mirror of
https://github.com/snowykami/mbcp.git
synced 2024-11-26 08:15:03 +08:00
Deploying to docs from @ snowykami/mbcp@f136c1a9fc 🚀
This commit is contained in:
parent
fdae033b0c
commit
73e9bb5f83
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
@ -1,8 +1,8 @@
|
||||
import{_ as s,c as i,o as a,a2 as n}from"./chunks/framework.BV61Qrc0.js";const F=JSON.parse('{"title":"mbcp.mp_math.equation","description":"","frontmatter":{"title":"mbcp.mp_math.equation"},"headers":[],"relativePath":"ja/api/mp_math/equation.md","filePath":"ja/api/mp_math/equation.md"}'),l={name:"ja/api/mp_math/equation.md"},t=n(`<h3 id="func-get-partial-derivative-func-func-multivarsfunc-epsilon-multivarsfunc" tabindex="-1"><em><strong>func</strong></em> <code>get_partial_derivative_func(func: MultiVarsFunc = EPSILON) -> MultiVarsFunc</code> <a class="header-anchor" href="#func-get-partial-derivative-func-func-multivarsfunc-epsilon-multivarsfunc" aria-label="Permalink to "***func*** \`get_partial_derivative_func(func: MultiVarsFunc = EPSILON) -> MultiVarsFunc\`""></a></h3><p><strong>説明</strong>: 求N元函数一阶偏导函数。这玩意不太稳定,慎用。</p><div class="warning custom-block github-alert"><p class="custom-block-title">WARNING</p><p>目前数学界对于数值微分的稳定性问题还没有很好的解决方案,因此这个函数的稳定性也不是很好。</p></div><p><strong>引数</strong>:</p><blockquote><ul><li>func: 函数</li><li>var: 变量位置,可为整数(一阶偏导)或整数元组(高阶偏导)</li><li>epsilon: 偏移量</li></ul></blockquote><p><strong>戻り値</strong>: 偏导函数</p><p><strong>例外</strong>:</p><blockquote><ul><li>ValueError 无效变量类型</li></ul></blockquote><details><summary><b>ソースコード</b></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> get_partial_derivative_func</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(func: MultiVarsFunc, var: </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">int</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> |</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> tuple[</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">int</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">, </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">...</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">], epsilon: Number</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">EPSILON</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) -> MultiVarsFunc:</span></span>
|
||||
import{_ as s,c as i,o as a,a2 as n}from"./chunks/framework.BV61Qrc0.js";const u=JSON.parse('{"title":"mbcp.mp_math.equation","description":"","frontmatter":{"title":"mbcp.mp_math.equation"},"headers":[],"relativePath":"api/mp_math/equation.md","filePath":"api/mp_math/equation.md"}'),l={name:"api/mp_math/equation.md"},t=n(`<h3 id="func-get-partial-derivative-func-func-multivarsfunc-epsilon-multivarsfunc" tabindex="-1"><em><strong>func</strong></em> <code>get_partial_derivative_func(func: MultiVarsFunc = EPSILON) -> MultiVarsFunc</code> <a class="header-anchor" href="#func-get-partial-derivative-func-func-multivarsfunc-epsilon-multivarsfunc" aria-label="Permalink to "***func*** \`get_partial_derivative_func(func: MultiVarsFunc = EPSILON) -> MultiVarsFunc\`""></a></h3><p><strong>说明</strong>: 求N元函数一阶偏导函数。这玩意不太稳定,慎用。</p><div class="warning custom-block github-alert"><p class="custom-block-title">WARNING</p><p>目前数学界对于一个函数的导函数并没有通解的说法,因此该函数的稳定性有待提升</p></div><p><strong>参数</strong>:</p><blockquote><ul><li>func: 函数</li><li>var: 变量位置,可为整数(一阶偏导)或整数元组(高阶偏导)</li><li>epsilon: 偏移量</li></ul></blockquote><p><strong>返回</strong>: 偏导函数</p><p><strong>引发</strong>:</p><blockquote><ul><li>ValueError 无效变量类型</li></ul></blockquote><details><summary><b>源代码</b></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> get_partial_derivative_func</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(func: MultiVarsFunc, var: </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">int</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> |</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> tuple[</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">int</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">, </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">...</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">], epsilon: Number</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">EPSILON</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) -> MultiVarsFunc:</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> """</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 求N元函数一阶偏导函数。这玩意不太稳定,慎用。</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> > [!warning]</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> > 目前数学界对于数值微分的稳定性问题还没有很好的解决方案,因此这个函数的稳定性也不是很好。</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> > 目前数学界对于一个函数的导函数并没有通解的说法,因此该函数的稳定性有待提升</span></span>
|
||||
<span class="line"></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Args:</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> func: 函数</span></span>
|
||||
@ -40,7 +40,22 @@ import{_ as s,c as i,o as a,a2 as n}from"./chunks/framework.BV61Qrc0.js";const F
|
||||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> result_func(</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">args)</span></span>
|
||||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> high_order_partial_derivative_func</span></span>
|
||||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> else</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
|
||||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> raise</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> ValueError</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(</span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">'Invalid var type'</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">)</span></span></code></pre></div></details><h3 id="class-curveequation" tabindex="-1"><strong>class</strong> <code>CurveEquation</code> <a class="header-anchor" href="#class-curveequation" aria-label="Permalink to "**class** \`CurveEquation\`""></a></h3><h3 id="method-init-self-x-func-onevarfunc-y-func-onevarfunc-z-func-onevarfunc" tabindex="-1"><em><strong>method</strong></em> <code>__init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc)</code> <a class="header-anchor" href="#method-init-self-x-func-onevarfunc-y-func-onevarfunc-z-func-onevarfunc" aria-label="Permalink to "***method*** \`__init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc)\`""></a></h3><p><strong>説明</strong>: 曲线方程。</p><p><strong>引数</strong>:</p><blockquote><ul><li>x_func: x函数</li><li>y_func: y函数</li><li>z_func: z函数</li></ul></blockquote><details><summary><b>ソースコード</b></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> __init__</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc):</span></span>
|
||||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> raise</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> ValueError</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(</span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">'Invalid var type'</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">)</span></span></code></pre></div></details><h3 id="func-curry-args-var-onevarfunc" tabindex="-1"><em><strong>func</strong></em> <code>curry(*args: Var) -> OneVarFunc</code> <a class="header-anchor" href="#func-curry-args-var-onevarfunc" aria-label="Permalink to "***func*** \`curry(*args: Var) -> OneVarFunc\`""></a></h3><p><strong>说明</strong>: 对多参数函数进行柯里化。</p><div class="tip custom-block github-alert"><p class="custom-block-title">TIP</p><p>有关函数柯里化,可参考<a href="https://zhuanlan.zhihu.com/p/355859667" target="_blank" rel="noreferrer">函数式编程--柯理化(Currying)</a></p></div><p><strong>参数</strong>:</p><blockquote><ul><li>func: 函数</li><li>*args: 参数</li></ul></blockquote><p><strong>返回</strong>: 柯里化后的函数</p><details><summary><b>源代码</b></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> curry</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(func: MultiVarsFunc, </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">args: Var) -> OneVarFunc:</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> """</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 对多参数函数进行柯里化。</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> > [!tip]</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> > 有关函数柯里化,可参考[函数式编程--柯理化(Currying)](https://zhuanlan.zhihu.com/p/355859667)</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Args:</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> func: 函数</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> *args: 参数</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Returns:</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 柯里化后的函数</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> """</span></span>
|
||||
<span class="line"></span>
|
||||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> curried_func</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">args2: Var) -> Var:</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> """@litedoc-hide"""</span></span>
|
||||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> func(</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">args, </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">args2)</span></span>
|
||||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> curried_func</span></span></code></pre></div></details><h3 id="class-curveequation" tabindex="-1"><strong>class</strong> <code>CurveEquation</code> <a class="header-anchor" href="#class-curveequation" aria-label="Permalink to "**class** \`CurveEquation\`""></a></h3><h3 id="method-init-self-x-func-onevarfunc-y-func-onevarfunc-z-func-onevarfunc" tabindex="-1"><em><strong>method</strong></em> <code>__init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc)</code> <a class="header-anchor" href="#method-init-self-x-func-onevarfunc-y-func-onevarfunc-z-func-onevarfunc" aria-label="Permalink to "***method*** \`__init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc)\`""></a></h3><p><strong>说明</strong>: 曲线方程。</p><p><strong>参数</strong>:</p><blockquote><ul><li>x_func: x函数</li><li>y_func: y函数</li><li>z_func: z函数</li></ul></blockquote><details><summary><b>源代码</b></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> __init__</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc):</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> """</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 曲线方程。</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Args:</span></span>
|
||||
@ -50,7 +65,7 @@ import{_ as s,c as i,o as a,a2 as n}from"./chunks/framework.BV61Qrc0.js";const F
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> """</span></span>
|
||||
<span class="line"><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.x_func </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> x_func</span></span>
|
||||
<span class="line"><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.y_func </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> y_func</span></span>
|
||||
<span class="line"><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.z_func </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> z_func</span></span></code></pre></div></details><h3 id="method-call-self-point3-tuple-point3" tabindex="-1"><em><strong>method</strong></em> <code>__call__(self) -> Point3 | tuple[Point3, ...]</code> <a class="header-anchor" href="#method-call-self-point3-tuple-point3" aria-label="Permalink to "***method*** \`__call__(self) -> Point3 | tuple[Point3, ...]\`""></a></h3><p><strong>説明</strong>: 计算曲线上的点。</p><p><strong>引数</strong>:</p><blockquote><ul><li>*t:</li><li>参数:</li></ul></blockquote><details><summary><b>ソースコード</b></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> __call__</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">t: Var) -> Point3 </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">|</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> tuple[Point3, </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">...</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">]:</span></span>
|
||||
<span class="line"><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.z_func </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> z_func</span></span></code></pre></div></details><h3 id="method-call-self-t-var-point3-tuple-point3" tabindex="-1"><em><strong>method</strong></em> <code>__call__(self, *t: Var) -> Point3 | tuple[Point3, ...]</code> <a class="header-anchor" href="#method-call-self-t-var-point3-tuple-point3" aria-label="Permalink to "***method*** \`__call__(self, *t: Var) -> Point3 | tuple[Point3, ...]\`""></a></h3><p><strong>说明</strong>: 计算曲线上的点。</p><p><strong>参数</strong>:</p><blockquote><ul><li>*t:</li><li>参数:</li></ul></blockquote><details><summary><b>源代码</b></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> __call__</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">t: Var) -> Point3 </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">|</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> tuple[Point3, </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">...</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">]:</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> """</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 计算曲线上的点。</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Args:</span></span>
|
||||
@ -62,4 +77,4 @@ import{_ as s,c as i,o as a,a2 as n}from"./chunks/framework.BV61Qrc0.js";const F
|
||||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> if</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> len</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(t) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">==</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> 1</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
|
||||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> Point3(</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.x_func(t[</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">0</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">]), </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.y_func(t[</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">0</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">]), </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.z_func(t[</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">0</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">]))</span></span>
|
||||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> else</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
|
||||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> tuple</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">([Point3(x, y, z) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">for</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> x, y, z </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">in</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> zip</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.x_func(t), </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.y_func(t), </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.z_func(t))])</span></span></code></pre></div></details>`,20),h=[t];function p(k,e,r,E,d,g){return a(),i("div",null,h)}const u=s(l,[["render",p]]);export{F as __pageData,u as default};
|
||||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> tuple</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">([Point3(x, y, z) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">for</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> x, y, z </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">in</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> zip</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.x_func(t), </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.y_func(t), </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.z_func(t))])</span></span></code></pre></div></details>`,27),h=[t];function p(k,e,r,E,d,g){return a(),i("div",null,h)}const F=s(l,[["render",p]]);export{u as __pageData,F as default};
|
@ -1 +1 @@
|
||||
import{_ as s,c as i,o as a,a2 as n}from"./chunks/framework.BV61Qrc0.js";const F=JSON.parse('{"title":"mbcp.mp_math.equation","description":"","frontmatter":{"title":"mbcp.mp_math.equation"},"headers":[],"relativePath":"api/mp_math/equation.md","filePath":"api/mp_math/equation.md"}'),l={name:"api/mp_math/equation.md"},t=n("",20),h=[t];function p(k,e,r,E,d,g){return a(),i("div",null,h)}const u=s(l,[["render",p]]);export{F as __pageData,u as default};
|
||||
import{_ as s,c as i,o as a,a2 as n}from"./chunks/framework.BV61Qrc0.js";const u=JSON.parse('{"title":"mbcp.mp_math.equation","description":"","frontmatter":{"title":"mbcp.mp_math.equation"},"headers":[],"relativePath":"api/mp_math/equation.md","filePath":"api/mp_math/equation.md"}'),l={name:"api/mp_math/equation.md"},t=n("",27),h=[t];function p(k,e,r,E,d,g){return a(),i("div",null,h)}const F=s(l,[["render",p]]);export{u as __pageData,F as default};
|
@ -1,8 +1,8 @@
|
||||
import{_ as s,c as i,o as a,a2 as n}from"./chunks/framework.BV61Qrc0.js";const u=JSON.parse('{"title":"mbcp.mp_math.equation","description":"","frontmatter":{"title":"mbcp.mp_math.equation"},"headers":[],"relativePath":"en/api/mp_math/equation.md","filePath":"en/api/mp_math/equation.md"}'),l={name:"en/api/mp_math/equation.md"},t=n(`<h3 id="func-get-partial-derivative-func-func-multivarsfunc-epsilon-multivarsfunc" tabindex="-1"><em><strong>func</strong></em> <code>get_partial_derivative_func(func: MultiVarsFunc = EPSILON) -> MultiVarsFunc</code> <a class="header-anchor" href="#func-get-partial-derivative-func-func-multivarsfunc-epsilon-multivarsfunc" aria-label="Permalink to "***func*** \`get_partial_derivative_func(func: MultiVarsFunc = EPSILON) -> MultiVarsFunc\`""></a></h3><p><strong>Description</strong>: 求N元函数一阶偏导函数。这玩意不太稳定,慎用。</p><div class="warning custom-block github-alert"><p class="custom-block-title">WARNING</p><p>目前数学界对于数值微分的稳定性问题还没有很好的解决方案,因此这个函数的稳定性也不是很好。</p></div><p><strong>Arguments</strong>:</p><blockquote><ul><li>func: 函数</li><li>var: 变量位置,可为整数(一阶偏导)或整数元组(高阶偏导)</li><li>epsilon: 偏移量</li></ul></blockquote><p><strong>Return</strong>: 偏导函数</p><p><strong>Raises</strong>:</p><blockquote><ul><li>ValueError 无效变量类型</li></ul></blockquote><details><summary><b>Source code</b></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> get_partial_derivative_func</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(func: MultiVarsFunc, var: </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">int</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> |</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> tuple[</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">int</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">, </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">...</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">], epsilon: Number</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">EPSILON</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) -> MultiVarsFunc:</span></span>
|
||||
import{_ as s,c as i,o as a,a2 as n}from"./chunks/framework.BV61Qrc0.js";const u=JSON.parse('{"title":"mbcp.mp_math.equation","description":"","frontmatter":{"title":"mbcp.mp_math.equation"},"headers":[],"relativePath":"en/api/mp_math/equation.md","filePath":"en/api/mp_math/equation.md"}'),l={name:"en/api/mp_math/equation.md"},t=n(`<h3 id="func-get-partial-derivative-func-func-multivarsfunc-epsilon-multivarsfunc" tabindex="-1"><em><strong>func</strong></em> <code>get_partial_derivative_func(func: MultiVarsFunc = EPSILON) -> MultiVarsFunc</code> <a class="header-anchor" href="#func-get-partial-derivative-func-func-multivarsfunc-epsilon-multivarsfunc" aria-label="Permalink to "***func*** \`get_partial_derivative_func(func: MultiVarsFunc = EPSILON) -> MultiVarsFunc\`""></a></h3><p><strong>Description</strong>: 求N元函数一阶偏导函数。这玩意不太稳定,慎用。</p><div class="warning custom-block github-alert"><p class="custom-block-title">WARNING</p><p>目前数学界对于一个函数的导函数并没有通解的说法,因此该函数的稳定性有待提升</p></div><p><strong>Arguments</strong>:</p><blockquote><ul><li>func: 函数</li><li>var: 变量位置,可为整数(一阶偏导)或整数元组(高阶偏导)</li><li>epsilon: 偏移量</li></ul></blockquote><p><strong>Return</strong>: 偏导函数</p><p><strong>Raises</strong>:</p><blockquote><ul><li>ValueError 无效变量类型</li></ul></blockquote><details><summary><b>Source code</b></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> get_partial_derivative_func</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(func: MultiVarsFunc, var: </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">int</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> |</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> tuple[</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">int</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">, </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">...</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">], epsilon: Number</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">EPSILON</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) -> MultiVarsFunc:</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> """</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 求N元函数一阶偏导函数。这玩意不太稳定,慎用。</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> > [!warning]</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> > 目前数学界对于数值微分的稳定性问题还没有很好的解决方案,因此这个函数的稳定性也不是很好。</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> > 目前数学界对于一个函数的导函数并没有通解的说法,因此该函数的稳定性有待提升</span></span>
|
||||
<span class="line"></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Args:</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> func: 函数</span></span>
|
||||
@ -40,7 +40,22 @@ import{_ as s,c as i,o as a,a2 as n}from"./chunks/framework.BV61Qrc0.js";const u
|
||||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> result_func(</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">args)</span></span>
|
||||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> high_order_partial_derivative_func</span></span>
|
||||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> else</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
|
||||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> raise</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> ValueError</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(</span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">'Invalid var type'</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">)</span></span></code></pre></div></details><h3 id="class-curveequation" tabindex="-1"><strong>class</strong> <code>CurveEquation</code> <a class="header-anchor" href="#class-curveequation" aria-label="Permalink to "**class** \`CurveEquation\`""></a></h3><h3 id="method-init-self-x-func-onevarfunc-y-func-onevarfunc-z-func-onevarfunc" tabindex="-1"><em><strong>method</strong></em> <code>__init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc)</code> <a class="header-anchor" href="#method-init-self-x-func-onevarfunc-y-func-onevarfunc-z-func-onevarfunc" aria-label="Permalink to "***method*** \`__init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc)\`""></a></h3><p><strong>Description</strong>: 曲线方程。</p><p><strong>Arguments</strong>:</p><blockquote><ul><li>x_func: x函数</li><li>y_func: y函数</li><li>z_func: z函数</li></ul></blockquote><details><summary><b>Source code</b></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> __init__</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc):</span></span>
|
||||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> raise</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> ValueError</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(</span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">'Invalid var type'</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">)</span></span></code></pre></div></details><h3 id="func-curry-args-var-onevarfunc" tabindex="-1"><em><strong>func</strong></em> <code>curry(*args: Var) -> OneVarFunc</code> <a class="header-anchor" href="#func-curry-args-var-onevarfunc" aria-label="Permalink to "***func*** \`curry(*args: Var) -> OneVarFunc\`""></a></h3><p><strong>Description</strong>: 对多参数函数进行柯里化。</p><div class="tip custom-block github-alert"><p class="custom-block-title">TIP</p><p>有关函数柯里化,可参考<a href="https://zhuanlan.zhihu.com/p/355859667" target="_blank" rel="noreferrer">函数式编程--柯理化(Currying)</a></p></div><p><strong>Arguments</strong>:</p><blockquote><ul><li>func: 函数</li><li>*args: 参数</li></ul></blockquote><p><strong>Return</strong>: 柯里化后的函数</p><details><summary><b>Source code</b></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> curry</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(func: MultiVarsFunc, </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">args: Var) -> OneVarFunc:</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> """</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 对多参数函数进行柯里化。</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> > [!tip]</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> > 有关函数柯里化,可参考[函数式编程--柯理化(Currying)](https://zhuanlan.zhihu.com/p/355859667)</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Args:</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> func: 函数</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> *args: 参数</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Returns:</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 柯里化后的函数</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> """</span></span>
|
||||
<span class="line"></span>
|
||||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> curried_func</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">args2: Var) -> Var:</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> """@litedoc-hide"""</span></span>
|
||||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> func(</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">args, </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">args2)</span></span>
|
||||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> curried_func</span></span></code></pre></div></details><h3 id="class-curveequation" tabindex="-1"><strong>class</strong> <code>CurveEquation</code> <a class="header-anchor" href="#class-curveequation" aria-label="Permalink to "**class** \`CurveEquation\`""></a></h3><h3 id="method-init-self-x-func-onevarfunc-y-func-onevarfunc-z-func-onevarfunc" tabindex="-1"><em><strong>method</strong></em> <code>__init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc)</code> <a class="header-anchor" href="#method-init-self-x-func-onevarfunc-y-func-onevarfunc-z-func-onevarfunc" aria-label="Permalink to "***method*** \`__init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc)\`""></a></h3><p><strong>Description</strong>: 曲线方程。</p><p><strong>Arguments</strong>:</p><blockquote><ul><li>x_func: x函数</li><li>y_func: y函数</li><li>z_func: z函数</li></ul></blockquote><details><summary><b>Source code</b></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> __init__</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc):</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> """</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 曲线方程。</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Args:</span></span>
|
||||
@ -50,7 +65,7 @@ import{_ as s,c as i,o as a,a2 as n}from"./chunks/framework.BV61Qrc0.js";const u
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> """</span></span>
|
||||
<span class="line"><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.x_func </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> x_func</span></span>
|
||||
<span class="line"><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.y_func </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> y_func</span></span>
|
||||
<span class="line"><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.z_func </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> z_func</span></span></code></pre></div></details><h3 id="method-call-self-point3-tuple-point3" tabindex="-1"><em><strong>method</strong></em> <code>__call__(self) -> Point3 | tuple[Point3, ...]</code> <a class="header-anchor" href="#method-call-self-point3-tuple-point3" aria-label="Permalink to "***method*** \`__call__(self) -> Point3 | tuple[Point3, ...]\`""></a></h3><p><strong>Description</strong>: 计算曲线上的点。</p><p><strong>Arguments</strong>:</p><blockquote><ul><li>*t:</li><li>参数:</li></ul></blockquote><details><summary><b>Source code</b></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> __call__</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">t: Var) -> Point3 </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">|</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> tuple[Point3, </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">...</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">]:</span></span>
|
||||
<span class="line"><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.z_func </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> z_func</span></span></code></pre></div></details><h3 id="method-call-self-t-var-point3-tuple-point3" tabindex="-1"><em><strong>method</strong></em> <code>__call__(self, *t: Var) -> Point3 | tuple[Point3, ...]</code> <a class="header-anchor" href="#method-call-self-t-var-point3-tuple-point3" aria-label="Permalink to "***method*** \`__call__(self, *t: Var) -> Point3 | tuple[Point3, ...]\`""></a></h3><p><strong>Description</strong>: 计算曲线上的点。</p><p><strong>Arguments</strong>:</p><blockquote><ul><li>*t:</li><li>参数:</li></ul></blockquote><details><summary><b>Source code</b></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> __call__</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">t: Var) -> Point3 </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">|</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> tuple[Point3, </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">...</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">]:</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> """</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 计算曲线上的点。</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Args:</span></span>
|
||||
@ -62,4 +77,4 @@ import{_ as s,c as i,o as a,a2 as n}from"./chunks/framework.BV61Qrc0.js";const u
|
||||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> if</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> len</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(t) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">==</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> 1</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
|
||||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> Point3(</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.x_func(t[</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">0</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">]), </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.y_func(t[</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">0</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">]), </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.z_func(t[</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">0</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">]))</span></span>
|
||||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> else</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
|
||||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> tuple</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">([Point3(x, y, z) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">for</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> x, y, z </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">in</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> zip</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.x_func(t), </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.y_func(t), </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.z_func(t))])</span></span></code></pre></div></details>`,20),h=[t];function p(k,e,r,E,d,g){return a(),i("div",null,h)}const F=s(l,[["render",p]]);export{u as __pageData,F as default};
|
||||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> tuple</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">([Point3(x, y, z) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">for</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> x, y, z </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">in</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> zip</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.x_func(t), </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.y_func(t), </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.z_func(t))])</span></span></code></pre></div></details>`,27),p=[t];function h(k,e,r,E,d,g){return a(),i("div",null,p)}const F=s(l,[["render",h]]);export{u as __pageData,F as default};
|
@ -1 +1 @@
|
||||
import{_ as s,c as i,o as a,a2 as n}from"./chunks/framework.BV61Qrc0.js";const u=JSON.parse('{"title":"mbcp.mp_math.equation","description":"","frontmatter":{"title":"mbcp.mp_math.equation"},"headers":[],"relativePath":"en/api/mp_math/equation.md","filePath":"en/api/mp_math/equation.md"}'),l={name:"en/api/mp_math/equation.md"},t=n("",20),h=[t];function p(k,e,r,E,d,g){return a(),i("div",null,h)}const F=s(l,[["render",p]]);export{u as __pageData,F as default};
|
||||
import{_ as s,c as i,o as a,a2 as n}from"./chunks/framework.BV61Qrc0.js";const u=JSON.parse('{"title":"mbcp.mp_math.equation","description":"","frontmatter":{"title":"mbcp.mp_math.equation"},"headers":[],"relativePath":"en/api/mp_math/equation.md","filePath":"en/api/mp_math/equation.md"}'),l={name:"en/api/mp_math/equation.md"},t=n("",27),p=[t];function h(k,e,r,E,d,g){return a(),i("div",null,p)}const F=s(l,[["render",h]]);export{u as __pageData,F as default};
|
@ -1,8 +1,8 @@
|
||||
import{_ as s,c as i,o as a,a2 as n}from"./chunks/framework.BV61Qrc0.js";const F=JSON.parse('{"title":"mbcp.mp_math.equation","description":"","frontmatter":{"title":"mbcp.mp_math.equation"},"headers":[],"relativePath":"api/mp_math/equation.md","filePath":"api/mp_math/equation.md"}'),l={name:"api/mp_math/equation.md"},t=n(`<h3 id="func-get-partial-derivative-func-func-multivarsfunc-epsilon-multivarsfunc" tabindex="-1"><em><strong>func</strong></em> <code>get_partial_derivative_func(func: MultiVarsFunc = EPSILON) -> MultiVarsFunc</code> <a class="header-anchor" href="#func-get-partial-derivative-func-func-multivarsfunc-epsilon-multivarsfunc" aria-label="Permalink to "***func*** \`get_partial_derivative_func(func: MultiVarsFunc = EPSILON) -> MultiVarsFunc\`""></a></h3><p><strong>说明</strong>: 求N元函数一阶偏导函数。这玩意不太稳定,慎用。</p><div class="warning custom-block github-alert"><p class="custom-block-title">WARNING</p><p>目前数学界对于数值微分的稳定性问题还没有很好的解决方案,因此这个函数的稳定性也不是很好。</p></div><p><strong>参数</strong>:</p><blockquote><ul><li>func: 函数</li><li>var: 变量位置,可为整数(一阶偏导)或整数元组(高阶偏导)</li><li>epsilon: 偏移量</li></ul></blockquote><p><strong>返回</strong>: 偏导函数</p><p><strong>引发</strong>:</p><blockquote><ul><li>ValueError 无效变量类型</li></ul></blockquote><details><summary><b>源代码</b></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> get_partial_derivative_func</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(func: MultiVarsFunc, var: </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">int</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> |</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> tuple[</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">int</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">, </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">...</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">], epsilon: Number</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">EPSILON</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) -> MultiVarsFunc:</span></span>
|
||||
import{_ as s,c as i,o as a,a2 as n}from"./chunks/framework.BV61Qrc0.js";const u=JSON.parse('{"title":"mbcp.mp_math.equation","description":"","frontmatter":{"title":"mbcp.mp_math.equation"},"headers":[],"relativePath":"ja/api/mp_math/equation.md","filePath":"ja/api/mp_math/equation.md"}'),l={name:"ja/api/mp_math/equation.md"},t=n(`<h3 id="func-get-partial-derivative-func-func-multivarsfunc-epsilon-multivarsfunc" tabindex="-1"><em><strong>func</strong></em> <code>get_partial_derivative_func(func: MultiVarsFunc = EPSILON) -> MultiVarsFunc</code> <a class="header-anchor" href="#func-get-partial-derivative-func-func-multivarsfunc-epsilon-multivarsfunc" aria-label="Permalink to "***func*** \`get_partial_derivative_func(func: MultiVarsFunc = EPSILON) -> MultiVarsFunc\`""></a></h3><p><strong>説明</strong>: 求N元函数一阶偏导函数。这玩意不太稳定,慎用。</p><div class="warning custom-block github-alert"><p class="custom-block-title">WARNING</p><p>目前数学界对于一个函数的导函数并没有通解的说法,因此该函数的稳定性有待提升</p></div><p><strong>引数</strong>:</p><blockquote><ul><li>func: 函数</li><li>var: 变量位置,可为整数(一阶偏导)或整数元组(高阶偏导)</li><li>epsilon: 偏移量</li></ul></blockquote><p><strong>戻り値</strong>: 偏导函数</p><p><strong>例外</strong>:</p><blockquote><ul><li>ValueError 无效变量类型</li></ul></blockquote><details><summary><b>ソースコード</b></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> get_partial_derivative_func</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(func: MultiVarsFunc, var: </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">int</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> |</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> tuple[</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">int</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">, </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">...</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">], epsilon: Number</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">EPSILON</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) -> MultiVarsFunc:</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> """</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 求N元函数一阶偏导函数。这玩意不太稳定,慎用。</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> > [!warning]</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> > 目前数学界对于数值微分的稳定性问题还没有很好的解决方案,因此这个函数的稳定性也不是很好。</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> > 目前数学界对于一个函数的导函数并没有通解的说法,因此该函数的稳定性有待提升</span></span>
|
||||
<span class="line"></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Args:</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> func: 函数</span></span>
|
||||
@ -40,7 +40,22 @@ import{_ as s,c as i,o as a,a2 as n}from"./chunks/framework.BV61Qrc0.js";const F
|
||||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> result_func(</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">args)</span></span>
|
||||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> high_order_partial_derivative_func</span></span>
|
||||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> else</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
|
||||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> raise</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> ValueError</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(</span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">'Invalid var type'</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">)</span></span></code></pre></div></details><h3 id="class-curveequation" tabindex="-1"><strong>class</strong> <code>CurveEquation</code> <a class="header-anchor" href="#class-curveequation" aria-label="Permalink to "**class** \`CurveEquation\`""></a></h3><h3 id="method-init-self-x-func-onevarfunc-y-func-onevarfunc-z-func-onevarfunc" tabindex="-1"><em><strong>method</strong></em> <code>__init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc)</code> <a class="header-anchor" href="#method-init-self-x-func-onevarfunc-y-func-onevarfunc-z-func-onevarfunc" aria-label="Permalink to "***method*** \`__init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc)\`""></a></h3><p><strong>说明</strong>: 曲线方程。</p><p><strong>参数</strong>:</p><blockquote><ul><li>x_func: x函数</li><li>y_func: y函数</li><li>z_func: z函数</li></ul></blockquote><details><summary><b>源代码</b></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> __init__</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc):</span></span>
|
||||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> raise</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> ValueError</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(</span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">'Invalid var type'</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">)</span></span></code></pre></div></details><h3 id="func-curry-args-var-onevarfunc" tabindex="-1"><em><strong>func</strong></em> <code>curry(*args: Var) -> OneVarFunc</code> <a class="header-anchor" href="#func-curry-args-var-onevarfunc" aria-label="Permalink to "***func*** \`curry(*args: Var) -> OneVarFunc\`""></a></h3><p><strong>説明</strong>: 对多参数函数进行柯里化。</p><div class="tip custom-block github-alert"><p class="custom-block-title">TIP</p><p>有关函数柯里化,可参考<a href="https://zhuanlan.zhihu.com/p/355859667" target="_blank" rel="noreferrer">函数式编程--柯理化(Currying)</a></p></div><p><strong>引数</strong>:</p><blockquote><ul><li>func: 函数</li><li>*args: 参数</li></ul></blockquote><p><strong>戻り値</strong>: 柯里化后的函数</p><details><summary><b>ソースコード</b></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> curry</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(func: MultiVarsFunc, </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">args: Var) -> OneVarFunc:</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> """</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 对多参数函数进行柯里化。</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> > [!tip]</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> > 有关函数柯里化,可参考[函数式编程--柯理化(Currying)](https://zhuanlan.zhihu.com/p/355859667)</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Args:</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> func: 函数</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> *args: 参数</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Returns:</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 柯里化后的函数</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> """</span></span>
|
||||
<span class="line"></span>
|
||||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> curried_func</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">args2: Var) -> Var:</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> """@litedoc-hide"""</span></span>
|
||||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> func(</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">args, </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">args2)</span></span>
|
||||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> curried_func</span></span></code></pre></div></details><h3 id="class-curveequation" tabindex="-1"><strong>class</strong> <code>CurveEquation</code> <a class="header-anchor" href="#class-curveequation" aria-label="Permalink to "**class** \`CurveEquation\`""></a></h3><h3 id="method-init-self-x-func-onevarfunc-y-func-onevarfunc-z-func-onevarfunc" tabindex="-1"><em><strong>method</strong></em> <code>__init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc)</code> <a class="header-anchor" href="#method-init-self-x-func-onevarfunc-y-func-onevarfunc-z-func-onevarfunc" aria-label="Permalink to "***method*** \`__init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc)\`""></a></h3><p><strong>説明</strong>: 曲线方程。</p><p><strong>引数</strong>:</p><blockquote><ul><li>x_func: x函数</li><li>y_func: y函数</li><li>z_func: z函数</li></ul></blockquote><details><summary><b>ソースコード</b></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> __init__</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc):</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> """</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 曲线方程。</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Args:</span></span>
|
||||
@ -50,7 +65,7 @@ import{_ as s,c as i,o as a,a2 as n}from"./chunks/framework.BV61Qrc0.js";const F
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> """</span></span>
|
||||
<span class="line"><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.x_func </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> x_func</span></span>
|
||||
<span class="line"><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.y_func </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> y_func</span></span>
|
||||
<span class="line"><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.z_func </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> z_func</span></span></code></pre></div></details><h3 id="method-call-self-point3-tuple-point3" tabindex="-1"><em><strong>method</strong></em> <code>__call__(self) -> Point3 | tuple[Point3, ...]</code> <a class="header-anchor" href="#method-call-self-point3-tuple-point3" aria-label="Permalink to "***method*** \`__call__(self) -> Point3 | tuple[Point3, ...]\`""></a></h3><p><strong>说明</strong>: 计算曲线上的点。</p><p><strong>参数</strong>:</p><blockquote><ul><li>*t:</li><li>参数:</li></ul></blockquote><details><summary><b>源代码</b></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> __call__</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">t: Var) -> Point3 </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">|</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> tuple[Point3, </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">...</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">]:</span></span>
|
||||
<span class="line"><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.z_func </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> z_func</span></span></code></pre></div></details><h3 id="method-call-self-t-var-point3-tuple-point3" tabindex="-1"><em><strong>method</strong></em> <code>__call__(self, *t: Var) -> Point3 | tuple[Point3, ...]</code> <a class="header-anchor" href="#method-call-self-t-var-point3-tuple-point3" aria-label="Permalink to "***method*** \`__call__(self, *t: Var) -> Point3 | tuple[Point3, ...]\`""></a></h3><p><strong>説明</strong>: 计算曲线上的点。</p><p><strong>引数</strong>:</p><blockquote><ul><li>*t:</li><li>参数:</li></ul></blockquote><details><summary><b>ソースコード</b></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> __call__</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">t: Var) -> Point3 </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">|</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> tuple[Point3, </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">...</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">]:</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> """</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 计算曲线上的点。</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Args:</span></span>
|
||||
@ -62,4 +77,4 @@ import{_ as s,c as i,o as a,a2 as n}from"./chunks/framework.BV61Qrc0.js";const F
|
||||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> if</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> len</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(t) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">==</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> 1</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
|
||||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> Point3(</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.x_func(t[</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">0</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">]), </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.y_func(t[</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">0</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">]), </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.z_func(t[</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">0</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">]))</span></span>
|
||||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> else</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
|
||||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> tuple</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">([Point3(x, y, z) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">for</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> x, y, z </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">in</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> zip</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.x_func(t), </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.y_func(t), </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.z_func(t))])</span></span></code></pre></div></details>`,20),h=[t];function p(k,e,r,E,d,g){return a(),i("div",null,h)}const u=s(l,[["render",p]]);export{F as __pageData,u as default};
|
||||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> tuple</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">([Point3(x, y, z) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">for</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> x, y, z </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">in</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> zip</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.x_func(t), </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.y_func(t), </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.z_func(t))])</span></span></code></pre></div></details>`,27),h=[t];function p(k,e,r,E,d,g){return a(),i("div",null,h)}const F=s(l,[["render",p]]);export{u as __pageData,F as default};
|
@ -1 +1 @@
|
||||
import{_ as s,c as i,o as a,a2 as n}from"./chunks/framework.BV61Qrc0.js";const F=JSON.parse('{"title":"mbcp.mp_math.equation","description":"","frontmatter":{"title":"mbcp.mp_math.equation"},"headers":[],"relativePath":"ja/api/mp_math/equation.md","filePath":"ja/api/mp_math/equation.md"}'),l={name:"ja/api/mp_math/equation.md"},t=n("",20),h=[t];function p(k,e,r,E,d,g){return a(),i("div",null,h)}const u=s(l,[["render",p]]);export{F as __pageData,u as default};
|
||||
import{_ as s,c as i,o as a,a2 as n}from"./chunks/framework.BV61Qrc0.js";const u=JSON.parse('{"title":"mbcp.mp_math.equation","description":"","frontmatter":{"title":"mbcp.mp_math.equation"},"headers":[],"relativePath":"ja/api/mp_math/equation.md","filePath":"ja/api/mp_math/equation.md"}'),l={name:"ja/api/mp_math/equation.md"},t=n("",27),h=[t];function p(k,e,r,E,d,g){return a(),i("div",null,h)}const F=s(l,[["render",p]]);export{u as __pageData,F as default};
|
@ -1,8 +1,8 @@
|
||||
import{_ as s,c as i,o as a,a2 as n}from"./chunks/framework.BV61Qrc0.js";const F=JSON.parse('{"title":"mbcp.mp_math.equation","description":"","frontmatter":{"title":"mbcp.mp_math.equation"},"headers":[],"relativePath":"zht/api/mp_math/equation.md","filePath":"zht/api/mp_math/equation.md"}'),l={name:"zht/api/mp_math/equation.md"},t=n(`<h3 id="func-get-partial-derivative-func-func-multivarsfunc-epsilon-multivarsfunc" tabindex="-1"><em><strong>func</strong></em> <code>get_partial_derivative_func(func: MultiVarsFunc = EPSILON) -> MultiVarsFunc</code> <a class="header-anchor" href="#func-get-partial-derivative-func-func-multivarsfunc-epsilon-multivarsfunc" aria-label="Permalink to "***func*** \`get_partial_derivative_func(func: MultiVarsFunc = EPSILON) -> MultiVarsFunc\`""></a></h3><p><strong>説明</strong>: 求N元函数一阶偏导函数。这玩意不太稳定,慎用。</p><div class="warning custom-block github-alert"><p class="custom-block-title">WARNING</p><p>目前数学界对于数值微分的稳定性问题还没有很好的解决方案,因此这个函数的稳定性也不是很好。</p></div><p><strong>變數説明</strong>:</p><blockquote><ul><li>func: 函数</li><li>var: 变量位置,可为整数(一阶偏导)或整数元组(高阶偏导)</li><li>epsilon: 偏移量</li></ul></blockquote><p><strong>返回</strong>: 偏导函数</p><p><strong>抛出</strong>:</p><blockquote><ul><li>ValueError 无效变量类型</li></ul></blockquote><details><summary><b>源碼</b></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> get_partial_derivative_func</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(func: MultiVarsFunc, var: </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">int</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> |</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> tuple[</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">int</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">, </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">...</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">], epsilon: Number</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">EPSILON</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) -> MultiVarsFunc:</span></span>
|
||||
import{_ as s,c as i,o as a,a2 as n}from"./chunks/framework.BV61Qrc0.js";const u=JSON.parse('{"title":"mbcp.mp_math.equation","description":"","frontmatter":{"title":"mbcp.mp_math.equation"},"headers":[],"relativePath":"zht/api/mp_math/equation.md","filePath":"zht/api/mp_math/equation.md"}'),l={name:"zht/api/mp_math/equation.md"},t=n(`<h3 id="func-get-partial-derivative-func-func-multivarsfunc-epsilon-multivarsfunc" tabindex="-1"><em><strong>func</strong></em> <code>get_partial_derivative_func(func: MultiVarsFunc = EPSILON) -> MultiVarsFunc</code> <a class="header-anchor" href="#func-get-partial-derivative-func-func-multivarsfunc-epsilon-multivarsfunc" aria-label="Permalink to "***func*** \`get_partial_derivative_func(func: MultiVarsFunc = EPSILON) -> MultiVarsFunc\`""></a></h3><p><strong>説明</strong>: 求N元函数一阶偏导函数。这玩意不太稳定,慎用。</p><div class="warning custom-block github-alert"><p class="custom-block-title">WARNING</p><p>目前数学界对于一个函数的导函数并没有通解的说法,因此该函数的稳定性有待提升</p></div><p><strong>變數説明</strong>:</p><blockquote><ul><li>func: 函数</li><li>var: 变量位置,可为整数(一阶偏导)或整数元组(高阶偏导)</li><li>epsilon: 偏移量</li></ul></blockquote><p><strong>返回</strong>: 偏导函数</p><p><strong>抛出</strong>:</p><blockquote><ul><li>ValueError 无效变量类型</li></ul></blockquote><details><summary><b>源碼</b></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> get_partial_derivative_func</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(func: MultiVarsFunc, var: </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">int</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> |</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> tuple[</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">int</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">, </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">...</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">], epsilon: Number</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">EPSILON</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) -> MultiVarsFunc:</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> """</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 求N元函数一阶偏导函数。这玩意不太稳定,慎用。</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> > [!warning]</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> > 目前数学界对于数值微分的稳定性问题还没有很好的解决方案,因此这个函数的稳定性也不是很好。</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> > 目前数学界对于一个函数的导函数并没有通解的说法,因此该函数的稳定性有待提升</span></span>
|
||||
<span class="line"></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Args:</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> func: 函数</span></span>
|
||||
@ -40,7 +40,22 @@ import{_ as s,c as i,o as a,a2 as n}from"./chunks/framework.BV61Qrc0.js";const F
|
||||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> result_func(</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">args)</span></span>
|
||||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> high_order_partial_derivative_func</span></span>
|
||||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> else</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
|
||||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> raise</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> ValueError</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(</span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">'Invalid var type'</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">)</span></span></code></pre></div></details><h3 id="class-curveequation" tabindex="-1"><strong>class</strong> <code>CurveEquation</code> <a class="header-anchor" href="#class-curveequation" aria-label="Permalink to "**class** \`CurveEquation\`""></a></h3><h3 id="method-init-self-x-func-onevarfunc-y-func-onevarfunc-z-func-onevarfunc" tabindex="-1"><em><strong>method</strong></em> <code>__init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc)</code> <a class="header-anchor" href="#method-init-self-x-func-onevarfunc-y-func-onevarfunc-z-func-onevarfunc" aria-label="Permalink to "***method*** \`__init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc)\`""></a></h3><p><strong>説明</strong>: 曲线方程。</p><p><strong>變數説明</strong>:</p><blockquote><ul><li>x_func: x函数</li><li>y_func: y函数</li><li>z_func: z函数</li></ul></blockquote><details><summary><b>源碼</b></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> __init__</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc):</span></span>
|
||||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> raise</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> ValueError</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(</span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">'Invalid var type'</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">)</span></span></code></pre></div></details><h3 id="func-curry-args-var-onevarfunc" tabindex="-1"><em><strong>func</strong></em> <code>curry(*args: Var) -> OneVarFunc</code> <a class="header-anchor" href="#func-curry-args-var-onevarfunc" aria-label="Permalink to "***func*** \`curry(*args: Var) -> OneVarFunc\`""></a></h3><p><strong>説明</strong>: 对多参数函数进行柯里化。</p><div class="tip custom-block github-alert"><p class="custom-block-title">TIP</p><p>有关函数柯里化,可参考<a href="https://zhuanlan.zhihu.com/p/355859667" target="_blank" rel="noreferrer">函数式编程--柯理化(Currying)</a></p></div><p><strong>變數説明</strong>:</p><blockquote><ul><li>func: 函数</li><li>*args: 参数</li></ul></blockquote><p><strong>返回</strong>: 柯里化后的函数</p><details><summary><b>源碼</b></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> curry</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(func: MultiVarsFunc, </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">args: Var) -> OneVarFunc:</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> """</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 对多参数函数进行柯里化。</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> > [!tip]</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> > 有关函数柯里化,可参考[函数式编程--柯理化(Currying)](https://zhuanlan.zhihu.com/p/355859667)</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Args:</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> func: 函数</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> *args: 参数</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Returns:</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 柯里化后的函数</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> """</span></span>
|
||||
<span class="line"></span>
|
||||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> curried_func</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">args2: Var) -> Var:</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> """@litedoc-hide"""</span></span>
|
||||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> func(</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">args, </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">args2)</span></span>
|
||||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> curried_func</span></span></code></pre></div></details><h3 id="class-curveequation" tabindex="-1"><strong>class</strong> <code>CurveEquation</code> <a class="header-anchor" href="#class-curveequation" aria-label="Permalink to "**class** \`CurveEquation\`""></a></h3><h3 id="method-init-self-x-func-onevarfunc-y-func-onevarfunc-z-func-onevarfunc" tabindex="-1"><em><strong>method</strong></em> <code>__init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc)</code> <a class="header-anchor" href="#method-init-self-x-func-onevarfunc-y-func-onevarfunc-z-func-onevarfunc" aria-label="Permalink to "***method*** \`__init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc)\`""></a></h3><p><strong>説明</strong>: 曲线方程。</p><p><strong>變數説明</strong>:</p><blockquote><ul><li>x_func: x函数</li><li>y_func: y函数</li><li>z_func: z函数</li></ul></blockquote><details><summary><b>源碼</b></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> __init__</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc):</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> """</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 曲线方程。</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Args:</span></span>
|
||||
@ -50,7 +65,7 @@ import{_ as s,c as i,o as a,a2 as n}from"./chunks/framework.BV61Qrc0.js";const F
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> """</span></span>
|
||||
<span class="line"><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.x_func </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> x_func</span></span>
|
||||
<span class="line"><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.y_func </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> y_func</span></span>
|
||||
<span class="line"><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.z_func </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> z_func</span></span></code></pre></div></details><h3 id="method-call-self-point3-tuple-point3" tabindex="-1"><em><strong>method</strong></em> <code>__call__(self) -> Point3 | tuple[Point3, ...]</code> <a class="header-anchor" href="#method-call-self-point3-tuple-point3" aria-label="Permalink to "***method*** \`__call__(self) -> Point3 | tuple[Point3, ...]\`""></a></h3><p><strong>説明</strong>: 计算曲线上的点。</p><p><strong>變數説明</strong>:</p><blockquote><ul><li>*t:</li><li>参数:</li></ul></blockquote><details><summary><b>源碼</b></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> __call__</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">t: Var) -> Point3 </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">|</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> tuple[Point3, </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">...</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">]:</span></span>
|
||||
<span class="line"><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.z_func </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> z_func</span></span></code></pre></div></details><h3 id="method-call-self-t-var-point3-tuple-point3" tabindex="-1"><em><strong>method</strong></em> <code>__call__(self, *t: Var) -> Point3 | tuple[Point3, ...]</code> <a class="header-anchor" href="#method-call-self-t-var-point3-tuple-point3" aria-label="Permalink to "***method*** \`__call__(self, *t: Var) -> Point3 | tuple[Point3, ...]\`""></a></h3><p><strong>説明</strong>: 计算曲线上的点。</p><p><strong>變數説明</strong>:</p><blockquote><ul><li>*t:</li><li>参数:</li></ul></blockquote><details><summary><b>源碼</b></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> __call__</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">t: Var) -> Point3 </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">|</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> tuple[Point3, </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">...</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">]:</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> """</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 计算曲线上的点。</span></span>
|
||||
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Args:</span></span>
|
||||
@ -62,4 +77,4 @@ import{_ as s,c as i,o as a,a2 as n}from"./chunks/framework.BV61Qrc0.js";const F
|
||||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> if</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> len</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(t) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">==</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> 1</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
|
||||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> Point3(</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.x_func(t[</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">0</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">]), </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.y_func(t[</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">0</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">]), </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.z_func(t[</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">0</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">]))</span></span>
|
||||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> else</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
|
||||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> tuple</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">([Point3(x, y, z) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">for</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> x, y, z </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">in</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> zip</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.x_func(t), </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.y_func(t), </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.z_func(t))])</span></span></code></pre></div></details>`,20),h=[t];function p(k,e,r,E,d,g){return a(),i("div",null,h)}const u=s(l,[["render",p]]);export{F as __pageData,u as default};
|
||||
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> tuple</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">([Point3(x, y, z) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">for</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> x, y, z </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">in</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> zip</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.x_func(t), </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.y_func(t), </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.z_func(t))])</span></span></code></pre></div></details>`,27),h=[t];function p(k,e,r,E,d,g){return a(),i("div",null,h)}const F=s(l,[["render",p]]);export{u as __pageData,F as default};
|
@ -1 +1 @@
|
||||
import{_ as s,c as i,o as a,a2 as n}from"./chunks/framework.BV61Qrc0.js";const F=JSON.parse('{"title":"mbcp.mp_math.equation","description":"","frontmatter":{"title":"mbcp.mp_math.equation"},"headers":[],"relativePath":"zht/api/mp_math/equation.md","filePath":"zht/api/mp_math/equation.md"}'),l={name:"zht/api/mp_math/equation.md"},t=n("",20),h=[t];function p(k,e,r,E,d,g){return a(),i("div",null,h)}const u=s(l,[["render",p]]);export{F as __pageData,u as default};
|
||||
import{_ as s,c as i,o as a,a2 as n}from"./chunks/framework.BV61Qrc0.js";const u=JSON.parse('{"title":"mbcp.mp_math.equation","description":"","frontmatter":{"title":"mbcp.mp_math.equation"},"headers":[],"relativePath":"zht/api/mp_math/equation.md","filePath":"zht/api/mp_math/equation.md"}'),l={name:"zht/api/mp_math/equation.md"},t=n("",27),h=[t];function p(k,e,r,E,d,g){return a(),i("div",null,h)}const F=s(l,[["render",p]]);export{u as __pageData,F as default};
|
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
@ -1 +1 @@
|
||||
{"api-ex.md":"DOsKaL8H","api_index.md":"BvazTqTB","api_mp_math_angle.md":"eAy7w1HN","api_mp_math_const.md":"D9zs7__H","api_mp_math_equation.md":"Cug6-NqN","api_mp_math_index.md":"4P0hk6gb","api_mp_math_line.md":"DsJQDchM","api_mp_math_mp_math_typing.md":"COrE_fd3","api_mp_math_plane.md":"CmoVvPiw","api_mp_math_point.md":"ClJD85mP","api_mp_math_segment.md":"7jBtS4F1","api_mp_math_utils.md":"BMwtm7TJ","api_mp_math_vector.md":"CROCIDXX","api_particle_index.md":"BRCSxC3e","api_presets_index.md":"Dl6Ss91J","api_presets_model_index.md":"DUZx13AW","en_api_index.md":"Bgu-LD1B","en_api_mp_math_angle.md":"BuhpKHnt","en_api_mp_math_const.md":"D_Flpj8t","en_api_mp_math_equation.md":"YQDGr03a","en_api_mp_math_index.md":"DrjDUYBY","en_api_mp_math_line.md":"BEvxdWYQ","en_api_mp_math_mp_math_typing.md":"CyXXFdS4","en_api_mp_math_plane.md":"DUu9P3nM","en_api_mp_math_point.md":"DMig0FI1","en_api_mp_math_segment.md":"CcaokAF8","en_api_mp_math_utils.md":"DZohqw2b","en_api_mp_math_vector.md":"Sd_IZsgE","en_api_particle_index.md":"CmC1QX5o","en_api_presets_index.md":"CZ5hl_7D","en_api_presets_model_index.md":"Cs8vON2C","guide_index.md":"BE2yloik","index.md":"BE1qChTt","ja_api_index.md":"4BnflFIm","ja_api_mp_math_angle.md":"DL9J6RE2","ja_api_mp_math_const.md":"CyaIJkFx","ja_api_mp_math_equation.md":"tmRhsqm6","ja_api_mp_math_index.md":"CSAMHYsB","ja_api_mp_math_line.md":"fj-_s5Ug","ja_api_mp_math_mp_math_typing.md":"Bl5kyhpI","ja_api_mp_math_plane.md":"yLekgCvK","ja_api_mp_math_point.md":"CpHHrSk8","ja_api_mp_math_segment.md":"CB1_z-rn","ja_api_mp_math_utils.md":"BrfEEfl-","ja_api_mp_math_vector.md":"p54TKACE","ja_api_particle_index.md":"E2YnH7EN","ja_api_presets_index.md":"ATGcHt9d","ja_api_presets_model_index.md":"D8yZmO5R","md-ex.md":"BX0WqOqv","zht_api_index.md":"Dq4XPUKZ","zht_api_mp_math_angle.md":"B4T6L25M","zht_api_mp_math_const.md":"B8uQOIr_","zht_api_mp_math_equation.md":"5p50czv3","zht_api_mp_math_index.md":"D09y2ubg","zht_api_mp_math_line.md":"DYC1X0oD","zht_api_mp_math_mp_math_typing.md":"DLx0IibM","zht_api_mp_math_plane.md":"B6GWRRF6","zht_api_mp_math_point.md":"Bm1IEwlI","zht_api_mp_math_segment.md":"Bop8t2IE","zht_api_mp_math_utils.md":"CERv8c-M","zht_api_mp_math_vector.md":"BTWxlpB1","zht_api_particle_index.md":"kAm9VAEw","zht_api_presets_index.md":"BmouaEaT","zht_api_presets_model_index.md":"SQ5PPdaL"}
|
||||
{"api-ex.md":"DOsKaL8H","api_index.md":"BvazTqTB","api_mp_math_angle.md":"eAy7w1HN","api_mp_math_const.md":"D9zs7__H","api_mp_math_equation.md":"D6QhNvHe","api_mp_math_index.md":"4P0hk6gb","api_mp_math_line.md":"DsJQDchM","api_mp_math_mp_math_typing.md":"COrE_fd3","api_mp_math_plane.md":"CmoVvPiw","api_mp_math_point.md":"ClJD85mP","api_mp_math_segment.md":"7jBtS4F1","api_mp_math_utils.md":"BMwtm7TJ","api_mp_math_vector.md":"CROCIDXX","api_particle_index.md":"BRCSxC3e","api_presets_index.md":"Dl6Ss91J","api_presets_model_index.md":"DUZx13AW","en_api_index.md":"Bgu-LD1B","en_api_mp_math_angle.md":"BuhpKHnt","en_api_mp_math_const.md":"D_Flpj8t","en_api_mp_math_equation.md":"CdqZIJEO","en_api_mp_math_index.md":"DrjDUYBY","en_api_mp_math_line.md":"BEvxdWYQ","en_api_mp_math_mp_math_typing.md":"CyXXFdS4","en_api_mp_math_plane.md":"DUu9P3nM","en_api_mp_math_point.md":"DMig0FI1","en_api_mp_math_segment.md":"CcaokAF8","en_api_mp_math_utils.md":"DZohqw2b","en_api_mp_math_vector.md":"Sd_IZsgE","en_api_particle_index.md":"CmC1QX5o","en_api_presets_index.md":"CZ5hl_7D","en_api_presets_model_index.md":"Cs8vON2C","guide_index.md":"BE2yloik","index.md":"BE1qChTt","ja_api_index.md":"4BnflFIm","ja_api_mp_math_angle.md":"DL9J6RE2","ja_api_mp_math_const.md":"CyaIJkFx","ja_api_mp_math_equation.md":"B2lD-VSI","ja_api_mp_math_index.md":"CSAMHYsB","ja_api_mp_math_line.md":"fj-_s5Ug","ja_api_mp_math_mp_math_typing.md":"Bl5kyhpI","ja_api_mp_math_plane.md":"yLekgCvK","ja_api_mp_math_point.md":"CpHHrSk8","ja_api_mp_math_segment.md":"CB1_z-rn","ja_api_mp_math_utils.md":"BrfEEfl-","ja_api_mp_math_vector.md":"p54TKACE","ja_api_particle_index.md":"E2YnH7EN","ja_api_presets_index.md":"ATGcHt9d","ja_api_presets_model_index.md":"D8yZmO5R","md-ex.md":"BX0WqOqv","zht_api_index.md":"Dq4XPUKZ","zht_api_mp_math_angle.md":"B4T6L25M","zht_api_mp_math_const.md":"B8uQOIr_","zht_api_mp_math_equation.md":"H6Y480q1","zht_api_mp_math_index.md":"D09y2ubg","zht_api_mp_math_line.md":"DYC1X0oD","zht_api_mp_math_mp_math_typing.md":"DLx0IibM","zht_api_mp_math_plane.md":"B6GWRRF6","zht_api_mp_math_point.md":"Bm1IEwlI","zht_api_mp_math_segment.md":"Bop8t2IE","zht_api_mp_math_utils.md":"CERv8c-M","zht_api_mp_math_vector.md":"BTWxlpB1","zht_api_particle_index.md":"kAm9VAEw","zht_api_presets_index.md":"BmouaEaT","zht_api_presets_model_index.md":"SQ5PPdaL"}
|
||||
|
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
Loading…
Reference in New Issue
Block a user