -0,0 +1 @@
+import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const o=JSON.parse('{"title":"mbcp.mp_math.segment","description":"","frontmatter":{"title":"mbcp.mp_math.segment"},"headers":[],"relativePath":"ja/api/mp_math/segment.md","filePath":"ja/api/mp_math/segment.md","lastUpdated":1724915255000}'),t={name:"ja/api/mp_math/segment.md"},p=n("",6),h=[p];function e(l,k,r,d,E,g){return a(),i("div",null,h)}const y=s(t,[["render",e]]);export{o as __pageData,y as default};
diff --git a/assets/ja_api_mp_math_segment.md.SGTKzHC-.lean.js b/assets/ja_api_mp_math_segment.md.SGTKzHC-.lean.js
deleted file mode 100644
index 57aff2f..0000000
--- a/assets/ja_api_mp_math_segment.md.SGTKzHC-.lean.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const o=JSON.parse('{"title":"mbcp.mp_math.segment","description":"","frontmatter":{"title":"mbcp.mp_math.segment","editLink":false},"headers":[],"relativePath":"ja/api/mp_math/segment.md","filePath":"ja/api/mp_math/segment.md","lastUpdated":1724915255000}'),t={name:"ja/api/mp_math/segment.md"},p=n("",6),h=[p];function e(l,k,r,d,E,g){return a(),i("div",null,h)}const y=s(t,[["render",e]]);export{o as __pageData,y as default};
diff --git a/assets/ja_api_mp_math_utils.md.B0AuGUaq.lean.js b/assets/ja_api_mp_math_utils.md.B0AuGUaq.lean.js
deleted file mode 100644
index 6bf8adf..0000000
--- a/assets/ja_api_mp_math_utils.md.B0AuGUaq.lean.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const F=JSON.parse('{"title":"mbcp.mp_math.utils","description":"","frontmatter":{"title":"mbcp.mp_math.utils","editLink":false},"headers":[],"relativePath":"ja/api/mp_math/utils.md","filePath":"ja/api/mp_math/utils.md","lastUpdated":1724915255000}'),t={name:"ja/api/mp_math/utils.md"},l=n("",35),h=[l];function p(e,k,r,d,o,g){return a(),i("div",null,h)}const E=s(t,[["render",p]]);export{F as __pageData,E as default};
diff --git a/assets/ja_api_mp_math_utils.md.B0AuGUaq.js b/assets/ja_api_mp_math_utils.md.ClIgAy7y.js
similarity index 91%
rename from assets/ja_api_mp_math_utils.md.B0AuGUaq.js
rename to assets/ja_api_mp_math_utils.md.ClIgAy7y.js
index 862d016..5564a8b 100644
--- a/assets/ja_api_mp_math_utils.md.B0AuGUaq.js
+++ b/assets/ja_api_mp_math_utils.md.ClIgAy7y.js
@@ -1,4 +1,4 @@
-import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const F=JSON.parse('{"title":"mbcp.mp_math.utils","description":"","frontmatter":{"title":"mbcp.mp_math.utils","editLink":false},"headers":[],"relativePath":"ja/api/mp_math/utils.md","filePath":"ja/api/mp_math/utils.md","lastUpdated":1724915255000}'),t={name:"ja/api/mp_math/utils.md"},l=n(`

mbcp.mp_math.utils

説明: 本模块定义了一些常用的工具函数

def clamp(x: float, min_: float, max_: float) -> float

説明: 区间限定函数

引数:

  • x: 待限定的值
  • min_: 最小值
  • max_: 最大值

戻り値: 限制后的值

ソースコード または GitHubで表示
python
def clamp(x: float, min_: float, max_: float) -> float:
+import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const F=JSON.parse('{"title":"mbcp.mp_math.utils","description":"","frontmatter":{"title":"mbcp.mp_math.utils"},"headers":[],"relativePath":"ja/api/mp_math/utils.md","filePath":"ja/api/mp_math/utils.md","lastUpdated":1724915255000}'),t={name:"ja/api/mp_math/utils.md"},l=n(`

mbcp.mp_math.utils

説明: 本模块定义了一些常用的工具函数

def clamp(x: float, min_: float, max_: float) -> float

説明: 区间限定函数

引数:

  • x: 待限定的值
  • min_: 最小值
  • max_: 最大值

戻り値: 限制后的值

ソースコード または GitHubで表示
python
def clamp(x: float, min_: float, max_: float) -> float:
     """
     区间限定函数
     Args:
diff --git a/assets/ja_api_mp_math_utils.md.ClIgAy7y.lean.js b/assets/ja_api_mp_math_utils.md.ClIgAy7y.lean.js
new file mode 100644
index 0000000..017b9c2
--- /dev/null
+++ b/assets/ja_api_mp_math_utils.md.ClIgAy7y.lean.js
@@ -0,0 +1 @@
+import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const F=JSON.parse('{"title":"mbcp.mp_math.utils","description":"","frontmatter":{"title":"mbcp.mp_math.utils"},"headers":[],"relativePath":"ja/api/mp_math/utils.md","filePath":"ja/api/mp_math/utils.md","lastUpdated":1724915255000}'),t={name:"ja/api/mp_math/utils.md"},l=n("",35),h=[l];function p(e,k,r,d,o,g){return a(),i("div",null,h)}const E=s(t,[["render",p]]);export{F as __pageData,E as default};
diff --git a/assets/ja_api_mp_math_vector.md.ZV6g6Cqy.js b/assets/ja_api_mp_math_vector.md.B4iis1R2.js
similarity index 97%
rename from assets/ja_api_mp_math_vector.md.ZV6g6Cqy.js
rename to assets/ja_api_mp_math_vector.md.B4iis1R2.js
index 516bc2c..fef7eca 100644
--- a/assets/ja_api_mp_math_vector.md.ZV6g6Cqy.js
+++ b/assets/ja_api_mp_math_vector.md.B4iis1R2.js
@@ -1,4 +1,4 @@
-import{_ as s,c as i,o as a,a4 as t}from"./chunks/framework.DpC1ZpOZ.js";const y=JSON.parse('{"title":"mbcp.mp_math.vector","description":"","frontmatter":{"title":"mbcp.mp_math.vector","editLink":false},"headers":[],"relativePath":"ja/api/mp_math/vector.md","filePath":"ja/api/mp_math/vector.md","lastUpdated":1724915255000}'),n={name:"ja/api/mp_math/vector.md"},h=t(`

mbcp.mp_math.vector

説明: 本模块定义了3维向量的类Vector3,以及一些常用的向量。

class Vector3

def __init__(self, x: float, y: float, z: float)

説明: 3维向量

引数:

  • x: x轴分量
  • y: y轴分量
  • z: z轴分量
ソースコード または GitHubで表示
python
def __init__(self, x: float, y: float, z: float):
+import{_ as s,c as i,o as a,a4 as t}from"./chunks/framework.DpC1ZpOZ.js";const y=JSON.parse('{"title":"mbcp.mp_math.vector","description":"","frontmatter":{"title":"mbcp.mp_math.vector"},"headers":[],"relativePath":"ja/api/mp_math/vector.md","filePath":"ja/api/mp_math/vector.md","lastUpdated":1724915255000}'),n={name:"ja/api/mp_math/vector.md"},h=t(`

mbcp.mp_math.vector

説明: 本模块定义了3维向量的类Vector3,以及一些常用的向量。

class Vector3

def __init__(self, x: float, y: float, z: float)

説明: 3维向量

引数:

  • x: x轴分量
  • y: y轴分量
  • z: z轴分量
ソースコード または GitHubで表示
python
def __init__(self, x: float, y: float, z: float):
     """
         3维向量
         Args:
diff --git a/assets/ja_api_mp_math_vector.md.B4iis1R2.lean.js b/assets/ja_api_mp_math_vector.md.B4iis1R2.lean.js
new file mode 100644
index 0000000..860f3d5
--- /dev/null
+++ b/assets/ja_api_mp_math_vector.md.B4iis1R2.lean.js
@@ -0,0 +1 @@
+import{_ as s,c as i,o as a,a4 as t}from"./chunks/framework.DpC1ZpOZ.js";const y=JSON.parse('{"title":"mbcp.mp_math.vector","description":"","frontmatter":{"title":"mbcp.mp_math.vector"},"headers":[],"relativePath":"ja/api/mp_math/vector.md","filePath":"ja/api/mp_math/vector.md","lastUpdated":1724915255000}'),n={name:"ja/api/mp_math/vector.md"},h=t("",127),e=[h];function l(p,k,r,o,d,g){return a(),i("div",null,e)}const c=s(n,[["render",l]]);export{y as __pageData,c as default};
diff --git a/assets/ja_api_mp_math_vector.md.ZV6g6Cqy.lean.js b/assets/ja_api_mp_math_vector.md.ZV6g6Cqy.lean.js
deleted file mode 100644
index 647ebb9..0000000
--- a/assets/ja_api_mp_math_vector.md.ZV6g6Cqy.lean.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as s,c as i,o as a,a4 as t}from"./chunks/framework.DpC1ZpOZ.js";const y=JSON.parse('{"title":"mbcp.mp_math.vector","description":"","frontmatter":{"title":"mbcp.mp_math.vector","editLink":false},"headers":[],"relativePath":"ja/api/mp_math/vector.md","filePath":"ja/api/mp_math/vector.md","lastUpdated":1724915255000}'),n={name:"ja/api/mp_math/vector.md"},h=t("",127),e=[h];function l(p,k,r,o,d,g){return a(),i("div",null,e)}const c=s(n,[["render",l]]);export{y as __pageData,c as default};
diff --git a/assets/ja_api_particle_index.md.CF-T1DaN.js b/assets/ja_api_particle_index.md.CF-T1DaN.js
new file mode 100644
index 0000000..527f4cc
--- /dev/null
+++ b/assets/ja_api_particle_index.md.CF-T1DaN.js
@@ -0,0 +1 @@
+import{_ as t,c,o as r,j as e,a}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp.particle","description":"","frontmatter":{"title":"mbcp.particle","collapsed":true},"headers":[],"relativePath":"ja/api/particle/index.md","filePath":"ja/api/particle/index.md","lastUpdated":1724915255000}'),i={name:"ja/api/particle/index.md"},p=e("h1",{id:"mbcp-particle",tabindex:"-1"},[a("mbcp.particle "),e("a",{class:"header-anchor",href:"#mbcp-particle","aria-label":'Permalink to "mbcp.particle"'},"​")],-1),l=e("p",null,[e("strong",null,"説明"),a(": 本模块定义了粒子生成相关的工具")],-1),s=[p,l];function n(o,d,_,m,h,f){return r(),c("div",null,s)}const u=t(i,[["render",n]]);export{b as __pageData,u as default};
diff --git a/assets/ja_api_particle_index.md.CF-T1DaN.lean.js b/assets/ja_api_particle_index.md.CF-T1DaN.lean.js
new file mode 100644
index 0000000..527f4cc
--- /dev/null
+++ b/assets/ja_api_particle_index.md.CF-T1DaN.lean.js
@@ -0,0 +1 @@
+import{_ as t,c,o as r,j as e,a}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp.particle","description":"","frontmatter":{"title":"mbcp.particle","collapsed":true},"headers":[],"relativePath":"ja/api/particle/index.md","filePath":"ja/api/particle/index.md","lastUpdated":1724915255000}'),i={name:"ja/api/particle/index.md"},p=e("h1",{id:"mbcp-particle",tabindex:"-1"},[a("mbcp.particle "),e("a",{class:"header-anchor",href:"#mbcp-particle","aria-label":'Permalink to "mbcp.particle"'},"​")],-1),l=e("p",null,[e("strong",null,"説明"),a(": 本模块定义了粒子生成相关的工具")],-1),s=[p,l];function n(o,d,_,m,h,f){return r(),c("div",null,s)}const u=t(i,[["render",n]]);export{b as __pageData,u as default};
diff --git a/assets/ja_api_particle_index.md.lQM76phs.js b/assets/ja_api_particle_index.md.lQM76phs.js
deleted file mode 100644
index a25876f..0000000
--- a/assets/ja_api_particle_index.md.lQM76phs.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as t,c,o as i,j as e,a}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp.particle","description":"","frontmatter":{"title":"mbcp.particle","editLink":false,"collapsed":true},"headers":[],"relativePath":"ja/api/particle/index.md","filePath":"ja/api/particle/index.md","lastUpdated":1724915255000}'),r={name:"ja/api/particle/index.md"},p=e("h1",{id:"mbcp-particle",tabindex:"-1"},[a("mbcp.particle "),e("a",{class:"header-anchor",href:"#mbcp-particle","aria-label":'Permalink to "mbcp.particle"'},"​")],-1),l=e("p",null,[e("strong",null,"説明"),a(": 本模块定义了粒子生成相关的工具")],-1),s=[p,l];function n(o,d,_,m,h,f){return i(),c("div",null,s)}const u=t(r,[["render",n]]);export{b as __pageData,u as default};
diff --git a/assets/ja_api_particle_index.md.lQM76phs.lean.js b/assets/ja_api_particle_index.md.lQM76phs.lean.js
deleted file mode 100644
index a25876f..0000000
--- a/assets/ja_api_particle_index.md.lQM76phs.lean.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as t,c,o as i,j as e,a}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp.particle","description":"","frontmatter":{"title":"mbcp.particle","editLink":false,"collapsed":true},"headers":[],"relativePath":"ja/api/particle/index.md","filePath":"ja/api/particle/index.md","lastUpdated":1724915255000}'),r={name:"ja/api/particle/index.md"},p=e("h1",{id:"mbcp-particle",tabindex:"-1"},[a("mbcp.particle "),e("a",{class:"header-anchor",href:"#mbcp-particle","aria-label":'Permalink to "mbcp.particle"'},"​")],-1),l=e("p",null,[e("strong",null,"説明"),a(": 本模块定义了粒子生成相关的工具")],-1),s=[p,l];function n(o,d,_,m,h,f){return i(),c("div",null,s)}const u=t(r,[["render",n]]);export{b as __pageData,u as default};
diff --git a/assets/ja_api_particle_particle.md.BlQt6-7L.js b/assets/ja_api_particle_particle.md.BlQt6-7L.js
deleted file mode 100644
index 7e64004..0000000
--- a/assets/ja_api_particle_particle.md.BlQt6-7L.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as t,c,o as r,j as e,a}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp.particle","description":"","frontmatter":{"title":"mbcp.particle","editLink":false,"collapsed":true},"headers":[],"relativePath":"ja/api/particle/particle.md","filePath":"ja/api/particle/particle.md","lastUpdated":null}'),l={name:"ja/api/particle/particle.md"},i=e("h1",{id:"mbcp-particle",tabindex:"-1"},[a("mbcp.particle "),e("a",{class:"header-anchor",href:"#mbcp-particle","aria-label":'Permalink to "mbcp.particle"'},"​")],-1),p=e("p",null,[e("strong",null,"説明"),a(": 本模块定义了粒子生成相关的工具")],-1),s=[i,p];function o(n,d,_,m,h,f){return r(),c("div",null,s)}const x=t(l,[["render",o]]);export{b as __pageData,x as default};
diff --git a/assets/ja_api_particle_particle.md.BlQt6-7L.lean.js b/assets/ja_api_particle_particle.md.BlQt6-7L.lean.js
deleted file mode 100644
index 7e64004..0000000
--- a/assets/ja_api_particle_particle.md.BlQt6-7L.lean.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as t,c,o as r,j as e,a}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp.particle","description":"","frontmatter":{"title":"mbcp.particle","editLink":false,"collapsed":true},"headers":[],"relativePath":"ja/api/particle/particle.md","filePath":"ja/api/particle/particle.md","lastUpdated":null}'),l={name:"ja/api/particle/particle.md"},i=e("h1",{id:"mbcp-particle",tabindex:"-1"},[a("mbcp.particle "),e("a",{class:"header-anchor",href:"#mbcp-particle","aria-label":'Permalink to "mbcp.particle"'},"​")],-1),p=e("p",null,[e("strong",null,"説明"),a(": 本模块定义了粒子生成相关的工具")],-1),s=[i,p];function o(n,d,_,m,h,f){return r(),c("div",null,s)}const x=t(l,[["render",o]]);export{b as __pageData,x as default};
diff --git a/assets/ja_api_particle_particle.md.CViXNyfB.js b/assets/ja_api_particle_particle.md.CViXNyfB.js
new file mode 100644
index 0000000..ee57aa5
--- /dev/null
+++ b/assets/ja_api_particle_particle.md.CViXNyfB.js
@@ -0,0 +1 @@
+import{_ as t,c,o as r,j as e,a}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp.particle","description":"","frontmatter":{"title":"mbcp.particle","collapsed":true},"headers":[],"relativePath":"ja/api/particle/particle.md","filePath":"ja/api/particle/particle.md","lastUpdated":null}'),l={name:"ja/api/particle/particle.md"},p=e("h1",{id:"mbcp-particle",tabindex:"-1"},[a("mbcp.particle "),e("a",{class:"header-anchor",href:"#mbcp-particle","aria-label":'Permalink to "mbcp.particle"'},"​")],-1),i=e("p",null,[e("strong",null,"説明"),a(": 本模块定义了粒子生成相关的工具")],-1),s=[p,i];function o(n,d,_,m,h,f){return r(),c("div",null,s)}const x=t(l,[["render",o]]);export{b as __pageData,x as default};
diff --git a/assets/ja_api_particle_particle.md.CViXNyfB.lean.js b/assets/ja_api_particle_particle.md.CViXNyfB.lean.js
new file mode 100644
index 0000000..ee57aa5
--- /dev/null
+++ b/assets/ja_api_particle_particle.md.CViXNyfB.lean.js
@@ -0,0 +1 @@
+import{_ as t,c,o as r,j as e,a}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp.particle","description":"","frontmatter":{"title":"mbcp.particle","collapsed":true},"headers":[],"relativePath":"ja/api/particle/particle.md","filePath":"ja/api/particle/particle.md","lastUpdated":null}'),l={name:"ja/api/particle/particle.md"},p=e("h1",{id:"mbcp-particle",tabindex:"-1"},[a("mbcp.particle "),e("a",{class:"header-anchor",href:"#mbcp-particle","aria-label":'Permalink to "mbcp.particle"'},"​")],-1),i=e("p",null,[e("strong",null,"説明"),a(": 本模块定义了粒子生成相关的工具")],-1),s=[p,i];function o(n,d,_,m,h,f){return r(),c("div",null,s)}const x=t(l,[["render",o]]);export{b as __pageData,x as default};
diff --git a/assets/ja_api_presets_index.md.B7ygl08S.js b/assets/ja_api_presets_index.md.B7ygl08S.js
new file mode 100644
index 0000000..2133834
--- /dev/null
+++ b/assets/ja_api_presets_index.md.B7ygl08S.js
@@ -0,0 +1 @@
+import{_ as s,c as a,o,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp.presets","description":"","frontmatter":{"title":"mbcp.presets","collapsed":true},"headers":[],"relativePath":"ja/api/presets/index.md","filePath":"ja/api/presets/index.md","lastUpdated":1724915255000}'),r={name:"ja/api/presets/index.md"},i=e("h1",{id:"mbcp-presets",tabindex:"-1"},[t("mbcp.presets "),e("a",{class:"header-anchor",href:"#mbcp-presets","aria-label":'Permalink to "mbcp.presets"'},"​")],-1),n=e("p",null,[e("strong",null,"説明"),t(": Copyright (C) 2020-2024 LiteyukiStudio. All Rights Reserved")],-1),p=e("p",null,[t("@Time : 2024/8/12 下午9:12 @Author : snowykami @Email : "),e("a",{href:"mailto:snowykami@outlook.com",target:"_blank",rel:"noreferrer"},"snowykami@outlook.com"),t(" @File : "),e("strong",null,"init"),t(".py @Software: PyCharm")],-1),l=[i,n,p];function c(d,m,_,h,u,f){return o(),a("div",null,l)}const x=s(r,[["render",c]]);export{b as __pageData,x as default};
diff --git a/assets/ja_api_presets_index.md.B7ygl08S.lean.js b/assets/ja_api_presets_index.md.B7ygl08S.lean.js
new file mode 100644
index 0000000..2133834
--- /dev/null
+++ b/assets/ja_api_presets_index.md.B7ygl08S.lean.js
@@ -0,0 +1 @@
+import{_ as s,c as a,o,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp.presets","description":"","frontmatter":{"title":"mbcp.presets","collapsed":true},"headers":[],"relativePath":"ja/api/presets/index.md","filePath":"ja/api/presets/index.md","lastUpdated":1724915255000}'),r={name:"ja/api/presets/index.md"},i=e("h1",{id:"mbcp-presets",tabindex:"-1"},[t("mbcp.presets "),e("a",{class:"header-anchor",href:"#mbcp-presets","aria-label":'Permalink to "mbcp.presets"'},"​")],-1),n=e("p",null,[e("strong",null,"説明"),t(": Copyright (C) 2020-2024 LiteyukiStudio. All Rights Reserved")],-1),p=e("p",null,[t("@Time : 2024/8/12 下午9:12 @Author : snowykami @Email : "),e("a",{href:"mailto:snowykami@outlook.com",target:"_blank",rel:"noreferrer"},"snowykami@outlook.com"),t(" @File : "),e("strong",null,"init"),t(".py @Software: PyCharm")],-1),l=[i,n,p];function c(d,m,_,h,u,f){return o(),a("div",null,l)}const x=s(r,[["render",c]]);export{b as __pageData,x as default};
diff --git a/assets/ja_api_presets_index.md.bRV33rrM.js b/assets/ja_api_presets_index.md.bRV33rrM.js
deleted file mode 100644
index 852a6f5..0000000
--- a/assets/ja_api_presets_index.md.bRV33rrM.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as s,c as a,o,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp.presets","description":"","frontmatter":{"title":"mbcp.presets","editLink":false,"collapsed":true},"headers":[],"relativePath":"ja/api/presets/index.md","filePath":"ja/api/presets/index.md","lastUpdated":1724915255000}'),r={name:"ja/api/presets/index.md"},i=e("h1",{id:"mbcp-presets",tabindex:"-1"},[t("mbcp.presets "),e("a",{class:"header-anchor",href:"#mbcp-presets","aria-label":'Permalink to "mbcp.presets"'},"​")],-1),n=e("p",null,[e("strong",null,"説明"),t(": Copyright (C) 2020-2024 LiteyukiStudio. All Rights Reserved")],-1),l=e("p",null,[t("@Time : 2024/8/12 下午9:12 @Author : snowykami @Email : "),e("a",{href:"mailto:snowykami@outlook.com",target:"_blank",rel:"noreferrer"},"snowykami@outlook.com"),t(" @File : "),e("strong",null,"init"),t(".py @Software: PyCharm")],-1),p=[i,n,l];function c(d,m,_,h,u,f){return o(),a("div",null,p)}const x=s(r,[["render",c]]);export{b as __pageData,x as default};
diff --git a/assets/ja_api_presets_index.md.bRV33rrM.lean.js b/assets/ja_api_presets_index.md.bRV33rrM.lean.js
deleted file mode 100644
index 852a6f5..0000000
--- a/assets/ja_api_presets_index.md.bRV33rrM.lean.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as s,c as a,o,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp.presets","description":"","frontmatter":{"title":"mbcp.presets","editLink":false,"collapsed":true},"headers":[],"relativePath":"ja/api/presets/index.md","filePath":"ja/api/presets/index.md","lastUpdated":1724915255000}'),r={name:"ja/api/presets/index.md"},i=e("h1",{id:"mbcp-presets",tabindex:"-1"},[t("mbcp.presets "),e("a",{class:"header-anchor",href:"#mbcp-presets","aria-label":'Permalink to "mbcp.presets"'},"​")],-1),n=e("p",null,[e("strong",null,"説明"),t(": Copyright (C) 2020-2024 LiteyukiStudio. All Rights Reserved")],-1),l=e("p",null,[t("@Time : 2024/8/12 下午9:12 @Author : snowykami @Email : "),e("a",{href:"mailto:snowykami@outlook.com",target:"_blank",rel:"noreferrer"},"snowykami@outlook.com"),t(" @File : "),e("strong",null,"init"),t(".py @Software: PyCharm")],-1),p=[i,n,l];function c(d,m,_,h,u,f){return o(),a("div",null,p)}const x=s(r,[["render",c]]);export{b as __pageData,x as default};
diff --git a/assets/ja_api_presets_model_index.md.CU3tcROp.lean.js b/assets/ja_api_presets_model_index.md.CU3tcROp.lean.js
deleted file mode 100644
index ac389b8..0000000
--- a/assets/ja_api_presets_model_index.md.CU3tcROp.lean.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const o=JSON.parse('{"title":"mbcp.presets.model","description":"","frontmatter":{"title":"mbcp.presets.model","editLink":false,"collapsed":true},"headers":[],"relativePath":"ja/api/presets/model/index.md","filePath":"ja/api/presets/model/index.md","lastUpdated":1724915255000}'),t={name:"ja/api/presets/model/index.md"},h=n("",10),l=[h];function p(k,e,r,d,E,g){return a(),i("div",null,l)}const c=s(t,[["render",p]]);export{o as __pageData,c as default};
diff --git a/assets/zht_api_presets_model_index.md.BABYoPvx.js b/assets/ja_api_presets_model_index.md.DQliiN_s.js
similarity index 79%
rename from assets/zht_api_presets_model_index.md.BABYoPvx.js
rename to assets/ja_api_presets_model_index.md.DQliiN_s.js
index bbe72bb..a4f00e5 100644
--- a/assets/zht_api_presets_model_index.md.BABYoPvx.js
+++ b/assets/ja_api_presets_model_index.md.DQliiN_s.js
@@ -1,4 +1,4 @@
-import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const o=JSON.parse('{"title":"mbcp.presets.model","description":"","frontmatter":{"title":"mbcp.presets.model","editLink":false,"collapsed":true},"headers":[],"relativePath":"zht/api/presets/model/index.md","filePath":"zht/api/presets/model/index.md","lastUpdated":1724915255000}'),t={name:"zht/api/presets/model/index.md"},h=n(`

mbcp.presets.model

説明: 几何模型点集

class GeometricModels

@staticmethod

def sphere(radius: float, density: float)

説明: 生成球体上的点集。

變數説明:

  • radius:
  • density:

返回: List[Point3]: 球体上的点集。

源碼於GitHub上查看
python
@staticmethod
+import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const o=JSON.parse('{"title":"mbcp.presets.model","description":"","frontmatter":{"title":"mbcp.presets.model","collapsed":true},"headers":[],"relativePath":"ja/api/presets/model/index.md","filePath":"ja/api/presets/model/index.md","lastUpdated":1724915255000}'),t={name:"ja/api/presets/model/index.md"},h=n(`

mbcp.presets.model

説明: 几何模型点集

class GeometricModels

@staticmethod

def sphere(radius: float, density: float)

説明: 生成球体上的点集。

引数:

  • radius:
  • density:

戻り値: List[Point3]: 球体上的点集。

ソースコード または GitHubで表示
python
@staticmethod
 def sphere(radius: float, density: float):
     """
         生成球体上的点集。
diff --git a/assets/ja_api_presets_model_index.md.DQliiN_s.lean.js b/assets/ja_api_presets_model_index.md.DQliiN_s.lean.js
new file mode 100644
index 0000000..6cd6326
--- /dev/null
+++ b/assets/ja_api_presets_model_index.md.DQliiN_s.lean.js
@@ -0,0 +1 @@
+import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const o=JSON.parse('{"title":"mbcp.presets.model","description":"","frontmatter":{"title":"mbcp.presets.model","collapsed":true},"headers":[],"relativePath":"ja/api/presets/model/index.md","filePath":"ja/api/presets/model/index.md","lastUpdated":1724915255000}'),t={name:"ja/api/presets/model/index.md"},h=n("",10),l=[h];function p(k,e,r,d,E,g){return a(),i("div",null,l)}const c=s(t,[["render",p]]);export{o as __pageData,c as default};
diff --git a/assets/ja_api_presets_model_model.md.Ca837h0t.lean.js b/assets/ja_api_presets_model_model.md.Ca837h0t.lean.js
deleted file mode 100644
index a948258..0000000
--- a/assets/ja_api_presets_model_model.md.Ca837h0t.lean.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const y=JSON.parse('{"title":"mbcp.presets.model","description":"","frontmatter":{"title":"mbcp.presets.model","editLink":false,"collapsed":true},"headers":[],"relativePath":"ja/api/presets/model/model.md","filePath":"ja/api/presets/model/model.md","lastUpdated":null}'),t={name:"ja/api/presets/model/model.md"},h=n("",10),l=[h];function p(k,e,r,d,E,o){return a(),i("div",null,l)}const c=s(t,[["render",p]]);export{y as __pageData,c as default};
diff --git a/assets/zht_api_presets_model_model.md.D7UOTujb.js b/assets/ja_api_presets_model_model.md.Do2QSwoB.js
similarity index 79%
rename from assets/zht_api_presets_model_model.md.D7UOTujb.js
rename to assets/ja_api_presets_model_model.md.Do2QSwoB.js
index 16274d4..c66c40d 100644
--- a/assets/zht_api_presets_model_model.md.D7UOTujb.js
+++ b/assets/ja_api_presets_model_model.md.Do2QSwoB.js
@@ -1,4 +1,4 @@
-import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const y=JSON.parse('{"title":"mbcp.presets.model","description":"","frontmatter":{"title":"mbcp.presets.model","editLink":false,"collapsed":true},"headers":[],"relativePath":"zht/api/presets/model/model.md","filePath":"zht/api/presets/model/model.md","lastUpdated":null}'),t={name:"zht/api/presets/model/model.md"},h=n(`

mbcp.presets.model

説明: 几何模型点集

class GeometricModels

@staticmethod

def sphere(radius: float, density: float)

説明: 生成球体上的点集。

變數説明:

  • radius:
  • density:

返回: List[Point3]: 球体上的点集。

源碼於GitHub上查看
python
@staticmethod
+import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const y=JSON.parse('{"title":"mbcp.presets.model","description":"","frontmatter":{"title":"mbcp.presets.model","collapsed":true},"headers":[],"relativePath":"ja/api/presets/model/model.md","filePath":"ja/api/presets/model/model.md","lastUpdated":null}'),t={name:"ja/api/presets/model/model.md"},h=n(`

mbcp.presets.model

説明: 几何模型点集

class GeometricModels

@staticmethod

def sphere(radius: float, density: float)

説明: 生成球体上的点集。

引数:

  • radius:
  • density:

戻り値: List[Point3]: 球体上的点集。

ソースコード または GitHubで表示
python
@staticmethod
 def sphere(radius: float, density: float):
     """
         生成球体上的点集。
diff --git a/assets/ja_api_presets_model_model.md.Do2QSwoB.lean.js b/assets/ja_api_presets_model_model.md.Do2QSwoB.lean.js
new file mode 100644
index 0000000..6a54794
--- /dev/null
+++ b/assets/ja_api_presets_model_model.md.Do2QSwoB.lean.js
@@ -0,0 +1 @@
+import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const y=JSON.parse('{"title":"mbcp.presets.model","description":"","frontmatter":{"title":"mbcp.presets.model","collapsed":true},"headers":[],"relativePath":"ja/api/presets/model/model.md","filePath":"ja/api/presets/model/model.md","lastUpdated":null}'),t={name:"ja/api/presets/model/model.md"},h=n("",10),l=[h];function p(k,e,r,d,E,o){return a(),i("div",null,l)}const c=s(t,[["render",p]]);export{y as __pageData,c as default};
diff --git a/assets/ja_api_presets_presets.md.B4NIHC57.js b/assets/ja_api_presets_presets.md.B4NIHC57.js
deleted file mode 100644
index b8ffe79..0000000
--- a/assets/ja_api_presets_presets.md.B4NIHC57.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as s,c as a,o as r,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp.presets","description":"","frontmatter":{"title":"mbcp.presets","editLink":false,"collapsed":true},"headers":[],"relativePath":"ja/api/presets/presets.md","filePath":"ja/api/presets/presets.md","lastUpdated":null}'),o={name:"ja/api/presets/presets.md"},p=e("h1",{id:"mbcp-presets",tabindex:"-1"},[t("mbcp.presets "),e("a",{class:"header-anchor",href:"#mbcp-presets","aria-label":'Permalink to "mbcp.presets"'},"​")],-1),i=e("p",null,[e("strong",null,"説明"),t(": Copyright (C) 2020-2024 LiteyukiStudio. All Rights Reserved")],-1),l=e("p",null,[t("@Time : 2024/8/12 下午9:12 @Author : snowykami @Email : "),e("a",{href:"mailto:snowykami@outlook.com",target:"_blank",rel:"noreferrer"},"snowykami@outlook.com"),t(" @File : "),e("strong",null,"init"),t(".py @Software: PyCharm")],-1),n=[p,i,l];function c(d,m,_,h,u,f){return r(),a("div",null,n)}const y=s(o,[["render",c]]);export{b as __pageData,y as default};
diff --git a/assets/ja_api_presets_presets.md.B4NIHC57.lean.js b/assets/ja_api_presets_presets.md.B4NIHC57.lean.js
deleted file mode 100644
index b8ffe79..0000000
--- a/assets/ja_api_presets_presets.md.B4NIHC57.lean.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as s,c as a,o as r,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp.presets","description":"","frontmatter":{"title":"mbcp.presets","editLink":false,"collapsed":true},"headers":[],"relativePath":"ja/api/presets/presets.md","filePath":"ja/api/presets/presets.md","lastUpdated":null}'),o={name:"ja/api/presets/presets.md"},p=e("h1",{id:"mbcp-presets",tabindex:"-1"},[t("mbcp.presets "),e("a",{class:"header-anchor",href:"#mbcp-presets","aria-label":'Permalink to "mbcp.presets"'},"​")],-1),i=e("p",null,[e("strong",null,"説明"),t(": Copyright (C) 2020-2024 LiteyukiStudio. All Rights Reserved")],-1),l=e("p",null,[t("@Time : 2024/8/12 下午9:12 @Author : snowykami @Email : "),e("a",{href:"mailto:snowykami@outlook.com",target:"_blank",rel:"noreferrer"},"snowykami@outlook.com"),t(" @File : "),e("strong",null,"init"),t(".py @Software: PyCharm")],-1),n=[p,i,l];function c(d,m,_,h,u,f){return r(),a("div",null,n)}const y=s(o,[["render",c]]);export{b as __pageData,y as default};
diff --git a/assets/ja_api_presets_presets.md.C1NN1QPM.js b/assets/ja_api_presets_presets.md.C1NN1QPM.js
new file mode 100644
index 0000000..0936c3f
--- /dev/null
+++ b/assets/ja_api_presets_presets.md.C1NN1QPM.js
@@ -0,0 +1 @@
+import{_ as s,c as a,o as r,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp.presets","description":"","frontmatter":{"title":"mbcp.presets","collapsed":true},"headers":[],"relativePath":"ja/api/presets/presets.md","filePath":"ja/api/presets/presets.md","lastUpdated":null}'),o={name:"ja/api/presets/presets.md"},p=e("h1",{id:"mbcp-presets",tabindex:"-1"},[t("mbcp.presets "),e("a",{class:"header-anchor",href:"#mbcp-presets","aria-label":'Permalink to "mbcp.presets"'},"​")],-1),i=e("p",null,[e("strong",null,"説明"),t(": Copyright (C) 2020-2024 LiteyukiStudio. All Rights Reserved")],-1),l=e("p",null,[t("@Time : 2024/8/12 下午9:12 @Author : snowykami @Email : "),e("a",{href:"mailto:snowykami@outlook.com",target:"_blank",rel:"noreferrer"},"snowykami@outlook.com"),t(" @File : "),e("strong",null,"init"),t(".py @Software: PyCharm")],-1),n=[p,i,l];function c(m,d,_,h,u,f){return r(),a("div",null,n)}const y=s(o,[["render",c]]);export{b as __pageData,y as default};
diff --git a/assets/ja_api_presets_presets.md.C1NN1QPM.lean.js b/assets/ja_api_presets_presets.md.C1NN1QPM.lean.js
new file mode 100644
index 0000000..0936c3f
--- /dev/null
+++ b/assets/ja_api_presets_presets.md.C1NN1QPM.lean.js
@@ -0,0 +1 @@
+import{_ as s,c as a,o as r,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp.presets","description":"","frontmatter":{"title":"mbcp.presets","collapsed":true},"headers":[],"relativePath":"ja/api/presets/presets.md","filePath":"ja/api/presets/presets.md","lastUpdated":null}'),o={name:"ja/api/presets/presets.md"},p=e("h1",{id:"mbcp-presets",tabindex:"-1"},[t("mbcp.presets "),e("a",{class:"header-anchor",href:"#mbcp-presets","aria-label":'Permalink to "mbcp.presets"'},"​")],-1),i=e("p",null,[e("strong",null,"説明"),t(": Copyright (C) 2020-2024 LiteyukiStudio. All Rights Reserved")],-1),l=e("p",null,[t("@Time : 2024/8/12 下午9:12 @Author : snowykami @Email : "),e("a",{href:"mailto:snowykami@outlook.com",target:"_blank",rel:"noreferrer"},"snowykami@outlook.com"),t(" @File : "),e("strong",null,"init"),t(".py @Software: PyCharm")],-1),n=[p,i,l];function c(m,d,_,h,u,f){return r(),a("div",null,n)}const y=s(o,[["render",c]]);export{b as __pageData,y as default};
diff --git a/assets/zht_api_api.md.C2hNRcuq.js b/assets/zht_api_api.md.C2hNRcuq.js
new file mode 100644
index 0000000..2974f2e
--- /dev/null
+++ b/assets/zht_api_api.md.C2hNRcuq.js
@@ -0,0 +1 @@
+import{_ as t,c as s,o as c,j as e,a}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp","description":"","frontmatter":{"title":"mbcp","collapsed":true},"headers":[],"relativePath":"zht/api/api.md","filePath":"zht/api/api.md","lastUpdated":null}'),o={name:"zht/api/api.md"},p=e("h1",{id:"mbcp",tabindex:"-1"},[a("mbcp "),e("a",{class:"header-anchor",href:"#mbcp","aria-label":'Permalink to "mbcp"'},"​")],-1),r=e("p",null,[e("strong",null,"説明"),a(": 本模块塞了一些预设的粒子生成器")],-1),n=[p,r];function i(l,d,_,m,h,f){return c(),s("div",null,n)}const x=t(o,[["render",i]]);export{b as __pageData,x as default};
diff --git a/assets/zht_api_api.md.C2hNRcuq.lean.js b/assets/zht_api_api.md.C2hNRcuq.lean.js
new file mode 100644
index 0000000..2974f2e
--- /dev/null
+++ b/assets/zht_api_api.md.C2hNRcuq.lean.js
@@ -0,0 +1 @@
+import{_ as t,c as s,o as c,j as e,a}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp","description":"","frontmatter":{"title":"mbcp","collapsed":true},"headers":[],"relativePath":"zht/api/api.md","filePath":"zht/api/api.md","lastUpdated":null}'),o={name:"zht/api/api.md"},p=e("h1",{id:"mbcp",tabindex:"-1"},[a("mbcp "),e("a",{class:"header-anchor",href:"#mbcp","aria-label":'Permalink to "mbcp"'},"​")],-1),r=e("p",null,[e("strong",null,"説明"),a(": 本模块塞了一些预设的粒子生成器")],-1),n=[p,r];function i(l,d,_,m,h,f){return c(),s("div",null,n)}const x=t(o,[["render",i]]);export{b as __pageData,x as default};
diff --git a/assets/zht_api_api.md.DiHUkCYv.js b/assets/zht_api_api.md.DiHUkCYv.js
deleted file mode 100644
index a4b2bde..0000000
--- a/assets/zht_api_api.md.DiHUkCYv.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as t,c as s,o as c,j as e,a}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp","description":"","frontmatter":{"title":"mbcp","editLink":false,"collapsed":true},"headers":[],"relativePath":"zht/api/api.md","filePath":"zht/api/api.md","lastUpdated":null}'),o={name:"zht/api/api.md"},i=e("h1",{id:"mbcp",tabindex:"-1"},[a("mbcp "),e("a",{class:"header-anchor",href:"#mbcp","aria-label":'Permalink to "mbcp"'},"​")],-1),n=e("p",null,[e("strong",null,"説明"),a(": 本模块塞了一些预设的粒子生成器")],-1),p=[i,n];function r(l,d,_,m,h,f){return c(),s("div",null,p)}const x=t(o,[["render",r]]);export{b as __pageData,x as default};
diff --git a/assets/zht_api_api.md.DiHUkCYv.lean.js b/assets/zht_api_api.md.DiHUkCYv.lean.js
deleted file mode 100644
index a4b2bde..0000000
--- a/assets/zht_api_api.md.DiHUkCYv.lean.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as t,c as s,o as c,j as e,a}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp","description":"","frontmatter":{"title":"mbcp","editLink":false,"collapsed":true},"headers":[],"relativePath":"zht/api/api.md","filePath":"zht/api/api.md","lastUpdated":null}'),o={name:"zht/api/api.md"},i=e("h1",{id:"mbcp",tabindex:"-1"},[a("mbcp "),e("a",{class:"header-anchor",href:"#mbcp","aria-label":'Permalink to "mbcp"'},"​")],-1),n=e("p",null,[e("strong",null,"説明"),a(": 本模块塞了一些预设的粒子生成器")],-1),p=[i,n];function r(l,d,_,m,h,f){return c(),s("div",null,p)}const x=t(o,[["render",r]]);export{b as __pageData,x as default};
diff --git a/assets/zht_api_index.md.BEoHS6eY.js b/assets/zht_api_index.md.BEoHS6eY.js
deleted file mode 100644
index e72b242..0000000
--- a/assets/zht_api_index.md.BEoHS6eY.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as a,c as s,o as n,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp","description":"","frontmatter":{"title":"mbcp","editLink":false,"collapsed":true},"headers":[],"relativePath":"zht/api/index.md","filePath":"zht/api/index.md","lastUpdated":1724915255000}'),c={name:"zht/api/index.md"},o=e("h1",{id:"mbcp",tabindex:"-1"},[t("mbcp "),e("a",{class:"header-anchor",href:"#mbcp","aria-label":'Permalink to "mbcp"'},"​")],-1),i=e("p",null,[e("strong",null,"説明"),t(": 本模块塞了一些预设的粒子生成器")],-1),r=[o,i];function d(p,l,_,m,h,f){return n(),s("div",null,r)}const u=a(c,[["render",d]]);export{b as __pageData,u as default};
diff --git a/assets/zht_api_index.md.BEoHS6eY.lean.js b/assets/zht_api_index.md.BEoHS6eY.lean.js
deleted file mode 100644
index e72b242..0000000
--- a/assets/zht_api_index.md.BEoHS6eY.lean.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as a,c as s,o as n,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp","description":"","frontmatter":{"title":"mbcp","editLink":false,"collapsed":true},"headers":[],"relativePath":"zht/api/index.md","filePath":"zht/api/index.md","lastUpdated":1724915255000}'),c={name:"zht/api/index.md"},o=e("h1",{id:"mbcp",tabindex:"-1"},[t("mbcp "),e("a",{class:"header-anchor",href:"#mbcp","aria-label":'Permalink to "mbcp"'},"​")],-1),i=e("p",null,[e("strong",null,"説明"),t(": 本模块塞了一些预设的粒子生成器")],-1),r=[o,i];function d(p,l,_,m,h,f){return n(),s("div",null,r)}const u=a(c,[["render",d]]);export{b as __pageData,u as default};
diff --git a/assets/zht_api_index.md.BzaFnMgS.js b/assets/zht_api_index.md.BzaFnMgS.js
new file mode 100644
index 0000000..07cf2ef
--- /dev/null
+++ b/assets/zht_api_index.md.BzaFnMgS.js
@@ -0,0 +1 @@
+import{_ as a,c as s,o as c,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp","description":"","frontmatter":{"title":"mbcp","collapsed":true},"headers":[],"relativePath":"zht/api/index.md","filePath":"zht/api/index.md","lastUpdated":1724915255000}'),n={name:"zht/api/index.md"},o=e("h1",{id:"mbcp",tabindex:"-1"},[t("mbcp "),e("a",{class:"header-anchor",href:"#mbcp","aria-label":'Permalink to "mbcp"'},"​")],-1),r=e("p",null,[e("strong",null,"説明"),t(": 本模块塞了一些预设的粒子生成器")],-1),d=[o,r];function i(p,l,_,m,h,f){return c(),s("div",null,d)}const u=a(n,[["render",i]]);export{b as __pageData,u as default};
diff --git a/assets/zht_api_index.md.BzaFnMgS.lean.js b/assets/zht_api_index.md.BzaFnMgS.lean.js
new file mode 100644
index 0000000..07cf2ef
--- /dev/null
+++ b/assets/zht_api_index.md.BzaFnMgS.lean.js
@@ -0,0 +1 @@
+import{_ as a,c as s,o as c,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp","description":"","frontmatter":{"title":"mbcp","collapsed":true},"headers":[],"relativePath":"zht/api/index.md","filePath":"zht/api/index.md","lastUpdated":1724915255000}'),n={name:"zht/api/index.md"},o=e("h1",{id:"mbcp",tabindex:"-1"},[t("mbcp "),e("a",{class:"header-anchor",href:"#mbcp","aria-label":'Permalink to "mbcp"'},"​")],-1),r=e("p",null,[e("strong",null,"説明"),t(": 本模块塞了一些预设的粒子生成器")],-1),d=[o,r];function i(p,l,_,m,h,f){return c(),s("div",null,d)}const u=a(n,[["render",i]]);export{b as __pageData,u as default};
diff --git a/assets/zht_api_mp_math_angle.md.CUXs1f3L.lean.js b/assets/zht_api_mp_math_angle.md.CUXs1f3L.lean.js
deleted file mode 100644
index 602bec1..0000000
--- a/assets/zht_api_mp_math_angle.md.CUXs1f3L.lean.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const c=JSON.parse('{"title":"mbcp.mp_math.angle","description":"","frontmatter":{"title":"mbcp.mp_math.angle","editLink":false},"headers":[],"relativePath":"zht/api/mp_math/angle.md","filePath":"zht/api/mp_math/angle.md","lastUpdated":1724915255000}'),t={name:"zht/api/mp_math/angle.md"},e=n("",80),l=[e];function h(p,k,r,d,g,o){return a(),i("div",null,l)}const F=s(t,[["render",h]]);export{c as __pageData,F as default};
diff --git a/assets/zht_api_mp_math_angle.md.CUXs1f3L.js b/assets/zht_api_mp_math_angle.md._YgAKKZ8.js
similarity index 94%
rename from assets/zht_api_mp_math_angle.md.CUXs1f3L.js
rename to assets/zht_api_mp_math_angle.md._YgAKKZ8.js
index 729307a..722e4aa 100644
--- a/assets/zht_api_mp_math_angle.md.CUXs1f3L.js
+++ b/assets/zht_api_mp_math_angle.md._YgAKKZ8.js
@@ -1,4 +1,4 @@
-import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const c=JSON.parse('{"title":"mbcp.mp_math.angle","description":"","frontmatter":{"title":"mbcp.mp_math.angle","editLink":false},"headers":[],"relativePath":"zht/api/mp_math/angle.md","filePath":"zht/api/mp_math/angle.md","lastUpdated":1724915255000}'),t={name:"zht/api/mp_math/angle.md"},e=n(`

mbcp.mp_math.angle

説明: 本模块定义了角度相关的类

class Angle

class AnyAngle(Angle)

def __init__(self, value: float, is_radian: bool = False)

説明: 任意角度。

變數説明:

  • value: 角度或弧度值
  • is_radian: 是否为弧度,默认为否
源碼於GitHub上查看
python
def __init__(self, value: float, is_radian: bool=False):
+import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const c=JSON.parse('{"title":"mbcp.mp_math.angle","description":"","frontmatter":{"title":"mbcp.mp_math.angle"},"headers":[],"relativePath":"zht/api/mp_math/angle.md","filePath":"zht/api/mp_math/angle.md","lastUpdated":1724915255000}'),t={name:"zht/api/mp_math/angle.md"},e=n(`

mbcp.mp_math.angle

説明: 本模块定义了角度相关的类

class Angle

class AnyAngle(Angle)

def __init__(self, value: float, is_radian: bool = False)

説明: 任意角度。

變數説明:

  • value: 角度或弧度值
  • is_radian: 是否为弧度,默认为否
源碼於GitHub上查看
python
def __init__(self, value: float, is_radian: bool=False):
     """
         任意角度。
         Args:
diff --git a/assets/zht_api_mp_math_angle.md._YgAKKZ8.lean.js b/assets/zht_api_mp_math_angle.md._YgAKKZ8.lean.js
new file mode 100644
index 0000000..e4ff085
--- /dev/null
+++ b/assets/zht_api_mp_math_angle.md._YgAKKZ8.lean.js
@@ -0,0 +1 @@
+import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const c=JSON.parse('{"title":"mbcp.mp_math.angle","description":"","frontmatter":{"title":"mbcp.mp_math.angle"},"headers":[],"relativePath":"zht/api/mp_math/angle.md","filePath":"zht/api/mp_math/angle.md","lastUpdated":1724915255000}'),t={name:"zht/api/mp_math/angle.md"},e=n("",80),l=[e];function h(p,k,r,d,g,o){return a(),i("div",null,l)}const F=s(t,[["render",h]]);export{c as __pageData,F as default};
diff --git a/assets/zht_api_mp_math_const.md.BRbOg-ik.js b/assets/zht_api_mp_math_const.md.BRbOg-ik.js
deleted file mode 100644
index 3a0e3b8..0000000
--- a/assets/zht_api_mp_math_const.md.BRbOg-ik.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as a,c as t,o as e,a4 as o}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math.const","description":"","frontmatter":{"title":"mbcp.mp_math.const","editLink":false},"headers":[],"relativePath":"zht/api/mp_math/const.md","filePath":"zht/api/mp_math/const.md","lastUpdated":1724915255000}'),r={name:"zht/api/mp_math/const.md"},c=o('

mbcp.mp_math.const

説明: 本模块定义了一些常用的常量

var PI = math.pi

  • 説明: 常量 π

var E = math.e

  • 説明: 自然对数的底 exp(1)

var GOLDEN_RATIO = (1 + math.sqrt(5)) / 2

  • 説明: 黄金分割比

var GAMMA = 0.5772156649015329

  • 説明: 欧拉常数

var EPSILON = 0.0001

  • 説明: 精度误差

var APPROX = 0.001

  • 説明: 约等于判定误差
',14),i=[c];function l(n,s,h,d,m,p){return e(),t("div",null,i)}const v=a(r,[["render",l]]);export{u as __pageData,v as default}; diff --git a/assets/zht_api_mp_math_const.md.BRbOg-ik.lean.js b/assets/zht_api_mp_math_const.md.BRbOg-ik.lean.js deleted file mode 100644 index d29a59b..0000000 --- a/assets/zht_api_mp_math_const.md.BRbOg-ik.lean.js +++ /dev/null @@ -1 +0,0 @@ -import{_ as a,c as t,o as e,a4 as o}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math.const","description":"","frontmatter":{"title":"mbcp.mp_math.const","editLink":false},"headers":[],"relativePath":"zht/api/mp_math/const.md","filePath":"zht/api/mp_math/const.md","lastUpdated":1724915255000}'),r={name:"zht/api/mp_math/const.md"},c=o("",14),i=[c];function l(n,s,h,d,m,p){return e(),t("div",null,i)}const v=a(r,[["render",l]]);export{u as __pageData,v as default}; diff --git a/assets/zht_api_mp_math_const.md.Bg9yfrey.js b/assets/zht_api_mp_math_const.md.Bg9yfrey.js new file mode 100644 index 0000000..45122fc --- /dev/null +++ b/assets/zht_api_mp_math_const.md.Bg9yfrey.js @@ -0,0 +1 @@ +import{_ as a,c as t,o as e,a4 as o}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math.const","description":"","frontmatter":{"title":"mbcp.mp_math.const"},"headers":[],"relativePath":"zht/api/mp_math/const.md","filePath":"zht/api/mp_math/const.md","lastUpdated":1724915255000}'),r={name:"zht/api/mp_math/const.md"},c=o('

mbcp.mp_math.const

説明: 本模块定义了一些常用的常量

var PI = math.pi

  • 説明: 常量 π

var E = math.e

  • 説明: 自然对数的底 exp(1)

var GOLDEN_RATIO = (1 + math.sqrt(5)) / 2

  • 説明: 黄金分割比

var GAMMA = 0.5772156649015329

  • 説明: 欧拉常数

var EPSILON = 0.0001

  • 説明: 精度误差

var APPROX = 0.001

  • 説明: 约等于判定误差
',14),i=[c];function l(n,s,h,d,m,p){return e(),t("div",null,i)}const v=a(r,[["render",l]]);export{u as __pageData,v as default}; diff --git a/assets/zht_api_mp_math_const.md.Bg9yfrey.lean.js b/assets/zht_api_mp_math_const.md.Bg9yfrey.lean.js new file mode 100644 index 0000000..474600d --- /dev/null +++ b/assets/zht_api_mp_math_const.md.Bg9yfrey.lean.js @@ -0,0 +1 @@ +import{_ as a,c as t,o as e,a4 as o}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math.const","description":"","frontmatter":{"title":"mbcp.mp_math.const"},"headers":[],"relativePath":"zht/api/mp_math/const.md","filePath":"zht/api/mp_math/const.md","lastUpdated":1724915255000}'),r={name:"zht/api/mp_math/const.md"},c=o("",14),i=[c];function l(n,s,h,d,m,p){return e(),t("div",null,i)}const v=a(r,[["render",l]]);export{u as __pageData,v as default}; diff --git a/assets/zht_api_mp_math_equation.md.DkF23wZv.lean.js b/assets/zht_api_mp_math_equation.md.DkF23wZv.lean.js deleted file mode 100644 index 47159de..0000000 --- a/assets/zht_api_mp_math_equation.md.DkF23wZv.lean.js +++ /dev/null @@ -1 +0,0 @@ -import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math.equation","description":"","frontmatter":{"title":"mbcp.mp_math.equation","editLink":false},"headers":[],"relativePath":"zht/api/mp_math/equation.md","filePath":"zht/api/mp_math/equation.md","lastUpdated":1724915255000}'),t={name:"zht/api/mp_math/equation.md"},l=n("",23),p=[l];function h(k,e,r,E,d,g){return a(),i("div",null,p)}const F=s(t,[["render",h]]);export{u as __pageData,F as default}; diff --git a/assets/zht_api_mp_math_equation.md.DkF23wZv.js b/assets/zht_api_mp_math_equation.md.Dl4VlL2q.js similarity index 89% rename from assets/zht_api_mp_math_equation.md.DkF23wZv.js rename to assets/zht_api_mp_math_equation.md.Dl4VlL2q.js index 0ce8007..e54483b 100644 --- a/assets/zht_api_mp_math_equation.md.DkF23wZv.js +++ b/assets/zht_api_mp_math_equation.md.Dl4VlL2q.js @@ -1,4 +1,4 @@ -import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math.equation","description":"","frontmatter":{"title":"mbcp.mp_math.equation","editLink":false},"headers":[],"relativePath":"zht/api/mp_math/equation.md","filePath":"zht/api/mp_math/equation.md","lastUpdated":1724915255000}'),t={name:"zht/api/mp_math/equation.md"},l=n(`

mbcp.mp_math.equation

説明: 本模块定义了方程相关的类和函数以及一些常用的数学函数

class CurveEquation

def __init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc)

説明: 曲线方程。

變數説明:

  • x_func: x函数
  • y_func: y函数
  • z_func: z函数
源碼於GitHub上查看
python
def __init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc):
+import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math.equation","description":"","frontmatter":{"title":"mbcp.mp_math.equation"},"headers":[],"relativePath":"zht/api/mp_math/equation.md","filePath":"zht/api/mp_math/equation.md","lastUpdated":1724915255000}'),t={name:"zht/api/mp_math/equation.md"},l=n(`

mbcp.mp_math.equation

説明: 本模块定义了方程相关的类和函数以及一些常用的数学函数

class CurveEquation

def __init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc)

説明: 曲线方程。

變數説明:

  • x_func: x函数
  • y_func: y函数
  • z_func: z函数
源碼於GitHub上查看
python
def __init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc):
     """
         曲线方程。
         Args:
diff --git a/assets/zht_api_mp_math_equation.md.Dl4VlL2q.lean.js b/assets/zht_api_mp_math_equation.md.Dl4VlL2q.lean.js
new file mode 100644
index 0000000..4bbb00b
--- /dev/null
+++ b/assets/zht_api_mp_math_equation.md.Dl4VlL2q.lean.js
@@ -0,0 +1 @@
+import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math.equation","description":"","frontmatter":{"title":"mbcp.mp_math.equation"},"headers":[],"relativePath":"zht/api/mp_math/equation.md","filePath":"zht/api/mp_math/equation.md","lastUpdated":1724915255000}'),t={name:"zht/api/mp_math/equation.md"},l=n("",23),p=[l];function h(k,e,r,E,d,g){return a(),i("div",null,p)}const F=s(t,[["render",h]]);export{u as __pageData,F as default};
diff --git a/assets/zht_api_mp_math_function.md.DCZGszhC.js b/assets/zht_api_mp_math_function.md.DCZGszhC.js
new file mode 100644
index 0000000..90e9531
--- /dev/null
+++ b/assets/zht_api_mp_math_function.md.DCZGszhC.js
@@ -0,0 +1,42 @@
+import{_ as l,c as t,j as s,a as n,a4 as a,o as i}from"./chunks/framework.DpC1ZpOZ.js";const Z=JSON.parse('{"title":"mbcp.mp_math.function","description":"","frontmatter":{"title":"mbcp.mp_math.function"},"headers":[],"relativePath":"zht/api/mp_math/function.md","filePath":"zht/api/mp_math/function.md","lastUpdated":null}'),e={name:"zht/api/mp_math/function.md"},Q=a('

mbcp.mp_math.function

説明: AAA

def cal_gradient_3vf(func: ThreeSingleVarsFunc, p: Point3, epsilon: float = EPSILON) -> Vector3

説明: 计算三元函数在某点的梯度向量。

',4),T={class:"tip custom-block github-alert"},h=s("p",{class:"custom-block-title"},"TIP",-1),p={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},r={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.471ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 3744.3 1000","aria-hidden":"true"},d=a('',1),k=[d],o=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"f"),s("mo",{stretchy:"false"},"("),s("mi",null,"x"),s("mo",null,","),s("mi",null,"y"),s("mo",null,","),s("mi",null,"z"),s("mo",{stretchy:"false"},")")])],-1),m={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},g={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.19ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 4504 1000","aria-hidden":"true"},c=a('',1),y=[c],u=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mo",{stretchy:"false"},"("),s("msub",null,[s("mi",null,"x"),s("mn",null,"0")]),s("mo",null,","),s("msub",null,[s("mi",null,"y"),s("mn",null,"0")]),s("mo",null,","),s("msub",null,[s("mi",null,"z"),s("mn",null,"0")]),s("mo",{stretchy:"false"},")")])],-1),E={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},F={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-1.469ex"},xmlns:"http://www.w3.org/2000/svg",width:"29.427ex",height:"4.07ex",role:"img",focusable:"false",viewBox:"0 -1149.5 13006.8 1799","aria-hidden":"true"},f=a('',1),_=[f],C=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",{mathvariant:"normal"},"∇"),s("mi",null,"f"),s("mo",{stretchy:"false"},"("),s("msub",null,[s("mi",null,"x"),s("mn",null,"0")]),s("mo",null,","),s("msub",null,[s("mi",null,"y"),s("mn",null,"0")]),s("mo",null,","),s("msub",null,[s("mi",null,"z"),s("mn",null,"0")]),s("mo",{stretchy:"false"},")"),s("mo",null,"="),s("mrow",{"data-mjx-texclass":"INNER"},[s("mo",{"data-mjx-texclass":"OPEN"},"("),s("mfrac",null,[s("mrow",null,[s("mi",null,"∂"),s("mi",null,"f")]),s("mrow",null,[s("mi",null,"∂"),s("mi",null,"x")])]),s("mo",null,","),s("mfrac",null,[s("mrow",null,[s("mi",null,"∂"),s("mi",null,"f")]),s("mrow",null,[s("mi",null,"∂"),s("mi",null,"y")])]),s("mo",null,","),s("mfrac",null,[s("mrow",null,[s("mi",null,"∂"),s("mi",null,"f")]),s("mrow",null,[s("mi",null,"∂"),s("mi",null,"z")])]),s("mo",{"data-mjx-texclass":"CLOSE"},")")])])],-1),w=a(`

變數説明:

  • func: 三元函数
  • p: 点
  • epsilon: 偏移量

返回: 梯度

源碼於GitHub上查看
python
def cal_gradient_3vf(func: ThreeSingleVarsFunc, p: Point3, epsilon: float=EPSILON) -> Vector3:
+    """
+    计算三元函数在某点的梯度向量。
+    > [!tip]
+    > 已知一个函数$f(x, y, z)$,则其在点$(x_0, y_0, z_0)$处的梯度向量为:
+    $\\\\nabla f(x_0, y_0, z_0) = \\\\left(\\\\frac{\\\\partial f}{\\\\partial x}, \\\\frac{\\\\partial f}{\\\\partial y}, \\\\frac{\\\\partial f}{\\\\partial z}\\\\right)$
+    Args:
+        func: 三元函数
+        p: 点
+        epsilon: 偏移量
+    Returns:
+        梯度
+    """
+    dx = (func(p.x + epsilon, p.y, p.z) - func(p.x - epsilon, p.y, p.z)) / (2 * epsilon)
+    dy = (func(p.x, p.y + epsilon, p.z) - func(p.x, p.y - epsilon, p.z)) / (2 * epsilon)
+    dz = (func(p.x, p.y, p.z + epsilon) - func(p.x, p.y, p.z - epsilon)) / (2 * epsilon)
+    return Vector3(dx, dy, dz)

def curry(func: MultiVarsFunc, *args: Var) -> OneVarFunc

説明: 对多参数函数进行柯里化。

TIP

有关函数柯里化,可参考函数式编程--柯理化(Currying)

變數説明:

  • func: 函数
  • *args: 参数

返回: 柯里化后的函数

範例:

python
def add(a: int, b: int, c: int) -> int:
+    return a + b + c
+add_curried = curry(add, 1, 2)
+add_curried(3)  # 6
源碼於GitHub上查看
python
def curry(func: MultiVarsFunc, *args: Var) -> OneVarFunc:
+    """
+    对多参数函数进行柯里化。
+    > [!tip]
+    > 有关函数柯里化,可参考[函数式编程--柯理化(Currying)](https://zhuanlan.zhihu.com/p/355859667)
+    Args:
+        func: 函数
+        *args: 参数
+    Returns:
+        柯里化后的函数
+    Examples:
+        \`\`\`python
+        def add(a: int, b: int, c: int) -> int:
+            return a + b + c
+        add_curried = curry(add, 1, 2)
+        add_curried(3)  # 6
+        \`\`\`
+    """
+
+    def curried_func(*args2: Var) -> Var:
+        """@litedoc-hide"""
+        return func(*args, *args2)
+    return curried_func
`,13);function x(b,L,H,B,M,D){return i(),t("div",null,[Q,s("div",T,[h,s("p",null,[n("已知一个函数"),s("mjx-container",p,[(i(),t("svg",r,k)),o]),n(",则其在点"),s("mjx-container",m,[(i(),t("svg",g,y)),u]),n("处的梯度向量为: "),s("mjx-container",E,[(i(),t("svg",F,_)),C])])]),w])}const A=l(e,[["render",x]]);export{Z as __pageData,A as default}; diff --git a/assets/zht_api_mp_math_function.md.DCZGszhC.lean.js b/assets/zht_api_mp_math_function.md.DCZGszhC.lean.js new file mode 100644 index 0000000..803dc13 --- /dev/null +++ b/assets/zht_api_mp_math_function.md.DCZGszhC.lean.js @@ -0,0 +1 @@ +import{_ as l,c as t,j as s,a as n,a4 as a,o as i}from"./chunks/framework.DpC1ZpOZ.js";const Z=JSON.parse('{"title":"mbcp.mp_math.function","description":"","frontmatter":{"title":"mbcp.mp_math.function"},"headers":[],"relativePath":"zht/api/mp_math/function.md","filePath":"zht/api/mp_math/function.md","lastUpdated":null}'),e={name:"zht/api/mp_math/function.md"},Q=a("",4),T={class:"tip custom-block github-alert"},h=s("p",{class:"custom-block-title"},"TIP",-1),p={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},r={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.471ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 3744.3 1000","aria-hidden":"true"},d=a("",1),k=[d],o=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"f"),s("mo",{stretchy:"false"},"("),s("mi",null,"x"),s("mo",null,","),s("mi",null,"y"),s("mo",null,","),s("mi",null,"z"),s("mo",{stretchy:"false"},")")])],-1),m={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},g={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.19ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 4504 1000","aria-hidden":"true"},c=a("",1),y=[c],u=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mo",{stretchy:"false"},"("),s("msub",null,[s("mi",null,"x"),s("mn",null,"0")]),s("mo",null,","),s("msub",null,[s("mi",null,"y"),s("mn",null,"0")]),s("mo",null,","),s("msub",null,[s("mi",null,"z"),s("mn",null,"0")]),s("mo",{stretchy:"false"},")")])],-1),E={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},F={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-1.469ex"},xmlns:"http://www.w3.org/2000/svg",width:"29.427ex",height:"4.07ex",role:"img",focusable:"false",viewBox:"0 -1149.5 13006.8 1799","aria-hidden":"true"},f=a("",1),_=[f],C=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",{mathvariant:"normal"},"∇"),s("mi",null,"f"),s("mo",{stretchy:"false"},"("),s("msub",null,[s("mi",null,"x"),s("mn",null,"0")]),s("mo",null,","),s("msub",null,[s("mi",null,"y"),s("mn",null,"0")]),s("mo",null,","),s("msub",null,[s("mi",null,"z"),s("mn",null,"0")]),s("mo",{stretchy:"false"},")"),s("mo",null,"="),s("mrow",{"data-mjx-texclass":"INNER"},[s("mo",{"data-mjx-texclass":"OPEN"},"("),s("mfrac",null,[s("mrow",null,[s("mi",null,"∂"),s("mi",null,"f")]),s("mrow",null,[s("mi",null,"∂"),s("mi",null,"x")])]),s("mo",null,","),s("mfrac",null,[s("mrow",null,[s("mi",null,"∂"),s("mi",null,"f")]),s("mrow",null,[s("mi",null,"∂"),s("mi",null,"y")])]),s("mo",null,","),s("mfrac",null,[s("mrow",null,[s("mi",null,"∂"),s("mi",null,"f")]),s("mrow",null,[s("mi",null,"∂"),s("mi",null,"z")])]),s("mo",{"data-mjx-texclass":"CLOSE"},")")])])],-1),w=a("",13);function x(b,L,H,B,M,D){return i(),t("div",null,[Q,s("div",T,[h,s("p",null,[n("已知一个函数"),s("mjx-container",p,[(i(),t("svg",r,k)),o]),n(",则其在点"),s("mjx-container",m,[(i(),t("svg",g,y)),u]),n("处的梯度向量为: "),s("mjx-container",E,[(i(),t("svg",F,_)),C])])]),w])}const A=l(e,[["render",x]]);export{Z as __pageData,A as default}; diff --git a/assets/zht_api_mp_math_function.md.Hx5Fv7yg.js b/assets/zht_api_mp_math_function.md.Hx5Fv7yg.js deleted file mode 100644 index b29969a..0000000 --- a/assets/zht_api_mp_math_function.md.Hx5Fv7yg.js +++ /dev/null @@ -1,42 +0,0 @@ -import{_ as l,c as t,j as s,a as n,a4 as a,o as i}from"./chunks/framework.DpC1ZpOZ.js";const Z=JSON.parse('{"title":"mbcp.mp_math.function","description":"","frontmatter":{"title":"mbcp.mp_math.function","editLink":false},"headers":[],"relativePath":"zht/api/mp_math/function.md","filePath":"zht/api/mp_math/function.md","lastUpdated":null}'),e={name:"zht/api/mp_math/function.md"},Q=a('

mbcp.mp_math.function

説明: AAA

def cal_gradient_3vf(func: ThreeSingleVarsFunc, p: Point3, epsilon: float = EPSILON) -> Vector3

説明: 计算三元函数在某点的梯度向量。

',4),T={class:"tip custom-block github-alert"},h=s("p",{class:"custom-block-title"},"TIP",-1),p={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},r={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.471ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 3744.3 1000","aria-hidden":"true"},d=a('',1),k=[d],o=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"f"),s("mo",{stretchy:"false"},"("),s("mi",null,"x"),s("mo",null,","),s("mi",null,"y"),s("mo",null,","),s("mi",null,"z"),s("mo",{stretchy:"false"},")")])],-1),m={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},g={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.19ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 4504 1000","aria-hidden":"true"},c=a('',1),y=[c],u=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mo",{stretchy:"false"},"("),s("msub",null,[s("mi",null,"x"),s("mn",null,"0")]),s("mo",null,","),s("msub",null,[s("mi",null,"y"),s("mn",null,"0")]),s("mo",null,","),s("msub",null,[s("mi",null,"z"),s("mn",null,"0")]),s("mo",{stretchy:"false"},")")])],-1),E={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},F={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-1.469ex"},xmlns:"http://www.w3.org/2000/svg",width:"29.427ex",height:"4.07ex",role:"img",focusable:"false",viewBox:"0 -1149.5 13006.8 1799","aria-hidden":"true"},f=a('',1),_=[f],C=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",{mathvariant:"normal"},"∇"),s("mi",null,"f"),s("mo",{stretchy:"false"},"("),s("msub",null,[s("mi",null,"x"),s("mn",null,"0")]),s("mo",null,","),s("msub",null,[s("mi",null,"y"),s("mn",null,"0")]),s("mo",null,","),s("msub",null,[s("mi",null,"z"),s("mn",null,"0")]),s("mo",{stretchy:"false"},")"),s("mo",null,"="),s("mrow",{"data-mjx-texclass":"INNER"},[s("mo",{"data-mjx-texclass":"OPEN"},"("),s("mfrac",null,[s("mrow",null,[s("mi",null,"∂"),s("mi",null,"f")]),s("mrow",null,[s("mi",null,"∂"),s("mi",null,"x")])]),s("mo",null,","),s("mfrac",null,[s("mrow",null,[s("mi",null,"∂"),s("mi",null,"f")]),s("mrow",null,[s("mi",null,"∂"),s("mi",null,"y")])]),s("mo",null,","),s("mfrac",null,[s("mrow",null,[s("mi",null,"∂"),s("mi",null,"f")]),s("mrow",null,[s("mi",null,"∂"),s("mi",null,"z")])]),s("mo",{"data-mjx-texclass":"CLOSE"},")")])])],-1),w=a(`

變數説明:

  • func: 三元函数
  • p: 点
  • epsilon: 偏移量

返回: 梯度

源碼於GitHub上查看
python
def cal_gradient_3vf(func: ThreeSingleVarsFunc, p: Point3, epsilon: float=EPSILON) -> Vector3:
-    """
-    计算三元函数在某点的梯度向量。
-    > [!tip]
-    > 已知一个函数$f(x, y, z)$,则其在点$(x_0, y_0, z_0)$处的梯度向量为:
-    $\\\\nabla f(x_0, y_0, z_0) = \\\\left(\\\\frac{\\\\partial f}{\\\\partial x}, \\\\frac{\\\\partial f}{\\\\partial y}, \\\\frac{\\\\partial f}{\\\\partial z}\\\\right)$
-    Args:
-        func: 三元函数
-        p: 点
-        epsilon: 偏移量
-    Returns:
-        梯度
-    """
-    dx = (func(p.x + epsilon, p.y, p.z) - func(p.x - epsilon, p.y, p.z)) / (2 * epsilon)
-    dy = (func(p.x, p.y + epsilon, p.z) - func(p.x, p.y - epsilon, p.z)) / (2 * epsilon)
-    dz = (func(p.x, p.y, p.z + epsilon) - func(p.x, p.y, p.z - epsilon)) / (2 * epsilon)
-    return Vector3(dx, dy, dz)

def curry(func: MultiVarsFunc, *args: Var) -> OneVarFunc

説明: 对多参数函数进行柯里化。

TIP

有关函数柯里化,可参考函数式编程--柯理化(Currying)

變數説明:

  • func: 函数
  • *args: 参数

返回: 柯里化后的函数

範例:

python
def add(a: int, b: int, c: int) -> int:
-    return a + b + c
-add_curried = curry(add, 1, 2)
-add_curried(3)  # 6
源碼於GitHub上查看
python
def curry(func: MultiVarsFunc, *args: Var) -> OneVarFunc:
-    """
-    对多参数函数进行柯里化。
-    > [!tip]
-    > 有关函数柯里化,可参考[函数式编程--柯理化(Currying)](https://zhuanlan.zhihu.com/p/355859667)
-    Args:
-        func: 函数
-        *args: 参数
-    Returns:
-        柯里化后的函数
-    Examples:
-        \`\`\`python
-        def add(a: int, b: int, c: int) -> int:
-            return a + b + c
-        add_curried = curry(add, 1, 2)
-        add_curried(3)  # 6
-        \`\`\`
-    """
-
-    def curried_func(*args2: Var) -> Var:
-        """@litedoc-hide"""
-        return func(*args, *args2)
-    return curried_func
`,13);function x(b,L,H,B,M,D){return i(),t("div",null,[Q,s("div",T,[h,s("p",null,[n("已知一个函数"),s("mjx-container",p,[(i(),t("svg",r,k)),o]),n(",则其在点"),s("mjx-container",m,[(i(),t("svg",g,y)),u]),n("处的梯度向量为: "),s("mjx-container",E,[(i(),t("svg",F,_)),C])])]),w])}const A=l(e,[["render",x]]);export{Z as __pageData,A as default}; diff --git a/assets/zht_api_mp_math_function.md.Hx5Fv7yg.lean.js b/assets/zht_api_mp_math_function.md.Hx5Fv7yg.lean.js deleted file mode 100644 index b893d7e..0000000 --- a/assets/zht_api_mp_math_function.md.Hx5Fv7yg.lean.js +++ /dev/null @@ -1 +0,0 @@ -import{_ as l,c as t,j as s,a as n,a4 as a,o as i}from"./chunks/framework.DpC1ZpOZ.js";const Z=JSON.parse('{"title":"mbcp.mp_math.function","description":"","frontmatter":{"title":"mbcp.mp_math.function","editLink":false},"headers":[],"relativePath":"zht/api/mp_math/function.md","filePath":"zht/api/mp_math/function.md","lastUpdated":null}'),e={name:"zht/api/mp_math/function.md"},Q=a("",4),T={class:"tip custom-block github-alert"},h=s("p",{class:"custom-block-title"},"TIP",-1),p={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},r={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.471ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 3744.3 1000","aria-hidden":"true"},d=a("",1),k=[d],o=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"f"),s("mo",{stretchy:"false"},"("),s("mi",null,"x"),s("mo",null,","),s("mi",null,"y"),s("mo",null,","),s("mi",null,"z"),s("mo",{stretchy:"false"},")")])],-1),m={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},g={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.19ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 4504 1000","aria-hidden":"true"},c=a("",1),y=[c],u=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mo",{stretchy:"false"},"("),s("msub",null,[s("mi",null,"x"),s("mn",null,"0")]),s("mo",null,","),s("msub",null,[s("mi",null,"y"),s("mn",null,"0")]),s("mo",null,","),s("msub",null,[s("mi",null,"z"),s("mn",null,"0")]),s("mo",{stretchy:"false"},")")])],-1),E={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},F={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-1.469ex"},xmlns:"http://www.w3.org/2000/svg",width:"29.427ex",height:"4.07ex",role:"img",focusable:"false",viewBox:"0 -1149.5 13006.8 1799","aria-hidden":"true"},f=a("",1),_=[f],C=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",{mathvariant:"normal"},"∇"),s("mi",null,"f"),s("mo",{stretchy:"false"},"("),s("msub",null,[s("mi",null,"x"),s("mn",null,"0")]),s("mo",null,","),s("msub",null,[s("mi",null,"y"),s("mn",null,"0")]),s("mo",null,","),s("msub",null,[s("mi",null,"z"),s("mn",null,"0")]),s("mo",{stretchy:"false"},")"),s("mo",null,"="),s("mrow",{"data-mjx-texclass":"INNER"},[s("mo",{"data-mjx-texclass":"OPEN"},"("),s("mfrac",null,[s("mrow",null,[s("mi",null,"∂"),s("mi",null,"f")]),s("mrow",null,[s("mi",null,"∂"),s("mi",null,"x")])]),s("mo",null,","),s("mfrac",null,[s("mrow",null,[s("mi",null,"∂"),s("mi",null,"f")]),s("mrow",null,[s("mi",null,"∂"),s("mi",null,"y")])]),s("mo",null,","),s("mfrac",null,[s("mrow",null,[s("mi",null,"∂"),s("mi",null,"f")]),s("mrow",null,[s("mi",null,"∂"),s("mi",null,"z")])]),s("mo",{"data-mjx-texclass":"CLOSE"},")")])])],-1),w=a("",13);function x(b,L,H,B,M,D){return i(),t("div",null,[Q,s("div",T,[h,s("p",null,[n("已知一个函数"),s("mjx-container",p,[(i(),t("svg",r,k)),o]),n(",则其在点"),s("mjx-container",m,[(i(),t("svg",g,y)),u]),n("处的梯度向量为: "),s("mjx-container",E,[(i(),t("svg",F,_)),C])])]),w])}const A=l(e,[["render",x]]);export{Z as __pageData,A as default}; diff --git a/assets/zht_api_mp_math_index.md.DKOGJ-3J.js b/assets/zht_api_mp_math_index.md.DKOGJ-3J.js new file mode 100644 index 0000000..96a3903 --- /dev/null +++ b/assets/zht_api_mp_math_index.md.DKOGJ-3J.js @@ -0,0 +1 @@ +import{_ as e,c as t,o as a,a4 as o}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math","description":"","frontmatter":{"title":"mbcp.mp_math","collapsed":true},"headers":[],"relativePath":"zht/api/mp_math/index.md","filePath":"zht/api/mp_math/index.md","lastUpdated":1724915255000}'),c={name:"zht/api/mp_math/index.md"},i=o('

mbcp.mp_math

説明: 本包定义了一些常用的导入,可直接从mbcp.mp_math导入使用 导入的类有:

  • AnyAngle:任意角
  • CurveEquation:曲线方程
  • Line3:三维直线
  • Plane3:三维平面
  • Point3:三维点
  • Segment3:三维线段
  • Vector3:三维向量
',3),d=[i];function m(l,p,_,n,r,s){return a(),t("div",null,d)}const b=e(c,[["render",m]]);export{u as __pageData,b as default}; diff --git a/assets/zht_api_mp_math_index.md.DKOGJ-3J.lean.js b/assets/zht_api_mp_math_index.md.DKOGJ-3J.lean.js new file mode 100644 index 0000000..2fc8a29 --- /dev/null +++ b/assets/zht_api_mp_math_index.md.DKOGJ-3J.lean.js @@ -0,0 +1 @@ +import{_ as e,c as t,o as a,a4 as o}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math","description":"","frontmatter":{"title":"mbcp.mp_math","collapsed":true},"headers":[],"relativePath":"zht/api/mp_math/index.md","filePath":"zht/api/mp_math/index.md","lastUpdated":1724915255000}'),c={name:"zht/api/mp_math/index.md"},i=o("",3),d=[i];function m(l,p,_,n,r,s){return a(),t("div",null,d)}const b=e(c,[["render",m]]);export{u as __pageData,b as default}; diff --git a/assets/zht_api_mp_math_index.md.dkTuU5Sc.js b/assets/zht_api_mp_math_index.md.dkTuU5Sc.js deleted file mode 100644 index 37cd477..0000000 --- a/assets/zht_api_mp_math_index.md.dkTuU5Sc.js +++ /dev/null @@ -1 +0,0 @@ -import{_ as e,c as t,o as a,a4 as o}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math","description":"","frontmatter":{"title":"mbcp.mp_math","editLink":false,"collapsed":true},"headers":[],"relativePath":"zht/api/mp_math/index.md","filePath":"zht/api/mp_math/index.md","lastUpdated":1724915255000}'),c={name:"zht/api/mp_math/index.md"},i=o('

mbcp.mp_math

説明: 本包定义了一些常用的导入,可直接从mbcp.mp_math导入使用 导入的类有:

  • AnyAngle:任意角
  • CurveEquation:曲线方程
  • Line3:三维直线
  • Plane3:三维平面
  • Point3:三维点
  • Segment3:三维线段
  • Vector3:三维向量
',3),d=[i];function m(l,n,p,_,r,s){return a(),t("div",null,d)}const f=e(c,[["render",m]]);export{u as __pageData,f as default}; diff --git a/assets/zht_api_mp_math_index.md.dkTuU5Sc.lean.js b/assets/zht_api_mp_math_index.md.dkTuU5Sc.lean.js deleted file mode 100644 index 14da66f..0000000 --- a/assets/zht_api_mp_math_index.md.dkTuU5Sc.lean.js +++ /dev/null @@ -1 +0,0 @@ -import{_ as e,c as t,o as a,a4 as o}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math","description":"","frontmatter":{"title":"mbcp.mp_math","editLink":false,"collapsed":true},"headers":[],"relativePath":"zht/api/mp_math/index.md","filePath":"zht/api/mp_math/index.md","lastUpdated":1724915255000}'),c={name:"zht/api/mp_math/index.md"},i=o("",3),d=[i];function m(l,n,p,_,r,s){return a(),t("div",null,d)}const f=e(c,[["render",m]]);export{u as __pageData,f as default}; diff --git a/assets/zht_api_mp_math_line.md.ChBwWN5h.js b/assets/zht_api_mp_math_line.md.Ba-cpukS.js similarity index 96% rename from assets/zht_api_mp_math_line.md.ChBwWN5h.js rename to assets/zht_api_mp_math_line.md.Ba-cpukS.js index 3d27145..41e70b8 100644 --- a/assets/zht_api_mp_math_line.md.ChBwWN5h.js +++ b/assets/zht_api_mp_math_line.md.Ba-cpukS.js @@ -1,4 +1,4 @@ -import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const E=JSON.parse('{"title":"mbcp.mp_math.line","description":"","frontmatter":{"title":"mbcp.mp_math.line","editLink":false},"headers":[],"relativePath":"zht/api/mp_math/line.md","filePath":"zht/api/mp_math/line.md","lastUpdated":1724915255000}'),t={name:"zht/api/mp_math/line.md"},l=n(`

mbcp.mp_math.line

説明: 本模块定义了三维空间中的直线类

class Line3

def __init__(self, point: Point3, direction: Vector3)

説明: 三维空间中的直线。由一个点和一个方向向量确定。

變數説明:

  • point: 直线上的一点
  • direction: 直线的方向向量
源碼於GitHub上查看
python
def __init__(self, point: 'Point3', direction: 'Vector3'):
+import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const E=JSON.parse('{"title":"mbcp.mp_math.line","description":"","frontmatter":{"title":"mbcp.mp_math.line"},"headers":[],"relativePath":"zht/api/mp_math/line.md","filePath":"zht/api/mp_math/line.md","lastUpdated":1724915255000}'),t={name:"zht/api/mp_math/line.md"},l=n(`

mbcp.mp_math.line

説明: 本模块定义了三维空间中的直线类

class Line3

def __init__(self, point: Point3, direction: Vector3)

説明: 三维空间中的直线。由一个点和一个方向向量确定。

變數説明:

  • point: 直线上的一点
  • direction: 直线的方向向量
源碼於GitHub上查看
python
def __init__(self, point: 'Point3', direction: 'Vector3'):
     """
         三维空间中的直线。由一个点和一个方向向量确定。
         Args:
diff --git a/assets/zht_api_mp_math_line.md.Ba-cpukS.lean.js b/assets/zht_api_mp_math_line.md.Ba-cpukS.lean.js
new file mode 100644
index 0000000..6ca3c44
--- /dev/null
+++ b/assets/zht_api_mp_math_line.md.Ba-cpukS.lean.js
@@ -0,0 +1 @@
+import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const E=JSON.parse('{"title":"mbcp.mp_math.line","description":"","frontmatter":{"title":"mbcp.mp_math.line"},"headers":[],"relativePath":"zht/api/mp_math/line.md","filePath":"zht/api/mp_math/line.md","lastUpdated":1724915255000}'),t={name:"zht/api/mp_math/line.md"},l=n("",107),p=[l];function e(h,k,r,o,d,g){return a(),i("div",null,p)}const y=s(t,[["render",e]]);export{E as __pageData,y as default};
diff --git a/assets/zht_api_mp_math_line.md.ChBwWN5h.lean.js b/assets/zht_api_mp_math_line.md.ChBwWN5h.lean.js
deleted file mode 100644
index 2cd6b66..0000000
--- a/assets/zht_api_mp_math_line.md.ChBwWN5h.lean.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const E=JSON.parse('{"title":"mbcp.mp_math.line","description":"","frontmatter":{"title":"mbcp.mp_math.line","editLink":false},"headers":[],"relativePath":"zht/api/mp_math/line.md","filePath":"zht/api/mp_math/line.md","lastUpdated":1724915255000}'),t={name:"zht/api/mp_math/line.md"},l=n("",107),p=[l];function e(h,k,r,o,d,g){return a(),i("div",null,p)}const y=s(t,[["render",e]]);export{E as __pageData,y as default};
diff --git a/assets/zht_api_mp_math_mp_math.md.C2fKj2U-.js b/assets/zht_api_mp_math_mp_math.md.C2fKj2U-.js
deleted file mode 100644
index 8cb8348..0000000
--- a/assets/zht_api_mp_math_mp_math.md.C2fKj2U-.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as e,c as t,o as a,a4 as o}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math","description":"","frontmatter":{"title":"mbcp.mp_math","editLink":false,"collapsed":true},"headers":[],"relativePath":"zht/api/mp_math/mp_math.md","filePath":"zht/api/mp_math/mp_math.md","lastUpdated":null}'),c={name:"zht/api/mp_math/mp_math.md"},m=o('

mbcp.mp_math

説明: 本包定义了一些常用的导入,可直接从mbcp.mp_math导入使用 导入的类有:

  • AnyAngle:任意角
  • CurveEquation:曲线方程
  • Line3:三维直线
  • Plane3:三维平面
  • Point3:三维点
  • Segment3:三维线段
  • Vector3:三维向量
',3),i=[m];function p(_,l,d,n,r,h){return a(),t("div",null,i)}const f=e(c,[["render",p]]);export{u as __pageData,f as default}; diff --git a/assets/zht_api_mp_math_mp_math.md.C2fKj2U-.lean.js b/assets/zht_api_mp_math_mp_math.md.C2fKj2U-.lean.js deleted file mode 100644 index 40b3ddd..0000000 --- a/assets/zht_api_mp_math_mp_math.md.C2fKj2U-.lean.js +++ /dev/null @@ -1 +0,0 @@ -import{_ as e,c as t,o as a,a4 as o}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math","description":"","frontmatter":{"title":"mbcp.mp_math","editLink":false,"collapsed":true},"headers":[],"relativePath":"zht/api/mp_math/mp_math.md","filePath":"zht/api/mp_math/mp_math.md","lastUpdated":null}'),c={name:"zht/api/mp_math/mp_math.md"},m=o("",3),i=[m];function p(_,l,d,n,r,h){return a(),t("div",null,i)}const f=e(c,[["render",p]]);export{u as __pageData,f as default}; diff --git a/assets/zht_api_mp_math_mp_math.md.D_TBbvzi.js b/assets/zht_api_mp_math_mp_math.md.D_TBbvzi.js new file mode 100644 index 0000000..07aa646 --- /dev/null +++ b/assets/zht_api_mp_math_mp_math.md.D_TBbvzi.js @@ -0,0 +1 @@ +import{_ as e,c as t,o as a,a4 as o}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math","description":"","frontmatter":{"title":"mbcp.mp_math","collapsed":true},"headers":[],"relativePath":"zht/api/mp_math/mp_math.md","filePath":"zht/api/mp_math/mp_math.md","lastUpdated":null}'),c={name:"zht/api/mp_math/mp_math.md"},m=o('

mbcp.mp_math

説明: 本包定义了一些常用的导入,可直接从mbcp.mp_math导入使用 导入的类有:

  • AnyAngle:任意角
  • CurveEquation:曲线方程
  • Line3:三维直线
  • Plane3:三维平面
  • Point3:三维点
  • Segment3:三维线段
  • Vector3:三维向量
',3),p=[m];function _(i,l,d,n,r,h){return a(),t("div",null,p)}const b=e(c,[["render",_]]);export{u as __pageData,b as default}; diff --git a/assets/zht_api_mp_math_mp_math.md.D_TBbvzi.lean.js b/assets/zht_api_mp_math_mp_math.md.D_TBbvzi.lean.js new file mode 100644 index 0000000..9ed0060 --- /dev/null +++ b/assets/zht_api_mp_math_mp_math.md.D_TBbvzi.lean.js @@ -0,0 +1 @@ +import{_ as e,c as t,o as a,a4 as o}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math","description":"","frontmatter":{"title":"mbcp.mp_math","collapsed":true},"headers":[],"relativePath":"zht/api/mp_math/mp_math.md","filePath":"zht/api/mp_math/mp_math.md","lastUpdated":null}'),c={name:"zht/api/mp_math/mp_math.md"},m=o("",3),p=[m];function _(i,l,d,n,r,h){return a(),t("div",null,p)}const b=e(c,[["render",_]]);export{u as __pageData,b as default}; diff --git a/assets/zht_api_mp_math_mp_math_typing.md.BJ_jDclm.js b/assets/zht_api_mp_math_mp_math_typing.md.BJ_jDclm.js new file mode 100644 index 0000000..02640f8 --- /dev/null +++ b/assets/zht_api_mp_math_mp_math_typing.md.BJ_jDclm.js @@ -0,0 +1 @@ +import{_ as a,c as r,o as e,a4 as l}from"./chunks/framework.DpC1ZpOZ.js";const h=JSON.parse('{"title":"mbcp.mp_math.mp_math_typing","description":"","frontmatter":{"title":"mbcp.mp_math.mp_math_typing"},"headers":[],"relativePath":"zht/api/mp_math/mp_math_typing.md","filePath":"zht/api/mp_math/mp_math_typing.md","lastUpdated":1724915255000}'),n={name:"zht/api/mp_math/mp_math_typing.md"},o=l('

mbcp.mp_math.mp_math_typing

説明: 本模块用于内部类型提示

var RealNumber = int | float

  • 類型: TypeAlias

  • 説明: 实数

var Number = RealNumber | complex

  • 類型: TypeAlias

  • 説明: 数

var SingleVar = TypeVar('SingleVar', bound=Number)

  • 説明: 单变量

var ArrayVar = TypeVar('ArrayVar', bound=Iterable[Number])

  • 説明: 数组变量

var Var = SingleVar | ArrayVar

  • 類型: TypeAlias

  • 説明: 变量

var OneSingleVarFunc = Callable[[SingleVar], SingleVar]

  • 類型: TypeAlias

  • 説明: 一元单变量函数

var OneArrayFunc = Callable[[ArrayVar], ArrayVar]

  • 類型: TypeAlias

  • 説明: 一元数组函数

var OneVarFunc = OneSingleVarFunc | OneArrayFunc

  • 類型: TypeAlias

  • 説明: 一元函数

var TwoSingleVarsFunc = Callable[[SingleVar, SingleVar], SingleVar]

  • 類型: TypeAlias

  • 説明: 二元单变量函数

var TwoArraysFunc = Callable[[ArrayVar, ArrayVar], ArrayVar]

  • 類型: TypeAlias

  • 説明: 二元数组函数

var TwoVarsFunc = TwoSingleVarsFunc | TwoArraysFunc

  • 類型: TypeAlias

  • 説明: 二元函数

var ThreeSingleVarsFunc = Callable[[SingleVar, SingleVar, SingleVar], SingleVar]

  • 類型: TypeAlias

  • 説明: 三元单变量函数

var ThreeArraysFunc = Callable[[ArrayVar, ArrayVar, ArrayVar], ArrayVar]

  • 類型: TypeAlias

  • 説明: 三元数组函数

var ThreeVarsFunc = ThreeSingleVarsFunc | ThreeArraysFunc

  • 類型: TypeAlias

  • 説明: 三元函数

var MultiSingleVarsFunc = Callable[..., SingleVar]

  • 類型: TypeAlias

  • 説明: 多元单变量函数

var MultiArraysFunc = Callable[..., ArrayVar]

  • 類型: TypeAlias

  • 説明: 多元数组函数

var MultiVarsFunc = MultiSingleVarsFunc | MultiArraysFunc

  • 類型: TypeAlias

  • 説明: 多元函数

',36),i=[o];function t(c,s,u,d,g,v){return e(),r("div",null,i)}const y=a(n,[["render",t]]);export{h as __pageData,y as default}; diff --git a/assets/zht_api_mp_math_mp_math_typing.md.BJ_jDclm.lean.js b/assets/zht_api_mp_math_mp_math_typing.md.BJ_jDclm.lean.js new file mode 100644 index 0000000..af34d0f --- /dev/null +++ b/assets/zht_api_mp_math_mp_math_typing.md.BJ_jDclm.lean.js @@ -0,0 +1 @@ +import{_ as a,c as r,o as e,a4 as l}from"./chunks/framework.DpC1ZpOZ.js";const h=JSON.parse('{"title":"mbcp.mp_math.mp_math_typing","description":"","frontmatter":{"title":"mbcp.mp_math.mp_math_typing"},"headers":[],"relativePath":"zht/api/mp_math/mp_math_typing.md","filePath":"zht/api/mp_math/mp_math_typing.md","lastUpdated":1724915255000}'),n={name:"zht/api/mp_math/mp_math_typing.md"},o=l("",36),i=[o];function t(c,s,u,d,g,v){return e(),r("div",null,i)}const y=a(n,[["render",t]]);export{h as __pageData,y as default}; diff --git a/assets/zht_api_mp_math_mp_math_typing.md.DRnEBE41.js b/assets/zht_api_mp_math_mp_math_typing.md.DRnEBE41.js deleted file mode 100644 index b9f604c..0000000 --- a/assets/zht_api_mp_math_mp_math_typing.md.DRnEBE41.js +++ /dev/null @@ -1 +0,0 @@ -import{_ as a,c as r,o as e,a4 as l}from"./chunks/framework.DpC1ZpOZ.js";const h=JSON.parse('{"title":"mbcp.mp_math.mp_math_typing","description":"","frontmatter":{"title":"mbcp.mp_math.mp_math_typing","editLink":false},"headers":[],"relativePath":"zht/api/mp_math/mp_math_typing.md","filePath":"zht/api/mp_math/mp_math_typing.md","lastUpdated":1724915255000}'),n={name:"zht/api/mp_math/mp_math_typing.md"},o=l('

mbcp.mp_math.mp_math_typing

説明: 本模块用于内部类型提示

var RealNumber = int | float

  • 類型: TypeAlias

  • 説明: 实数

var Number = RealNumber | complex

  • 類型: TypeAlias

  • 説明: 数

var SingleVar = TypeVar('SingleVar', bound=Number)

  • 説明: 单变量

var ArrayVar = TypeVar('ArrayVar', bound=Iterable[Number])

  • 説明: 数组变量

var Var = SingleVar | ArrayVar

  • 類型: TypeAlias

  • 説明: 变量

var OneSingleVarFunc = Callable[[SingleVar], SingleVar]

  • 類型: TypeAlias

  • 説明: 一元单变量函数

var OneArrayFunc = Callable[[ArrayVar], ArrayVar]

  • 類型: TypeAlias

  • 説明: 一元数组函数

var OneVarFunc = OneSingleVarFunc | OneArrayFunc

  • 類型: TypeAlias

  • 説明: 一元函数

var TwoSingleVarsFunc = Callable[[SingleVar, SingleVar], SingleVar]

  • 類型: TypeAlias

  • 説明: 二元单变量函数

var TwoArraysFunc = Callable[[ArrayVar, ArrayVar], ArrayVar]

  • 類型: TypeAlias

  • 説明: 二元数组函数

var TwoVarsFunc = TwoSingleVarsFunc | TwoArraysFunc

  • 類型: TypeAlias

  • 説明: 二元函数

var ThreeSingleVarsFunc = Callable[[SingleVar, SingleVar, SingleVar], SingleVar]

  • 類型: TypeAlias

  • 説明: 三元单变量函数

var ThreeArraysFunc = Callable[[ArrayVar, ArrayVar, ArrayVar], ArrayVar]

  • 類型: TypeAlias

  • 説明: 三元数组函数

var ThreeVarsFunc = ThreeSingleVarsFunc | ThreeArraysFunc

  • 類型: TypeAlias

  • 説明: 三元函数

var MultiSingleVarsFunc = Callable[..., SingleVar]

  • 類型: TypeAlias

  • 説明: 多元单变量函数

var MultiArraysFunc = Callable[..., ArrayVar]

  • 類型: TypeAlias

  • 説明: 多元数组函数

var MultiVarsFunc = MultiSingleVarsFunc | MultiArraysFunc

  • 類型: TypeAlias

  • 説明: 多元函数

',36),i=[o];function t(c,s,u,d,g,v){return e(),r("div",null,i)}const y=a(n,[["render",t]]);export{h as __pageData,y as default}; diff --git a/assets/zht_api_mp_math_mp_math_typing.md.DRnEBE41.lean.js b/assets/zht_api_mp_math_mp_math_typing.md.DRnEBE41.lean.js deleted file mode 100644 index c5b0c09..0000000 --- a/assets/zht_api_mp_math_mp_math_typing.md.DRnEBE41.lean.js +++ /dev/null @@ -1 +0,0 @@ -import{_ as a,c as r,o as e,a4 as l}from"./chunks/framework.DpC1ZpOZ.js";const h=JSON.parse('{"title":"mbcp.mp_math.mp_math_typing","description":"","frontmatter":{"title":"mbcp.mp_math.mp_math_typing","editLink":false},"headers":[],"relativePath":"zht/api/mp_math/mp_math_typing.md","filePath":"zht/api/mp_math/mp_math_typing.md","lastUpdated":1724915255000}'),n={name:"zht/api/mp_math/mp_math_typing.md"},o=l("",36),i=[o];function t(c,s,u,d,g,v){return e(),r("div",null,i)}const y=a(n,[["render",t]]);export{h as __pageData,y as default}; diff --git a/assets/zht_api_mp_math_plane.md.CsqZz8AP.js b/assets/zht_api_mp_math_plane.md.BvA7i9gf.js similarity index 96% rename from assets/zht_api_mp_math_plane.md.CsqZz8AP.js rename to assets/zht_api_mp_math_plane.md.BvA7i9gf.js index 6b61cfd..9087cc8 100644 --- a/assets/zht_api_mp_math_plane.md.CsqZz8AP.js +++ b/assets/zht_api_mp_math_plane.md.BvA7i9gf.js @@ -1,4 +1,4 @@ -import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const y=JSON.parse('{"title":"mbcp.mp_math.plane","description":"","frontmatter":{"title":"mbcp.mp_math.plane","editLink":false},"headers":[],"relativePath":"zht/api/mp_math/plane.md","filePath":"zht/api/mp_math/plane.md","lastUpdated":1724915255000}'),l={name:"zht/api/mp_math/plane.md"},t=n(`

mbcp.mp_math.plane

説明: 本模块定义了三维空间中的平面类

class Plane3

def __init__(self, a: float, b: float, c: float, d: float)

説明: 平面方程:ax + by + cz + d = 0

變數説明:

  • a: x系数
  • b: y系数
  • c: z系数
  • d: 常数项
源碼於GitHub上查看
python
def __init__(self, a: float, b: float, c: float, d: float):
+import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const y=JSON.parse('{"title":"mbcp.mp_math.plane","description":"","frontmatter":{"title":"mbcp.mp_math.plane"},"headers":[],"relativePath":"zht/api/mp_math/plane.md","filePath":"zht/api/mp_math/plane.md","lastUpdated":1724915255000}'),l={name:"zht/api/mp_math/plane.md"},t=n(`

mbcp.mp_math.plane

説明: 本模块定义了三维空间中的平面类

class Plane3

def __init__(self, a: float, b: float, c: float, d: float)

説明: 平面方程:ax + by + cz + d = 0

變數説明:

  • a: x系数
  • b: y系数
  • c: z系数
  • d: 常数项
源碼於GitHub上查看
python
def __init__(self, a: float, b: float, c: float, d: float):
     """
         平面方程:ax + by + cz + d = 0
         Args:
diff --git a/assets/zht_api_mp_math_plane.md.BvA7i9gf.lean.js b/assets/zht_api_mp_math_plane.md.BvA7i9gf.lean.js
new file mode 100644
index 0000000..a7322ef
--- /dev/null
+++ b/assets/zht_api_mp_math_plane.md.BvA7i9gf.lean.js
@@ -0,0 +1 @@
+import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const y=JSON.parse('{"title":"mbcp.mp_math.plane","description":"","frontmatter":{"title":"mbcp.mp_math.plane"},"headers":[],"relativePath":"zht/api/mp_math/plane.md","filePath":"zht/api/mp_math/plane.md","lastUpdated":1724915255000}'),l={name:"zht/api/mp_math/plane.md"},t=n("",105),h=[t];function p(k,e,r,d,E,o){return a(),i("div",null,h)}const F=s(l,[["render",p]]);export{y as __pageData,F as default};
diff --git a/assets/zht_api_mp_math_plane.md.CsqZz8AP.lean.js b/assets/zht_api_mp_math_plane.md.CsqZz8AP.lean.js
deleted file mode 100644
index a4dacca..0000000
--- a/assets/zht_api_mp_math_plane.md.CsqZz8AP.lean.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const y=JSON.parse('{"title":"mbcp.mp_math.plane","description":"","frontmatter":{"title":"mbcp.mp_math.plane","editLink":false},"headers":[],"relativePath":"zht/api/mp_math/plane.md","filePath":"zht/api/mp_math/plane.md","lastUpdated":1724915255000}'),l={name:"zht/api/mp_math/plane.md"},t=n("",105),h=[t];function p(k,e,r,d,E,o){return a(),i("div",null,h)}const F=s(l,[["render",p]]);export{y as __pageData,F as default};
diff --git a/assets/zht_api_mp_math_point.md.DdPny4Ep.js b/assets/zht_api_mp_math_point.md.D8L5j_3H.js
similarity index 89%
rename from assets/zht_api_mp_math_point.md.DdPny4Ep.js
rename to assets/zht_api_mp_math_point.md.D8L5j_3H.js
index 847d32c..ddc2fda 100644
--- a/assets/zht_api_mp_math_point.md.DdPny4Ep.js
+++ b/assets/zht_api_mp_math_point.md.D8L5j_3H.js
@@ -1,4 +1,4 @@
-import{_ as s,c as i,o as a,a4 as t}from"./chunks/framework.DpC1ZpOZ.js";const y=JSON.parse('{"title":"mbcp.mp_math.point","description":"","frontmatter":{"title":"mbcp.mp_math.point","editLink":false},"headers":[],"relativePath":"zht/api/mp_math/point.md","filePath":"zht/api/mp_math/point.md","lastUpdated":1724915255000}'),n={name:"zht/api/mp_math/point.md"},l=t(`

mbcp.mp_math.point

説明: 本模块定义了三维空间中点的类。

class Point3

def __init__(self, x: float, y: float, z: float)

説明: 笛卡尔坐标系中的点。

變數説明:

  • x: x 坐标
  • y: y 坐标
  • z: z 坐标
源碼於GitHub上查看
python
def __init__(self, x: float, y: float, z: float):
+import{_ as s,c as i,o as a,a4 as t}from"./chunks/framework.DpC1ZpOZ.js";const y=JSON.parse('{"title":"mbcp.mp_math.point","description":"","frontmatter":{"title":"mbcp.mp_math.point"},"headers":[],"relativePath":"zht/api/mp_math/point.md","filePath":"zht/api/mp_math/point.md","lastUpdated":1724915255000}'),n={name:"zht/api/mp_math/point.md"},l=t(`

mbcp.mp_math.point

説明: 本模块定义了三维空间中点的类。

class Point3

def __init__(self, x: float, y: float, z: float)

説明: 笛卡尔坐标系中的点。

變數説明:

  • x: x 坐标
  • y: y 坐标
  • z: z 坐标
源碼於GitHub上查看
python
def __init__(self, x: float, y: float, z: float):
     """
         笛卡尔坐标系中的点。
         Args:
diff --git a/assets/zht_api_mp_math_point.md.D8L5j_3H.lean.js b/assets/zht_api_mp_math_point.md.D8L5j_3H.lean.js
new file mode 100644
index 0000000..234d247
--- /dev/null
+++ b/assets/zht_api_mp_math_point.md.D8L5j_3H.lean.js
@@ -0,0 +1 @@
+import{_ as s,c as i,o as a,a4 as t}from"./chunks/framework.DpC1ZpOZ.js";const y=JSON.parse('{"title":"mbcp.mp_math.point","description":"","frontmatter":{"title":"mbcp.mp_math.point"},"headers":[],"relativePath":"zht/api/mp_math/point.md","filePath":"zht/api/mp_math/point.md","lastUpdated":1724915255000}'),n={name:"zht/api/mp_math/point.md"},l=t("",36),h=[l];function p(e,k,r,o,d,g){return a(),i("div",null,h)}const c=s(n,[["render",p]]);export{y as __pageData,c as default};
diff --git a/assets/zht_api_mp_math_point.md.DdPny4Ep.lean.js b/assets/zht_api_mp_math_point.md.DdPny4Ep.lean.js
deleted file mode 100644
index 4dee193..0000000
--- a/assets/zht_api_mp_math_point.md.DdPny4Ep.lean.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as s,c as i,o as a,a4 as t}from"./chunks/framework.DpC1ZpOZ.js";const y=JSON.parse('{"title":"mbcp.mp_math.point","description":"","frontmatter":{"title":"mbcp.mp_math.point","editLink":false},"headers":[],"relativePath":"zht/api/mp_math/point.md","filePath":"zht/api/mp_math/point.md","lastUpdated":1724915255000}'),n={name:"zht/api/mp_math/point.md"},l=t("",36),h=[l];function p(e,k,r,o,d,g){return a(),i("div",null,h)}const c=s(n,[["render",p]]);export{y as __pageData,c as default};
diff --git a/assets/ja_api_mp_math_segment.md.SGTKzHC-.js b/assets/zht_api_mp_math_segment.md.BA1zEcot.js
similarity index 70%
rename from assets/ja_api_mp_math_segment.md.SGTKzHC-.js
rename to assets/zht_api_mp_math_segment.md.BA1zEcot.js
index dee0542..a5f2591 100644
--- a/assets/ja_api_mp_math_segment.md.SGTKzHC-.js
+++ b/assets/zht_api_mp_math_segment.md.BA1zEcot.js
@@ -1,4 +1,4 @@
-import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const o=JSON.parse('{"title":"mbcp.mp_math.segment","description":"","frontmatter":{"title":"mbcp.mp_math.segment","editLink":false},"headers":[],"relativePath":"ja/api/mp_math/segment.md","filePath":"ja/api/mp_math/segment.md","lastUpdated":1724915255000}'),t={name:"ja/api/mp_math/segment.md"},p=n(`

mbcp.mp_math.segment

説明: 本模块定义了三维空间中的线段类

class Segment3

def __init__(self, p1: Point3, p2: Point3)

説明: 三维空间中的线段。 :param p1: :param p2:

ソースコード または GitHubで表示
python
def __init__(self, p1: 'Point3', p2: 'Point3'):
+import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const o=JSON.parse('{"title":"mbcp.mp_math.segment","description":"","frontmatter":{"title":"mbcp.mp_math.segment"},"headers":[],"relativePath":"zht/api/mp_math/segment.md","filePath":"zht/api/mp_math/segment.md","lastUpdated":1724915255000}'),t={name:"zht/api/mp_math/segment.md"},p=n(`

mbcp.mp_math.segment

説明: 本模块定义了三维空间中的线段类

class Segment3

def __init__(self, p1: Point3, p2: Point3)

説明: 三维空间中的线段。 :param p1: :param p2:

源碼於GitHub上查看
python
def __init__(self, p1: 'Point3', p2: 'Point3'):
     """
         三维空间中的线段。
         :param p1:
diff --git a/assets/zht_api_mp_math_segment.md.BA1zEcot.lean.js b/assets/zht_api_mp_math_segment.md.BA1zEcot.lean.js
new file mode 100644
index 0000000..64cef79
--- /dev/null
+++ b/assets/zht_api_mp_math_segment.md.BA1zEcot.lean.js
@@ -0,0 +1 @@
+import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const o=JSON.parse('{"title":"mbcp.mp_math.segment","description":"","frontmatter":{"title":"mbcp.mp_math.segment"},"headers":[],"relativePath":"zht/api/mp_math/segment.md","filePath":"zht/api/mp_math/segment.md","lastUpdated":1724915255000}'),t={name:"zht/api/mp_math/segment.md"},p=n("",6),h=[p];function e(l,k,r,d,E,g){return a(),i("div",null,h)}const y=s(t,[["render",e]]);export{o as __pageData,y as default};
diff --git a/assets/zht_api_mp_math_segment.md.CGlDPyId.lean.js b/assets/zht_api_mp_math_segment.md.CGlDPyId.lean.js
deleted file mode 100644
index 1222240..0000000
--- a/assets/zht_api_mp_math_segment.md.CGlDPyId.lean.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const o=JSON.parse('{"title":"mbcp.mp_math.segment","description":"","frontmatter":{"title":"mbcp.mp_math.segment","editLink":false},"headers":[],"relativePath":"zht/api/mp_math/segment.md","filePath":"zht/api/mp_math/segment.md","lastUpdated":1724915255000}'),t={name:"zht/api/mp_math/segment.md"},p=n("",6),h=[p];function e(l,k,r,d,E,g){return a(),i("div",null,h)}const y=s(t,[["render",e]]);export{o as __pageData,y as default};
diff --git a/assets/zht_api_mp_math_utils.md.qRrypZkK.js b/assets/zht_api_mp_math_utils.md.BxPb0JBp.js
similarity index 91%
rename from assets/zht_api_mp_math_utils.md.qRrypZkK.js
rename to assets/zht_api_mp_math_utils.md.BxPb0JBp.js
index f5cfdef..3a99a5f 100644
--- a/assets/zht_api_mp_math_utils.md.qRrypZkK.js
+++ b/assets/zht_api_mp_math_utils.md.BxPb0JBp.js
@@ -1,4 +1,4 @@
-import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const F=JSON.parse('{"title":"mbcp.mp_math.utils","description":"","frontmatter":{"title":"mbcp.mp_math.utils","editLink":false},"headers":[],"relativePath":"zht/api/mp_math/utils.md","filePath":"zht/api/mp_math/utils.md","lastUpdated":1724915255000}'),t={name:"zht/api/mp_math/utils.md"},l=n(`

mbcp.mp_math.utils

説明: 本模块定义了一些常用的工具函数

def clamp(x: float, min_: float, max_: float) -> float

説明: 区间限定函数

變數説明:

  • x: 待限定的值
  • min_: 最小值
  • max_: 最大值

返回: 限制后的值

源碼於GitHub上查看
python
def clamp(x: float, min_: float, max_: float) -> float:
+import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const F=JSON.parse('{"title":"mbcp.mp_math.utils","description":"","frontmatter":{"title":"mbcp.mp_math.utils"},"headers":[],"relativePath":"zht/api/mp_math/utils.md","filePath":"zht/api/mp_math/utils.md","lastUpdated":1724915255000}'),t={name:"zht/api/mp_math/utils.md"},l=n(`

mbcp.mp_math.utils

説明: 本模块定义了一些常用的工具函数

def clamp(x: float, min_: float, max_: float) -> float

説明: 区间限定函数

變數説明:

  • x: 待限定的值
  • min_: 最小值
  • max_: 最大值

返回: 限制后的值

源碼於GitHub上查看
python
def clamp(x: float, min_: float, max_: float) -> float:
     """
     区间限定函数
     Args:
diff --git a/assets/zht_api_mp_math_utils.md.BxPb0JBp.lean.js b/assets/zht_api_mp_math_utils.md.BxPb0JBp.lean.js
new file mode 100644
index 0000000..59285a0
--- /dev/null
+++ b/assets/zht_api_mp_math_utils.md.BxPb0JBp.lean.js
@@ -0,0 +1 @@
+import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const F=JSON.parse('{"title":"mbcp.mp_math.utils","description":"","frontmatter":{"title":"mbcp.mp_math.utils"},"headers":[],"relativePath":"zht/api/mp_math/utils.md","filePath":"zht/api/mp_math/utils.md","lastUpdated":1724915255000}'),t={name:"zht/api/mp_math/utils.md"},l=n("",35),h=[l];function p(e,k,r,d,o,g){return a(),i("div",null,h)}const E=s(t,[["render",p]]);export{F as __pageData,E as default};
diff --git a/assets/zht_api_mp_math_utils.md.qRrypZkK.lean.js b/assets/zht_api_mp_math_utils.md.qRrypZkK.lean.js
deleted file mode 100644
index 7ee4e76..0000000
--- a/assets/zht_api_mp_math_utils.md.qRrypZkK.lean.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const F=JSON.parse('{"title":"mbcp.mp_math.utils","description":"","frontmatter":{"title":"mbcp.mp_math.utils","editLink":false},"headers":[],"relativePath":"zht/api/mp_math/utils.md","filePath":"zht/api/mp_math/utils.md","lastUpdated":1724915255000}'),t={name:"zht/api/mp_math/utils.md"},l=n("",35),h=[l];function p(e,k,r,d,o,g){return a(),i("div",null,h)}const E=s(t,[["render",p]]);export{F as __pageData,E as default};
diff --git a/assets/zht_api_mp_math_vector.md.BguyfQ9I.lean.js b/assets/zht_api_mp_math_vector.md.BguyfQ9I.lean.js
deleted file mode 100644
index e4e5747..0000000
--- a/assets/zht_api_mp_math_vector.md.BguyfQ9I.lean.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as s,c as i,o as a,a4 as t}from"./chunks/framework.DpC1ZpOZ.js";const y=JSON.parse('{"title":"mbcp.mp_math.vector","description":"","frontmatter":{"title":"mbcp.mp_math.vector","editLink":false},"headers":[],"relativePath":"zht/api/mp_math/vector.md","filePath":"zht/api/mp_math/vector.md","lastUpdated":1724915255000}'),n={name:"zht/api/mp_math/vector.md"},h=t("",127),e=[h];function l(p,k,r,o,d,g){return a(),i("div",null,e)}const c=s(n,[["render",l]]);export{y as __pageData,c as default};
diff --git a/assets/zht_api_mp_math_vector.md.BguyfQ9I.js b/assets/zht_api_mp_math_vector.md.EOHN-8Si.js
similarity index 97%
rename from assets/zht_api_mp_math_vector.md.BguyfQ9I.js
rename to assets/zht_api_mp_math_vector.md.EOHN-8Si.js
index 5377086..635839c 100644
--- a/assets/zht_api_mp_math_vector.md.BguyfQ9I.js
+++ b/assets/zht_api_mp_math_vector.md.EOHN-8Si.js
@@ -1,4 +1,4 @@
-import{_ as s,c as i,o as a,a4 as t}from"./chunks/framework.DpC1ZpOZ.js";const y=JSON.parse('{"title":"mbcp.mp_math.vector","description":"","frontmatter":{"title":"mbcp.mp_math.vector","editLink":false},"headers":[],"relativePath":"zht/api/mp_math/vector.md","filePath":"zht/api/mp_math/vector.md","lastUpdated":1724915255000}'),n={name:"zht/api/mp_math/vector.md"},h=t(`

mbcp.mp_math.vector

説明: 本模块定义了3维向量的类Vector3,以及一些常用的向量。

class Vector3

def __init__(self, x: float, y: float, z: float)

説明: 3维向量

變數説明:

  • x: x轴分量
  • y: y轴分量
  • z: z轴分量
源碼於GitHub上查看
python
def __init__(self, x: float, y: float, z: float):
+import{_ as s,c as i,o as a,a4 as t}from"./chunks/framework.DpC1ZpOZ.js";const y=JSON.parse('{"title":"mbcp.mp_math.vector","description":"","frontmatter":{"title":"mbcp.mp_math.vector"},"headers":[],"relativePath":"zht/api/mp_math/vector.md","filePath":"zht/api/mp_math/vector.md","lastUpdated":1724915255000}'),n={name:"zht/api/mp_math/vector.md"},h=t(`

mbcp.mp_math.vector

説明: 本模块定义了3维向量的类Vector3,以及一些常用的向量。

class Vector3

def __init__(self, x: float, y: float, z: float)

説明: 3维向量

變數説明:

  • x: x轴分量
  • y: y轴分量
  • z: z轴分量
源碼於GitHub上查看
python
def __init__(self, x: float, y: float, z: float):
     """
         3维向量
         Args:
diff --git a/assets/zht_api_mp_math_vector.md.EOHN-8Si.lean.js b/assets/zht_api_mp_math_vector.md.EOHN-8Si.lean.js
new file mode 100644
index 0000000..493f761
--- /dev/null
+++ b/assets/zht_api_mp_math_vector.md.EOHN-8Si.lean.js
@@ -0,0 +1 @@
+import{_ as s,c as i,o as a,a4 as t}from"./chunks/framework.DpC1ZpOZ.js";const y=JSON.parse('{"title":"mbcp.mp_math.vector","description":"","frontmatter":{"title":"mbcp.mp_math.vector"},"headers":[],"relativePath":"zht/api/mp_math/vector.md","filePath":"zht/api/mp_math/vector.md","lastUpdated":1724915255000}'),n={name:"zht/api/mp_math/vector.md"},h=t("",127),e=[h];function l(p,k,r,o,d,g){return a(),i("div",null,e)}const c=s(n,[["render",l]]);export{y as __pageData,c as default};
diff --git a/assets/zht_api_particle_index.md.C3uvyfWb.js b/assets/zht_api_particle_index.md.C3uvyfWb.js
deleted file mode 100644
index 189eb0d..0000000
--- a/assets/zht_api_particle_index.md.C3uvyfWb.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as a,c,o as i,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp.particle","description":"","frontmatter":{"title":"mbcp.particle","editLink":false,"collapsed":true},"headers":[],"relativePath":"zht/api/particle/index.md","filePath":"zht/api/particle/index.md","lastUpdated":1724915255000}'),r={name:"zht/api/particle/index.md"},p=e("h1",{id:"mbcp-particle",tabindex:"-1"},[t("mbcp.particle "),e("a",{class:"header-anchor",href:"#mbcp-particle","aria-label":'Permalink to "mbcp.particle"'},"​")],-1),l=e("p",null,[e("strong",null,"説明"),t(": 本模块定义了粒子生成相关的工具")],-1),s=[p,l];function n(o,d,_,m,h,f){return i(),c("div",null,s)}const u=a(r,[["render",n]]);export{b as __pageData,u as default};
diff --git a/assets/zht_api_particle_index.md.C3uvyfWb.lean.js b/assets/zht_api_particle_index.md.C3uvyfWb.lean.js
deleted file mode 100644
index 189eb0d..0000000
--- a/assets/zht_api_particle_index.md.C3uvyfWb.lean.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as a,c,o as i,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp.particle","description":"","frontmatter":{"title":"mbcp.particle","editLink":false,"collapsed":true},"headers":[],"relativePath":"zht/api/particle/index.md","filePath":"zht/api/particle/index.md","lastUpdated":1724915255000}'),r={name:"zht/api/particle/index.md"},p=e("h1",{id:"mbcp-particle",tabindex:"-1"},[t("mbcp.particle "),e("a",{class:"header-anchor",href:"#mbcp-particle","aria-label":'Permalink to "mbcp.particle"'},"​")],-1),l=e("p",null,[e("strong",null,"説明"),t(": 本模块定义了粒子生成相关的工具")],-1),s=[p,l];function n(o,d,_,m,h,f){return i(),c("div",null,s)}const u=a(r,[["render",n]]);export{b as __pageData,u as default};
diff --git a/assets/zht_api_particle_index.md.Jrca0iMX.js b/assets/zht_api_particle_index.md.Jrca0iMX.js
new file mode 100644
index 0000000..3c91da0
--- /dev/null
+++ b/assets/zht_api_particle_index.md.Jrca0iMX.js
@@ -0,0 +1 @@
+import{_ as a,c,o as r,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp.particle","description":"","frontmatter":{"title":"mbcp.particle","collapsed":true},"headers":[],"relativePath":"zht/api/particle/index.md","filePath":"zht/api/particle/index.md","lastUpdated":1724915255000}'),i={name:"zht/api/particle/index.md"},p=e("h1",{id:"mbcp-particle",tabindex:"-1"},[t("mbcp.particle "),e("a",{class:"header-anchor",href:"#mbcp-particle","aria-label":'Permalink to "mbcp.particle"'},"​")],-1),l=e("p",null,[e("strong",null,"説明"),t(": 本模块定义了粒子生成相关的工具")],-1),s=[p,l];function n(o,d,_,m,h,f){return r(),c("div",null,s)}const u=a(i,[["render",n]]);export{b as __pageData,u as default};
diff --git a/assets/zht_api_particle_index.md.Jrca0iMX.lean.js b/assets/zht_api_particle_index.md.Jrca0iMX.lean.js
new file mode 100644
index 0000000..3c91da0
--- /dev/null
+++ b/assets/zht_api_particle_index.md.Jrca0iMX.lean.js
@@ -0,0 +1 @@
+import{_ as a,c,o as r,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp.particle","description":"","frontmatter":{"title":"mbcp.particle","collapsed":true},"headers":[],"relativePath":"zht/api/particle/index.md","filePath":"zht/api/particle/index.md","lastUpdated":1724915255000}'),i={name:"zht/api/particle/index.md"},p=e("h1",{id:"mbcp-particle",tabindex:"-1"},[t("mbcp.particle "),e("a",{class:"header-anchor",href:"#mbcp-particle","aria-label":'Permalink to "mbcp.particle"'},"​")],-1),l=e("p",null,[e("strong",null,"説明"),t(": 本模块定义了粒子生成相关的工具")],-1),s=[p,l];function n(o,d,_,m,h,f){return r(),c("div",null,s)}const u=a(i,[["render",n]]);export{b as __pageData,u as default};
diff --git a/assets/zht_api_particle_particle.md.BREKhh73.js b/assets/zht_api_particle_particle.md.BREKhh73.js
new file mode 100644
index 0000000..f316b6e
--- /dev/null
+++ b/assets/zht_api_particle_particle.md.BREKhh73.js
@@ -0,0 +1 @@
+import{_ as a,c,o as r,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp.particle","description":"","frontmatter":{"title":"mbcp.particle","collapsed":true},"headers":[],"relativePath":"zht/api/particle/particle.md","filePath":"zht/api/particle/particle.md","lastUpdated":null}'),l={name:"zht/api/particle/particle.md"},p=e("h1",{id:"mbcp-particle",tabindex:"-1"},[t("mbcp.particle "),e("a",{class:"header-anchor",href:"#mbcp-particle","aria-label":'Permalink to "mbcp.particle"'},"​")],-1),i=e("p",null,[e("strong",null,"説明"),t(": 本模块定义了粒子生成相关的工具")],-1),s=[p,i];function o(n,d,_,m,h,f){return r(),c("div",null,s)}const x=a(l,[["render",o]]);export{b as __pageData,x as default};
diff --git a/assets/zht_api_particle_particle.md.BREKhh73.lean.js b/assets/zht_api_particle_particle.md.BREKhh73.lean.js
new file mode 100644
index 0000000..f316b6e
--- /dev/null
+++ b/assets/zht_api_particle_particle.md.BREKhh73.lean.js
@@ -0,0 +1 @@
+import{_ as a,c,o as r,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp.particle","description":"","frontmatter":{"title":"mbcp.particle","collapsed":true},"headers":[],"relativePath":"zht/api/particle/particle.md","filePath":"zht/api/particle/particle.md","lastUpdated":null}'),l={name:"zht/api/particle/particle.md"},p=e("h1",{id:"mbcp-particle",tabindex:"-1"},[t("mbcp.particle "),e("a",{class:"header-anchor",href:"#mbcp-particle","aria-label":'Permalink to "mbcp.particle"'},"​")],-1),i=e("p",null,[e("strong",null,"説明"),t(": 本模块定义了粒子生成相关的工具")],-1),s=[p,i];function o(n,d,_,m,h,f){return r(),c("div",null,s)}const x=a(l,[["render",o]]);export{b as __pageData,x as default};
diff --git a/assets/zht_api_particle_particle.md.BVp5wRXc.js b/assets/zht_api_particle_particle.md.BVp5wRXc.js
deleted file mode 100644
index 9e87052..0000000
--- a/assets/zht_api_particle_particle.md.BVp5wRXc.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as a,c,o as r,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp.particle","description":"","frontmatter":{"title":"mbcp.particle","editLink":false,"collapsed":true},"headers":[],"relativePath":"zht/api/particle/particle.md","filePath":"zht/api/particle/particle.md","lastUpdated":null}'),l={name:"zht/api/particle/particle.md"},i=e("h1",{id:"mbcp-particle",tabindex:"-1"},[t("mbcp.particle "),e("a",{class:"header-anchor",href:"#mbcp-particle","aria-label":'Permalink to "mbcp.particle"'},"​")],-1),p=e("p",null,[e("strong",null,"説明"),t(": 本模块定义了粒子生成相关的工具")],-1),s=[i,p];function o(n,d,_,m,h,f){return r(),c("div",null,s)}const x=a(l,[["render",o]]);export{b as __pageData,x as default};
diff --git a/assets/zht_api_particle_particle.md.BVp5wRXc.lean.js b/assets/zht_api_particle_particle.md.BVp5wRXc.lean.js
deleted file mode 100644
index 9e87052..0000000
--- a/assets/zht_api_particle_particle.md.BVp5wRXc.lean.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as a,c,o as r,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp.particle","description":"","frontmatter":{"title":"mbcp.particle","editLink":false,"collapsed":true},"headers":[],"relativePath":"zht/api/particle/particle.md","filePath":"zht/api/particle/particle.md","lastUpdated":null}'),l={name:"zht/api/particle/particle.md"},i=e("h1",{id:"mbcp-particle",tabindex:"-1"},[t("mbcp.particle "),e("a",{class:"header-anchor",href:"#mbcp-particle","aria-label":'Permalink to "mbcp.particle"'},"​")],-1),p=e("p",null,[e("strong",null,"説明"),t(": 本模块定义了粒子生成相关的工具")],-1),s=[i,p];function o(n,d,_,m,h,f){return r(),c("div",null,s)}const x=a(l,[["render",o]]);export{b as __pageData,x as default};
diff --git a/assets/zht_api_presets_index.md.D5bUORc4.js b/assets/zht_api_presets_index.md.D5bUORc4.js
deleted file mode 100644
index 69f5b7f..0000000
--- a/assets/zht_api_presets_index.md.D5bUORc4.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as s,c as a,o,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp.presets","description":"","frontmatter":{"title":"mbcp.presets","editLink":false,"collapsed":true},"headers":[],"relativePath":"zht/api/presets/index.md","filePath":"zht/api/presets/index.md","lastUpdated":1724915255000}'),r={name:"zht/api/presets/index.md"},i=e("h1",{id:"mbcp-presets",tabindex:"-1"},[t("mbcp.presets "),e("a",{class:"header-anchor",href:"#mbcp-presets","aria-label":'Permalink to "mbcp.presets"'},"​")],-1),n=e("p",null,[e("strong",null,"説明"),t(": Copyright (C) 2020-2024 LiteyukiStudio. All Rights Reserved")],-1),l=e("p",null,[t("@Time : 2024/8/12 下午9:12 @Author : snowykami @Email : "),e("a",{href:"mailto:snowykami@outlook.com",target:"_blank",rel:"noreferrer"},"snowykami@outlook.com"),t(" @File : "),e("strong",null,"init"),t(".py @Software: PyCharm")],-1),p=[i,n,l];function c(d,m,h,_,u,f){return o(),a("div",null,p)}const x=s(r,[["render",c]]);export{b as __pageData,x as default};
diff --git a/assets/zht_api_presets_index.md.D5bUORc4.lean.js b/assets/zht_api_presets_index.md.D5bUORc4.lean.js
deleted file mode 100644
index 69f5b7f..0000000
--- a/assets/zht_api_presets_index.md.D5bUORc4.lean.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as s,c as a,o,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp.presets","description":"","frontmatter":{"title":"mbcp.presets","editLink":false,"collapsed":true},"headers":[],"relativePath":"zht/api/presets/index.md","filePath":"zht/api/presets/index.md","lastUpdated":1724915255000}'),r={name:"zht/api/presets/index.md"},i=e("h1",{id:"mbcp-presets",tabindex:"-1"},[t("mbcp.presets "),e("a",{class:"header-anchor",href:"#mbcp-presets","aria-label":'Permalink to "mbcp.presets"'},"​")],-1),n=e("p",null,[e("strong",null,"説明"),t(": Copyright (C) 2020-2024 LiteyukiStudio. All Rights Reserved")],-1),l=e("p",null,[t("@Time : 2024/8/12 下午9:12 @Author : snowykami @Email : "),e("a",{href:"mailto:snowykami@outlook.com",target:"_blank",rel:"noreferrer"},"snowykami@outlook.com"),t(" @File : "),e("strong",null,"init"),t(".py @Software: PyCharm")],-1),p=[i,n,l];function c(d,m,h,_,u,f){return o(),a("div",null,p)}const x=s(r,[["render",c]]);export{b as __pageData,x as default};
diff --git a/assets/zht_api_presets_index.md.whJMVguT.js b/assets/zht_api_presets_index.md.whJMVguT.js
new file mode 100644
index 0000000..30f5158
--- /dev/null
+++ b/assets/zht_api_presets_index.md.whJMVguT.js
@@ -0,0 +1 @@
+import{_ as s,c as a,o,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp.presets","description":"","frontmatter":{"title":"mbcp.presets","collapsed":true},"headers":[],"relativePath":"zht/api/presets/index.md","filePath":"zht/api/presets/index.md","lastUpdated":1724915255000}'),r={name:"zht/api/presets/index.md"},i=e("h1",{id:"mbcp-presets",tabindex:"-1"},[t("mbcp.presets "),e("a",{class:"header-anchor",href:"#mbcp-presets","aria-label":'Permalink to "mbcp.presets"'},"​")],-1),n=e("p",null,[e("strong",null,"説明"),t(": Copyright (C) 2020-2024 LiteyukiStudio. All Rights Reserved")],-1),p=e("p",null,[t("@Time : 2024/8/12 下午9:12 @Author : snowykami @Email : "),e("a",{href:"mailto:snowykami@outlook.com",target:"_blank",rel:"noreferrer"},"snowykami@outlook.com"),t(" @File : "),e("strong",null,"init"),t(".py @Software: PyCharm")],-1),l=[i,n,p];function c(d,m,h,_,u,f){return o(),a("div",null,l)}const x=s(r,[["render",c]]);export{b as __pageData,x as default};
diff --git a/assets/zht_api_presets_index.md.whJMVguT.lean.js b/assets/zht_api_presets_index.md.whJMVguT.lean.js
new file mode 100644
index 0000000..30f5158
--- /dev/null
+++ b/assets/zht_api_presets_index.md.whJMVguT.lean.js
@@ -0,0 +1 @@
+import{_ as s,c as a,o,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp.presets","description":"","frontmatter":{"title":"mbcp.presets","collapsed":true},"headers":[],"relativePath":"zht/api/presets/index.md","filePath":"zht/api/presets/index.md","lastUpdated":1724915255000}'),r={name:"zht/api/presets/index.md"},i=e("h1",{id:"mbcp-presets",tabindex:"-1"},[t("mbcp.presets "),e("a",{class:"header-anchor",href:"#mbcp-presets","aria-label":'Permalink to "mbcp.presets"'},"​")],-1),n=e("p",null,[e("strong",null,"説明"),t(": Copyright (C) 2020-2024 LiteyukiStudio. All Rights Reserved")],-1),p=e("p",null,[t("@Time : 2024/8/12 下午9:12 @Author : snowykami @Email : "),e("a",{href:"mailto:snowykami@outlook.com",target:"_blank",rel:"noreferrer"},"snowykami@outlook.com"),t(" @File : "),e("strong",null,"init"),t(".py @Software: PyCharm")],-1),l=[i,n,p];function c(d,m,h,_,u,f){return o(),a("div",null,l)}const x=s(r,[["render",c]]);export{b as __pageData,x as default};
diff --git a/assets/zht_api_presets_model_index.md.BABYoPvx.lean.js b/assets/zht_api_presets_model_index.md.BABYoPvx.lean.js
deleted file mode 100644
index 25f2c0e..0000000
--- a/assets/zht_api_presets_model_index.md.BABYoPvx.lean.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const o=JSON.parse('{"title":"mbcp.presets.model","description":"","frontmatter":{"title":"mbcp.presets.model","editLink":false,"collapsed":true},"headers":[],"relativePath":"zht/api/presets/model/index.md","filePath":"zht/api/presets/model/index.md","lastUpdated":1724915255000}'),t={name:"zht/api/presets/model/index.md"},h=n("",10),l=[h];function p(k,e,r,d,E,g){return a(),i("div",null,l)}const c=s(t,[["render",p]]);export{o as __pageData,c as default};
diff --git a/assets/ja_api_presets_model_index.md.CU3tcROp.js b/assets/zht_api_presets_model_index.md.DqPIkHvh.js
similarity index 79%
rename from assets/ja_api_presets_model_index.md.CU3tcROp.js
rename to assets/zht_api_presets_model_index.md.DqPIkHvh.js
index 4181c06..43b9cb7 100644
--- a/assets/ja_api_presets_model_index.md.CU3tcROp.js
+++ b/assets/zht_api_presets_model_index.md.DqPIkHvh.js
@@ -1,4 +1,4 @@
-import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const o=JSON.parse('{"title":"mbcp.presets.model","description":"","frontmatter":{"title":"mbcp.presets.model","editLink":false,"collapsed":true},"headers":[],"relativePath":"ja/api/presets/model/index.md","filePath":"ja/api/presets/model/index.md","lastUpdated":1724915255000}'),t={name:"ja/api/presets/model/index.md"},h=n(`

mbcp.presets.model

説明: 几何模型点集

class GeometricModels

@staticmethod

def sphere(radius: float, density: float)

説明: 生成球体上的点集。

引数:

  • radius:
  • density:

戻り値: List[Point3]: 球体上的点集。

ソースコード または GitHubで表示
python
@staticmethod
+import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const o=JSON.parse('{"title":"mbcp.presets.model","description":"","frontmatter":{"title":"mbcp.presets.model","collapsed":true},"headers":[],"relativePath":"zht/api/presets/model/index.md","filePath":"zht/api/presets/model/index.md","lastUpdated":1724915255000}'),t={name:"zht/api/presets/model/index.md"},h=n(`

mbcp.presets.model

説明: 几何模型点集

class GeometricModels

@staticmethod

def sphere(radius: float, density: float)

説明: 生成球体上的点集。

變數説明:

  • radius:
  • density:

返回: List[Point3]: 球体上的点集。

源碼於GitHub上查看
python
@staticmethod
 def sphere(radius: float, density: float):
     """
         生成球体上的点集。
diff --git a/assets/zht_api_presets_model_index.md.DqPIkHvh.lean.js b/assets/zht_api_presets_model_index.md.DqPIkHvh.lean.js
new file mode 100644
index 0000000..96db2ee
--- /dev/null
+++ b/assets/zht_api_presets_model_index.md.DqPIkHvh.lean.js
@@ -0,0 +1 @@
+import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const o=JSON.parse('{"title":"mbcp.presets.model","description":"","frontmatter":{"title":"mbcp.presets.model","collapsed":true},"headers":[],"relativePath":"zht/api/presets/model/index.md","filePath":"zht/api/presets/model/index.md","lastUpdated":1724915255000}'),t={name:"zht/api/presets/model/index.md"},h=n("",10),l=[h];function p(k,e,r,d,E,g){return a(),i("div",null,l)}const c=s(t,[["render",p]]);export{o as __pageData,c as default};
diff --git a/assets/zht_api_presets_model_model.md.D7UOTujb.lean.js b/assets/zht_api_presets_model_model.md.D7UOTujb.lean.js
deleted file mode 100644
index be35c3d..0000000
--- a/assets/zht_api_presets_model_model.md.D7UOTujb.lean.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const y=JSON.parse('{"title":"mbcp.presets.model","description":"","frontmatter":{"title":"mbcp.presets.model","editLink":false,"collapsed":true},"headers":[],"relativePath":"zht/api/presets/model/model.md","filePath":"zht/api/presets/model/model.md","lastUpdated":null}'),t={name:"zht/api/presets/model/model.md"},h=n("",10),l=[h];function p(k,e,r,d,E,o){return a(),i("div",null,l)}const c=s(t,[["render",p]]);export{y as __pageData,c as default};
diff --git a/assets/ja_api_presets_model_model.md.Ca837h0t.js b/assets/zht_api_presets_model_model.md.x1HKRue1.js
similarity index 79%
rename from assets/ja_api_presets_model_model.md.Ca837h0t.js
rename to assets/zht_api_presets_model_model.md.x1HKRue1.js
index 538cf86..eef76e5 100644
--- a/assets/ja_api_presets_model_model.md.Ca837h0t.js
+++ b/assets/zht_api_presets_model_model.md.x1HKRue1.js
@@ -1,4 +1,4 @@
-import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const y=JSON.parse('{"title":"mbcp.presets.model","description":"","frontmatter":{"title":"mbcp.presets.model","editLink":false,"collapsed":true},"headers":[],"relativePath":"ja/api/presets/model/model.md","filePath":"ja/api/presets/model/model.md","lastUpdated":null}'),t={name:"ja/api/presets/model/model.md"},h=n(`

mbcp.presets.model

説明: 几何模型点集

class GeometricModels

@staticmethod

def sphere(radius: float, density: float)

説明: 生成球体上的点集。

引数:

  • radius:
  • density:

戻り値: List[Point3]: 球体上的点集。

ソースコード または GitHubで表示
python
@staticmethod
+import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const y=JSON.parse('{"title":"mbcp.presets.model","description":"","frontmatter":{"title":"mbcp.presets.model","collapsed":true},"headers":[],"relativePath":"zht/api/presets/model/model.md","filePath":"zht/api/presets/model/model.md","lastUpdated":null}'),t={name:"zht/api/presets/model/model.md"},h=n(`

mbcp.presets.model

説明: 几何模型点集

class GeometricModels

@staticmethod

def sphere(radius: float, density: float)

説明: 生成球体上的点集。

變數説明:

  • radius:
  • density:

返回: List[Point3]: 球体上的点集。

源碼於GitHub上查看
python
@staticmethod
 def sphere(radius: float, density: float):
     """
         生成球体上的点集。
diff --git a/assets/zht_api_presets_model_model.md.x1HKRue1.lean.js b/assets/zht_api_presets_model_model.md.x1HKRue1.lean.js
new file mode 100644
index 0000000..c991b9e
--- /dev/null
+++ b/assets/zht_api_presets_model_model.md.x1HKRue1.lean.js
@@ -0,0 +1 @@
+import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const y=JSON.parse('{"title":"mbcp.presets.model","description":"","frontmatter":{"title":"mbcp.presets.model","collapsed":true},"headers":[],"relativePath":"zht/api/presets/model/model.md","filePath":"zht/api/presets/model/model.md","lastUpdated":null}'),t={name:"zht/api/presets/model/model.md"},h=n("",10),l=[h];function p(k,e,r,d,E,o){return a(),i("div",null,l)}const c=s(t,[["render",p]]);export{y as __pageData,c as default};
diff --git a/assets/zht_api_presets_presets.md.BHPziOmZ.js b/assets/zht_api_presets_presets.md.BHPziOmZ.js
new file mode 100644
index 0000000..fd1eb74
--- /dev/null
+++ b/assets/zht_api_presets_presets.md.BHPziOmZ.js
@@ -0,0 +1 @@
+import{_ as s,c as r,o as a,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp.presets","description":"","frontmatter":{"title":"mbcp.presets","collapsed":true},"headers":[],"relativePath":"zht/api/presets/presets.md","filePath":"zht/api/presets/presets.md","lastUpdated":null}'),o={name:"zht/api/presets/presets.md"},p=e("h1",{id:"mbcp-presets",tabindex:"-1"},[t("mbcp.presets "),e("a",{class:"header-anchor",href:"#mbcp-presets","aria-label":'Permalink to "mbcp.presets"'},"​")],-1),i=e("p",null,[e("strong",null,"説明"),t(": Copyright (C) 2020-2024 LiteyukiStudio. All Rights Reserved")],-1),l=e("p",null,[t("@Time : 2024/8/12 下午9:12 @Author : snowykami @Email : "),e("a",{href:"mailto:snowykami@outlook.com",target:"_blank",rel:"noreferrer"},"snowykami@outlook.com"),t(" @File : "),e("strong",null,"init"),t(".py @Software: PyCharm")],-1),n=[p,i,l];function c(m,d,h,_,u,f){return a(),r("div",null,n)}const y=s(o,[["render",c]]);export{b as __pageData,y as default};
diff --git a/assets/zht_api_presets_presets.md.BHPziOmZ.lean.js b/assets/zht_api_presets_presets.md.BHPziOmZ.lean.js
new file mode 100644
index 0000000..fd1eb74
--- /dev/null
+++ b/assets/zht_api_presets_presets.md.BHPziOmZ.lean.js
@@ -0,0 +1 @@
+import{_ as s,c as r,o as a,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp.presets","description":"","frontmatter":{"title":"mbcp.presets","collapsed":true},"headers":[],"relativePath":"zht/api/presets/presets.md","filePath":"zht/api/presets/presets.md","lastUpdated":null}'),o={name:"zht/api/presets/presets.md"},p=e("h1",{id:"mbcp-presets",tabindex:"-1"},[t("mbcp.presets "),e("a",{class:"header-anchor",href:"#mbcp-presets","aria-label":'Permalink to "mbcp.presets"'},"​")],-1),i=e("p",null,[e("strong",null,"説明"),t(": Copyright (C) 2020-2024 LiteyukiStudio. All Rights Reserved")],-1),l=e("p",null,[t("@Time : 2024/8/12 下午9:12 @Author : snowykami @Email : "),e("a",{href:"mailto:snowykami@outlook.com",target:"_blank",rel:"noreferrer"},"snowykami@outlook.com"),t(" @File : "),e("strong",null,"init"),t(".py @Software: PyCharm")],-1),n=[p,i,l];function c(m,d,h,_,u,f){return a(),r("div",null,n)}const y=s(o,[["render",c]]);export{b as __pageData,y as default};
diff --git a/assets/zht_api_presets_presets.md.CRL6Jo8B.js b/assets/zht_api_presets_presets.md.CRL6Jo8B.js
deleted file mode 100644
index 4bb9571..0000000
--- a/assets/zht_api_presets_presets.md.CRL6Jo8B.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as s,c as r,o as a,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp.presets","description":"","frontmatter":{"title":"mbcp.presets","editLink":false,"collapsed":true},"headers":[],"relativePath":"zht/api/presets/presets.md","filePath":"zht/api/presets/presets.md","lastUpdated":null}'),o={name:"zht/api/presets/presets.md"},p=e("h1",{id:"mbcp-presets",tabindex:"-1"},[t("mbcp.presets "),e("a",{class:"header-anchor",href:"#mbcp-presets","aria-label":'Permalink to "mbcp.presets"'},"​")],-1),i=e("p",null,[e("strong",null,"説明"),t(": Copyright (C) 2020-2024 LiteyukiStudio. All Rights Reserved")],-1),l=e("p",null,[t("@Time : 2024/8/12 下午9:12 @Author : snowykami @Email : "),e("a",{href:"mailto:snowykami@outlook.com",target:"_blank",rel:"noreferrer"},"snowykami@outlook.com"),t(" @File : "),e("strong",null,"init"),t(".py @Software: PyCharm")],-1),n=[p,i,l];function c(d,m,h,_,u,f){return a(),r("div",null,n)}const y=s(o,[["render",c]]);export{b as __pageData,y as default};
diff --git a/assets/zht_api_presets_presets.md.CRL6Jo8B.lean.js b/assets/zht_api_presets_presets.md.CRL6Jo8B.lean.js
deleted file mode 100644
index 4bb9571..0000000
--- a/assets/zht_api_presets_presets.md.CRL6Jo8B.lean.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as s,c as r,o as a,j as e,a as t}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp.presets","description":"","frontmatter":{"title":"mbcp.presets","editLink":false,"collapsed":true},"headers":[],"relativePath":"zht/api/presets/presets.md","filePath":"zht/api/presets/presets.md","lastUpdated":null}'),o={name:"zht/api/presets/presets.md"},p=e("h1",{id:"mbcp-presets",tabindex:"-1"},[t("mbcp.presets "),e("a",{class:"header-anchor",href:"#mbcp-presets","aria-label":'Permalink to "mbcp.presets"'},"​")],-1),i=e("p",null,[e("strong",null,"説明"),t(": Copyright (C) 2020-2024 LiteyukiStudio. All Rights Reserved")],-1),l=e("p",null,[t("@Time : 2024/8/12 下午9:12 @Author : snowykami @Email : "),e("a",{href:"mailto:snowykami@outlook.com",target:"_blank",rel:"noreferrer"},"snowykami@outlook.com"),t(" @File : "),e("strong",null,"init"),t(".py @Software: PyCharm")],-1),n=[p,i,l];function c(d,m,h,_,u,f){return a(),r("div",null,n)}const y=s(o,[["render",c]]);export{b as __pageData,y as default};
diff --git a/demo/index.html b/demo/index.html
index 4f2d21b..d11b942 100644
--- a/demo/index.html
+++ b/demo/index.html
@@ -8,8 +8,8 @@
     
     
     
-    
-    
+    
+    
     
     
     
@@ -19,7 +19,7 @@
   
   
     
Skip to content

文档由 VitePress 构建 | API引用由 litedoc 生成

- + \ No newline at end of file diff --git a/en/api/api.html b/en/api/api.html index 1a4c012..e4b723a 100644 --- a/en/api/api.html +++ b/en/api/api.html @@ -8,18 +8,18 @@ - - + + - + - - + + \ No newline at end of file diff --git a/en/api/index.html b/en/api/index.html index 8e13e41..37832e8 100644 --- a/en/api/index.html +++ b/en/api/index.html @@ -8,18 +8,18 @@ - - + + - + - - + + \ No newline at end of file diff --git a/en/api/mp_math/angle.html b/en/api/mp_math/angle.html index 6394399..d52a3ec 100644 --- a/en/api/mp_math/angle.html +++ b/en/api/mp_math/angle.html @@ -8,10 +8,10 @@ - - + + - + @@ -116,8 +116,8 @@ ...

def self / other

Source code or View on GitHub
python
def __truediv__(self, other):
     if isinstance(other, AnyAngle):
         return self.radian / other.radian
-    return AnyAngle(self.radian / other, is_radian=True)

Documentation built with VitePress | API references generated by litedoc

- + return AnyAngle(self.radian / other, is_radian=True)

Documentation built with VitePress | API references generated by litedoc

+ \ No newline at end of file diff --git a/en/api/mp_math/const.html b/en/api/mp_math/const.html index 3ce7e6d..ae64227 100644 --- a/en/api/mp_math/const.html +++ b/en/api/mp_math/const.html @@ -8,18 +8,18 @@ - - + + - + -
Skip to content

mbcp.mp_math.const

Description: 本模块定义了一些常用的常量

var PI = math.pi

  • Description: 常量 π

var E = math.e

  • Description: 自然对数的底 exp(1)

var GOLDEN_RATIO = (1 + math.sqrt(5)) / 2

  • Description: 黄金分割比

var GAMMA = 0.5772156649015329

  • Description: 欧拉常数

var EPSILON = 0.0001

  • Description: 精度误差

var APPROX = 0.001

  • Description: 约等于判定误差

Documentation built with VitePress | API references generated by litedoc

- +
Skip to content

mbcp.mp_math.const

Description: 本模块定义了一些常用的常量

var PI = math.pi

  • Description: 常量 π

var E = math.e

  • Description: 自然对数的底 exp(1)

var GOLDEN_RATIO = (1 + math.sqrt(5)) / 2

  • Description: 黄金分割比

var GAMMA = 0.5772156649015329

  • Description: 欧拉常数

var EPSILON = 0.0001

  • Description: 精度误差

var APPROX = 0.001

  • Description: 约等于判定误差

Documentation built with VitePress | API references generated by litedoc

+ \ No newline at end of file diff --git a/en/api/mp_math/equation.html b/en/api/mp_math/equation.html index 7286ea1..6532c8d 100644 --- a/en/api/mp_math/equation.html +++ b/en/api/mp_math/equation.html @@ -8,10 +8,10 @@ - - + + - + @@ -82,8 +82,8 @@ return result_func(*args) return high_order_partial_derivative_func else: - raise ValueError('Invalid var type')

Documentation built with VitePress | API references generated by litedoc

- + raise ValueError('Invalid var type')

Documentation built with VitePress | API references generated by litedoc

+ \ No newline at end of file diff --git a/en/api/mp_math/function.html b/en/api/mp_math/function.html index 74aced7..f072871 100644 --- a/en/api/mp_math/function.html +++ b/en/api/mp_math/function.html @@ -8,10 +8,10 @@ - - + + - + @@ -59,8 +59,8 @@ def curried_func(*args2: Var) -> Var: """@litedoc-hide""" return func(*args, *args2) - return curried_func

Documentation built with VitePress | API references generated by litedoc

- + return curried_func

Documentation built with VitePress | API references generated by litedoc

+ \ No newline at end of file diff --git a/en/api/mp_math/index.html b/en/api/mp_math/index.html index ea4528a..31cb040 100644 --- a/en/api/mp_math/index.html +++ b/en/api/mp_math/index.html @@ -8,18 +8,18 @@ - - + + - + -
Skip to content

mbcp.mp_math

Description: 本包定义了一些常用的导入,可直接从mbcp.mp_math导入使用 导入的类有:

  • AnyAngle:任意角
  • CurveEquation:曲线方程
  • Line3:三维直线
  • Plane3:三维平面
  • Point3:三维点
  • Segment3:三维线段
  • Vector3:三维向量

Documentation built with VitePress | API references generated by litedoc

- +
Skip to content

mbcp.mp_math

Description: 本包定义了一些常用的导入,可直接从mbcp.mp_math导入使用 导入的类有:

  • AnyAngle:任意角
  • CurveEquation:曲线方程
  • Line3:三维直线
  • Plane3:三维平面
  • Point3:三维点
  • Segment3:三维线段
  • Vector3:三维向量

Documentation built with VitePress | API references generated by litedoc

+ \ No newline at end of file diff --git a/en/api/mp_math/line.html b/en/api/mp_math/line.html index 6d14e4a..7a54e44 100644 --- a/en/api/mp_math/line.html +++ b/en/api/mp_math/line.html @@ -8,10 +8,10 @@ - - + + - + @@ -195,8 +195,8 @@ Returns: """ - return self.direction.is_parallel(other.direction) and (self.point - other.point).is_parallel(self.direction)

Documentation built with VitePress | API references generated by litedoc

- + return self.direction.is_parallel(other.direction) and (self.point - other.point).is_parallel(self.direction)

Documentation built with VitePress | API references generated by litedoc

+ \ No newline at end of file diff --git a/en/api/mp_math/mp_math.html b/en/api/mp_math/mp_math.html index 75958a8..b7adc7f 100644 --- a/en/api/mp_math/mp_math.html +++ b/en/api/mp_math/mp_math.html @@ -8,18 +8,18 @@ - - + + - + -
Skip to content

mbcp.mp_math

Description: 本包定义了一些常用的导入,可直接从mbcp.mp_math导入使用 导入的类有:

  • AnyAngle:任意角
  • CurveEquation:曲线方程
  • Line3:三维直线
  • Plane3:三维平面
  • Point3:三维点
  • Segment3:三维线段
  • Vector3:三维向量

Documentation built with VitePress | API references generated by litedoc

- +
Skip to content

mbcp.mp_math

Description: 本包定义了一些常用的导入,可直接从mbcp.mp_math导入使用 导入的类有:

  • AnyAngle:任意角
  • CurveEquation:曲线方程
  • Line3:三维直线
  • Plane3:三维平面
  • Point3:三维点
  • Segment3:三维线段
  • Vector3:三维向量

Documentation built with VitePress | API references generated by litedoc

+ \ No newline at end of file diff --git a/en/api/mp_math/mp_math_typing.html b/en/api/mp_math/mp_math_typing.html index fb68d8c..9d5fe4c 100644 --- a/en/api/mp_math/mp_math_typing.html +++ b/en/api/mp_math/mp_math_typing.html @@ -8,18 +8,18 @@ - - + + - + -
Skip to content

mbcp.mp_math.mp_math_typing

Description: 本模块用于内部类型提示

var RealNumber = int | float

  • Type: TypeAlias

  • Description: 实数

var Number = RealNumber | complex

  • Type: TypeAlias

  • Description: 数

var SingleVar = TypeVar('SingleVar', bound=Number)

  • Description: 单变量

var ArrayVar = TypeVar('ArrayVar', bound=Iterable[Number])

  • Description: 数组变量

var Var = SingleVar | ArrayVar

  • Type: TypeAlias

  • Description: 变量

var OneSingleVarFunc = Callable[[SingleVar], SingleVar]

  • Type: TypeAlias

  • Description: 一元单变量函数

var OneArrayFunc = Callable[[ArrayVar], ArrayVar]

  • Type: TypeAlias

  • Description: 一元数组函数

var OneVarFunc = OneSingleVarFunc | OneArrayFunc

  • Type: TypeAlias

  • Description: 一元函数

var TwoSingleVarsFunc = Callable[[SingleVar, SingleVar], SingleVar]

  • Type: TypeAlias

  • Description: 二元单变量函数

var TwoArraysFunc = Callable[[ArrayVar, ArrayVar], ArrayVar]

  • Type: TypeAlias

  • Description: 二元数组函数

var TwoVarsFunc = TwoSingleVarsFunc | TwoArraysFunc

  • Type: TypeAlias

  • Description: 二元函数

var ThreeSingleVarsFunc = Callable[[SingleVar, SingleVar, SingleVar], SingleVar]

  • Type: TypeAlias

  • Description: 三元单变量函数

var ThreeArraysFunc = Callable[[ArrayVar, ArrayVar, ArrayVar], ArrayVar]

  • Type: TypeAlias

  • Description: 三元数组函数

var ThreeVarsFunc = ThreeSingleVarsFunc | ThreeArraysFunc

  • Type: TypeAlias

  • Description: 三元函数

var MultiSingleVarsFunc = Callable[..., SingleVar]

  • Type: TypeAlias

  • Description: 多元单变量函数

var MultiArraysFunc = Callable[..., ArrayVar]

  • Type: TypeAlias

  • Description: 多元数组函数

var MultiVarsFunc = MultiSingleVarsFunc | MultiArraysFunc

  • Type: TypeAlias

  • Description: 多元函数

Documentation built with VitePress | API references generated by litedoc

- +
Skip to content

mbcp.mp_math.mp_math_typing

Description: 本模块用于内部类型提示

var RealNumber = int | float

  • Type: TypeAlias

  • Description: 实数

var Number = RealNumber | complex

  • Type: TypeAlias

  • Description: 数

var SingleVar = TypeVar('SingleVar', bound=Number)

  • Description: 单变量

var ArrayVar = TypeVar('ArrayVar', bound=Iterable[Number])

  • Description: 数组变量

var Var = SingleVar | ArrayVar

  • Type: TypeAlias

  • Description: 变量

var OneSingleVarFunc = Callable[[SingleVar], SingleVar]

  • Type: TypeAlias

  • Description: 一元单变量函数

var OneArrayFunc = Callable[[ArrayVar], ArrayVar]

  • Type: TypeAlias

  • Description: 一元数组函数

var OneVarFunc = OneSingleVarFunc | OneArrayFunc

  • Type: TypeAlias

  • Description: 一元函数

var TwoSingleVarsFunc = Callable[[SingleVar, SingleVar], SingleVar]

  • Type: TypeAlias

  • Description: 二元单变量函数

var TwoArraysFunc = Callable[[ArrayVar, ArrayVar], ArrayVar]

  • Type: TypeAlias

  • Description: 二元数组函数

var TwoVarsFunc = TwoSingleVarsFunc | TwoArraysFunc

  • Type: TypeAlias

  • Description: 二元函数

var ThreeSingleVarsFunc = Callable[[SingleVar, SingleVar, SingleVar], SingleVar]

  • Type: TypeAlias

  • Description: 三元单变量函数

var ThreeArraysFunc = Callable[[ArrayVar, ArrayVar, ArrayVar], ArrayVar]

  • Type: TypeAlias

  • Description: 三元数组函数

var ThreeVarsFunc = ThreeSingleVarsFunc | ThreeArraysFunc

  • Type: TypeAlias

  • Description: 三元函数

var MultiSingleVarsFunc = Callable[..., SingleVar]

  • Type: TypeAlias

  • Description: 多元单变量函数

var MultiArraysFunc = Callable[..., ArrayVar]

  • Type: TypeAlias

  • Description: 多元数组函数

var MultiVarsFunc = MultiSingleVarsFunc | MultiArraysFunc

  • Type: TypeAlias

  • Description: 多元函数

Documentation built with VitePress | API references generated by litedoc

+ \ No newline at end of file diff --git a/en/api/mp_math/plane.html b/en/api/mp_math/plane.html index d0be345..a2da2c1 100644 --- a/en/api/mp_math/plane.html +++ b/en/api/mp_math/plane.html @@ -8,10 +8,10 @@ - - + + - + @@ -213,8 +213,8 @@ else: raise TypeError(f"unsupported operand type(s) for &: 'Plane3' and '{type(other)}'")

def __eq__(self, other) -> bool

Source code or View on GitHub
python
def __eq__(self, other) -> bool:
     return self.approx(other)

def __rand__(self, other: Line3) -> Point3

Source code or View on GitHub
python
def __rand__(self, other: 'Line3') -> 'Point3':
-    return self.cal_intersection_point3(other)
- + return self.cal_intersection_point3(other) + \ No newline at end of file diff --git a/en/api/mp_math/point.html b/en/api/mp_math/point.html index c129801..8d0d521 100644 --- a/en/api/mp_math/point.html +++ b/en/api/mp_math/point.html @@ -8,10 +8,10 @@ - - + + - + @@ -68,8 +68,8 @@ """ from .vector import Vector3 - return Vector3(self.x - other.x, self.y - other.y, self.z - other.z) - + return Vector3(self.x - other.x, self.y - other.y, self.z - other.z) + \ No newline at end of file diff --git a/en/api/mp_math/segment.html b/en/api/mp_math/segment.html index d3c9821..6edb92d 100644 --- a/en/api/mp_math/segment.html +++ b/en/api/mp_math/segment.html @@ -8,10 +8,10 @@ - - + + - + @@ -31,8 +31,8 @@ '长度' self.length = self.direction.length '中心点' - self.midpoint = Point3((self.p1.x + self.p2.x) / 2, (self.p1.y + self.p2.y) / 2, (self.p1.z + self.p2.z) / 2) - + self.midpoint = Point3((self.p1.x + self.p2.x) / 2, (self.p1.y + self.p2.y) / 2, (self.p1.z + self.p2.z) / 2) + \ No newline at end of file diff --git a/en/api/mp_math/utils.html b/en/api/mp_math/utils.html index e44cf35..43f14e5 100644 --- a/en/api/mp_math/utils.html +++ b/en/api/mp_math/utils.html @@ -8,10 +8,10 @@ - - + + - + @@ -81,8 +81,8 @@ elif x < 0: return f'-{abs(x)}' else: - return '' - + return '' + \ No newline at end of file diff --git a/en/api/mp_math/vector.html b/en/api/mp_math/vector.html index a0535a7..e8ea163 100644 --- a/en/api/mp_math/vector.html +++ b/en/api/mp_math/vector.html @@ -8,10 +8,10 @@ - - + + - + @@ -204,8 +204,8 @@ """ return self.x * other.x + self.y * other.y + self.z * other.z

def self / other: RealNumber => Vector3

Source code or View on GitHub
python
def __truediv__(self, other: RealNumber) -> 'Vector3':
     return Vector3(self.x / other, self.y / other, self.z / other)

def - self

Source code or View on GitHub
python
def __neg__(self):
-    return Vector3(-self.x, -self.y, -self.z)

var zero_vector3 = Vector3(0, 0, 0)

var x_axis = Vector3(1, 0, 0)

var y_axis = Vector3(0, 1, 0)

var z_axis = Vector3(0, 0, 1)

- + return Vector3(-self.x, -self.y, -self.z)

var zero_vector3 = Vector3(0, 0, 0)

var x_axis = Vector3(1, 0, 0)

var y_axis = Vector3(0, 1, 0)

var z_axis = Vector3(0, 0, 1)

+ \ No newline at end of file diff --git a/en/api/particle/index.html b/en/api/particle/index.html index 78576ca..c75f498 100644 --- a/en/api/particle/index.html +++ b/en/api/particle/index.html @@ -8,18 +8,18 @@ - - + + - + -
Skip to content

mbcp.particle

Description: 本模块定义了粒子生成相关的工具

Documentation built with VitePress | API references generated by litedoc

- +
Skip to content

mbcp.particle

Description: 本模块定义了粒子生成相关的工具

Documentation built with VitePress | API references generated by litedoc

+ \ No newline at end of file diff --git a/en/api/particle/particle.html b/en/api/particle/particle.html index a6e64a8..615a93e 100644 --- a/en/api/particle/particle.html +++ b/en/api/particle/particle.html @@ -8,18 +8,18 @@ - - + + - + -
Skip to content

mbcp.particle

Description: 本模块定义了粒子生成相关的工具

Documentation built with VitePress | API references generated by litedoc

- +
Skip to content

mbcp.particle

Description: 本模块定义了粒子生成相关的工具

Documentation built with VitePress | API references generated by litedoc

+ \ No newline at end of file diff --git a/en/api/presets/index.html b/en/api/presets/index.html index 5f2fa87..b0fac9e 100644 --- a/en/api/presets/index.html +++ b/en/api/presets/index.html @@ -8,18 +8,18 @@ - - + + - + -
Skip to content

mbcp.presets

Description: Copyright (C) 2020-2024 LiteyukiStudio. All Rights Reserved

@Time : 2024/8/12 下午9:12 @Author : snowykami @Email : snowykami@outlook.com @File : init.py @Software: PyCharm

Documentation built with VitePress | API references generated by litedoc

- +
Skip to content

mbcp.presets

Description: Copyright (C) 2020-2024 LiteyukiStudio. All Rights Reserved

@Time : 2024/8/12 下午9:12 @Author : snowykami @Email : snowykami@outlook.com @File : init.py @Software: PyCharm

Documentation built with VitePress | API references generated by litedoc

+ \ No newline at end of file diff --git a/en/api/presets/model/index.html b/en/api/presets/model/index.html index 234198a..4d19396 100644 --- a/en/api/presets/model/index.html +++ b/en/api/presets/model/index.html @@ -8,10 +8,10 @@ - - + + - + @@ -35,8 +35,8 @@ x_array = radius * np.sin(phi_list) * np.cos(theta_list) y_array = radius * np.sin(phi_list) * np.sin(theta_list) z_array = radius * np.cos(phi_list) - return [Point3(x_array[i], y_array[i], z_array[i]) for i in range(num)] - + return [Point3(x_array[i], y_array[i], z_array[i]) for i in range(num)] + \ No newline at end of file diff --git a/en/api/presets/model/model.html b/en/api/presets/model/model.html index 92be135..df0d14b 100644 --- a/en/api/presets/model/model.html +++ b/en/api/presets/model/model.html @@ -8,10 +8,10 @@ - - + + - + @@ -35,8 +35,8 @@ x_array = radius * np.sin(phi_list) * np.cos(theta_list) y_array = radius * np.sin(phi_list) * np.sin(theta_list) z_array = radius * np.cos(phi_list) - return [Point3(x_array[i], y_array[i], z_array[i]) for i in range(num)] - + return [Point3(x_array[i], y_array[i], z_array[i]) for i in range(num)] + \ No newline at end of file diff --git a/en/api/presets/presets.html b/en/api/presets/presets.html index 9dcd8a6..370f7fa 100644 --- a/en/api/presets/presets.html +++ b/en/api/presets/presets.html @@ -8,18 +8,18 @@ - - + + - + -
Skip to content

mbcp.presets

Description: Copyright (C) 2020-2024 LiteyukiStudio. All Rights Reserved

@Time : 2024/8/12 下午9:12 @Author : snowykami @Email : snowykami@outlook.com @File : init.py @Software: PyCharm

Documentation built with VitePress | API references generated by litedoc

- +
Skip to content

mbcp.presets

Description: Copyright (C) 2020-2024 LiteyukiStudio. All Rights Reserved

@Time : 2024/8/12 下午9:12 @Author : snowykami @Email : snowykami@outlook.com @File : init.py @Software: PyCharm

Documentation built with VitePress | API references generated by litedoc

+ \ No newline at end of file diff --git a/en/guide/index.html b/en/guide/index.html index 3b58200..241cc5d 100644 --- a/en/guide/index.html +++ b/en/guide/index.html @@ -8,8 +8,8 @@ - - + + @@ -19,7 +19,7 @@
Skip to content

开始不了一点

12x111

Documentation built with VitePress | API references generated by litedoc

- + \ No newline at end of file diff --git a/en/index.html b/en/index.html index 1591c7a..75800c9 100644 --- a/en/index.html +++ b/en/index.html @@ -8,8 +8,8 @@ - - + + @@ -19,7 +19,7 @@
Skip to content

MBCP

More basic change particle

A Library for Python to create Minecraft particle effects and geometric figures

MBCP logo

Documentation built with VitePress | API references generated by litedoc

- + \ No newline at end of file diff --git a/en/refer/index.html b/en/refer/index.html index 3c5c2d1..a99a584 100644 --- a/en/refer/index.html +++ b/en/refer/index.html @@ -8,8 +8,8 @@ - - + + @@ -19,7 +19,7 @@
Skip to content

Reference

help us to improve the documentation

Documentation built with VitePress | API references generated by litedoc

- + \ No newline at end of file diff --git a/guide/index.html b/guide/index.html index 061f499..fe5470a 100644 --- a/guide/index.html +++ b/guide/index.html @@ -8,8 +8,8 @@ - - + + @@ -19,7 +19,7 @@
Skip to content

开始不了一点

12x111

AAA

BBB

C

ddd

文档由 VitePress 构建 | API引用由 litedoc 生成

- + \ No newline at end of file diff --git a/hashmap.json b/hashmap.json index e020aff..e99afbc 100644 --- a/hashmap.json +++ b/hashmap.json @@ -1 +1 @@ -{"api_api.md":"CMvAMn4b","api_index.md":"BYCWCWDw","api_mp_math_angle.md":"ZHQLVZi6","api_mp_math_const.md":"DPfWDlOC","api_mp_math_equation.md":"DNL3RhRT","api_mp_math_function.md":"lFd1gudy","api_mp_math_index.md":"CBaWj2TG","api_mp_math_line.md":"DjfQ-B5i","api_mp_math_mp_math.md":"CpQngdPn","api_mp_math_mp_math_typing.md":"ueXwUe7x","api_mp_math_plane.md":"CXpU2f7r","api_mp_math_point.md":"JbQs_Fqs","api_mp_math_segment.md":"BkjsiFZK","api_mp_math_utils.md":"C-Gf-q7v","api_mp_math_vector.md":"Bmeqjm-R","api_particle_index.md":"elMkn6tv","api_particle_particle.md":"jeindv3k","api_presets_index.md":"DAns7uVy","api_presets_model_index.md":"BV3cglvI","api_presets_model_model.md":"CkT5A2Vx","api_presets_presets.md":"DKvfMdjr","demo_index.md":"CVAdlaFI","en_api_api.md":"DNV43Nd2","en_api_index.md":"rIvJ-tI-","en_api_mp_math_angle.md":"BWpDhXE0","en_api_mp_math_const.md":"C7RPr8Yw","en_api_mp_math_equation.md":"Q3edAlTb","en_api_mp_math_function.md":"sTyZQ9Kp","en_api_mp_math_index.md":"DRjWG5hd","en_api_mp_math_line.md":"BeveAfEc","en_api_mp_math_mp_math.md":"Bg5eFIMk","en_api_mp_math_mp_math_typing.md":"By9al44H","en_api_mp_math_plane.md":"DS5OUSgQ","en_api_mp_math_point.md":"mIUs1IAB","en_api_mp_math_segment.md":"l3KDDWfs","en_api_mp_math_utils.md":"BrPHvGZ2","en_api_mp_math_vector.md":"BkOb6w9W","en_api_particle_index.md":"LU1iJ7Ch","en_api_particle_particle.md":"BFOr8qjE","en_api_presets_index.md":"BrQ3Pk92","en_api_presets_model_index.md":"D-C7zM8U","en_api_presets_model_model.md":"DaWJcWmr","en_api_presets_presets.md":"OKzOdeyi","en_guide_index.md":"C3kI8f8A","en_index.md":"D5CddOW-","en_refer_index.md":"Cq6GWi0V","guide_index.md":"BVhQ0kPy","index.md":"DJWBRkUz","ja_api_api.md":"asJZCXie","ja_api_index.md":"BkN-pZ-z","ja_api_mp_math_angle.md":"Q4KOkl4D","ja_api_mp_math_const.md":"qnersNfK","ja_api_mp_math_equation.md":"Cr5pOveT","ja_api_mp_math_function.md":"xybs8Koc","ja_api_mp_math_index.md":"CRjx8TkH","ja_api_mp_math_line.md":"B06TZxOj","ja_api_mp_math_mp_math.md":"BBRkfUbW","ja_api_mp_math_mp_math_typing.md":"B48JOb28","ja_api_mp_math_plane.md":"BsI6AccW","ja_api_mp_math_point.md":"BaRaB4F7","ja_api_mp_math_segment.md":"SGTKzHC-","ja_api_mp_math_utils.md":"B0AuGUaq","ja_api_mp_math_vector.md":"ZV6g6Cqy","ja_api_particle_index.md":"lQM76phs","ja_api_particle_particle.md":"BlQt6-7L","ja_api_presets_index.md":"bRV33rrM","ja_api_presets_model_index.md":"CU3tcROp","ja_api_presets_model_model.md":"Ca837h0t","ja_api_presets_presets.md":"B4NIHC57","ja_guide_index.md":"w1Tf2Adm","ja_index.md":"DnsqZi7i","ja_refer_index.md":"DamUscs8","refer_function_curry.md":"D_oqRDd3","refer_function_function.md":"Bi_82lIJ","refer_index.md":"yFZW0kI4","zht_api_api.md":"DiHUkCYv","zht_api_index.md":"BEoHS6eY","zht_api_mp_math_angle.md":"CUXs1f3L","zht_api_mp_math_const.md":"BRbOg-ik","zht_api_mp_math_equation.md":"DkF23wZv","zht_api_mp_math_function.md":"Hx5Fv7yg","zht_api_mp_math_index.md":"dkTuU5Sc","zht_api_mp_math_line.md":"ChBwWN5h","zht_api_mp_math_mp_math.md":"C2fKj2U-","zht_api_mp_math_mp_math_typing.md":"DRnEBE41","zht_api_mp_math_plane.md":"CsqZz8AP","zht_api_mp_math_point.md":"DdPny4Ep","zht_api_mp_math_segment.md":"CGlDPyId","zht_api_mp_math_utils.md":"qRrypZkK","zht_api_mp_math_vector.md":"BguyfQ9I","zht_api_particle_index.md":"C3uvyfWb","zht_api_particle_particle.md":"BVp5wRXc","zht_api_presets_index.md":"D5bUORc4","zht_api_presets_model_index.md":"BABYoPvx","zht_api_presets_model_model.md":"D7UOTujb","zht_api_presets_presets.md":"CRL6Jo8B","zht_guide_index.md":"BNnMViC8","zht_index.md":"CUR8-QXm","zht_refer_index.md":"B7CQS2UW"} +{"api_api.md":"DrpzHy2M","api_index.md":"Q9oDvH_6","api_mp_math_angle.md":"BC8mLT9V","api_mp_math_const.md":"CzjBJIjC","api_mp_math_equation.md":"DEwnqiM5","api_mp_math_function.md":"BOcZ-k7E","api_mp_math_index.md":"CgPZqWk2","api_mp_math_line.md":"B9prk9Kj","api_mp_math_mp_math.md":"BMEFqLKu","api_mp_math_mp_math_typing.md":"CKmrvjJE","api_mp_math_plane.md":"CUvZ7jG1","api_mp_math_point.md":"BWtm0p2C","api_mp_math_segment.md":"Ce2Drjt_","api_mp_math_utils.md":"BLAIQYJV","api_mp_math_vector.md":"BCYHQW5q","api_particle_index.md":"DpbhbZuY","api_particle_particle.md":"Bpw0MV0e","api_presets_index.md":"CrTHQDyB","api_presets_model_index.md":"DYX4VzQJ","api_presets_model_model.md":"DNXALr2n","api_presets_presets.md":"D3vtk8sc","demo_index.md":"CVAdlaFI","en_api_api.md":"CH3w1csg","en_api_index.md":"CcTWWu9r","en_api_mp_math_angle.md":"yv5orygX","en_api_mp_math_const.md":"CwN5-LSI","en_api_mp_math_equation.md":"DwwuRd9E","en_api_mp_math_function.md":"n3_MFy8m","en_api_mp_math_index.md":"ChUIwSIA","en_api_mp_math_line.md":"CsLkFBW5","en_api_mp_math_mp_math.md":"DJS2qf3J","en_api_mp_math_mp_math_typing.md":"BR4PPCj-","en_api_mp_math_plane.md":"DjH7GwuZ","en_api_mp_math_point.md":"BWVvxLrx","en_api_mp_math_segment.md":"BE8bo5x9","en_api_mp_math_utils.md":"BTOp0Uzp","en_api_mp_math_vector.md":"BND_-HDs","en_api_particle_index.md":"_wUK3v42","en_api_particle_particle.md":"C-miN5aa","en_api_presets_index.md":"93s9NTDq","en_api_presets_model_index.md":"Dcjf9yDt","en_api_presets_model_model.md":"NeRZCRe5","en_api_presets_presets.md":"D2NLt3Ov","en_guide_index.md":"C3kI8f8A","en_index.md":"D5CddOW-","en_refer_index.md":"Cq6GWi0V","guide_index.md":"BVhQ0kPy","index.md":"DJWBRkUz","ja_api_api.md":"CUi97znf","ja_api_index.md":"Bq-UqhKm","ja_api_mp_math_angle.md":"COKT-3q5","ja_api_mp_math_const.md":"B4Hx0PDl","ja_api_mp_math_equation.md":"ByVCwmo8","ja_api_mp_math_function.md":"DOkBmQkF","ja_api_mp_math_index.md":"8LkEwDIJ","ja_api_mp_math_line.md":"qbPLxepH","ja_api_mp_math_mp_math.md":"DK0nb8oY","ja_api_mp_math_mp_math_typing.md":"CWgc3ohG","ja_api_mp_math_plane.md":"BJFpJM2I","ja_api_mp_math_point.md":"0YsozwPt","ja_api_mp_math_segment.md":"BnrDCNWp","ja_api_mp_math_utils.md":"ClIgAy7y","ja_api_mp_math_vector.md":"B4iis1R2","ja_api_particle_index.md":"CF-T1DaN","ja_api_particle_particle.md":"CViXNyfB","ja_api_presets_index.md":"B7ygl08S","ja_api_presets_model_index.md":"DQliiN_s","ja_api_presets_model_model.md":"Do2QSwoB","ja_api_presets_presets.md":"C1NN1QPM","ja_guide_index.md":"w1Tf2Adm","ja_index.md":"DnsqZi7i","ja_refer_index.md":"DamUscs8","refer_function_curry.md":"D_oqRDd3","refer_function_function.md":"Bi_82lIJ","refer_index.md":"yFZW0kI4","zht_api_api.md":"C2hNRcuq","zht_api_index.md":"BzaFnMgS","zht_api_mp_math_angle.md":"_YgAKKZ8","zht_api_mp_math_const.md":"Bg9yfrey","zht_api_mp_math_equation.md":"Dl4VlL2q","zht_api_mp_math_function.md":"DCZGszhC","zht_api_mp_math_index.md":"DKOGJ-3J","zht_api_mp_math_line.md":"Ba-cpukS","zht_api_mp_math_mp_math.md":"D_TBbvzi","zht_api_mp_math_mp_math_typing.md":"BJ_jDclm","zht_api_mp_math_plane.md":"BvA7i9gf","zht_api_mp_math_point.md":"D8L5j_3H","zht_api_mp_math_segment.md":"BA1zEcot","zht_api_mp_math_utils.md":"BxPb0JBp","zht_api_mp_math_vector.md":"EOHN-8Si","zht_api_particle_index.md":"Jrca0iMX","zht_api_particle_particle.md":"BREKhh73","zht_api_presets_index.md":"whJMVguT","zht_api_presets_model_index.md":"DqPIkHvh","zht_api_presets_model_model.md":"x1HKRue1","zht_api_presets_presets.md":"BHPziOmZ","zht_guide_index.md":"BNnMViC8","zht_index.md":"CUR8-QXm","zht_refer_index.md":"B7CQS2UW"} diff --git a/index.html b/index.html index ca9a297..1eb7877 100644 --- a/index.html +++ b/index.html @@ -8,8 +8,8 @@ - - + + @@ -19,7 +19,7 @@
Skip to content

MBCP

更多基础变换粒子

用于几何运算和Minecraft粒子制作的库

MBCP logo

文档由 VitePress 构建 | API引用由 litedoc 生成

- + \ No newline at end of file diff --git a/ja/api/api.html b/ja/api/api.html index ea2a794..e4d4a52 100644 --- a/ja/api/api.html +++ b/ja/api/api.html @@ -8,18 +8,18 @@ - - + + - + -
Skip to content

mbcp

説明: 本模块塞了一些预设的粒子生成器

VitePress で構築されたドキュメント | litedoc によって生成されたAPIリファレンス

- +
Skip to content

mbcp

説明: 本模块塞了一些预设的粒子生成器

VitePress で構築されたドキュメント | litedoc によって生成されたAPIリファレンス

+ \ No newline at end of file diff --git a/ja/api/index.html b/ja/api/index.html index bda70b1..b96fcdd 100644 --- a/ja/api/index.html +++ b/ja/api/index.html @@ -8,18 +8,18 @@ - - + + - + -
Skip to content

mbcp

説明: 本模块塞了一些预设的粒子生成器

VitePress で構築されたドキュメント | litedoc によって生成されたAPIリファレンス

- +
Skip to content

mbcp

説明: 本模块塞了一些预设的粒子生成器

VitePress で構築されたドキュメント | litedoc によって生成されたAPIリファレンス

+ \ No newline at end of file diff --git a/ja/api/mp_math/angle.html b/ja/api/mp_math/angle.html index 53fc4fc..62c45ac 100644 --- a/ja/api/mp_math/angle.html +++ b/ja/api/mp_math/angle.html @@ -8,10 +8,10 @@ - - + + - + @@ -116,8 +116,8 @@ ...

def self / other

ソースコード または GitHubで表示
python
def __truediv__(self, other):
     if isinstance(other, AnyAngle):
         return self.radian / other.radian
-    return AnyAngle(self.radian / other, is_radian=True)
- + return AnyAngle(self.radian / other, is_radian=True) + \ No newline at end of file diff --git a/ja/api/mp_math/const.html b/ja/api/mp_math/const.html index de75da9..87850bc 100644 --- a/ja/api/mp_math/const.html +++ b/ja/api/mp_math/const.html @@ -8,18 +8,18 @@ - - + + - + -
Skip to content

mbcp.mp_math.const

説明: 本模块定义了一些常用的常量

var PI = math.pi

  • 説明: 常量 π

var E = math.e

  • 説明: 自然对数的底 exp(1)

var GOLDEN_RATIO = (1 + math.sqrt(5)) / 2

  • 説明: 黄金分割比

var GAMMA = 0.5772156649015329

  • 説明: 欧拉常数

var EPSILON = 0.0001

  • 説明: 精度误差

var APPROX = 0.001

  • 説明: 约等于判定误差

VitePress で構築されたドキュメント | litedoc によって生成されたAPIリファレンス

- +
Skip to content

mbcp.mp_math.const

説明: 本模块定义了一些常用的常量

var PI = math.pi

  • 説明: 常量 π

var E = math.e

  • 説明: 自然对数的底 exp(1)

var GOLDEN_RATIO = (1 + math.sqrt(5)) / 2

  • 説明: 黄金分割比

var GAMMA = 0.5772156649015329

  • 説明: 欧拉常数

var EPSILON = 0.0001

  • 説明: 精度误差

var APPROX = 0.001

  • 説明: 约等于判定误差

VitePress で構築されたドキュメント | litedoc によって生成されたAPIリファレンス

+ \ No newline at end of file diff --git a/ja/api/mp_math/equation.html b/ja/api/mp_math/equation.html index 2a40af3..c7256f1 100644 --- a/ja/api/mp_math/equation.html +++ b/ja/api/mp_math/equation.html @@ -8,10 +8,10 @@ - - + + - + @@ -82,8 +82,8 @@ return result_func(*args) return high_order_partial_derivative_func else: - raise ValueError('Invalid var type') - + raise ValueError('Invalid var type') + \ No newline at end of file diff --git a/ja/api/mp_math/function.html b/ja/api/mp_math/function.html index 6deb9fc..325af1f 100644 --- a/ja/api/mp_math/function.html +++ b/ja/api/mp_math/function.html @@ -8,10 +8,10 @@ - - + + - + @@ -59,8 +59,8 @@ def curried_func(*args2: Var) -> Var: """@litedoc-hide""" return func(*args, *args2) - return curried_func - + return curried_func + \ No newline at end of file diff --git a/ja/api/mp_math/index.html b/ja/api/mp_math/index.html index e7b46ac..b0c611c 100644 --- a/ja/api/mp_math/index.html +++ b/ja/api/mp_math/index.html @@ -8,18 +8,18 @@ - - + + - + -
Skip to content

mbcp.mp_math

説明: 本包定义了一些常用的导入,可直接从mbcp.mp_math导入使用 导入的类有:

  • AnyAngle:任意角
  • CurveEquation:曲线方程
  • Line3:三维直线
  • Plane3:三维平面
  • Point3:三维点
  • Segment3:三维线段
  • Vector3:三维向量

VitePress で構築されたドキュメント | litedoc によって生成されたAPIリファレンス

- +
Skip to content

mbcp.mp_math

説明: 本包定义了一些常用的导入,可直接从mbcp.mp_math导入使用 导入的类有:

  • AnyAngle:任意角
  • CurveEquation:曲线方程
  • Line3:三维直线
  • Plane3:三维平面
  • Point3:三维点
  • Segment3:三维线段
  • Vector3:三维向量

VitePress で構築されたドキュメント | litedoc によって生成されたAPIリファレンス

+ \ No newline at end of file diff --git a/ja/api/mp_math/line.html b/ja/api/mp_math/line.html index 9c38ae5..cb9be48 100644 --- a/ja/api/mp_math/line.html +++ b/ja/api/mp_math/line.html @@ -8,10 +8,10 @@ - - + + - + @@ -195,8 +195,8 @@ Returns: """ - return self.direction.is_parallel(other.direction) and (self.point - other.point).is_parallel(self.direction) - + return self.direction.is_parallel(other.direction) and (self.point - other.point).is_parallel(self.direction) + \ No newline at end of file diff --git a/ja/api/mp_math/mp_math.html b/ja/api/mp_math/mp_math.html index 3ba2a9f..9008d19 100644 --- a/ja/api/mp_math/mp_math.html +++ b/ja/api/mp_math/mp_math.html @@ -8,18 +8,18 @@ - - + + - + -
Skip to content

mbcp.mp_math

説明: 本包定义了一些常用的导入,可直接从mbcp.mp_math导入使用 导入的类有:

  • AnyAngle:任意角
  • CurveEquation:曲线方程
  • Line3:三维直线
  • Plane3:三维平面
  • Point3:三维点
  • Segment3:三维线段
  • Vector3:三维向量

VitePress で構築されたドキュメント | litedoc によって生成されたAPIリファレンス

- +
Skip to content

mbcp.mp_math

説明: 本包定义了一些常用的导入,可直接从mbcp.mp_math导入使用 导入的类有:

  • AnyAngle:任意角
  • CurveEquation:曲线方程
  • Line3:三维直线
  • Plane3:三维平面
  • Point3:三维点
  • Segment3:三维线段
  • Vector3:三维向量

VitePress で構築されたドキュメント | litedoc によって生成されたAPIリファレンス

+ \ No newline at end of file diff --git a/ja/api/mp_math/mp_math_typing.html b/ja/api/mp_math/mp_math_typing.html index 30daed3..2eaf1b3 100644 --- a/ja/api/mp_math/mp_math_typing.html +++ b/ja/api/mp_math/mp_math_typing.html @@ -8,18 +8,18 @@ - - + + - + -
Skip to content

mbcp.mp_math.mp_math_typing

説明: 本模块用于内部类型提示

var RealNumber = int | float

  • タイプ: TypeAlias

  • 説明: 实数

var Number = RealNumber | complex

  • タイプ: TypeAlias

  • 説明: 数

var SingleVar = TypeVar('SingleVar', bound=Number)

  • 説明: 单变量

var ArrayVar = TypeVar('ArrayVar', bound=Iterable[Number])

  • 説明: 数组变量

var Var = SingleVar | ArrayVar

  • タイプ: TypeAlias

  • 説明: 变量

var OneSingleVarFunc = Callable[[SingleVar], SingleVar]

  • タイプ: TypeAlias

  • 説明: 一元单变量函数

var OneArrayFunc = Callable[[ArrayVar], ArrayVar]

  • タイプ: TypeAlias

  • 説明: 一元数组函数

var OneVarFunc = OneSingleVarFunc | OneArrayFunc

  • タイプ: TypeAlias

  • 説明: 一元函数

var TwoSingleVarsFunc = Callable[[SingleVar, SingleVar], SingleVar]

  • タイプ: TypeAlias

  • 説明: 二元单变量函数

var TwoArraysFunc = Callable[[ArrayVar, ArrayVar], ArrayVar]

  • タイプ: TypeAlias

  • 説明: 二元数组函数

var TwoVarsFunc = TwoSingleVarsFunc | TwoArraysFunc

  • タイプ: TypeAlias

  • 説明: 二元函数

var ThreeSingleVarsFunc = Callable[[SingleVar, SingleVar, SingleVar], SingleVar]

  • タイプ: TypeAlias

  • 説明: 三元单变量函数

var ThreeArraysFunc = Callable[[ArrayVar, ArrayVar, ArrayVar], ArrayVar]

  • タイプ: TypeAlias

  • 説明: 三元数组函数

var ThreeVarsFunc = ThreeSingleVarsFunc | ThreeArraysFunc

  • タイプ: TypeAlias

  • 説明: 三元函数

var MultiSingleVarsFunc = Callable[..., SingleVar]

  • タイプ: TypeAlias

  • 説明: 多元单变量函数

var MultiArraysFunc = Callable[..., ArrayVar]

  • タイプ: TypeAlias

  • 説明: 多元数组函数

var MultiVarsFunc = MultiSingleVarsFunc | MultiArraysFunc

  • タイプ: TypeAlias

  • 説明: 多元函数

VitePress で構築されたドキュメント | litedoc によって生成されたAPIリファレンス

- +
Skip to content

mbcp.mp_math.mp_math_typing

説明: 本模块用于内部类型提示

var RealNumber = int | float

  • タイプ: TypeAlias

  • 説明: 实数

var Number = RealNumber | complex

  • タイプ: TypeAlias

  • 説明: 数

var SingleVar = TypeVar('SingleVar', bound=Number)

  • 説明: 单变量

var ArrayVar = TypeVar('ArrayVar', bound=Iterable[Number])

  • 説明: 数组变量

var Var = SingleVar | ArrayVar

  • タイプ: TypeAlias

  • 説明: 变量

var OneSingleVarFunc = Callable[[SingleVar], SingleVar]

  • タイプ: TypeAlias

  • 説明: 一元单变量函数

var OneArrayFunc = Callable[[ArrayVar], ArrayVar]

  • タイプ: TypeAlias

  • 説明: 一元数组函数

var OneVarFunc = OneSingleVarFunc | OneArrayFunc

  • タイプ: TypeAlias

  • 説明: 一元函数

var TwoSingleVarsFunc = Callable[[SingleVar, SingleVar], SingleVar]

  • タイプ: TypeAlias

  • 説明: 二元单变量函数

var TwoArraysFunc = Callable[[ArrayVar, ArrayVar], ArrayVar]

  • タイプ: TypeAlias

  • 説明: 二元数组函数

var TwoVarsFunc = TwoSingleVarsFunc | TwoArraysFunc

  • タイプ: TypeAlias

  • 説明: 二元函数

var ThreeSingleVarsFunc = Callable[[SingleVar, SingleVar, SingleVar], SingleVar]

  • タイプ: TypeAlias

  • 説明: 三元单变量函数

var ThreeArraysFunc = Callable[[ArrayVar, ArrayVar, ArrayVar], ArrayVar]

  • タイプ: TypeAlias

  • 説明: 三元数组函数

var ThreeVarsFunc = ThreeSingleVarsFunc | ThreeArraysFunc

  • タイプ: TypeAlias

  • 説明: 三元函数

var MultiSingleVarsFunc = Callable[..., SingleVar]

  • タイプ: TypeAlias

  • 説明: 多元单变量函数

var MultiArraysFunc = Callable[..., ArrayVar]

  • タイプ: TypeAlias

  • 説明: 多元数组函数

var MultiVarsFunc = MultiSingleVarsFunc | MultiArraysFunc

  • タイプ: TypeAlias

  • 説明: 多元函数

VitePress で構築されたドキュメント | litedoc によって生成されたAPIリファレンス

+ \ No newline at end of file diff --git a/ja/api/mp_math/plane.html b/ja/api/mp_math/plane.html index ae9a111..28ceca3 100644 --- a/ja/api/mp_math/plane.html +++ b/ja/api/mp_math/plane.html @@ -8,10 +8,10 @@ - - + + - + @@ -213,8 +213,8 @@ else: raise TypeError(f"unsupported operand type(s) for &: 'Plane3' and '{type(other)}'")

def __eq__(self, other) -> bool

ソースコード または GitHubで表示
python
def __eq__(self, other) -> bool:
     return self.approx(other)

def __rand__(self, other: Line3) -> Point3

ソースコード または GitHubで表示
python
def __rand__(self, other: 'Line3') -> 'Point3':
-    return self.cal_intersection_point3(other)
- + return self.cal_intersection_point3(other) + \ No newline at end of file diff --git a/ja/api/mp_math/point.html b/ja/api/mp_math/point.html index da41a48..f26062c 100644 --- a/ja/api/mp_math/point.html +++ b/ja/api/mp_math/point.html @@ -8,10 +8,10 @@ - - + + - + @@ -68,8 +68,8 @@ """ from .vector import Vector3 - return Vector3(self.x - other.x, self.y - other.y, self.z - other.z) - + return Vector3(self.x - other.x, self.y - other.y, self.z - other.z) + \ No newline at end of file diff --git a/ja/api/mp_math/segment.html b/ja/api/mp_math/segment.html index 1834816..0d3ef41 100644 --- a/ja/api/mp_math/segment.html +++ b/ja/api/mp_math/segment.html @@ -8,10 +8,10 @@ - - + + - + @@ -31,8 +31,8 @@ '长度' self.length = self.direction.length '中心点' - self.midpoint = Point3((self.p1.x + self.p2.x) / 2, (self.p1.y + self.p2.y) / 2, (self.p1.z + self.p2.z) / 2) - + self.midpoint = Point3((self.p1.x + self.p2.x) / 2, (self.p1.y + self.p2.y) / 2, (self.p1.z + self.p2.z) / 2) + \ No newline at end of file diff --git a/ja/api/mp_math/utils.html b/ja/api/mp_math/utils.html index a5377ce..7cecea8 100644 --- a/ja/api/mp_math/utils.html +++ b/ja/api/mp_math/utils.html @@ -8,10 +8,10 @@ - - + + - + @@ -81,8 +81,8 @@ elif x < 0: return f'-{abs(x)}' else: - return '' - + return '' + \ No newline at end of file diff --git a/ja/api/mp_math/vector.html b/ja/api/mp_math/vector.html index 530f6b5..25e3543 100644 --- a/ja/api/mp_math/vector.html +++ b/ja/api/mp_math/vector.html @@ -8,10 +8,10 @@ - - + + - + @@ -204,8 +204,8 @@ """ return self.x * other.x + self.y * other.y + self.z * other.z

def self / other: RealNumber => Vector3

ソースコード または GitHubで表示
python
def __truediv__(self, other: RealNumber) -> 'Vector3':
     return Vector3(self.x / other, self.y / other, self.z / other)

def - self

ソースコード または GitHubで表示
python
def __neg__(self):
-    return Vector3(-self.x, -self.y, -self.z)

var zero_vector3 = Vector3(0, 0, 0)

var x_axis = Vector3(1, 0, 0)

var y_axis = Vector3(0, 1, 0)

var z_axis = Vector3(0, 0, 1)

- + return Vector3(-self.x, -self.y, -self.z)

var zero_vector3 = Vector3(0, 0, 0)

var x_axis = Vector3(1, 0, 0)

var y_axis = Vector3(0, 1, 0)

var z_axis = Vector3(0, 0, 1)

+ \ No newline at end of file diff --git a/ja/api/particle/index.html b/ja/api/particle/index.html index 376e073..60d19b4 100644 --- a/ja/api/particle/index.html +++ b/ja/api/particle/index.html @@ -8,18 +8,18 @@ - - + + - + -
Skip to content

mbcp.particle

説明: 本模块定义了粒子生成相关的工具

VitePress で構築されたドキュメント | litedoc によって生成されたAPIリファレンス

- +
Skip to content

mbcp.particle

説明: 本模块定义了粒子生成相关的工具

VitePress で構築されたドキュメント | litedoc によって生成されたAPIリファレンス

+ \ No newline at end of file diff --git a/ja/api/particle/particle.html b/ja/api/particle/particle.html index 8f63b6c..dcf79c2 100644 --- a/ja/api/particle/particle.html +++ b/ja/api/particle/particle.html @@ -8,18 +8,18 @@ - - + + - + -
Skip to content

mbcp.particle

説明: 本模块定义了粒子生成相关的工具

VitePress で構築されたドキュメント | litedoc によって生成されたAPIリファレンス

- +
Skip to content

mbcp.particle

説明: 本模块定义了粒子生成相关的工具

VitePress で構築されたドキュメント | litedoc によって生成されたAPIリファレンス

+ \ No newline at end of file diff --git a/ja/api/presets/index.html b/ja/api/presets/index.html index 5a62078..ff3d55a 100644 --- a/ja/api/presets/index.html +++ b/ja/api/presets/index.html @@ -8,18 +8,18 @@ - - + + - + -
Skip to content

mbcp.presets

説明: Copyright (C) 2020-2024 LiteyukiStudio. All Rights Reserved

@Time : 2024/8/12 下午9:12 @Author : snowykami @Email : snowykami@outlook.com @File : init.py @Software: PyCharm

VitePress で構築されたドキュメント | litedoc によって生成されたAPIリファレンス

- +
Skip to content

mbcp.presets

説明: Copyright (C) 2020-2024 LiteyukiStudio. All Rights Reserved

@Time : 2024/8/12 下午9:12 @Author : snowykami @Email : snowykami@outlook.com @File : init.py @Software: PyCharm

VitePress で構築されたドキュメント | litedoc によって生成されたAPIリファレンス

+ \ No newline at end of file diff --git a/ja/api/presets/model/index.html b/ja/api/presets/model/index.html index a9588bb..1c1d7b3 100644 --- a/ja/api/presets/model/index.html +++ b/ja/api/presets/model/index.html @@ -8,10 +8,10 @@ - - + + - + @@ -35,8 +35,8 @@ x_array = radius * np.sin(phi_list) * np.cos(theta_list) y_array = radius * np.sin(phi_list) * np.sin(theta_list) z_array = radius * np.cos(phi_list) - return [Point3(x_array[i], y_array[i], z_array[i]) for i in range(num)] - + return [Point3(x_array[i], y_array[i], z_array[i]) for i in range(num)] + \ No newline at end of file diff --git a/ja/api/presets/model/model.html b/ja/api/presets/model/model.html index 6a8dc48..5fe4ed5 100644 --- a/ja/api/presets/model/model.html +++ b/ja/api/presets/model/model.html @@ -8,10 +8,10 @@ - - + + - + @@ -35,8 +35,8 @@ x_array = radius * np.sin(phi_list) * np.cos(theta_list) y_array = radius * np.sin(phi_list) * np.sin(theta_list) z_array = radius * np.cos(phi_list) - return [Point3(x_array[i], y_array[i], z_array[i]) for i in range(num)] - + return [Point3(x_array[i], y_array[i], z_array[i]) for i in range(num)] + \ No newline at end of file diff --git a/ja/api/presets/presets.html b/ja/api/presets/presets.html index 6aeefc6..d6e53c6 100644 --- a/ja/api/presets/presets.html +++ b/ja/api/presets/presets.html @@ -8,18 +8,18 @@ - - + + - + -
Skip to content

mbcp.presets

説明: Copyright (C) 2020-2024 LiteyukiStudio. All Rights Reserved

@Time : 2024/8/12 下午9:12 @Author : snowykami @Email : snowykami@outlook.com @File : init.py @Software: PyCharm

VitePress で構築されたドキュメント | litedoc によって生成されたAPIリファレンス

- +
Skip to content

mbcp.presets

説明: Copyright (C) 2020-2024 LiteyukiStudio. All Rights Reserved

@Time : 2024/8/12 下午9:12 @Author : snowykami @Email : snowykami@outlook.com @File : init.py @Software: PyCharm

VitePress で構築されたドキュメント | litedoc によって生成されたAPIリファレンス

+ \ No newline at end of file diff --git a/ja/guide/index.html b/ja/guide/index.html index 5a0d80a..ed196fc 100644 --- a/ja/guide/index.html +++ b/ja/guide/index.html @@ -8,8 +8,8 @@ - - + + @@ -19,7 +19,7 @@
Skip to content

开始不了一点

12x111

VitePress で構築されたドキュメント | litedoc によって生成されたAPIリファレンス

- + \ No newline at end of file diff --git a/ja/index.html b/ja/index.html index b6d7380..cf47582 100644 --- a/ja/index.html +++ b/ja/index.html @@ -8,8 +8,8 @@ - - + + @@ -19,7 +19,7 @@
Skip to content

MBCP

More basic change particle

ジオメトリ演算とパーティクル作成のためのライブラリ

MBCP logo

VitePress で構築されたドキュメント | litedoc によって生成されたAPIリファレンス

- + \ No newline at end of file diff --git a/ja/refer/index.html b/ja/refer/index.html index 507489c..c14091d 100644 --- a/ja/refer/index.html +++ b/ja/refer/index.html @@ -8,8 +8,8 @@ - - + + @@ -19,7 +19,7 @@
Skip to content

Reference

Help us to improve the documentation

VitePress で構築されたドキュメント | litedoc によって生成されたAPIリファレンス

- + \ No newline at end of file diff --git a/refer/function/curry.html b/refer/function/curry.html index 269bb7e..5f25330 100644 --- a/refer/function/curry.html +++ b/refer/function/curry.html @@ -8,8 +8,8 @@ - - + + @@ -19,7 +19,7 @@
Skip to content

文档由 VitePress 构建 | API引用由 litedoc 生成

- + \ No newline at end of file diff --git a/refer/function/function.html b/refer/function/function.html index 247bdfb..dcf4f70 100644 --- a/refer/function/function.html +++ b/refer/function/function.html @@ -8,8 +8,8 @@ - - + + @@ -19,7 +19,7 @@
Skip to content

文档由 VitePress 构建 | API引用由 litedoc 生成

- + \ No newline at end of file diff --git a/refer/index.html b/refer/index.html index a76d981..3ae8b18 100644 --- a/refer/index.html +++ b/refer/index.html @@ -8,8 +8,8 @@ - - + + @@ -19,7 +19,7 @@
Skip to content

Reference

Help us to improve the documentation

文档由 VitePress 构建 | API引用由 litedoc 生成

- + \ No newline at end of file diff --git a/zht/api/api.html b/zht/api/api.html index 1135c6f..ff5f56d 100644 --- a/zht/api/api.html +++ b/zht/api/api.html @@ -8,18 +8,18 @@ - - + + - + -
Skip to content

mbcp

説明: 本模块塞了一些预设的粒子生成器

文檔由 VitePress 構建 | API引用由 litedoc 生成

- +
Skip to content

mbcp

説明: 本模块塞了一些预设的粒子生成器

文檔由 VitePress 構建 | API引用由 litedoc 生成

+ \ No newline at end of file diff --git a/zht/api/index.html b/zht/api/index.html index d412010..249af00 100644 --- a/zht/api/index.html +++ b/zht/api/index.html @@ -8,18 +8,18 @@ - - + + - + -
Skip to content

mbcp

説明: 本模块塞了一些预设的粒子生成器

文檔由 VitePress 構建 | API引用由 litedoc 生成

- +
Skip to content

mbcp

説明: 本模块塞了一些预设的粒子生成器

文檔由 VitePress 構建 | API引用由 litedoc 生成

+ \ No newline at end of file diff --git a/zht/api/mp_math/angle.html b/zht/api/mp_math/angle.html index c0e8364..64da68b 100644 --- a/zht/api/mp_math/angle.html +++ b/zht/api/mp_math/angle.html @@ -8,10 +8,10 @@ - - + + - + @@ -116,8 +116,8 @@ ...

def self / other

源碼於GitHub上查看
python
def __truediv__(self, other):
     if isinstance(other, AnyAngle):
         return self.radian / other.radian
-    return AnyAngle(self.radian / other, is_radian=True)
- + return AnyAngle(self.radian / other, is_radian=True) + \ No newline at end of file diff --git a/zht/api/mp_math/const.html b/zht/api/mp_math/const.html index 5f52200..7692579 100644 --- a/zht/api/mp_math/const.html +++ b/zht/api/mp_math/const.html @@ -8,18 +8,18 @@ - - + + - + -
Skip to content

mbcp.mp_math.const

説明: 本模块定义了一些常用的常量

var PI = math.pi

  • 説明: 常量 π

var E = math.e

  • 説明: 自然对数的底 exp(1)

var GOLDEN_RATIO = (1 + math.sqrt(5)) / 2

  • 説明: 黄金分割比

var GAMMA = 0.5772156649015329

  • 説明: 欧拉常数

var EPSILON = 0.0001

  • 説明: 精度误差

var APPROX = 0.001

  • 説明: 约等于判定误差

文檔由 VitePress 構建 | API引用由 litedoc 生成

- +
Skip to content

mbcp.mp_math.const

説明: 本模块定义了一些常用的常量

var PI = math.pi

  • 説明: 常量 π

var E = math.e

  • 説明: 自然对数的底 exp(1)

var GOLDEN_RATIO = (1 + math.sqrt(5)) / 2

  • 説明: 黄金分割比

var GAMMA = 0.5772156649015329

  • 説明: 欧拉常数

var EPSILON = 0.0001

  • 説明: 精度误差

var APPROX = 0.001

  • 説明: 约等于判定误差

文檔由 VitePress 構建 | API引用由 litedoc 生成

+ \ No newline at end of file diff --git a/zht/api/mp_math/equation.html b/zht/api/mp_math/equation.html index 1671b8a..3483cdf 100644 --- a/zht/api/mp_math/equation.html +++ b/zht/api/mp_math/equation.html @@ -8,10 +8,10 @@ - - + + - + @@ -82,8 +82,8 @@ return result_func(*args) return high_order_partial_derivative_func else: - raise ValueError('Invalid var type') - + raise ValueError('Invalid var type') + \ No newline at end of file diff --git a/zht/api/mp_math/function.html b/zht/api/mp_math/function.html index ee0bb14..ddf6d93 100644 --- a/zht/api/mp_math/function.html +++ b/zht/api/mp_math/function.html @@ -8,10 +8,10 @@ - - + + - + @@ -59,8 +59,8 @@ def curried_func(*args2: Var) -> Var: """@litedoc-hide""" return func(*args, *args2) - return curried_func - + return curried_func + \ No newline at end of file diff --git a/zht/api/mp_math/index.html b/zht/api/mp_math/index.html index 70afed1..46d4628 100644 --- a/zht/api/mp_math/index.html +++ b/zht/api/mp_math/index.html @@ -8,18 +8,18 @@ - - + + - + -
Skip to content

mbcp.mp_math

説明: 本包定义了一些常用的导入,可直接从mbcp.mp_math导入使用 导入的类有:

  • AnyAngle:任意角
  • CurveEquation:曲线方程
  • Line3:三维直线
  • Plane3:三维平面
  • Point3:三维点
  • Segment3:三维线段
  • Vector3:三维向量

文檔由 VitePress 構建 | API引用由 litedoc 生成

- +
Skip to content

mbcp.mp_math

説明: 本包定义了一些常用的导入,可直接从mbcp.mp_math导入使用 导入的类有:

  • AnyAngle:任意角
  • CurveEquation:曲线方程
  • Line3:三维直线
  • Plane3:三维平面
  • Point3:三维点
  • Segment3:三维线段
  • Vector3:三维向量

文檔由 VitePress 構建 | API引用由 litedoc 生成

+ \ No newline at end of file diff --git a/zht/api/mp_math/line.html b/zht/api/mp_math/line.html index 5407642..6be1e7b 100644 --- a/zht/api/mp_math/line.html +++ b/zht/api/mp_math/line.html @@ -8,10 +8,10 @@ - - + + - + @@ -195,8 +195,8 @@ Returns: """ - return self.direction.is_parallel(other.direction) and (self.point - other.point).is_parallel(self.direction) - + return self.direction.is_parallel(other.direction) and (self.point - other.point).is_parallel(self.direction) + \ No newline at end of file diff --git a/zht/api/mp_math/mp_math.html b/zht/api/mp_math/mp_math.html index 9c87552..21d05c8 100644 --- a/zht/api/mp_math/mp_math.html +++ b/zht/api/mp_math/mp_math.html @@ -8,18 +8,18 @@ - - + + - + -
Skip to content

mbcp.mp_math

説明: 本包定义了一些常用的导入,可直接从mbcp.mp_math导入使用 导入的类有:

  • AnyAngle:任意角
  • CurveEquation:曲线方程
  • Line3:三维直线
  • Plane3:三维平面
  • Point3:三维点
  • Segment3:三维线段
  • Vector3:三维向量

文檔由 VitePress 構建 | API引用由 litedoc 生成

- +
Skip to content

mbcp.mp_math

説明: 本包定义了一些常用的导入,可直接从mbcp.mp_math导入使用 导入的类有:

  • AnyAngle:任意角
  • CurveEquation:曲线方程
  • Line3:三维直线
  • Plane3:三维平面
  • Point3:三维点
  • Segment3:三维线段
  • Vector3:三维向量

文檔由 VitePress 構建 | API引用由 litedoc 生成

+ \ No newline at end of file diff --git a/zht/api/mp_math/mp_math_typing.html b/zht/api/mp_math/mp_math_typing.html index c240494..87058c6 100644 --- a/zht/api/mp_math/mp_math_typing.html +++ b/zht/api/mp_math/mp_math_typing.html @@ -8,18 +8,18 @@ - - + + - + -
Skip to content

mbcp.mp_math.mp_math_typing

説明: 本模块用于内部类型提示

var RealNumber = int | float

  • 類型: TypeAlias

  • 説明: 实数

var Number = RealNumber | complex

  • 類型: TypeAlias

  • 説明: 数

var SingleVar = TypeVar('SingleVar', bound=Number)

  • 説明: 单变量

var ArrayVar = TypeVar('ArrayVar', bound=Iterable[Number])

  • 説明: 数组变量

var Var = SingleVar | ArrayVar

  • 類型: TypeAlias

  • 説明: 变量

var OneSingleVarFunc = Callable[[SingleVar], SingleVar]

  • 類型: TypeAlias

  • 説明: 一元单变量函数

var OneArrayFunc = Callable[[ArrayVar], ArrayVar]

  • 類型: TypeAlias

  • 説明: 一元数组函数

var OneVarFunc = OneSingleVarFunc | OneArrayFunc

  • 類型: TypeAlias

  • 説明: 一元函数

var TwoSingleVarsFunc = Callable[[SingleVar, SingleVar], SingleVar]

  • 類型: TypeAlias

  • 説明: 二元单变量函数

var TwoArraysFunc = Callable[[ArrayVar, ArrayVar], ArrayVar]

  • 類型: TypeAlias

  • 説明: 二元数组函数

var TwoVarsFunc = TwoSingleVarsFunc | TwoArraysFunc

  • 類型: TypeAlias

  • 説明: 二元函数

var ThreeSingleVarsFunc = Callable[[SingleVar, SingleVar, SingleVar], SingleVar]

  • 類型: TypeAlias

  • 説明: 三元单变量函数

var ThreeArraysFunc = Callable[[ArrayVar, ArrayVar, ArrayVar], ArrayVar]

  • 類型: TypeAlias

  • 説明: 三元数组函数

var ThreeVarsFunc = ThreeSingleVarsFunc | ThreeArraysFunc

  • 類型: TypeAlias

  • 説明: 三元函数

var MultiSingleVarsFunc = Callable[..., SingleVar]

  • 類型: TypeAlias

  • 説明: 多元单变量函数

var MultiArraysFunc = Callable[..., ArrayVar]

  • 類型: TypeAlias

  • 説明: 多元数组函数

var MultiVarsFunc = MultiSingleVarsFunc | MultiArraysFunc

  • 類型: TypeAlias

  • 説明: 多元函数

文檔由 VitePress 構建 | API引用由 litedoc 生成

- +
Skip to content

mbcp.mp_math.mp_math_typing

説明: 本模块用于内部类型提示

var RealNumber = int | float

  • 類型: TypeAlias

  • 説明: 实数

var Number = RealNumber | complex

  • 類型: TypeAlias

  • 説明: 数

var SingleVar = TypeVar('SingleVar', bound=Number)

  • 説明: 单变量

var ArrayVar = TypeVar('ArrayVar', bound=Iterable[Number])

  • 説明: 数组变量

var Var = SingleVar | ArrayVar

  • 類型: TypeAlias

  • 説明: 变量

var OneSingleVarFunc = Callable[[SingleVar], SingleVar]

  • 類型: TypeAlias

  • 説明: 一元单变量函数

var OneArrayFunc = Callable[[ArrayVar], ArrayVar]

  • 類型: TypeAlias

  • 説明: 一元数组函数

var OneVarFunc = OneSingleVarFunc | OneArrayFunc

  • 類型: TypeAlias

  • 説明: 一元函数

var TwoSingleVarsFunc = Callable[[SingleVar, SingleVar], SingleVar]

  • 類型: TypeAlias

  • 説明: 二元单变量函数

var TwoArraysFunc = Callable[[ArrayVar, ArrayVar], ArrayVar]

  • 類型: TypeAlias

  • 説明: 二元数组函数

var TwoVarsFunc = TwoSingleVarsFunc | TwoArraysFunc

  • 類型: TypeAlias

  • 説明: 二元函数

var ThreeSingleVarsFunc = Callable[[SingleVar, SingleVar, SingleVar], SingleVar]

  • 類型: TypeAlias

  • 説明: 三元单变量函数

var ThreeArraysFunc = Callable[[ArrayVar, ArrayVar, ArrayVar], ArrayVar]

  • 類型: TypeAlias

  • 説明: 三元数组函数

var ThreeVarsFunc = ThreeSingleVarsFunc | ThreeArraysFunc

  • 類型: TypeAlias

  • 説明: 三元函数

var MultiSingleVarsFunc = Callable[..., SingleVar]

  • 類型: TypeAlias

  • 説明: 多元单变量函数

var MultiArraysFunc = Callable[..., ArrayVar]

  • 類型: TypeAlias

  • 説明: 多元数组函数

var MultiVarsFunc = MultiSingleVarsFunc | MultiArraysFunc

  • 類型: TypeAlias

  • 説明: 多元函数

文檔由 VitePress 構建 | API引用由 litedoc 生成

+ \ No newline at end of file diff --git a/zht/api/mp_math/plane.html b/zht/api/mp_math/plane.html index e3b1b54..00f2638 100644 --- a/zht/api/mp_math/plane.html +++ b/zht/api/mp_math/plane.html @@ -8,10 +8,10 @@ - - + + - + @@ -213,8 +213,8 @@ else: raise TypeError(f"unsupported operand type(s) for &: 'Plane3' and '{type(other)}'")

def __eq__(self, other) -> bool

源碼於GitHub上查看
python
def __eq__(self, other) -> bool:
     return self.approx(other)

def __rand__(self, other: Line3) -> Point3

源碼於GitHub上查看
python
def __rand__(self, other: 'Line3') -> 'Point3':
-    return self.cal_intersection_point3(other)
- + return self.cal_intersection_point3(other) + \ No newline at end of file diff --git a/zht/api/mp_math/point.html b/zht/api/mp_math/point.html index 32d5753..b29c25d 100644 --- a/zht/api/mp_math/point.html +++ b/zht/api/mp_math/point.html @@ -8,10 +8,10 @@ - - + + - + @@ -68,8 +68,8 @@ """ from .vector import Vector3 - return Vector3(self.x - other.x, self.y - other.y, self.z - other.z) - + return Vector3(self.x - other.x, self.y - other.y, self.z - other.z) + \ No newline at end of file diff --git a/zht/api/mp_math/segment.html b/zht/api/mp_math/segment.html index 529b60c..844ef52 100644 --- a/zht/api/mp_math/segment.html +++ b/zht/api/mp_math/segment.html @@ -8,10 +8,10 @@ - - + + - + @@ -31,8 +31,8 @@ '长度' self.length = self.direction.length '中心点' - self.midpoint = Point3((self.p1.x + self.p2.x) / 2, (self.p1.y + self.p2.y) / 2, (self.p1.z + self.p2.z) / 2) - + self.midpoint = Point3((self.p1.x + self.p2.x) / 2, (self.p1.y + self.p2.y) / 2, (self.p1.z + self.p2.z) / 2) + \ No newline at end of file diff --git a/zht/api/mp_math/utils.html b/zht/api/mp_math/utils.html index dc35db0..d902958 100644 --- a/zht/api/mp_math/utils.html +++ b/zht/api/mp_math/utils.html @@ -8,10 +8,10 @@ - - + + - + @@ -81,8 +81,8 @@ elif x < 0: return f'-{abs(x)}' else: - return '' - + return '' + \ No newline at end of file diff --git a/zht/api/mp_math/vector.html b/zht/api/mp_math/vector.html index dadff4e..f5d63f2 100644 --- a/zht/api/mp_math/vector.html +++ b/zht/api/mp_math/vector.html @@ -8,10 +8,10 @@ - - + + - + @@ -204,8 +204,8 @@ """ return self.x * other.x + self.y * other.y + self.z * other.z

def self / other: RealNumber => Vector3

源碼於GitHub上查看
python
def __truediv__(self, other: RealNumber) -> 'Vector3':
     return Vector3(self.x / other, self.y / other, self.z / other)

def - self

源碼於GitHub上查看
python
def __neg__(self):
-    return Vector3(-self.x, -self.y, -self.z)

var zero_vector3 = Vector3(0, 0, 0)

var x_axis = Vector3(1, 0, 0)

var y_axis = Vector3(0, 1, 0)

var z_axis = Vector3(0, 0, 1)

- + return Vector3(-self.x, -self.y, -self.z)

var zero_vector3 = Vector3(0, 0, 0)

var x_axis = Vector3(1, 0, 0)

var y_axis = Vector3(0, 1, 0)

var z_axis = Vector3(0, 0, 1)

+ \ No newline at end of file diff --git a/zht/api/particle/index.html b/zht/api/particle/index.html index 520c401..4178ac8 100644 --- a/zht/api/particle/index.html +++ b/zht/api/particle/index.html @@ -8,18 +8,18 @@ - - + + - + -
Skip to content

mbcp.particle

説明: 本模块定义了粒子生成相关的工具

文檔由 VitePress 構建 | API引用由 litedoc 生成

- +
Skip to content

mbcp.particle

説明: 本模块定义了粒子生成相关的工具

文檔由 VitePress 構建 | API引用由 litedoc 生成

+ \ No newline at end of file diff --git a/zht/api/particle/particle.html b/zht/api/particle/particle.html index 45d06d6..aa8982e 100644 --- a/zht/api/particle/particle.html +++ b/zht/api/particle/particle.html @@ -8,18 +8,18 @@ - - + + - + -
Skip to content

mbcp.particle

説明: 本模块定义了粒子生成相关的工具

文檔由 VitePress 構建 | API引用由 litedoc 生成

- +
Skip to content

mbcp.particle

説明: 本模块定义了粒子生成相关的工具

文檔由 VitePress 構建 | API引用由 litedoc 生成

+ \ No newline at end of file diff --git a/zht/api/presets/index.html b/zht/api/presets/index.html index 85aaae7..70f796e 100644 --- a/zht/api/presets/index.html +++ b/zht/api/presets/index.html @@ -8,18 +8,18 @@ - - + + - + -
Skip to content

mbcp.presets

説明: Copyright (C) 2020-2024 LiteyukiStudio. All Rights Reserved

@Time : 2024/8/12 下午9:12 @Author : snowykami @Email : snowykami@outlook.com @File : init.py @Software: PyCharm

文檔由 VitePress 構建 | API引用由 litedoc 生成

- +
Skip to content

mbcp.presets

説明: Copyright (C) 2020-2024 LiteyukiStudio. All Rights Reserved

@Time : 2024/8/12 下午9:12 @Author : snowykami @Email : snowykami@outlook.com @File : init.py @Software: PyCharm

文檔由 VitePress 構建 | API引用由 litedoc 生成

+ \ No newline at end of file diff --git a/zht/api/presets/model/index.html b/zht/api/presets/model/index.html index 4c2a08d..644ac3f 100644 --- a/zht/api/presets/model/index.html +++ b/zht/api/presets/model/index.html @@ -8,10 +8,10 @@ - - + + - + @@ -35,8 +35,8 @@ x_array = radius * np.sin(phi_list) * np.cos(theta_list) y_array = radius * np.sin(phi_list) * np.sin(theta_list) z_array = radius * np.cos(phi_list) - return [Point3(x_array[i], y_array[i], z_array[i]) for i in range(num)] - + return [Point3(x_array[i], y_array[i], z_array[i]) for i in range(num)] + \ No newline at end of file diff --git a/zht/api/presets/model/model.html b/zht/api/presets/model/model.html index dd1f08b..dc4b43b 100644 --- a/zht/api/presets/model/model.html +++ b/zht/api/presets/model/model.html @@ -8,10 +8,10 @@ - - + + - + @@ -35,8 +35,8 @@ x_array = radius * np.sin(phi_list) * np.cos(theta_list) y_array = radius * np.sin(phi_list) * np.sin(theta_list) z_array = radius * np.cos(phi_list) - return [Point3(x_array[i], y_array[i], z_array[i]) for i in range(num)] - + return [Point3(x_array[i], y_array[i], z_array[i]) for i in range(num)] + \ No newline at end of file diff --git a/zht/api/presets/presets.html b/zht/api/presets/presets.html index f643358..d8e9518 100644 --- a/zht/api/presets/presets.html +++ b/zht/api/presets/presets.html @@ -8,18 +8,18 @@ - - + + - + -
Skip to content

mbcp.presets

説明: Copyright (C) 2020-2024 LiteyukiStudio. All Rights Reserved

@Time : 2024/8/12 下午9:12 @Author : snowykami @Email : snowykami@outlook.com @File : init.py @Software: PyCharm

文檔由 VitePress 構建 | API引用由 litedoc 生成

- +
Skip to content

mbcp.presets

説明: Copyright (C) 2020-2024 LiteyukiStudio. All Rights Reserved

@Time : 2024/8/12 下午9:12 @Author : snowykami @Email : snowykami@outlook.com @File : init.py @Software: PyCharm

文檔由 VitePress 構建 | API引用由 litedoc 生成

+ \ No newline at end of file diff --git a/zht/guide/index.html b/zht/guide/index.html index 941f49c..1b54701 100644 --- a/zht/guide/index.html +++ b/zht/guide/index.html @@ -8,8 +8,8 @@ - - + + @@ -19,7 +19,7 @@
Skip to content

开始不了一点

12x111

文檔由 VitePress 構建 | API引用由 litedoc 生成

- + \ No newline at end of file diff --git a/zht/index.html b/zht/index.html index 86f318e..6b90996 100644 --- a/zht/index.html +++ b/zht/index.html @@ -8,8 +8,8 @@ - - + + @@ -19,7 +19,7 @@
Skip to content

MBCP

更多基礎變化粒子

用於幾何運算和 當個創世神 粒子製作的軟體庫

MBCP logo

文檔由 VitePress 構建 | API引用由 litedoc 生成

- + \ No newline at end of file diff --git a/zht/refer/index.html b/zht/refer/index.html index 7fbd36e..c6a9e82 100644 --- a/zht/refer/index.html +++ b/zht/refer/index.html @@ -8,8 +8,8 @@ - - + + @@ -19,7 +19,7 @@
Skip to content

Reference

Help us to improve the documentation

文檔由 VitePress 構建 | API引用由 litedoc 生成

- + \ No newline at end of file