mirror of
https://github.com/snowykami/mbcp.git
synced 2024-11-21 21:57:37 +08:00
📝 docs: add some tips
This commit is contained in:
parent
10d05375a4
commit
7018a25beb
@ -1,7 +1,7 @@
|
||||
// 共有配置项,导入index用
|
||||
|
||||
import {defineConfig} from 'vitepress'
|
||||
import {generateSidebar} from 'vitepress-sidebar';
|
||||
import {useData} from "vitepress";
|
||||
import {zh} from "./zh";
|
||||
import {en} from "./en";
|
||||
import {ja} from "./ja";
|
||||
|
@ -1,4 +1,29 @@
|
||||
import DefaultTheme from 'vitepress/theme-without-fonts'
|
||||
import Theme from 'vitepress/theme'
|
||||
import {createI18n} from 'vue-i18n'
|
||||
import './fonts.css'
|
||||
|
||||
export default DefaultTheme
|
||||
const i18n = createI18n({
|
||||
// something vue-i18n options here ..
|
||||
messages: {
|
||||
en: {
|
||||
tip: "TIP",
|
||||
},
|
||||
ja: {
|
||||
tip: "ヒント",
|
||||
},
|
||||
zh: {
|
||||
tip: "提示",
|
||||
},
|
||||
zht: {
|
||||
tip: "提示",
|
||||
}
|
||||
}
|
||||
})
|
||||
|
||||
export default {
|
||||
extends: Theme,
|
||||
enhanceApp({app}) {
|
||||
app.use(i18n)
|
||||
}
|
||||
}
|
5
docs/zh/refer/7-differential-euqtion/index.md
Normal file
5
docs/zh/refer/7-differential-euqtion/index.md
Normal file
@ -0,0 +1,5 @@
|
||||
---
|
||||
title: 微分方程
|
||||
---
|
||||
|
||||
# 微分方程
|
@ -52,8 +52,18 @@ class Plane3:
|
||||
return False
|
||||
|
||||
def cal_angle(self, other: 'Line3 | Plane3') -> 'AnyAngle':
|
||||
"""
|
||||
r"""
|
||||
计算平面与平面之间的夹角。
|
||||
:::tip
|
||||
平面间夹角计算公式:
|
||||
$$\theta = \arccos(\frac{n1 \cdot n2}{|n1| \cdot |n2|})$$
|
||||
其中 $n1$ 和 $n2$ 分别为两个平面的法向量
|
||||
:::
|
||||
:::tip
|
||||
平面与直线夹角计算公式:
|
||||
$$\theta = \arccos(\frac{n \cdot d}{|n| \cdot |d|})$$
|
||||
其中 $n$ 为平面的法向量,$d$ 为直线的方向向量
|
||||
:::
|
||||
Args:
|
||||
other ([`Line3`](./line#class-line3) | [`Plane3`](./plane#class-plane3)): 另一个平面或直线
|
||||
Returns:
|
||||
@ -86,8 +96,19 @@ class Plane3:
|
||||
raise TypeError(f"Unsupported type: {type(other)}")
|
||||
|
||||
def cal_intersection_line3(self, other: 'Plane3') -> 'Line3':
|
||||
"""
|
||||
r"""
|
||||
计算两平面的交线。
|
||||
:::tip {{ $t('tip') }}
|
||||
计算两平面交线的一般步骤:
|
||||
1. 求两平面的法向量的叉乘得到方向向量
|
||||
$$ d = n1 \times n2 $$
|
||||
2. 寻找直线上的一点,依次假设$x=0$, $y=0$, $z=0$,并代入两平面方程求出合适的点
|
||||
直线最终可用参数方程或点向式表示
|
||||
$$ \begin{cases} x = x_0 + dt \\ y = y_0 + dt \\ z = z_0 + dt \end{cases} $$
|
||||
或
|
||||
$$ \frac{x - x_0}{m} = \frac{y - y_0}{n} = \frac{z - z_0}{p} $$
|
||||
:::
|
||||
|
||||
Args:
|
||||
other ([`Plane3`](./plane#class-plane3)): 另一个平面
|
||||
Returns:
|
||||
|
@ -40,8 +40,12 @@ class Vector3:
|
||||
return all([abs(self.x - other.x) < epsilon, abs(self.y - other.y) < epsilon, abs(self.z - other.z) < epsilon])
|
||||
|
||||
def cal_angle(self, other: 'Vector3') -> 'AnyAngle':
|
||||
"""
|
||||
r"""
|
||||
计算两个向量之间的夹角。
|
||||
:::tip
|
||||
向量夹角计算公式:
|
||||
$$\theta = \arccos(\frac{v1 \cdot v2}{|v1| \cdot |v2|})$$
|
||||
:::
|
||||
Args:
|
||||
other ([`Vector3`](#class-vector3)): 另一个向量
|
||||
Returns:
|
||||
@ -50,20 +54,15 @@ class Vector3:
|
||||
return AnyAngle(math.acos(self @ other / (self.length * other.length)), is_radian=True)
|
||||
|
||||
def cross(self, other: 'Vector3') -> 'Vector3':
|
||||
"""
|
||||
向量积 叉乘:v1 cross v2 -> v3
|
||||
|
||||
叉乘为0,则两向量平行。
|
||||
其余结果的模为平行四边形的面积。
|
||||
|
||||
返回如下行列式的结果:
|
||||
|
||||
``i j k``
|
||||
|
||||
``x1 y1 z1``
|
||||
|
||||
``x2 y2 z2``
|
||||
r"""
|
||||
向量积 叉乘:v1 x v2 -> v3
|
||||
|
||||
:::tip
|
||||
叉乘运算法则为:
|
||||
$$ v1 \times v2 = (v1_y \cdot v2_z - v1_z \cdot v2_y, v1_z \cdot v2_x - v1_x \cdot v2_z, v1_x \cdot v2_y - v1_y \cdot v2_x) $$
|
||||
转换为行列式形式:
|
||||
$$ v1 \times v2 = \begin{vmatrix} i & j & k \\ v1_x & v1_y & v1_z \\ v2_x & v2_y & v2_z \end{vmatrix} $$
|
||||
:::
|
||||
Args:
|
||||
other ([`Vector3`](#class-vector3)): 另一个向量
|
||||
Returns:
|
||||
|
@ -6,7 +6,7 @@ authors = [
|
||||
{name = "snowykami", email = "snowykami@outlook.com"},
|
||||
]
|
||||
dependencies = [
|
||||
"numpy~=2.0.1",
|
||||
"numpy>=2.1.1",
|
||||
"liteyukibot>=6.3.9",
|
||||
]
|
||||
requires-python = ">=3.10"
|
||||
|
Loading…
Reference in New Issue
Block a user