From 623ab2a08d6f650c868a254d3d518cb10abc43da Mon Sep 17 00:00:00 2001 From: snowykami Date: Sat, 31 Aug 2024 01:41:17 +0000 Subject: [PATCH] =?UTF-8?q?Deploying=20to=20docs=20from=20@=20snowykami/mb?= =?UTF-8?q?cp@60763de4071b79cdb0af90c7d21f4ea379966f37=20=F0=9F=9A=80?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- 404.html | 4 ++-- api/api.html | 10 ++++---- api/index.html | 10 ++++---- api/mp_math/angle.html | 6 ++--- api/mp_math/const.html | 6 ++--- api/mp_math/equation.html | 6 ++--- api/mp_math/function.html | 6 ++--- api/mp_math/index.html | 6 ++--- api/mp_math/line.html | 6 ++--- api/mp_math/mp_math.html | 6 ++--- api/mp_math/mp_math_typing.html | 6 ++--- api/mp_math/plane.html | 6 ++--- api/mp_math/point.html | 6 ++--- api/mp_math/segment.html | 6 ++--- api/mp_math/utils.html | 6 ++--- api/mp_math/vector.html | 24 +++++++++---------- api/particle/index.html | 6 ++--- api/particle/particle.html | 6 ++--- api/presets/index.html | 6 ++--- api/presets/model/index.html | 6 ++--- api/presets/model/model.html | 6 ++--- api/presets/presets.html | 6 ++--- assets/api_api.md.cuvEYHFe.js | 1 - assets/api_api.md.cuvEYHFe.lean.js | 1 - assets/api_api.md.rnPOv6-O.js | 1 + assets/api_api.md.rnPOv6-O.lean.js | 1 + assets/api_index.md.9xfR5bUd.js | 1 - assets/api_index.md.9xfR5bUd.lean.js | 1 - assets/api_index.md.qnrSd__i.js | 1 + assets/api_index.md.qnrSd__i.lean.js | 1 + ...W.js => api_mp_math_vector.md.mCFa4Azm.js} | 16 ++++++------- ...=> api_mp_math_vector.md.mCFa4Azm.lean.js} | 0 assets/{app.B5ir6CFp.js => app.DZl3AEz3.js} | 2 +- assets/chunks/@localSearchIndexen.BWxkNSWX.js | 1 - assets/chunks/@localSearchIndexen.CzNg5TZu.js | 1 + assets/chunks/@localSearchIndexja.CH-7cmaD.js | 1 + assets/chunks/@localSearchIndexja.CXXagdCq.js | 1 - .../chunks/@localSearchIndexroot.BIMNPnzE.js | 1 + .../chunks/@localSearchIndexroot.CPmrPyWJ.js | 1 - .../chunks/@localSearchIndexzht.Bx7DiuMe.js | 1 - .../chunks/@localSearchIndexzht.DtIiriQ9.js | 1 + ...FoMufW.js => VPLocalSearchBox.CFZy5fa5.js} | 2 +- .../{theme.CIlXJY6j.js => theme.rqbpMjWI.js} | 4 ++-- assets/en_api_api.md.6DYwgQwO.lean.js | 1 - ....6DYwgQwO.js => en_api_api.md.D31N0-_j.js} | 2 +- assets/en_api_api.md.D31N0-_j.lean.js | 1 + assets/en_api_index.md.CpTS_pfZ.js | 1 + assets/en_api_index.md.CpTS_pfZ.lean.js | 1 + assets/en_api_index.md.D1elhNgk.js | 1 - assets/en_api_index.md.D1elhNgk.lean.js | 1 - ...s => en_api_mp_math_vector.md.BEIFYOwe.js} | 16 ++++++------- ...en_api_mp_math_vector.md.BEIFYOwe.lean.js} | 0 assets/ja_api_api.md.DD7b0jH_.js | 1 + assets/ja_api_api.md.DD7b0jH_.lean.js | 1 + assets/ja_api_api.md.GOuCj9Bq.js | 1 - assets/ja_api_api.md.GOuCj9Bq.lean.js | 1 - ...cZ9h1gI.js => ja_api_index.md.3bCCqhm9.js} | 2 +- assets/ja_api_index.md.3bCCqhm9.lean.js | 1 + assets/ja_api_index.md.DcZ9h1gI.lean.js | 1 - ...s => ja_api_mp_math_vector.md.mfFeokXv.js} | 16 ++++++------- ...ja_api_mp_math_vector.md.mfFeokXv.lean.js} | 0 assets/zht_api_api.md.Ceti9rhA.js | 1 - assets/zht_api_api.md.Ceti9rhA.lean.js | 1 - assets/zht_api_api.md.DgGLhN7H.js | 1 + assets/zht_api_api.md.DgGLhN7H.lean.js | 1 + assets/zht_api_index.md.D2vE-hK0.lean.js | 1 - ...vE-hK0.js => zht_api_index.md.DNSdsCcq.js} | 2 +- assets/zht_api_index.md.DNSdsCcq.lean.js | 1 + ... => zht_api_mp_math_vector.md.vRujd3bN.js} | 16 ++++++------- ...ht_api_mp_math_vector.md.vRujd3bN.lean.js} | 0 demo/index.html | 6 ++--- en/api/api.html | 10 ++++---- en/api/index.html | 10 ++++---- en/api/mp_math/angle.html | 6 ++--- en/api/mp_math/const.html | 6 ++--- en/api/mp_math/equation.html | 6 ++--- en/api/mp_math/function.html | 6 ++--- en/api/mp_math/index.html | 6 ++--- en/api/mp_math/line.html | 6 ++--- en/api/mp_math/mp_math.html | 6 ++--- en/api/mp_math/mp_math_typing.html | 6 ++--- en/api/mp_math/plane.html | 6 ++--- en/api/mp_math/point.html | 6 ++--- en/api/mp_math/segment.html | 6 ++--- en/api/mp_math/utils.html | 6 ++--- en/api/mp_math/vector.html | 24 +++++++++---------- en/api/particle/index.html | 6 ++--- en/api/particle/particle.html | 6 ++--- en/api/presets/index.html | 6 ++--- en/api/presets/model/index.html | 6 ++--- en/api/presets/model/model.html | 6 ++--- en/api/presets/presets.html | 6 ++--- en/guide/index.html | 6 ++--- en/index.html | 6 ++--- en/refer/index.html | 6 ++--- guide/index.html | 6 ++--- hashmap.json | 2 +- index.html | 6 ++--- ja/api/api.html | 10 ++++---- ja/api/index.html | 10 ++++---- ja/api/mp_math/angle.html | 6 ++--- ja/api/mp_math/const.html | 6 ++--- ja/api/mp_math/equation.html | 6 ++--- ja/api/mp_math/function.html | 6 ++--- ja/api/mp_math/index.html | 6 ++--- ja/api/mp_math/line.html | 6 ++--- ja/api/mp_math/mp_math.html | 6 ++--- ja/api/mp_math/mp_math_typing.html | 6 ++--- ja/api/mp_math/plane.html | 6 ++--- ja/api/mp_math/point.html | 6 ++--- ja/api/mp_math/segment.html | 6 ++--- ja/api/mp_math/utils.html | 6 ++--- ja/api/mp_math/vector.html | 24 +++++++++---------- ja/api/particle/index.html | 6 ++--- ja/api/particle/particle.html | 6 ++--- ja/api/presets/index.html | 6 ++--- ja/api/presets/model/index.html | 6 ++--- ja/api/presets/model/model.html | 6 ++--- ja/api/presets/presets.html | 6 ++--- ja/guide/index.html | 6 ++--- ja/index.html | 6 ++--- ja/refer/index.html | 6 ++--- refer/function/curry.html | 6 ++--- refer/function/function.html | 6 ++--- refer/index.html | 6 ++--- zht/api/api.html | 10 ++++---- zht/api/index.html | 10 ++++---- zht/api/mp_math/angle.html | 6 ++--- zht/api/mp_math/const.html | 6 ++--- zht/api/mp_math/equation.html | 6 ++--- zht/api/mp_math/function.html | 6 ++--- zht/api/mp_math/index.html | 6 ++--- zht/api/mp_math/line.html | 6 ++--- zht/api/mp_math/mp_math.html | 6 ++--- zht/api/mp_math/mp_math_typing.html | 6 ++--- zht/api/mp_math/plane.html | 6 ++--- zht/api/mp_math/point.html | 6 ++--- zht/api/mp_math/segment.html | 6 ++--- zht/api/mp_math/utils.html | 6 ++--- zht/api/mp_math/vector.html | 24 +++++++++---------- zht/api/particle/index.html | 6 ++--- zht/api/particle/particle.html | 6 ++--- zht/api/presets/index.html | 6 ++--- zht/api/presets/model/index.html | 6 ++--- zht/api/presets/model/model.html | 6 ++--- zht/api/presets/presets.html | 6 ++--- zht/guide/index.html | 6 ++--- zht/index.html | 6 ++--- zht/refer/index.html | 6 ++--- 149 files changed, 408 insertions(+), 408 deletions(-) delete mode 100644 assets/api_api.md.cuvEYHFe.js delete mode 100644 assets/api_api.md.cuvEYHFe.lean.js create mode 100644 assets/api_api.md.rnPOv6-O.js create mode 100644 assets/api_api.md.rnPOv6-O.lean.js delete mode 100644 assets/api_index.md.9xfR5bUd.js delete mode 100644 assets/api_index.md.9xfR5bUd.lean.js create mode 100644 assets/api_index.md.qnrSd__i.js create mode 100644 assets/api_index.md.qnrSd__i.lean.js rename assets/{api_mp_math_vector.md.DvJcuPXW.js => api_mp_math_vector.md.mCFa4Azm.js} (95%) rename assets/{api_mp_math_vector.md.DvJcuPXW.lean.js => api_mp_math_vector.md.mCFa4Azm.lean.js} (100%) rename assets/{app.B5ir6CFp.js => app.DZl3AEz3.js} (95%) delete mode 100644 assets/chunks/@localSearchIndexen.BWxkNSWX.js create mode 100644 assets/chunks/@localSearchIndexen.CzNg5TZu.js create mode 100644 assets/chunks/@localSearchIndexja.CH-7cmaD.js delete mode 100644 assets/chunks/@localSearchIndexja.CXXagdCq.js create mode 100644 assets/chunks/@localSearchIndexroot.BIMNPnzE.js delete mode 100644 assets/chunks/@localSearchIndexroot.CPmrPyWJ.js delete mode 100644 assets/chunks/@localSearchIndexzht.Bx7DiuMe.js create mode 100644 assets/chunks/@localSearchIndexzht.DtIiriQ9.js rename assets/chunks/{VPLocalSearchBox.CrFoMufW.js => VPLocalSearchBox.CFZy5fa5.js} (99%) rename assets/chunks/{theme.CIlXJY6j.js => theme.rqbpMjWI.js} (99%) delete mode 100644 assets/en_api_api.md.6DYwgQwO.lean.js rename assets/{en_api_api.md.6DYwgQwO.js => en_api_api.md.D31N0-_j.js} (51%) create mode 100644 assets/en_api_api.md.D31N0-_j.lean.js create mode 100644 assets/en_api_index.md.CpTS_pfZ.js create mode 100644 assets/en_api_index.md.CpTS_pfZ.lean.js delete mode 100644 assets/en_api_index.md.D1elhNgk.js delete mode 100644 assets/en_api_index.md.D1elhNgk.lean.js rename assets/{en_api_mp_math_vector.md.DMwD59YV.js => en_api_mp_math_vector.md.BEIFYOwe.js} (96%) rename assets/{en_api_mp_math_vector.md.DMwD59YV.lean.js => en_api_mp_math_vector.md.BEIFYOwe.lean.js} (100%) create mode 100644 assets/ja_api_api.md.DD7b0jH_.js create mode 100644 assets/ja_api_api.md.DD7b0jH_.lean.js delete mode 100644 assets/ja_api_api.md.GOuCj9Bq.js delete mode 100644 assets/ja_api_api.md.GOuCj9Bq.lean.js rename assets/{ja_api_index.md.DcZ9h1gI.js => ja_api_index.md.3bCCqhm9.js} (51%) create mode 100644 assets/ja_api_index.md.3bCCqhm9.lean.js delete mode 100644 assets/ja_api_index.md.DcZ9h1gI.lean.js rename assets/{ja_api_mp_math_vector.md.PFGJik39.js => ja_api_mp_math_vector.md.mfFeokXv.js} (95%) rename assets/{ja_api_mp_math_vector.md.PFGJik39.lean.js => ja_api_mp_math_vector.md.mfFeokXv.lean.js} (100%) delete mode 100644 assets/zht_api_api.md.Ceti9rhA.js delete mode 100644 assets/zht_api_api.md.Ceti9rhA.lean.js create mode 100644 assets/zht_api_api.md.DgGLhN7H.js create mode 100644 assets/zht_api_api.md.DgGLhN7H.lean.js delete mode 100644 assets/zht_api_index.md.D2vE-hK0.lean.js rename assets/{zht_api_index.md.D2vE-hK0.js => zht_api_index.md.DNSdsCcq.js} (51%) create mode 100644 assets/zht_api_index.md.DNSdsCcq.lean.js rename assets/{zht_api_mp_math_vector.md.CelHQ_68.js => zht_api_mp_math_vector.md.vRujd3bN.js} (95%) rename assets/{zht_api_mp_math_vector.md.CelHQ_68.lean.js => zht_api_mp_math_vector.md.vRujd3bN.lean.js} (100%) diff --git a/404.html b/404.html index 3d7a7cc..5a14d2d 100644 --- a/404.html +++ b/404.html @@ -8,7 +8,7 @@ - + @@ -16,7 +16,7 @@
- + \ No newline at end of file diff --git a/api/api.html b/api/api.html index 2aa5466..9e71a14 100644 --- a/api/api.html +++ b/api/api.html @@ -8,18 +8,18 @@ - - + + - + -
Skip to content

mbcp

说明: 本模块是主模块,提供了一些工具 可导入

mbcp.mp_math:数学工具

mbcp.particle:粒子生成工具

mbcp.presets:预设

文档由 VitePress 构建 | API引用由 litedoc 生成

- +
+ \ No newline at end of file diff --git a/api/index.html b/api/index.html index 45ba0da..4ab76e1 100644 --- a/api/index.html +++ b/api/index.html @@ -8,18 +8,18 @@ - - + + - + -
Skip to content

mbcp

说明: 本模块是主模块,提供了一些工具 可导入

mbcp.mp_math:数学工具

mbcp.particle:粒子生成工具

mbcp.presets:预设

文档由 VitePress 构建 | API引用由 litedoc 生成

- +
+ \ No newline at end of file diff --git a/api/mp_math/angle.html b/api/mp_math/angle.html index 8550abf..178bb83 100644 --- a/api/mp_math/angle.html +++ b/api/mp_math/angle.html @@ -8,8 +8,8 @@ - - + + @@ -117,7 +117,7 @@ if isinstance(other, AnyAngle): return self.radian / other.radian return AnyAngle(self.radian / other, is_radian=True) - + \ No newline at end of file diff --git a/api/mp_math/const.html b/api/mp_math/const.html index 596fdac..c0ba83a 100644 --- a/api/mp_math/const.html +++ b/api/mp_math/const.html @@ -8,8 +8,8 @@ - - + + @@ -19,7 +19,7 @@
Skip to content

mbcp.mp_math.const

说明: 本模块定义了一些常用的常量

var PI

  • 说明: 常量 π

  • 默认值: math.pi

var E

  • 说明: 自然对数的底 exp(1)

  • 默认值: math.e

var GOLDEN_RATIO

  • 说明: 黄金分割比

  • 默认值: (1 + math.sqrt(5)) / 2

var GAMMA

  • 说明: 欧拉常数

  • 默认值: 0.5772156649015329

var EPSILON

  • 说明: 精度误差

  • 默认值: 0.0001

var APPROX

  • 说明: 约等于判定误差

  • 默认值: 0.001

文档由 VitePress 构建 | API引用由 litedoc 生成

- + \ No newline at end of file diff --git a/api/mp_math/equation.html b/api/mp_math/equation.html index 461c8e7..f148c1c 100644 --- a/api/mp_math/equation.html +++ b/api/mp_math/equation.html @@ -8,8 +8,8 @@ - - + + @@ -83,7 +83,7 @@ return high_order_partial_derivative_func else: raise ValueError('Invalid var type') - + \ No newline at end of file diff --git a/api/mp_math/function.html b/api/mp_math/function.html index 85231e6..b76f8dd 100644 --- a/api/mp_math/function.html +++ b/api/mp_math/function.html @@ -8,8 +8,8 @@ - - + + @@ -60,7 +60,7 @@ """@litedoc-hide""" return func(*args, *args2) return curried_func - + \ No newline at end of file diff --git a/api/mp_math/index.html b/api/mp_math/index.html index 5abbd5b..dd3882f 100644 --- a/api/mp_math/index.html +++ b/api/mp_math/index.html @@ -8,8 +8,8 @@ - - + + @@ -19,7 +19,7 @@
Skip to content

mbcp.mp_math

说明: 本包定义了一些常用的导入,可直接从mbcp.mp_math导入使用 导入的类有:

文档由 VitePress 构建 | API引用由 litedoc 生成

- + \ No newline at end of file diff --git a/api/mp_math/line.html b/api/mp_math/line.html index b6b5924..1cd8f0d 100644 --- a/api/mp_math/line.html +++ b/api/mp_math/line.html @@ -8,8 +8,8 @@ - - + + @@ -192,7 +192,7 @@ [`bool`](https%3A//docs.python.org/3/library/functions.html#bool): 是否等价 """ return self.direction.is_parallel(other.direction) and (self.point - other.point).is_parallel(self.direction) - + \ No newline at end of file diff --git a/api/mp_math/mp_math.html b/api/mp_math/mp_math.html index 0ade3d5..2064579 100644 --- a/api/mp_math/mp_math.html +++ b/api/mp_math/mp_math.html @@ -8,8 +8,8 @@ - - + + @@ -19,7 +19,7 @@
Skip to content

mbcp.mp_math

说明: 本包定义了一些常用的导入,可直接从mbcp.mp_math导入使用 导入的类有:

文档由 VitePress 构建 | API引用由 litedoc 生成

- + \ No newline at end of file diff --git a/api/mp_math/mp_math_typing.html b/api/mp_math/mp_math_typing.html index 8d42b5f..e690099 100644 --- a/api/mp_math/mp_math_typing.html +++ b/api/mp_math/mp_math_typing.html @@ -8,8 +8,8 @@ - - + + @@ -19,7 +19,7 @@
Skip to content

mbcp.mp_math.mp_math_typing

说明: 本模块用于内部类型提示

var RealNumber

  • 说明: 实数

  • 类型: TypeAlias

  • 默认值: int | float

var Number

  • 说明: 数

  • 类型: TypeAlias

  • 默认值: RealNumber | complex

var SingleVar

  • 说明: 单变量

  • 默认值: TypeVar('SingleVar', bound=Number)

var ArrayVar

  • 说明: 数组变量

  • 默认值: TypeVar('ArrayVar', bound=Iterable[Number])

var Var

  • 说明: 变量

  • 类型: TypeAlias

  • 默认值: SingleVar | ArrayVar

var OneSingleVarFunc

  • 说明: 一元单变量函数

  • 类型: TypeAlias

  • 默认值: Callable[[SingleVar], SingleVar]

var OneArrayFunc

  • 说明: 一元数组函数

  • 类型: TypeAlias

  • 默认值: Callable[[ArrayVar], ArrayVar]

var OneVarFunc

  • 说明: 一元函数

  • 类型: TypeAlias

  • 默认值: OneSingleVarFunc | OneArrayFunc

var TwoSingleVarsFunc

  • 说明: 二元单变量函数

  • 类型: TypeAlias

  • 默认值: Callable[[SingleVar, SingleVar], SingleVar]

var TwoArraysFunc

  • 说明: 二元数组函数

  • 类型: TypeAlias

  • 默认值: Callable[[ArrayVar, ArrayVar], ArrayVar]

var TwoVarsFunc

  • 说明: 二元函数

  • 类型: TypeAlias

  • 默认值: TwoSingleVarsFunc | TwoArraysFunc

var ThreeSingleVarsFunc

  • 说明: 三元单变量函数

  • 类型: TypeAlias

  • 默认值: Callable[[SingleVar, SingleVar, SingleVar], SingleVar]

var ThreeArraysFunc

  • 说明: 三元数组函数

  • 类型: TypeAlias

  • 默认值: Callable[[ArrayVar, ArrayVar, ArrayVar], ArrayVar]

var ThreeVarsFunc

  • 说明: 三元函数

  • 类型: TypeAlias

  • 默认值: ThreeSingleVarsFunc | ThreeArraysFunc

var MultiSingleVarsFunc

  • 说明: 多元单变量函数

  • 类型: TypeAlias

  • 默认值: Callable[..., SingleVar]

var MultiArraysFunc

  • 说明: 多元数组函数

  • 类型: TypeAlias

  • 默认值: Callable[..., ArrayVar]

var MultiVarsFunc

  • 说明: 多元函数

  • 类型: TypeAlias

  • 默认值: MultiSingleVarsFunc | MultiArraysFunc

文档由 VitePress 构建 | API引用由 litedoc 生成

- + \ No newline at end of file diff --git a/api/mp_math/plane.html b/api/mp_math/plane.html index 57dcd6c..ddf60c5 100644 --- a/api/mp_math/plane.html +++ b/api/mp_math/plane.html @@ -8,8 +8,8 @@ - - + + @@ -224,7 +224,7 @@ """ return self.approx(other)

def __rand__(self, other: Line3) -> Point3

源代码在GitHub上查看
python
def __rand__(self, other: 'Line3') -> 'Point3':
     return self.cal_intersection_point3(other)
- + \ No newline at end of file diff --git a/api/mp_math/point.html b/api/mp_math/point.html index 7f4c29f..d4c0ab8 100644 --- a/api/mp_math/point.html +++ b/api/mp_math/point.html @@ -8,8 +8,8 @@ - - + + @@ -70,7 +70,7 @@ """ from .vector import Vector3 return Vector3(self.x - other.x, self.y - other.y, self.z - other.z) - + \ No newline at end of file diff --git a/api/mp_math/segment.html b/api/mp_math/segment.html index eeecf4a..05c4b03 100644 --- a/api/mp_math/segment.html +++ b/api/mp_math/segment.html @@ -8,8 +8,8 @@ - - + + @@ -33,7 +33,7 @@ self.length = self.direction.length '中心点' self.midpoint = Point3((self.p1.x + self.p2.x) / 2, (self.p1.y + self.p2.y) / 2, (self.p1.z + self.p2.z) / 2) - + \ No newline at end of file diff --git a/api/mp_math/utils.html b/api/mp_math/utils.html index 52f443f..398acab 100644 --- a/api/mp_math/utils.html +++ b/api/mp_math/utils.html @@ -8,8 +8,8 @@ - - + + @@ -87,7 +87,7 @@ return f'-{abs(x)}' else: return '' - + \ No newline at end of file diff --git a/api/mp_math/vector.html b/api/mp_math/vector.html index b075533..bdad13e 100644 --- a/api/mp_math/vector.html +++ b/api/mp_math/vector.html @@ -8,35 +8,35 @@ - - + + - + -
Skip to content

mbcp.mp_math.vector

说明: 本模块定义了3维向量的类Vector3,以及一些常用的向量。

class Vector3

def __init__(self, x: float, y: float, z: float)

说明: 3维向量

参数:

  • x: x轴分量
  • y: y轴分量
  • z: z轴分量
源代码在GitHub上查看
python
def __init__(self, x: float, y: float, z: float):
+    
Skip to content

mbcp.mp_math.vector

说明: 本模块定义了3维向量的类Vector3,以及一些常用的向量。

class Vector3

def __init__(self, x: float, y: float, z: float)

说明: 3维向量

参数:

  • x (float): x轴分量
  • y (float): y轴分量
  • z (float): z轴分量
源代码在GitHub上查看
python
def __init__(self, x: float, y: float, z: float):
     """
         3维向量
         Args:
-            x: x轴分量
-            y: y轴分量
-            z: z轴分量
+            x ([`float`](https%3A//docs.python.org/3/library/functions.html#float)): x轴分量
+            y (`float`): y轴分量
+            z (`float`): z轴分量
         """
     self.x = x
     self.y = y
-    self.z = z

def approx(self, other: Vector3, epsilon: float = APPROX) -> bool

说明: 判断两个向量是否近似相等。

参数:

  • other:
  • epsilon:

返回: 是否近似相等

源代码在GitHub上查看
python
def approx(self, other: 'Vector3', epsilon: float=APPROX) -> bool:
+    self.z = z

def approx(self, other: Vector3, epsilon: float = APPROX) -> bool

说明: 判断两个向量是否近似相等。

参数:

返回: bool: 是否近似相等

源代码在GitHub上查看
python
def approx(self, other: 'Vector3', epsilon: float=APPROX) -> bool:
     """
         判断两个向量是否近似相等。
         Args:
-            other:
-            epsilon:
+            other ([`Vector3`](#class-vector3)): 另一个向量
+            epsilon ([`float`](https%3A//docs.python.org/3/library/functions.html#float)): 误差
 
         Returns:
-            是否近似相等
+            [`bool`](https%3A//docs.python.org/3/library/functions.html#bool): 是否近似相等
         """
     return all([abs(self.x - other.x) < epsilon, abs(self.y - other.y) < epsilon, abs(self.z - other.z) < epsilon])

def cal_angle(self, other: Vector3) -> AnyAngle

说明: 计算两个向量之间的夹角。

参数:

返回: AnyAngle: 夹角

源代码在GitHub上查看
python
def cal_angle(self, other: 'Vector3') -> 'AnyAngle':
     """
@@ -215,7 +215,7 @@
             [`Vector3`](#class-vector3): 负向量
         """
     return Vector3(-self.x, -self.y, -self.z)

var zero_vector3

  • 说明: 零向量

  • 类型: Vector3

  • 默认值: Vector3(0, 0, 0)

var x_axis

  • 说明: x轴单位向量

  • 类型: Vector3

  • 默认值: Vector3(1, 0, 0)

var y_axis

  • 说明: y轴单位向量

  • 类型: Vector3

  • 默认值: Vector3(0, 1, 0)

var z_axis

  • 说明: z轴单位向量

  • 类型: Vector3

  • 默认值: Vector3(0, 0, 1)

文档由 VitePress 构建 | API引用由 litedoc 生成

- + \ No newline at end of file diff --git a/api/particle/index.html b/api/particle/index.html index 50492c6..f846a14 100644 --- a/api/particle/index.html +++ b/api/particle/index.html @@ -8,8 +8,8 @@ - - + + @@ -19,7 +19,7 @@ - + \ No newline at end of file diff --git a/api/particle/particle.html b/api/particle/particle.html index a8b09e5..056e958 100644 --- a/api/particle/particle.html +++ b/api/particle/particle.html @@ -8,8 +8,8 @@ - - + + @@ -19,7 +19,7 @@ - + \ No newline at end of file diff --git a/api/presets/index.html b/api/presets/index.html index 6e8d93b..5f3de43 100644 --- a/api/presets/index.html +++ b/api/presets/index.html @@ -8,8 +8,8 @@ - - + + @@ -19,7 +19,7 @@ - + \ No newline at end of file diff --git a/api/presets/model/index.html b/api/presets/model/index.html index f35691c..4ad48bc 100644 --- a/api/presets/model/index.html +++ b/api/presets/model/index.html @@ -8,8 +8,8 @@ - - + + @@ -36,7 +36,7 @@ y_array = radius * np.sin(phi_list) * np.sin(theta_list) z_array = radius * np.cos(phi_list) return [Point3(x_array[i], y_array[i], z_array[i]) for i in range(num)]

文档由 VitePress 构建 | API引用由 litedoc 生成

- + \ No newline at end of file diff --git a/api/presets/model/model.html b/api/presets/model/model.html index f82f449..1eab3c6 100644 --- a/api/presets/model/model.html +++ b/api/presets/model/model.html @@ -8,8 +8,8 @@ - - + + @@ -36,7 +36,7 @@ y_array = radius * np.sin(phi_list) * np.sin(theta_list) z_array = radius * np.cos(phi_list) return [Point3(x_array[i], y_array[i], z_array[i]) for i in range(num)] - + \ No newline at end of file diff --git a/api/presets/presets.html b/api/presets/presets.html index 29a93cb..45b8065 100644 --- a/api/presets/presets.html +++ b/api/presets/presets.html @@ -8,8 +8,8 @@ - - + + @@ -19,7 +19,7 @@
- + \ No newline at end of file diff --git a/assets/api_api.md.cuvEYHFe.js b/assets/api_api.md.cuvEYHFe.js deleted file mode 100644 index ee9746b..0000000 --- a/assets/api_api.md.cuvEYHFe.js +++ /dev/null @@ -1 +0,0 @@ -import{_ as e,c as a,o as t,a4 as p}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp","description":"","frontmatter":{"title":"mbcp","lastUpdated":false,"collapsed":true},"headers":[],"relativePath":"api/api.md","filePath":"zh/api/api.md"}'),c={name:"api/api.md"},o=p('

mbcp

说明: 本模块是主模块,提供了一些工具 可导入

mbcp.mp_math:数学工具

mbcp.particle:粒子生成工具

mbcp.presets:预设

',5),s=[o];function r(_,i,d,n,m,l){return t(),a("div",null,s)}const f=e(c,[["render",r]]);export{b as __pageData,f as default}; diff --git a/assets/api_api.md.cuvEYHFe.lean.js b/assets/api_api.md.cuvEYHFe.lean.js deleted file mode 100644 index be70225..0000000 --- a/assets/api_api.md.cuvEYHFe.lean.js +++ /dev/null @@ -1 +0,0 @@ -import{_ as e,c as a,o as t,a4 as p}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp","description":"","frontmatter":{"title":"mbcp","lastUpdated":false,"collapsed":true},"headers":[],"relativePath":"api/api.md","filePath":"zh/api/api.md"}'),c={name:"api/api.md"},o=p("",5),s=[o];function r(_,i,d,n,m,l){return t(),a("div",null,s)}const f=e(c,[["render",r]]);export{b as __pageData,f as default}; diff --git a/assets/api_api.md.rnPOv6-O.js b/assets/api_api.md.rnPOv6-O.js new file mode 100644 index 0000000..b7eb5d0 --- /dev/null +++ b/assets/api_api.md.rnPOv6-O.js @@ -0,0 +1 @@ +import{_ as e,c as a,o as t,a4 as p}from"./chunks/framework.DpC1ZpOZ.js";const f=JSON.parse('{"title":"mbcp","description":"","frontmatter":{"title":"mbcp","lastUpdated":false,"collapsed":true},"headers":[],"relativePath":"api/api.md","filePath":"zh/api/api.md"}'),c={name:"api/api.md"},o=p('

mbcp

说明: 本模块是主模块,提供了一些工具 可导入

mbcp.mp_math:数学工具

mbcp.particle:粒子生成工具

mbcp.presets:预设

',5),r=[o];function s(_,i,d,m,n,l){return t(),a("div",null,r)}const b=e(c,[["render",s]]);export{f as __pageData,b as default}; diff --git a/assets/api_api.md.rnPOv6-O.lean.js b/assets/api_api.md.rnPOv6-O.lean.js new file mode 100644 index 0000000..7435396 --- /dev/null +++ b/assets/api_api.md.rnPOv6-O.lean.js @@ -0,0 +1 @@ +import{_ as e,c as a,o as t,a4 as p}from"./chunks/framework.DpC1ZpOZ.js";const f=JSON.parse('{"title":"mbcp","description":"","frontmatter":{"title":"mbcp","lastUpdated":false,"collapsed":true},"headers":[],"relativePath":"api/api.md","filePath":"zh/api/api.md"}'),c={name:"api/api.md"},o=p("",5),r=[o];function s(_,i,d,m,n,l){return t(),a("div",null,r)}const b=e(c,[["render",s]]);export{f as __pageData,b as default}; diff --git a/assets/api_index.md.9xfR5bUd.js b/assets/api_index.md.9xfR5bUd.js deleted file mode 100644 index a70fd75..0000000 --- a/assets/api_index.md.9xfR5bUd.js +++ /dev/null @@ -1 +0,0 @@ -import{_ as e,c as t,o as a,a4 as c}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp","description":"","frontmatter":{"title":"mbcp","lastUpdated":false,"collapsed":true},"headers":[],"relativePath":"api/index.md","filePath":"zh/api/index.md"}'),p={name:"api/index.md"},o=c('

mbcp

说明: 本模块是主模块,提供了一些工具 可导入

mbcp.mp_math:数学工具

mbcp.particle:粒子生成工具

mbcp.presets:预设

',5),s=[o];function d(r,_,n,i,m,l){return a(),t("div",null,s)}const f=e(p,[["render",d]]);export{b as __pageData,f as default}; diff --git a/assets/api_index.md.9xfR5bUd.lean.js b/assets/api_index.md.9xfR5bUd.lean.js deleted file mode 100644 index 1e649fe..0000000 --- a/assets/api_index.md.9xfR5bUd.lean.js +++ /dev/null @@ -1 +0,0 @@ -import{_ as e,c as t,o as a,a4 as c}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp","description":"","frontmatter":{"title":"mbcp","lastUpdated":false,"collapsed":true},"headers":[],"relativePath":"api/index.md","filePath":"zh/api/index.md"}'),p={name:"api/index.md"},o=c("",5),s=[o];function d(r,_,n,i,m,l){return a(),t("div",null,s)}const f=e(p,[["render",d]]);export{b as __pageData,f as default}; diff --git a/assets/api_index.md.qnrSd__i.js b/assets/api_index.md.qnrSd__i.js new file mode 100644 index 0000000..0203e92 --- /dev/null +++ b/assets/api_index.md.qnrSd__i.js @@ -0,0 +1 @@ +import{_ as e,c as a,o as t,a4 as c}from"./chunks/framework.DpC1ZpOZ.js";const f=JSON.parse('{"title":"mbcp","description":"","frontmatter":{"title":"mbcp","lastUpdated":false,"collapsed":true},"headers":[],"relativePath":"api/index.md","filePath":"zh/api/index.md"}'),p={name:"api/index.md"},o=c('

mbcp

说明: 本模块是主模块,提供了一些工具 可导入

mbcp.mp_math:数学工具

mbcp.particle:粒子生成工具

mbcp.presets:预设

',5),r=[o];function s(d,_,i,n,m,l){return t(),a("div",null,r)}const b=e(p,[["render",s]]);export{f as __pageData,b as default}; diff --git a/assets/api_index.md.qnrSd__i.lean.js b/assets/api_index.md.qnrSd__i.lean.js new file mode 100644 index 0000000..5ace650 --- /dev/null +++ b/assets/api_index.md.qnrSd__i.lean.js @@ -0,0 +1 @@ +import{_ as e,c as a,o as t,a4 as c}from"./chunks/framework.DpC1ZpOZ.js";const f=JSON.parse('{"title":"mbcp","description":"","frontmatter":{"title":"mbcp","lastUpdated":false,"collapsed":true},"headers":[],"relativePath":"api/index.md","filePath":"zh/api/index.md"}'),p={name:"api/index.md"},o=c("",5),r=[o];function s(d,_,i,n,m,l){return t(),a("div",null,r)}const b=e(p,[["render",s]]);export{f as __pageData,b as default}; diff --git a/assets/api_mp_math_vector.md.DvJcuPXW.js b/assets/api_mp_math_vector.md.mCFa4Azm.js similarity index 95% rename from assets/api_mp_math_vector.md.DvJcuPXW.js rename to assets/api_mp_math_vector.md.mCFa4Azm.js index ef51e1c..f126a2a 100644 --- a/assets/api_mp_math_vector.md.DvJcuPXW.js +++ b/assets/api_mp_math_vector.md.mCFa4Azm.js @@ -1,22 +1,22 @@ -import{_ as s,c as i,o as a,a4 as t}from"./chunks/framework.DpC1ZpOZ.js";const E=JSON.parse('{"title":"mbcp.mp_math.vector","description":"","frontmatter":{"title":"mbcp.mp_math.vector","lastUpdated":false},"headers":[],"relativePath":"api/mp_math/vector.md","filePath":"zh/api/mp_math/vector.md"}'),n={name:"api/mp_math/vector.md"},e=t(`

mbcp.mp_math.vector

说明: 本模块定义了3维向量的类Vector3,以及一些常用的向量。

class Vector3

def __init__(self, x: float, y: float, z: float)

说明: 3维向量

参数:

源代码在GitHub上查看
python
def __init__(self, x: float, y: float, z: float):
+import{_ as s,c as i,o as a,a4 as t}from"./chunks/framework.DpC1ZpOZ.js";const E=JSON.parse('{"title":"mbcp.mp_math.vector","description":"","frontmatter":{"title":"mbcp.mp_math.vector","lastUpdated":false},"headers":[],"relativePath":"api/mp_math/vector.md","filePath":"zh/api/mp_math/vector.md"}'),n={name:"api/mp_math/vector.md"},e=t(`

mbcp.mp_math.vector

说明: 本模块定义了3维向量的类Vector3,以及一些常用的向量。

class Vector3

def __init__(self, x: float, y: float, z: float)

说明: 3维向量

参数:

  • x (float): x轴分量
  • y (float): y轴分量
  • z (float): z轴分量
源代码在GitHub上查看
python
def __init__(self, x: float, y: float, z: float):
     """
         3维向量
         Args:
-            x: x轴分量
-            y: y轴分量
-            z: z轴分量
+            x ([\`float\`](https%3A//docs.python.org/3/library/functions.html#float)): x轴分量
+            y (\`float\`): y轴分量
+            z (\`float\`): z轴分量
         """
     self.x = x
     self.y = y
-    self.z = z

def approx(self, other: Vector3, epsilon: float = APPROX) -> bool

说明: 判断两个向量是否近似相等。

参数:

  • other:
  • epsilon:

返回: 是否近似相等

源代码在GitHub上查看
python
def approx(self, other: 'Vector3', epsilon: float=APPROX) -> bool:
+    self.z = z

def approx(self, other: Vector3, epsilon: float = APPROX) -> bool

说明: 判断两个向量是否近似相等。

参数:

返回: bool: 是否近似相等

源代码在GitHub上查看
python
def approx(self, other: 'Vector3', epsilon: float=APPROX) -> bool:
     """
         判断两个向量是否近似相等。
         Args:
-            other:
-            epsilon:
+            other ([\`Vector3\`](#class-vector3)): 另一个向量
+            epsilon ([\`float\`](https%3A//docs.python.org/3/library/functions.html#float)): 误差
 
         Returns:
-            是否近似相等
+            [\`bool\`](https%3A//docs.python.org/3/library/functions.html#bool): 是否近似相等
         """
     return all([abs(self.x - other.x) < epsilon, abs(self.y - other.y) < epsilon, abs(self.z - other.z) < epsilon])

def cal_angle(self, other: Vector3) -> AnyAngle

说明: 计算两个向量之间的夹角。

参数:

返回: AnyAngle: 夹角

源代码在GitHub上查看
python
def cal_angle(self, other: 'Vector3') -> 'AnyAngle':
     """
diff --git a/assets/api_mp_math_vector.md.DvJcuPXW.lean.js b/assets/api_mp_math_vector.md.mCFa4Azm.lean.js
similarity index 100%
rename from assets/api_mp_math_vector.md.DvJcuPXW.lean.js
rename to assets/api_mp_math_vector.md.mCFa4Azm.lean.js
diff --git a/assets/app.B5ir6CFp.js b/assets/app.DZl3AEz3.js
similarity index 95%
rename from assets/app.B5ir6CFp.js
rename to assets/app.DZl3AEz3.js
index fd22089..43ae317 100644
--- a/assets/app.B5ir6CFp.js
+++ b/assets/app.DZl3AEz3.js
@@ -1 +1 @@
-import{t as p}from"./chunks/theme.CIlXJY6j.js";import{U as o,a5 as u,a6 as c,a7 as l,a8 as f,a9 as d,aa as m,ab as h,ac as g,ad as A,ae as y,d as P,u as v,y as C,x as b,af as w,ag as E,ah as R,ai as S}from"./chunks/framework.DpC1ZpOZ.js";function i(e){if(e.extends){const a=i(e.extends);return{...a,...e,async enhanceApp(t){a.enhanceApp&&await a.enhanceApp(t),e.enhanceApp&&await e.enhanceApp(t)}}}return e}const s=i(p),T=P({name:"VitePressApp",setup(){const{site:e,lang:a,dir:t}=v();return C(()=>{b(()=>{document.documentElement.lang=a.value,document.documentElement.dir=t.value})}),e.value.router.prefetchLinks&&w(),E(),R(),s.setup&&s.setup(),()=>S(s.Layout)}});async function x(){globalThis.__VITEPRESS__=!0;const e=_(),a=D();a.provide(c,e);const t=l(e.route);return a.provide(f,t),a.component("Content",d),a.component("ClientOnly",m),Object.defineProperties(a.config.globalProperties,{$frontmatter:{get(){return t.frontmatter.value}},$params:{get(){return t.page.value.params}}}),s.enhanceApp&&await s.enhanceApp({app:a,router:e,siteData:h}),{app:a,router:e,data:t}}function D(){return g(T)}function _(){let e=o,a;return A(t=>{let n=y(t),r=null;return n&&(e&&(a=n),(e||a===n)&&(n=n.replace(/\.js$/,".lean.js")),r=import(n)),o&&(e=!1),r},s.NotFound)}o&&x().then(({app:e,router:a,data:t})=>{a.go().then(()=>{u(a.route,t.site),e.mount("#app")})});export{x as createApp};
+import{t as p}from"./chunks/theme.rqbpMjWI.js";import{U as o,a5 as u,a6 as c,a7 as l,a8 as f,a9 as d,aa as m,ab as h,ac as g,ad as A,ae as y,d as P,u as v,y as C,x as b,af as w,ag as E,ah as R,ai as S}from"./chunks/framework.DpC1ZpOZ.js";function i(e){if(e.extends){const a=i(e.extends);return{...a,...e,async enhanceApp(t){a.enhanceApp&&await a.enhanceApp(t),e.enhanceApp&&await e.enhanceApp(t)}}}return e}const s=i(p),T=P({name:"VitePressApp",setup(){const{site:e,lang:a,dir:t}=v();return C(()=>{b(()=>{document.documentElement.lang=a.value,document.documentElement.dir=t.value})}),e.value.router.prefetchLinks&&w(),E(),R(),s.setup&&s.setup(),()=>S(s.Layout)}});async function x(){globalThis.__VITEPRESS__=!0;const e=_(),a=D();a.provide(c,e);const t=l(e.route);return a.provide(f,t),a.component("Content",d),a.component("ClientOnly",m),Object.defineProperties(a.config.globalProperties,{$frontmatter:{get(){return t.frontmatter.value}},$params:{get(){return t.page.value.params}}}),s.enhanceApp&&await s.enhanceApp({app:a,router:e,siteData:h}),{app:a,router:e,data:t}}function D(){return g(T)}function _(){let e=o,a;return A(t=>{let n=y(t),r=null;return n&&(e&&(a=n),(e||a===n)&&(n=n.replace(/\.js$/,".lean.js")),r=import(n)),o&&(e=!1),r},s.NotFound)}o&&x().then(({app:e,router:a,data:t})=>{a.go().then(()=>{u(a.route,t.site),e.mount("#app")})});export{x as createApp};
diff --git a/assets/chunks/@localSearchIndexen.BWxkNSWX.js b/assets/chunks/@localSearchIndexen.BWxkNSWX.js
deleted file mode 100644
index d76c039..0000000
--- a/assets/chunks/@localSearchIndexen.BWxkNSWX.js
+++ /dev/null
@@ -1 +0,0 @@
-const t='{"documentCount":165,"nextId":165,"documentIds":{"0":"/en/api/api.html#mbcp","1":"/en/api/#mbcp","2":"/en/api/mp_math/angle.html#mbcp-mp-math-angle","3":"/en/api/mp_math/angle.html#class-angle","4":"/en/api/mp_math/angle.html#class-anyangle-angle","5":"/en/api/mp_math/angle.html#def-init-self-value-float-is-radian-bool-false","6":"/en/api/mp_math/angle.html#def-complementary-self-anyangle","7":"/en/api/mp_math/angle.html#def-supplementary-self-anyangle","8":"/en/api/mp_math/angle.html#def-degree-self-float","9":"/en/api/mp_math/angle.html#def-minimum-positive-self-anyangle","10":"/en/api/mp_math/angle.html#def-maximum-negative-self-anyangle","11":"/en/api/mp_math/angle.html#def-sin-self-float","12":"/en/api/mp_math/angle.html#def-cos-self-float","13":"/en/api/mp_math/angle.html#def-tan-self-float","14":"/en/api/mp_math/angle.html#def-cot-self-float","15":"/en/api/mp_math/angle.html#def-sec-self-float","16":"/en/api/mp_math/angle.html#def-csc-self-float","17":"/en/api/mp_math/angle.html#def-self-other-anyangle-anyangle","18":"/en/api/mp_math/angle.html#def-eq-self-other","19":"/en/api/mp_math/angle.html#def-self-other-anyangle-anyangle-1","20":"/en/api/mp_math/angle.html#def-self-other-float-anyangle","21":"/en/api/mp_math/angle.html#def-self-other-float-anyangle-1","22":"/en/api/mp_math/angle.html#def-self-other-anyangle-float","23":"/en/api/mp_math/angle.html#def-self-other","24":"/en/api/mp_math/const.html#mbcp-mp-math-const","25":"/en/api/mp_math/const.html#var-pi","26":"/en/api/mp_math/const.html#var-e","27":"/en/api/mp_math/const.html#var-golden-ratio","28":"/en/api/mp_math/const.html#var-gamma","29":"/en/api/mp_math/const.html#var-epsilon","30":"/en/api/mp_math/const.html#var-approx","31":"/en/api/mp_math/equation.html#mbcp-mp-math-equation","32":"/en/api/mp_math/equation.html#class-curveequation","33":"/en/api/mp_math/equation.html#def-init-self-x-func-onevarfunc-y-func-onevarfunc-z-func-onevarfunc","34":"/en/api/mp_math/equation.html#def-call-self-t-var-point3-tuple-point3","35":"/en/api/mp_math/equation.html#def-get-partial-derivative-func-func-multivarsfunc-var-int-tuple-int-epsilon-number-epsilon-multivarsfunc","36":"/en/api/mp_math/function.html#mbcp-mp-math-function","37":"/en/api/mp_math/function.html#def-cal-gradient-3vf-func-threesinglevarsfunc-p-point3-epsilon-float-epsilon-vector3","38":"/en/api/mp_math/function.html#def-curry-func-multivarsfunc-args-var-onevarfunc","39":"/en/api/mp_math/#mbcp-mp-math","40":"/en/api/mp_math/line.html#mbcp-mp-math-line","41":"/en/api/mp_math/line.html#class-line3","42":"/en/api/mp_math/line.html#def-init-self-point-point3-direction-vector3","43":"/en/api/mp_math/line.html#def-approx-self-other-line3-epsilon-float-approx-bool","44":"/en/api/mp_math/line.html#def-cal-angle-self-other-line3-anyangle","45":"/en/api/mp_math/line.html#def-cal-distance-self-other-line3-point3-float","46":"/en/api/mp_math/line.html#def-cal-intersection-self-other-line3-point3","47":"/en/api/mp_math/line.html#def-cal-perpendicular-self-point-point3-line3","48":"/en/api/mp_math/line.html#def-get-point-self-t-realnumber-point3","49":"/en/api/mp_math/line.html#def-get-parametric-equations-self-tuple-onesinglevarfunc-onesinglevarfunc-onesinglevarfunc","50":"/en/api/mp_math/line.html#def-is-approx-parallel-self-other-line3-epsilon-float-1e-06-bool","51":"/en/api/mp_math/line.html#def-is-parallel-self-other-line3-bool","52":"/en/api/mp_math/line.html#def-is-collinear-self-other-line3-bool","53":"/en/api/mp_math/line.html#def-is-point-on-self-point-point3-bool","54":"/en/api/mp_math/line.html#def-is-coplanar-self-other-line3-bool","55":"/en/api/mp_math/line.html#def-simplify-self","56":"/en/api/mp_math/line.html#def-from-two-points-cls-p1-point3-p2-point3-line3","57":"/en/api/mp_math/line.html#def-and-self-other-line3-line3-point3-none","58":"/en/api/mp_math/line.html#def-eq-self-other-bool","59":"/en/api/mp_math/mp_math.html#mbcp-mp-math","60":"/en/api/mp_math/mp_math_typing.html#mbcp-mp-math-mp-math-typing","61":"/en/api/mp_math/mp_math_typing.html#var-realnumber","62":"/en/api/mp_math/mp_math_typing.html#var-number","63":"/en/api/mp_math/mp_math_typing.html#var-singlevar","64":"/en/api/mp_math/mp_math_typing.html#var-arrayvar","65":"/en/api/mp_math/mp_math_typing.html#var-var","66":"/en/api/mp_math/mp_math_typing.html#var-onesinglevarfunc","67":"/en/api/mp_math/mp_math_typing.html#var-onearrayfunc","68":"/en/api/mp_math/mp_math_typing.html#var-onevarfunc","69":"/en/api/mp_math/mp_math_typing.html#var-twosinglevarsfunc","70":"/en/api/mp_math/mp_math_typing.html#var-twoarraysfunc","71":"/en/api/mp_math/mp_math_typing.html#var-twovarsfunc","72":"/en/api/mp_math/mp_math_typing.html#var-threesinglevarsfunc","73":"/en/api/mp_math/mp_math_typing.html#var-threearraysfunc","74":"/en/api/mp_math/mp_math_typing.html#var-threevarsfunc","75":"/en/api/mp_math/mp_math_typing.html#var-multisinglevarsfunc","76":"/en/api/mp_math/mp_math_typing.html#var-multiarraysfunc","77":"/en/api/mp_math/mp_math_typing.html#var-multivarsfunc","78":"/en/api/mp_math/plane.html#mbcp-mp-math-plane","79":"/en/api/mp_math/plane.html#class-plane3","80":"/en/api/mp_math/plane.html#def-init-self-a-float-b-float-c-float-d-float","81":"/en/api/mp_math/plane.html#def-approx-self-other-plane3-bool","82":"/en/api/mp_math/plane.html#def-cal-angle-self-other-line3-plane3-anyangle","83":"/en/api/mp_math/plane.html#def-cal-distance-self-other-plane3-point3-float","84":"/en/api/mp_math/plane.html#def-cal-intersection-line3-self-other-plane3-line3","85":"/en/api/mp_math/plane.html#def-cal-intersection-point3-self-other-line3-point3","86":"/en/api/mp_math/plane.html#def-cal-parallel-plane3-self-point-point3-plane3","87":"/en/api/mp_math/plane.html#def-is-parallel-self-other-plane3-bool","88":"/en/api/mp_math/plane.html#def-normal-self-vector3","89":"/en/api/mp_math/plane.html#def-from-point-and-normal-cls-point-point3-normal-vector3-plane3","90":"/en/api/mp_math/plane.html#def-from-three-points-cls-p1-point3-p2-point3-p3-point3-plane3","91":"/en/api/mp_math/plane.html#def-from-two-lines-cls-l1-line3-l2-line3-plane3","92":"/en/api/mp_math/plane.html#def-from-point-and-line-cls-point-point3-line-line3-plane3","93":"/en/api/mp_math/plane.html#def-and-self-other-line3-point3-none","94":"/en/api/mp_math/plane.html#def-and-self-other-plane3-line3-none","95":"/en/api/mp_math/plane.html#def-and-self-other","96":"/en/api/mp_math/plane.html#def-eq-self-other-bool","97":"/en/api/mp_math/plane.html#def-rand-self-other-line3-point3","98":"/en/api/mp_math/point.html#mbcp-mp-math-point","99":"/en/api/mp_math/point.html#class-point3","100":"/en/api/mp_math/point.html#def-init-self-x-float-y-float-z-float","101":"/en/api/mp_math/point.html#def-approx-self-other-point3-epsilon-float-approx-bool","102":"/en/api/mp_math/point.html#def-self-other-vector3-point3","103":"/en/api/mp_math/point.html#def-self-other-point3-point3","104":"/en/api/mp_math/point.html#def-self-other","105":"/en/api/mp_math/point.html#def-eq-self-other","106":"/en/api/mp_math/point.html#def-self-other-point3-vector3","107":"/en/api/mp_math/segment.html#mbcp-mp-math-segment","108":"/en/api/mp_math/segment.html#class-segment3","109":"/en/api/mp_math/segment.html#def-init-self-p1-point3-p2-point3","110":"/en/api/mp_math/utils.html#mbcp-mp-math-utils","111":"/en/api/mp_math/utils.html#def-clamp-x-float-min-float-max-float-float","112":"/en/api/mp_math/utils.html#class-approx","113":"/en/api/mp_math/utils.html#def-init-self-value-realnumber","114":"/en/api/mp_math/utils.html#def-eq-self-other","115":"/en/api/mp_math/utils.html#def-raise-type-error-self-other","116":"/en/api/mp_math/utils.html#def-ne-self-other","117":"/en/api/mp_math/utils.html#def-approx-x-float-y-float-0-0-epsilon-float-approx-bool","118":"/en/api/mp_math/utils.html#def-sign-x-float-only-neg-bool-false-str","119":"/en/api/mp_math/utils.html#def-sign-format-x-float-only-neg-bool-false-str","120":"/en/api/mp_math/vector.html#mbcp-mp-math-vector","121":"/en/api/mp_math/vector.html#class-vector3","122":"/en/api/mp_math/vector.html#def-init-self-x-float-y-float-z-float","123":"/en/api/mp_math/vector.html#def-approx-self-other-vector3-epsilon-float-approx-bool","124":"/en/api/mp_math/vector.html#def-cal-angle-self-other-vector3-anyangle","125":"/en/api/mp_math/vector.html#def-cross-self-other-vector3-vector3","126":"/en/api/mp_math/vector.html#def-is-approx-parallel-self-other-vector3-epsilon-float-approx-bool","127":"/en/api/mp_math/vector.html#def-is-parallel-self-other-vector3-bool","128":"/en/api/mp_math/vector.html#def-normalize-self","129":"/en/api/mp_math/vector.html#def-np-array-self-np-ndarray","130":"/en/api/mp_math/vector.html#def-length-self-float","131":"/en/api/mp_math/vector.html#def-unit-self-vector3","132":"/en/api/mp_math/vector.html#def-abs-self","133":"/en/api/mp_math/vector.html#def-self-other-vector3-vector3","134":"/en/api/mp_math/vector.html#def-self-other-point3-point3","135":"/en/api/mp_math/vector.html#def-self-other","136":"/en/api/mp_math/vector.html#def-eq-self-other","137":"/en/api/mp_math/vector.html#def-self-other-point3-point3-1","138":"/en/api/mp_math/vector.html#def-self-other-vector3-vector3-1","139":"/en/api/mp_math/vector.html#def-self-other-point3-point3-2","140":"/en/api/mp_math/vector.html#def-self-other-1","141":"/en/api/mp_math/vector.html#def-self-other-point3","142":"/en/api/mp_math/vector.html#def-self-other-vector3-vector3-2","143":"/en/api/mp_math/vector.html#def-self-other-realnumber-vector3","144":"/en/api/mp_math/vector.html#def-self-other-int-float-vector3-vector3","145":"/en/api/mp_math/vector.html#def-self-other-realnumber-vector3-1","146":"/en/api/mp_math/vector.html#def-self-other-vector3-realnumber","147":"/en/api/mp_math/vector.html#def-self-other-realnumber-vector3-2","148":"/en/api/mp_math/vector.html#def-self-vector3","149":"/en/api/mp_math/vector.html#var-zero-vector3","150":"/en/api/mp_math/vector.html#var-x-axis","151":"/en/api/mp_math/vector.html#var-y-axis","152":"/en/api/mp_math/vector.html#var-z-axis","153":"/en/api/particle/#mbcp-particle","154":"/en/api/particle/particle.html#mbcp-particle","155":"/en/api/presets/#mbcp-presets","156":"/en/api/presets/model/#mbcp-presets-model","157":"/en/api/presets/model/#class-geometricmodels","158":"/en/api/presets/model/#def-sphere-radius-float-density-float","159":"/en/api/presets/model/model.html#mbcp-presets-model","160":"/en/api/presets/model/model.html#class-geometricmodels","161":"/en/api/presets/model/model.html#def-sphere-radius-float-density-float","162":"/en/api/presets/presets.html#mbcp-presets","163":"/en/guide/#开始不了一点","164":"/en/refer/#reference"},"fieldIds":{"title":0,"titles":1,"text":2},"fieldLength":{"0":[1,1,13],"1":[1,1,13],"2":[4,1,3],"3":[2,4,1],"4":[4,4,1],"5":[11,8,28],"6":[5,8,27],"7":[5,8,26],"8":[5,8,23],"9":[6,8,24],"10":[6,8,26],"11":[5,8,21],"12":[5,8,21],"13":[5,8,21],"14":[5,8,23],"15":[5,8,23],"16":[5,8,23],"17":[7,8,18],"18":[5,8,14],"19":[6,8,17],"20":[7,8,19],"21":[7,8,16],"22":[7,8,16],"23":[3,8,18],"24":[4,1,3],"25":[2,4,7],"26":[2,4,8],"27":[3,4,10],"28":[2,4,6],"29":[2,4,6],"30":[2,4,6],"31":[4,1,3],"32":[2,4,1],"33":[9,6,29],"34":[10,6,38],"35":[15,4,76],"36":[4,1,3],"37":[14,4,72],"38":[8,4,65],"39":[3,1,21],"40":[4,1,3],"41":[2,4,1],"42":[8,6,28],"43":[11,6,46],"44":[8,6,31],"45":[10,6,65],"46":[8,6,62],"47":[8,6,32],"48":[8,6,38],"49":[9,6,45],"50":[14,6,46],"51":[8,6,39],"52":[8,6,42],"53":[8,6,38],"54":[8,6,45],"55":[4,6,30],"56":[10,6,39],"57":[9,6,54],"58":[6,6,47],"59":[3,1,21],"60":[4,1,3],"61":[2,4,9],"62":[2,4,9],"63":[2,4,7],"64":[2,4,8],"65":[2,4,9],"66":[2,4,8],"67":[2,4,8],"68":[2,4,9],"69":[2,4,8],"70":[2,4,8],"71":[2,4,9],"72":[2,4,8],"73":[2,4,8],"74":[2,4,9],"75":[2,4,8],"76":[2,4,8],"77":[2,4,9],"78":[4,1,3],"79":[2,4,1],"80":[9,6,39],"81":[7,6,48],"82":[10,6,64],"83":[10,6,68],"84":[9,6,73],"85":[9,6,70],"86":[9,6,33],"87":[8,6,40],"88":[5,6,28],"89":[10,6,48],"90":[11,6,42],"91":[10,6,47],"92":[10,6,38],"93":[9,6,18],"94":[9,6,18],"95":[5,6,72],"96":[6,6,38],"97":[7,6,18],"98":[4,1,3],"99":[2,4,1],"100":[8,6,29],"101":[11,6,48],"102":[8,6,16],"103":[7,6,15],"104":[4,6,37],"105":[5,6,40],"106":[7,6,39],"107":[4,1,3],"108":[2,4,1],"109":[7,6,35],"110":[4,1,3],"111":[7,4,34],"112":[2,4,1],"113":[6,6,23],"114":[5,6,34],"115":[7,6,18],"116":[5,6,14],"117":[11,4,43],"118":[11,4,46],"119":[12,4,52],"120":[4,1,4],"121":[2,4,1],"122":[8,6,22],"123":[11,6,30],"124":[8,6,34],"125":[6,6,46],"126":[13,6,46],"127":[8,6,40],"128":[4,6,20],"129":[6,6,34],"130":[5,6,36],"131":[5,6,24],"132":[4,6,13],"133":[7,6,15],"134":[7,6,15],"135":[4,6,49],"136":[5,6,40],"137":[7,6,34],"138":[6,6,15],"139":[6,6,15],"140":[3,6,48],"141":[4,6,45],"142":[6,6,15],"143":[7,6,16],"144":[9,6,58],"145":[7,6,16],"146":[7,6,41],"147":[7,6,18],"148":[5,6,24],"149":[3,4,7],"150":[3,4,8],"151":[3,4,8],"152":[3,4,8],"153":[2,1,3],"154":[2,1,3],"155":[2,1,3],"156":[3,1,3],"157":[2,3,2],"158":[6,5,51],"159":[3,1,3],"160":[2,3,2],"161":[6,5,51],"162":[2,1,3],"163":[1,1,2],"164":[1,1,7]},"averageFieldLength":[5.593939393939395,4.963636363636361,24.272727272727273],"storedFields":{"0":{"title":"mbcp","titles":[]},"1":{"title":"mbcp","titles":[]},"2":{"title":"mbcp.mp_math.angle","titles":[]},"3":{"title":"class Angle","titles":["mbcp.mp_math.angle"]},"4":{"title":"class AnyAngle(Angle)","titles":["mbcp.mp_math.angle"]},"5":{"title":"def __init__(self, value: float, is_radian: bool = False)","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"6":{"title":"def complementary(self) -> AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"7":{"title":"def supplementary(self) -> AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"8":{"title":"def degree(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"9":{"title":"def minimum_positive(self) -> AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"10":{"title":"def maximum_negative(self) -> AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"11":{"title":"def sin(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"12":{"title":"def cos(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"13":{"title":"def tan(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"14":{"title":"def cot(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"15":{"title":"def sec(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"16":{"title":"def csc(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"17":{"title":"def self + other: AnyAngle => AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"18":{"title":"def __eq__(self, other)","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"19":{"title":"def self - other: AnyAngle => AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"20":{"title":"def self * other: float => AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"21":{"title":"def self / other: float => AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"22":{"title":"def self / other: AnyAngle => float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"23":{"title":"def self / other","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"24":{"title":"mbcp.mp_math.const","titles":[]},"25":{"title":"var PI","titles":["mbcp.mp_math.const"]},"26":{"title":"var E","titles":["mbcp.mp_math.const"]},"27":{"title":"var GOLDEN_RATIO","titles":["mbcp.mp_math.const"]},"28":{"title":"var GAMMA","titles":["mbcp.mp_math.const"]},"29":{"title":"var EPSILON","titles":["mbcp.mp_math.const"]},"30":{"title":"var APPROX","titles":["mbcp.mp_math.const"]},"31":{"title":"mbcp.mp_math.equation","titles":[]},"32":{"title":"class CurveEquation","titles":["mbcp.mp_math.equation"]},"33":{"title":"def __init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc)","titles":["mbcp.mp_math.equation","class CurveEquation"]},"34":{"title":"def __call__(self, *t: Var) -> Point3 | tuple[Point3, ...]","titles":["mbcp.mp_math.equation","class CurveEquation"]},"35":{"title":"def get_partial_derivative_func(func: MultiVarsFunc, var: int | tuple[int, ...], epsilon: Number = EPSILON) -> MultiVarsFunc","titles":["mbcp.mp_math.equation"]},"36":{"title":"mbcp.mp_math.function","titles":[]},"37":{"title":"def cal_gradient_3vf(func: ThreeSingleVarsFunc, p: Point3, epsilon: float = EPSILON) -> Vector3","titles":["mbcp.mp_math.function"]},"38":{"title":"def curry(func: MultiVarsFunc, *args: Var) -> OneVarFunc","titles":["mbcp.mp_math.function"]},"39":{"title":"mbcp.mp_math","titles":[]},"40":{"title":"mbcp.mp_math.line","titles":[]},"41":{"title":"class Line3","titles":["mbcp.mp_math.line"]},"42":{"title":"def __init__(self, point: Point3, direction: Vector3)","titles":["mbcp.mp_math.line","class Line3"]},"43":{"title":"def approx(self, other: Line3, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"44":{"title":"def cal_angle(self, other: Line3) -> AnyAngle","titles":["mbcp.mp_math.line","class Line3"]},"45":{"title":"def cal_distance(self, other: Line3 | Point3) -> float","titles":["mbcp.mp_math.line","class Line3"]},"46":{"title":"def cal_intersection(self, other: Line3) -> Point3","titles":["mbcp.mp_math.line","class Line3"]},"47":{"title":"def cal_perpendicular(self, point: Point3) -> Line3","titles":["mbcp.mp_math.line","class Line3"]},"48":{"title":"def get_point(self, t: RealNumber) -> Point3","titles":["mbcp.mp_math.line","class Line3"]},"49":{"title":"def get_parametric_equations(self) -> tuple[OneSingleVarFunc, OneSingleVarFunc, OneSingleVarFunc]","titles":["mbcp.mp_math.line","class Line3"]},"50":{"title":"def is_approx_parallel(self, other: Line3, epsilon: float = 1e-06) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"51":{"title":"def is_parallel(self, other: Line3) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"52":{"title":"def is_collinear(self, other: Line3) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"53":{"title":"def is_point_on(self, point: Point3) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"54":{"title":"def is_coplanar(self, other: Line3) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"55":{"title":"def simplify(self)","titles":["mbcp.mp_math.line","class Line3"]},"56":{"title":"def from_two_points(cls, p1: Point3, p2: Point3) -> Line3","titles":["mbcp.mp_math.line","class Line3"]},"57":{"title":"def __and__(self, other: Line3) -> Line3 | Point3 | None","titles":["mbcp.mp_math.line","class Line3"]},"58":{"title":"def __eq__(self, other) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"59":{"title":"mbcp.mp_math","titles":[]},"60":{"title":"mbcp.mp_math.mp_math_typing","titles":[]},"61":{"title":"var RealNumber","titles":["mbcp.mp_math.mp_math_typing"]},"62":{"title":"var Number","titles":["mbcp.mp_math.mp_math_typing"]},"63":{"title":"var SingleVar","titles":["mbcp.mp_math.mp_math_typing"]},"64":{"title":"var ArrayVar","titles":["mbcp.mp_math.mp_math_typing"]},"65":{"title":"var Var","titles":["mbcp.mp_math.mp_math_typing"]},"66":{"title":"var OneSingleVarFunc","titles":["mbcp.mp_math.mp_math_typing"]},"67":{"title":"var OneArrayFunc","titles":["mbcp.mp_math.mp_math_typing"]},"68":{"title":"var OneVarFunc","titles":["mbcp.mp_math.mp_math_typing"]},"69":{"title":"var TwoSingleVarsFunc","titles":["mbcp.mp_math.mp_math_typing"]},"70":{"title":"var TwoArraysFunc","titles":["mbcp.mp_math.mp_math_typing"]},"71":{"title":"var TwoVarsFunc","titles":["mbcp.mp_math.mp_math_typing"]},"72":{"title":"var ThreeSingleVarsFunc","titles":["mbcp.mp_math.mp_math_typing"]},"73":{"title":"var ThreeArraysFunc","titles":["mbcp.mp_math.mp_math_typing"]},"74":{"title":"var ThreeVarsFunc","titles":["mbcp.mp_math.mp_math_typing"]},"75":{"title":"var MultiSingleVarsFunc","titles":["mbcp.mp_math.mp_math_typing"]},"76":{"title":"var MultiArraysFunc","titles":["mbcp.mp_math.mp_math_typing"]},"77":{"title":"var MultiVarsFunc","titles":["mbcp.mp_math.mp_math_typing"]},"78":{"title":"mbcp.mp_math.plane","titles":[]},"79":{"title":"class Plane3","titles":["mbcp.mp_math.plane"]},"80":{"title":"def __init__(self, a: float, b: float, c: float, d: float)","titles":["mbcp.mp_math.plane","class Plane3"]},"81":{"title":"def approx(self, other: Plane3) -> bool","titles":["mbcp.mp_math.plane","class Plane3"]},"82":{"title":"def cal_angle(self, other: Line3 | Plane3) -> AnyAngle","titles":["mbcp.mp_math.plane","class Plane3"]},"83":{"title":"def cal_distance(self, other: Plane3 | Point3) -> float","titles":["mbcp.mp_math.plane","class Plane3"]},"84":{"title":"def cal_intersection_line3(self, other: Plane3) -> Line3","titles":["mbcp.mp_math.plane","class Plane3"]},"85":{"title":"def cal_intersection_point3(self, other: Line3) -> Point3","titles":["mbcp.mp_math.plane","class Plane3"]},"86":{"title":"def cal_parallel_plane3(self, point: Point3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"87":{"title":"def is_parallel(self, other: Plane3) -> bool","titles":["mbcp.mp_math.plane","class Plane3"]},"88":{"title":"def normal(self) -> Vector3","titles":["mbcp.mp_math.plane","class Plane3"]},"89":{"title":"def from_point_and_normal(cls, point: Point3, normal: Vector3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"90":{"title":"def from_three_points(cls, p1: Point3, p2: Point3, p3: Point3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"91":{"title":"def from_two_lines(cls, l1: Line3, l2: Line3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"92":{"title":"def from_point_and_line(cls, point: Point3, line: Line3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"93":{"title":"def __and__(self, other: Line3) -> Point3 | None","titles":["mbcp.mp_math.plane","class Plane3"]},"94":{"title":"def __and__(self, other: Plane3) -> Line3 | None","titles":["mbcp.mp_math.plane","class Plane3"]},"95":{"title":"def __and__(self, other)","titles":["mbcp.mp_math.plane","class Plane3"]},"96":{"title":"def __eq__(self, other) -> bool","titles":["mbcp.mp_math.plane","class Plane3"]},"97":{"title":"def __rand__(self, other: Line3) -> Point3","titles":["mbcp.mp_math.plane","class Plane3"]},"98":{"title":"mbcp.mp_math.point","titles":[]},"99":{"title":"class Point3","titles":["mbcp.mp_math.point"]},"100":{"title":"def __init__(self, x: float, y: float, z: float)","titles":["mbcp.mp_math.point","class Point3"]},"101":{"title":"def approx(self, other: Point3, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.point","class Point3"]},"102":{"title":"def self + other: Vector3 => Point3","titles":["mbcp.mp_math.point","class Point3"]},"103":{"title":"def self + other: Point3 => Point3","titles":["mbcp.mp_math.point","class Point3"]},"104":{"title":"def self + other","titles":["mbcp.mp_math.point","class Point3"]},"105":{"title":"def __eq__(self, other)","titles":["mbcp.mp_math.point","class Point3"]},"106":{"title":"def self - other: Point3 => Vector3","titles":["mbcp.mp_math.point","class Point3"]},"107":{"title":"mbcp.mp_math.segment","titles":[]},"108":{"title":"class Segment3","titles":["mbcp.mp_math.segment"]},"109":{"title":"def __init__(self, p1: Point3, p2: Point3)","titles":["mbcp.mp_math.segment","class Segment3"]},"110":{"title":"mbcp.mp_math.utils","titles":[]},"111":{"title":"def clamp(x: float, min_: float, max_: float) -> float","titles":["mbcp.mp_math.utils"]},"112":{"title":"class Approx","titles":["mbcp.mp_math.utils"]},"113":{"title":"def __init__(self, value: RealNumber)","titles":["mbcp.mp_math.utils","class Approx"]},"114":{"title":"def __eq__(self, other)","titles":["mbcp.mp_math.utils","class Approx"]},"115":{"title":"def raise_type_error(self, other)","titles":["mbcp.mp_math.utils","class Approx"]},"116":{"title":"def __ne__(self, other)","titles":["mbcp.mp_math.utils","class Approx"]},"117":{"title":"def approx(x: float, y: float = 0.0, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.utils"]},"118":{"title":"def sign(x: float, only_neg: bool = False) -> str","titles":["mbcp.mp_math.utils"]},"119":{"title":"def sign_format(x: float, only_neg: bool = False) -> str","titles":["mbcp.mp_math.utils"]},"120":{"title":"mbcp.mp_math.vector","titles":[]},"121":{"title":"class Vector3","titles":["mbcp.mp_math.vector"]},"122":{"title":"def __init__(self, x: float, y: float, z: float)","titles":["mbcp.mp_math.vector","class Vector3"]},"123":{"title":"def approx(self, other: Vector3, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.vector","class Vector3"]},"124":{"title":"def cal_angle(self, other: Vector3) -> AnyAngle","titles":["mbcp.mp_math.vector","class Vector3"]},"125":{"title":"def cross(self, other: Vector3) -> Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"126":{"title":"def is_approx_parallel(self, other: Vector3, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.vector","class Vector3"]},"127":{"title":"def is_parallel(self, other: Vector3) -> bool","titles":["mbcp.mp_math.vector","class Vector3"]},"128":{"title":"def normalize(self)","titles":["mbcp.mp_math.vector","class Vector3"]},"129":{"title":"def np_array(self) -> np.ndarray","titles":["mbcp.mp_math.vector","class Vector3"]},"130":{"title":"def length(self) -> float","titles":["mbcp.mp_math.vector","class Vector3"]},"131":{"title":"def unit(self) -> Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"132":{"title":"def __abs__(self)","titles":["mbcp.mp_math.vector","class Vector3"]},"133":{"title":"def self + other: Vector3 => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"134":{"title":"def self + other: Point3 => Point3","titles":["mbcp.mp_math.vector","class Vector3"]},"135":{"title":"def self + other","titles":["mbcp.mp_math.vector","class Vector3"]},"136":{"title":"def __eq__(self, other)","titles":["mbcp.mp_math.vector","class Vector3"]},"137":{"title":"def self + other: Point3 => Point3","titles":["mbcp.mp_math.vector","class Vector3"]},"138":{"title":"def self - other: Vector3 => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"139":{"title":"def self - other: Point3 => Point3","titles":["mbcp.mp_math.vector","class Vector3"]},"140":{"title":"def self - other","titles":["mbcp.mp_math.vector","class Vector3"]},"141":{"title":"def self - other: Point3","titles":["mbcp.mp_math.vector","class Vector3"]},"142":{"title":"def self * other: Vector3 => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"143":{"title":"def self * other: RealNumber => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"144":{"title":"def self * other: int | float | Vector3 => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"145":{"title":"def self * other: RealNumber => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"146":{"title":"def self @ other: Vector3 => RealNumber","titles":["mbcp.mp_math.vector","class Vector3"]},"147":{"title":"def self / other: RealNumber => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"148":{"title":"def - self => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"149":{"title":"var zero_vector3","titles":["mbcp.mp_math.vector"]},"150":{"title":"var x_axis","titles":["mbcp.mp_math.vector"]},"151":{"title":"var y_axis","titles":["mbcp.mp_math.vector"]},"152":{"title":"var z_axis","titles":["mbcp.mp_math.vector"]},"153":{"title":"mbcp.particle","titles":[]},"154":{"title":"mbcp.particle","titles":[]},"155":{"title":"mbcp.presets","titles":[]},"156":{"title":"mbcp.presets.model","titles":[]},"157":{"title":"class GeometricModels","titles":["mbcp.presets.model"]},"158":{"title":"def sphere(radius: float, density: float)","titles":["mbcp.presets.model","class GeometricModels"]},"159":{"title":"mbcp.presets.model","titles":[]},"160":{"title":"class GeometricModels","titles":["mbcp.presets.model"]},"161":{"title":"def sphere(radius: float, density: float)","titles":["mbcp.presets.model","class GeometricModels"]},"162":{"title":"mbcp.presets","titles":[]},"163":{"title":"开始不了一点","titles":[]},"164":{"title":"Reference","titles":[]}},"dirtCount":0,"index":[["∫12x111",{"2":{"163":1}}],["开始不了一点",{"0":{"163":1}}],["4",{"2":{"158":1,"161":1}}],["球体上的点集",{"2":{"158":2,"161":2}}],["生成球体上的点集",{"2":{"158":2,"161":2}}],["几何模型点集",{"2":{"156":1,"159":1}}],["零向量",{"2":{"149":1}}],["负向量",{"2":{"148":2}}],["取负",{"2":{"148":2}}],["取两平面的交集",{"2":{"95":2}}],["非点乘",{"2":{"144":2}}],["别去点那边实现了",{"2":{"137":2}}],["单位向量",{"2":{"131":2}}],["单变量",{"2":{"63":1}}],["模",{"2":{"130":2}}],["向量的模",{"2":{"130":2}}],["向量积",{"2":{"125":2}}],["返回numpy数组",{"2":{"129":1}}],["返回如下行列式的结果",{"2":{"125":1}}],["将向量归一化",{"2":{"128":2}}],["j",{"2":{"125":1}}],["其余结果的模为平行四边形的面积",{"2":{"125":2}}],["叉乘使用cross",{"2":{"144":2}}],["叉乘结果",{"2":{"125":2}}],["叉乘为0",{"2":{"125":2}}],["叉乘",{"2":{"125":2}}],["以及一些常用的向量",{"2":{"120":1}}],["格式化符号数",{"2":{"119":2}}],["quot",{"2":{"118":2,"119":4}}],["符号",{"2":{"118":2,"119":2}}],["获取该向量的单位向量",{"2":{"131":2}}],["获取数的符号",{"2":{"118":2}}],["获取直线的参数方程",{"2":{"49":2}}],["获取直线上的点",{"2":{"48":2}}],["用于判断是否近似于0",{"2":{"117":2}}],["用于近似比较对象",{"2":{"113":2}}],["或包装一个实数",{"2":{"117":2}}],["或整数元组",{"2":{"35":2}}],["限定在区间内的值",{"2":{"111":2}}],["值",{"2":{"111":2}}],["区间限定函数",{"2":{"111":2}}],["us",{"2":{"164":1}}],["unit",{"0":{"131":1},"2":{"131":1}}],["unsupported",{"2":{"45":1,"82":1,"83":1,"95":1,"115":1,"135":1,"140":1,"141":1,"144":1}}],["utils",{"0":{"110":1},"1":{"111":1,"112":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1}}],["中心点",{"2":{"109":1}}],["中实现",{"2":{"106":2}}],["长度",{"2":{"109":1}}],["线段的另一个端点",{"2":{"109":2}}],["线段的一个端点",{"2":{"109":2}}],["新的向量或点",{"2":{"135":2}}],["新的向量",{"2":{"106":2,"140":2}}],["新的点",{"2":{"104":2,"137":2,"141":2}}],["已在",{"2":{"106":2}}],["已知一个函数$f",{"2":{"37":1}}],["已知一个函数f",{"2":{"37":1}}],["坐标",{"2":{"100":6}}],["笛卡尔坐标系中的点",{"2":{"100":2}}],["人话",{"2":{"95":2}}],["法向量",{"2":{"88":2,"89":2}}],["k``",{"2":{"125":1}}],["k",{"2":{"81":12}}],["常数项",{"2":{"80":2}}],["常量",{"2":{"25":1}}],["平面上一点",{"2":{"89":2,"92":2}}],["平面的法向量",{"2":{"88":2}}],["平面",{"2":{"86":2,"89":2,"90":2,"91":2,"92":2}}],["平面与直线平行或重合",{"2":{"85":2}}],["平面平行且无交线",{"2":{"84":2}}],["平面方程",{"2":{"80":2}}],["平行线返回none",{"2":{"57":2}}],["多元函数",{"2":{"77":1}}],["多元数组函数",{"2":{"76":1}}],["多元单变量函数",{"2":{"75":1}}],["二元函数",{"2":{"71":1}}],["二元数组函数",{"2":{"70":1}}],["二元单变量函数",{"2":{"69":1}}],["一元函数",{"2":{"68":1}}],["一元数组函数",{"2":{"67":1}}],["一元单变量函数",{"2":{"66":1}}],["一阶偏导",{"2":{"35":2}}],["变量",{"2":{"65":1}}],["变量位置",{"2":{"35":2}}],["数组运算结果",{"2":{"144":2}}],["数组运算",{"2":{"144":2}}],["数组变量",{"2":{"64":1}}],["数2",{"2":{"117":2}}],["数1",{"2":{"117":2}}],["数",{"2":{"62":1,"118":2,"119":2}}],["数学工具",{"2":{"0":1,"1":1}}],["实数",{"2":{"61":1,"113":2}}],["∧",{"2":{"58":2}}],["交线",{"2":{"84":2,"95":2}}],["交线返回交点",{"2":{"57":2}}],["交集",{"2":{"57":2,"95":2}}],["交点",{"2":{"46":2,"85":2}}],["重合线返回自身",{"2":{"57":2}}],["由点和直线构造平面",{"2":{"92":2}}],["由点和法向量构造平面",{"2":{"89":2}}],["由两直线构造平面",{"2":{"91":2}}],["由两点构造直线",{"2":{"56":2}}],["由三点构造平面",{"2":{"90":2}}],["由一个点和一个方向向量确定",{"2":{"42":2}}],["工厂函数",{"2":{"56":2,"89":2,"90":2,"91":2,"92":2}}],["并对向量单位化",{"2":{"55":2}}],["处理",{"2":{"55":2}}],["处的梯度向量为",{"2":{"37":1}}],["化",{"2":{"55":2}}],["按照可行性一次对x",{"2":{"55":2}}],["不返回值",{"2":{"55":2,"128":2}}],["不支持的类型",{"2":{"45":2,"82":2,"83":2,"95":2}}],["自体归一化",{"2":{"128":2}}],["自体简化",{"2":{"55":2}}],["自然对数的底",{"2":{"26":1}}],["等价相等",{"2":{"55":2}}],["简化直线方程",{"2":{"55":2}}],["两直线方向向量的叉乘与两直线上任意一点的向量的点积为0",{"2":{"54":2}}],["两角的和为180°",{"2":{"7":2}}],["两角的和为90°",{"2":{"6":2}}],["充要条件",{"2":{"54":2}}],["判断两个向量是否相等",{"2":{"136":2}}],["判断两个向量是否平行",{"2":{"127":2}}],["判断两个向量是否近似平行",{"2":{"126":2}}],["判断两个向量是否近似相等",{"2":{"123":2}}],["判断两个数是否近似相等",{"2":{"117":2}}],["判断两个点是否相等",{"2":{"105":2}}],["判断两个点是否近似相等",{"2":{"101":2}}],["判断两个平面是否等价",{"2":{"96":2}}],["判断两个平面是否平行",{"2":{"87":2}}],["判断两个平面是否近似相等",{"2":{"81":2}}],["判断两条直线是否等价",{"2":{"58":2}}],["判断两条直线是否共面",{"2":{"54":2}}],["判断两条直线是否共线",{"2":{"52":2}}],["判断两条直线是否平行",{"2":{"51":2}}],["判断两条直线是否近似平行",{"2":{"50":2}}],["判断两条直线是否近似相等",{"2":{"43":2}}],["判断点是否在直线上",{"2":{"53":2}}],["另一个向量或数",{"2":{"144":2}}],["另一个向量或点",{"2":{"135":2,"140":2}}],["另一个向量",{"2":{"124":2,"125":2,"126":2,"127":2,"136":2,"146":2}}],["另一个点或向量",{"2":{"104":2}}],["另一个点",{"2":{"101":2,"105":2,"106":2,"137":2,"141":2}}],["另一个平面或点",{"2":{"83":2}}],["另一个平面或直线",{"2":{"82":2,"95":2}}],["另一个平面",{"2":{"81":2,"84":2,"87":2,"96":2}}],["另一",{"2":{"51":2,"52":2,"54":2}}],["另一条直线或点",{"2":{"45":2}}],["另一条直线",{"2":{"43":2,"44":2,"46":2,"50":2,"57":2,"58":2}}],["则两向量平行",{"2":{"125":2}}],["则同一个t对应的点不同",{"2":{"48":2}}],["则其在点$",{"2":{"37":1}}],["则其在点",{"2":{"37":1}}],["但起始点和方向向量不同",{"2":{"48":2}}],["同一条直线",{"2":{"48":2}}],["垂线",{"2":{"47":2}}],["指定点",{"2":{"47":2,"86":2}}],["直线",{"2":{"56":2,"85":2,"91":4,"92":2}}],["直线不共面",{"2":{"46":2}}],["直线平行",{"2":{"46":2}}],["直线上的一点",{"2":{"42":2}}],["距离",{"2":{"45":2,"83":2}}],["夹角",{"2":{"44":2,"82":2,"124":2}}],["是否只返回负数的符号",{"2":{"118":2,"119":2}}],["是否相等",{"2":{"105":2,"136":2}}],["是否等价",{"2":{"58":2,"96":2}}],["是否共面",{"2":{"54":2}}],["是否共线",{"2":{"52":2}}],["是否在直线上",{"2":{"53":2}}],["是否平行",{"2":{"51":2,"87":2,"127":2}}],["是否近似平行",{"2":{"50":2,"126":2}}],["是否近似相等",{"2":{"43":2,"81":2,"101":2,"117":2,"123":2}}],["是否为弧度",{"2":{"5":2}}],["误差",{"2":{"43":2,"50":2,"101":2,"117":2,"126":2}}],["方向向量",{"2":{"42":2,"109":1}}],["三元数组函数",{"2":{"73":1}}],["三元单变量函数",{"2":{"72":1}}],["三元函数",{"2":{"37":2,"74":1}}],["三维空间中的线段",{"2":{"109":2}}],["三维空间中的直线",{"2":{"42":2}}],["三维向量",{"2":{"39":1,"59":1}}],["三维线段",{"2":{"39":1,"59":1}}],["三维点",{"2":{"39":1,"59":1}}],["三维平面",{"2":{"39":1,"59":1}}],["三维直线",{"2":{"39":1,"59":1}}],["导入的类有",{"2":{"39":1,"59":1}}],["本包定义了一些常用的导入",{"2":{"39":1,"59":1}}],["本模块塞了一些预设",{"2":{"155":1,"162":1}}],["本模块用于内部类型提示",{"2":{"60":1}}],["本模块定义了粒子生成相关的工具",{"2":{"153":1,"154":1}}],["本模块定义了3维向量的类vector3",{"2":{"120":1}}],["本模块定义了一些常用的工具函数",{"2":{"110":1}}],["本模块定义了一些常用的常量",{"2":{"24":1}}],["本模块定义了三维空间中点的类",{"2":{"98":1}}],["本模块定义了三维空间中的线段类",{"2":{"107":1}}],["本模块定义了三维空间中的平面类",{"2":{"78":1}}],["本模块定义了三维空间中的直线类",{"2":{"40":1}}],["本模块定义了方程相关的类和函数以及一些常用的数学函数",{"2":{"31":1}}],["本模块定义了角度相关的类",{"2":{"2":1}}],["本模块是主模块",{"2":{"0":1,"1":1}}],["help",{"2":{"164":1}}],["have",{"2":{"84":1}}],["html",{"2":{"43":2,"45":2,"46":1,"49":1,"50":2,"51":1,"52":1,"53":1,"54":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":2,"84":1,"85":1,"87":1,"95":2,"96":1,"100":1,"101":2,"105":1,"111":1,"117":2,"118":3,"119":3,"126":2,"127":1,"129":1,"130":1,"136":1,"144":1,"146":1}}],["https",{"2":{"38":1,"43":2,"45":2,"46":1,"49":1,"50":2,"51":1,"52":1,"53":1,"54":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":2,"84":1,"85":1,"87":1,"95":2,"96":1,"100":1,"101":2,"105":1,"111":1,"117":2,"118":3,"119":3,"126":2,"127":1,"129":1,"130":1,"136":1,"144":1,"146":1}}],["high",{"2":{"35":2}}],["hide",{"2":{"35":2,"38":1}}],["6",{"2":{"38":2}}],["3维向量",{"2":{"122":2}}],["3a",{"2":{"45":2,"46":1,"49":1,"50":2,"51":1,"52":1,"53":1,"54":1,"58":1,"80":1,"82":1,"83":2,"84":1,"85":1,"87":1,"95":2,"96":1,"126":2,"127":1,"129":1,"130":1,"136":1,"144":1,"146":1}}],["355859667",{"2":{"38":1}}],["3",{"2":{"38":2,"43":2,"45":2,"46":1,"49":1,"50":2,"51":1,"52":1,"53":1,"54":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":2,"84":1,"85":1,"87":1,"95":2,"96":1,"100":1,"101":2,"105":1,"111":1,"117":2,"118":3,"119":3,"126":2,"127":1,"130":1,"136":1,"144":1,"146":1}}],["3vf",{"0":{"37":1},"2":{"37":1}}],["by",{"2":{"80":2}}],["bound=iterable",{"2":{"64":1}}],["bound=number",{"2":{"63":1}}],["bool=false",{"2":{"5":1,"118":1,"119":1}}],["bool",{"0":{"5":1,"43":1,"50":1,"51":1,"52":1,"53":1,"54":1,"58":1,"81":1,"87":1,"96":1,"101":1,"117":1,"118":1,"119":1,"123":1,"126":1,"127":1},"2":{"43":3,"50":3,"51":3,"52":3,"53":3,"54":3,"58":3,"81":3,"87":3,"96":3,"101":3,"105":2,"117":3,"118":2,"119":2,"123":1,"126":3,"127":3,"136":2}}],["b",{"0":{"80":1},"2":{"38":4,"80":5,"81":7,"83":2,"84":12,"85":2,"88":1,"89":3}}],["柯里化后的函数",{"2":{"38":2}}],["柯理化",{"2":{"38":2}}],["函数式编程",{"2":{"38":1}}],["函数",{"2":{"38":2}}],["有关函数柯里化",{"2":{"38":2}}],["对多参数函数进行柯里化",{"2":{"38":2}}],["d",{"0":{"80":1},"2":{"80":7,"81":6,"83":1,"84":6,"85":1,"89":2}}],["documentation",{"2":{"164":1}}],["doc",{"2":{"129":1}}],["docs",{"2":{"43":2,"45":2,"46":1,"49":1,"50":2,"51":1,"52":1,"53":1,"54":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":2,"84":1,"85":1,"87":1,"95":2,"96":1,"100":1,"101":2,"105":1,"111":1,"117":2,"118":3,"119":3,"126":2,"127":1,"130":1,"136":1,"144":1,"146":1}}],["do",{"2":{"46":2}}],["distance",{"0":{"45":1,"83":1},"2":{"45":1,"83":1}}],["direction",{"0":{"42":1},"2":{"42":5,"43":1,"44":2,"45":8,"46":6,"47":1,"48":1,"49":3,"50":2,"51":2,"52":1,"53":1,"54":2,"55":4,"56":2,"58":3,"82":1,"84":2,"85":4,"91":1,"92":1,"95":1,"109":2}}],["dz",{"2":{"37":2}}],["dy",{"2":{"37":2}}],["dx",{"2":{"37":2}}],["density",{"0":{"158":1,"161":1},"2":{"158":4,"161":4}}],["derivative",{"0":{"35":1},"2":{"35":6}}],["degree",{"0":{"8":1},"2":{"8":1}}],["default",{"2":{"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"149":1,"150":1,"151":1,"152":1}}],["def",{"0":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1},"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"21":1,"22":1,"35":2,"38":2,"56":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"102":1,"103":1,"129":1,"130":1,"131":1,"133":1,"134":1,"138":1,"139":1,"142":1,"143":1,"158":1,"161":1}}],["description",{"2":{"0":1,"1":1,"2":1,"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"24":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"31":1,"33":1,"34":1,"35":1,"36":1,"37":1,"38":1,"39":1,"40":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"59":1,"60":1,"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"78":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"95":1,"96":1,"98":1,"100":1,"101":1,"104":1,"105":1,"106":1,"107":1,"109":1,"110":1,"111":1,"113":1,"117":1,"118":1,"119":1,"120":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"130":1,"131":1,"135":1,"136":1,"137":1,"140":1,"141":1,"144":1,"146":1,"148":1,"149":1,"150":1,"151":1,"152":1,"153":1,"154":1,"155":1,"156":1,"158":1,"159":1,"161":1,"162":1}}],["$处的梯度向量为",{"2":{"37":1}}],["$",{"2":{"37":3}}],["梯度",{"2":{"37":2}}],["点乘结果",{"2":{"146":2}}],["点乘",{"2":{"146":2}}],["点乘使用",{"2":{"144":2}}],["点3",{"2":{"90":2}}],["点法式构造",{"2":{"89":2}}],["点2",{"2":{"56":2,"90":2}}],["点1",{"2":{"56":2,"90":2}}],["点",{"2":{"37":2,"48":2,"53":2}}],["∂f∂z",{"2":{"37":1}}],["∂f∂y",{"2":{"37":1}}],["∂f∂x",{"2":{"37":1}}],["∇f",{"2":{"37":1}}],["计算平行于该平面且过指定点的平面",{"2":{"86":2}}],["计算平面与直线的交点",{"2":{"85":2}}],["计算平面与平面或点之间的距离",{"2":{"83":2}}],["计算平面与平面之间的夹角",{"2":{"82":2}}],["计算两个向量之间的夹角",{"2":{"124":2}}],["计算两平面的交线",{"2":{"84":2}}],["计算两条直线点集合的交集",{"2":{"57":2}}],["计算两条直线的交点",{"2":{"46":2}}],["计算直线经过指定点p的垂线",{"2":{"47":2}}],["计算直线和直线或点之间的距离",{"2":{"45":2}}],["计算直线和直线之间的夹角",{"2":{"44":2}}],["计算三元函数在某点的梯度向量",{"2":{"37":2}}],["计算曲线上的点",{"2":{"34":2}}],["求高阶偏导函数",{"2":{"35":1}}],["求n元函数一阶偏导函数",{"2":{"35":2}}],["l2",{"0":{"91":1},"2":{"91":5}}],["l1",{"0":{"91":1},"2":{"91":7}}],["lambda",{"2":{"49":3}}],["left",{"2":{"37":1}}],["length",{"0":{"130":1},"2":{"45":5,"46":1,"82":2,"109":2,"124":2,"126":1,"128":5,"130":1,"131":1,"132":1}}],["len",{"2":{"34":1}}],["linalg",{"2":{"84":3}}],["lines",{"0":{"91":1},"2":{"46":2,"91":1}}],["line",{"0":{"40":1,"92":2},"1":{"41":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1},"2":{"43":1,"44":1,"45":1,"46":1,"47":1,"50":1,"51":1,"52":1,"54":1,"56":1,"57":2,"58":1,"82":1,"84":1,"85":2,"91":1,"92":6,"95":2}}],["line3",{"0":{"41":1,"43":1,"44":1,"45":1,"46":1,"47":1,"50":1,"51":1,"52":1,"54":1,"56":1,"57":2,"82":1,"84":2,"85":1,"91":2,"92":1,"93":1,"94":1,"97":1},"1":{"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1},"2":{"39":1,"43":3,"44":3,"45":4,"46":3,"47":4,"50":3,"51":3,"52":3,"54":3,"56":3,"57":6,"58":2,"59":1,"82":4,"84":5,"85":3,"91":5,"92":3,"93":1,"94":1,"95":6,"97":1,"114":1}}],["library",{"2":{"43":2,"45":2,"46":1,"49":1,"50":2,"51":1,"52":1,"53":1,"54":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":2,"84":1,"85":1,"87":1,"95":2,"96":1,"100":1,"101":2,"105":1,"111":1,"117":2,"118":3,"119":3,"126":2,"127":1,"130":1,"136":1,"144":1,"146":1}}],["list",{"2":{"35":8,"158":10,"161":10}}],["litedoc",{"2":{"35":2,"38":1}}],["`np",{"2":{"129":1}}],["`none`",{"2":{"57":1,"95":1}}],["``x2",{"2":{"125":1}}],["``x1",{"2":{"125":1}}],["``i",{"2":{"125":1}}],["```",{"2":{"38":1}}],["```python",{"2":{"38":1}}],["`str`",{"2":{"118":1,"119":1}}],["`plane3`",{"2":{"81":1,"82":1,"83":1,"84":1,"86":1,"87":1,"89":1,"95":1,"96":1}}],["`point3`",{"2":{"37":1,"42":1,"45":1,"46":1,"47":1,"48":1,"53":1,"56":2,"57":1,"83":1,"85":1,"86":1,"89":1,"90":3,"92":1,"95":1,"101":1,"104":2,"105":1,"106":1,"109":2,"135":2,"137":2,"140":2,"141":2}}],["`onesinglevarfunc`",{"2":{"49":3}}],["`onevarfunc`",{"2":{"33":3}}],["`realnumber`",{"2":{"48":1,"113":1}}],["`tuple`",{"2":{"49":1}}],["`typeerror`",{"2":{"45":1,"82":1,"83":1,"95":1}}],["`threesinglevarsfunc`",{"2":{"37":1}}],["`anyangle`",{"2":{"44":1,"82":1,"124":1}}],["`bool`",{"2":{"43":1,"50":1,"51":1,"52":1,"53":1,"54":1,"58":1,"81":1,"87":1,"96":1,"101":1,"105":1,"117":1,"118":1,"119":1,"126":1,"127":1,"136":1}}],["`float`",{"2":{"43":1,"45":1,"50":1,"80":4,"83":1,"100":3,"101":1,"111":4,"117":3,"118":1,"119":1,"126":1,"130":1,"144":1,"146":1}}],["`line3`",{"2":{"43":1,"44":1,"45":1,"46":1,"47":1,"50":1,"51":1,"52":1,"54":1,"56":1,"57":2,"58":1,"82":1,"84":1,"85":1,"91":2,"92":1,"95":2}}],["`valueerror`",{"2":{"46":2,"84":1,"85":1}}],["`var`",{"2":{"38":1}}],["`vector3`",{"2":{"42":1,"88":1,"89":1,"104":1,"106":2,"124":1,"125":2,"126":1,"127":1,"131":1,"135":2,"136":1,"140":2,"144":2,"146":1,"148":1}}],["`multivarsfunc`",{"2":{"35":1,"38":1}}],["无效变量类型",{"2":{"35":2}}],["偏导函数",{"2":{"35":2}}],["偏移量",{"2":{"35":2,"37":2}}],["高阶偏导数值",{"2":{"35":1}}],["高阶偏导",{"2":{"35":2}}],["可直接从mbcp",{"2":{"39":1,"59":1}}],["可参考",{"2":{"38":1}}],["可参考函数式编程",{"2":{"38":1}}],["可为整数",{"2":{"35":2}}],["可导入",{"2":{"0":1,"1":1}}],["因此该函数的稳定性有待提升",{"2":{"35":2}}],["目前数学界对于一个函数的导函数并没有通解的说法",{"2":{"35":2}}],["目标点",{"2":{"34":2}}],["warning",{"2":{"35":2}}],["慎用",{"2":{"35":2}}],["这玩意不太稳定",{"2":{"35":2}}],["num",{"2":{"158":5,"161":5}}],["numpy",{"2":{"129":2}}],["numpy数组",{"2":{"129":2}}],["number=epsilon",{"2":{"35":1}}],["number",{"0":{"35":1,"62":1},"2":{"64":1}}],["ndarray`",{"2":{"129":1}}],["ndarray",{"0":{"129":1},"2":{"129":3}}],["neg",{"0":{"118":1,"119":1},"2":{"118":4,"119":4,"148":1}}],["negative",{"0":{"10":1},"2":{"10":1}}],["ne",{"0":{"116":1},"2":{"116":1}}],["np",{"0":{"129":2},"2":{"84":9,"129":4,"158":9,"161":9}}],["no",{"2":{"84":1}}],["normal",{"0":{"88":1,"89":2},"2":{"82":5,"84":4,"85":1,"86":2,"87":2,"88":1,"89":7,"90":3,"91":1,"92":1,"95":3}}],["normalize",{"0":{"128":1},"2":{"55":1,"128":1}}],["none",{"0":{"57":1,"93":1,"94":1},"2":{"57":4,"93":1,"94":1,"95":4}}],["not",{"2":{"45":1,"46":4,"57":1,"116":1,"118":1,"119":1}}],["nabla",{"2":{"37":1}}],["n元函数",{"2":{"35":2}}],["参数方程",{"2":{"49":2}}],["参数t",{"2":{"48":2}}],["参数",{"2":{"34":2,"35":1,"38":2}}],["|",{"0":{"34":1,"35":1,"45":1,"57":2,"82":1,"83":1,"93":1,"94":1,"144":2},"2":{"34":1,"35":1,"45":3,"57":6,"61":1,"62":1,"65":1,"68":1,"71":1,"74":1,"77":1,"82":3,"83":3,"93":1,"94":1,"95":6,"104":2,"135":4,"140":4,"144":4}}],["曲线方程",{"2":{"33":2,"39":1,"59":1}}],["z轴单位向量",{"2":{"152":1}}],["z轴分量",{"2":{"122":2}}],["z2``",{"2":{"125":1}}],["z1``",{"2":{"125":1}}],["zero",{"0":{"149":1},"2":{"91":1,"127":1}}],["z系数",{"2":{"80":2}}],["zhihu",{"2":{"38":1}}],["zhuanlan",{"2":{"38":1}}],["z0",{"2":{"37":2}}],["zip",{"2":{"34":1}}],["z函数",{"2":{"33":2}}],["z",{"0":{"33":1,"100":1,"122":1,"152":1},"2":{"33":5,"34":4,"37":11,"49":2,"55":4,"83":1,"84":4,"85":4,"89":2,"100":7,"101":2,"104":2,"105":2,"106":2,"109":2,"114":2,"122":5,"123":2,"125":4,"128":1,"129":1,"130":1,"135":4,"136":2,"137":2,"140":4,"141":2,"144":3,"146":2,"147":1,"148":1,"158":2,"161":2}}],["y轴单位向量",{"2":{"151":1}}],["y轴分量",{"2":{"122":2}}],["y2",{"2":{"125":1}}],["y1",{"2":{"125":1}}],["y系数",{"2":{"80":2}}],["y0",{"2":{"37":2}}],["y函数",{"2":{"33":2}}],["y",{"0":{"33":1,"100":1,"117":1,"122":1,"151":1},"2":{"33":5,"34":4,"37":11,"49":2,"55":4,"83":1,"84":4,"85":4,"89":2,"100":7,"101":2,"104":2,"105":2,"106":2,"109":2,"114":2,"117":4,"122":5,"123":2,"125":4,"128":1,"129":1,"130":1,"135":4,"136":2,"137":2,"140":4,"141":2,"144":3,"146":2,"147":1,"148":1,"158":2,"161":2}}],["x轴单位向量",{"2":{"150":1}}],["x轴分量",{"2":{"122":2}}],["x3c",{"2":{"101":3,"114":1,"117":1,"118":1,"119":1,"123":3,"126":1}}],["x26",{"2":{"95":1}}],["x系数",{"2":{"80":2}}],["x0",{"2":{"37":2}}],["x函数",{"2":{"33":2}}],["x",{"0":{"33":1,"100":1,"111":1,"117":1,"118":1,"119":1,"122":1,"150":1},"2":{"33":5,"34":4,"37":11,"49":2,"55":2,"83":1,"84":4,"85":4,"89":2,"100":7,"101":2,"104":2,"105":2,"106":2,"109":2,"111":4,"114":2,"117":4,"118":5,"119":8,"122":5,"123":2,"125":4,"128":1,"129":1,"130":1,"135":4,"136":2,"137":2,"140":4,"141":2,"144":3,"146":2,"147":1,"148":1,"158":2,"161":2}}],["约等于判定误差",{"2":{"30":1}}],["精度误差",{"2":{"29":1}}],["06",{"0":{"50":1},"2":{"50":1}}],["001",{"2":{"30":1}}],["0001",{"2":{"29":1}}],["0",{"0":{"117":2},"2":{"28":1,"29":1,"30":1,"34":3,"37":6,"45":2,"54":1,"55":8,"80":2,"81":3,"83":2,"84":9,"85":1,"95":1,"117":1,"118":2,"119":4,"149":3,"150":2,"151":2,"152":2,"158":2,"161":2}}],["欧拉常数",{"2":{"28":1}}],["5772156649015329",{"2":{"28":1}}],["5",{"2":{"27":1,"83":1}}],["黄金分割比",{"2":{"27":1}}],["π",{"2":{"25":1}}],["to",{"2":{"164":1}}],["theta",{"2":{"158":3,"161":3}}],["the",{"2":{"85":2,"164":1}}],["three",{"0":{"90":1},"2":{"90":1}}],["threevarsfunc",{"0":{"74":1}}],["threearraysfunc",{"0":{"73":1},"2":{"74":1}}],["threesinglevarsfunc",{"0":{"37":1,"72":1},"2":{"37":3,"74":1}}],["twovarsfunc",{"0":{"71":1}}],["twoarraysfunc",{"0":{"70":1},"2":{"71":1}}],["twosinglevarsfunc",{"0":{"69":1},"2":{"71":1}}],["two",{"0":{"56":1,"91":1},"2":{"56":1,"91":1}}],["tip",{"2":{"37":2,"38":2}}],["typevar",{"2":{"63":1,"64":1}}],["typealias",{"2":{"61":1,"62":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1}}],["typeerror",{"2":{"45":3,"46":1,"82":3,"83":3,"95":3,"115":1,"135":1,"140":1,"141":1,"144":1}}],["type",{"0":{"115":1},"2":{"35":1,"45":1,"61":1,"62":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"82":2,"83":2,"95":2,"114":2,"115":4,"135":2,"140":2,"141":2,"144":2,"149":1,"150":1,"151":1,"152":1}}],["typing",{"0":{"60":1},"1":{"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1},"2":{"33":3,"35":1,"37":1,"38":2,"48":1,"49":1,"113":1}}],["tuple",{"0":{"34":1,"35":1,"49":1},"2":{"34":2,"35":2,"49":3}}],["t",{"0":{"34":1,"48":1},"2":{"34":10,"48":4,"49":6,"85":4}}],["truediv",{"2":{"21":1,"22":1,"23":1,"147":1}}],["tan",{"0":{"13":1},"2":{"13":2,"14":1}}],["error",{"0":{"115":1},"2":{"114":2,"115":1}}],["exceptions",{"2":{"45":1,"46":1,"82":1,"83":1,"84":1,"85":1,"95":1}}],["examples",{"2":{"38":2}}],["exp",{"2":{"26":1}}],["elif",{"2":{"35":1,"45":3,"57":1,"81":2,"82":1,"83":1,"84":2,"95":1,"114":1,"118":1,"119":1,"135":1,"140":1,"144":1}}],["else",{"2":{"5":1,"34":1,"35":1,"45":2,"57":1,"81":1,"82":1,"83":1,"95":1,"114":2,"118":2,"119":2,"135":1,"140":1,"141":1,"144":1}}],["epsilon",{"0":{"29":1,"35":2,"37":2,"43":1,"50":1,"101":1,"117":1,"123":1,"126":1},"2":{"35":7,"37":12,"43":5,"50":4,"101":6,"117":4,"123":6,"126":4}}],["e",{"0":{"26":1},"2":{"26":1}}],["equations",{"0":{"49":1},"2":{"49":1,"85":1}}],["equation",{"0":{"31":1},"1":{"32":1,"33":1,"34":1,"35":1}}],["eq",{"0":{"18":1,"58":1,"96":1,"105":1,"114":1,"136":1},"2":{"18":1,"58":1,"96":1,"105":1,"114":1,"116":1,"136":1}}],["+1",{"2":{"119":2}}],["+=",{"2":{"35":1}}],["+",{"0":{"17":1,"102":1,"103":1,"104":1,"133":1,"134":1,"135":1,"137":1},"2":{"17":1,"27":1,"37":3,"38":4,"46":1,"48":1,"49":3,"80":6,"83":5,"85":5,"104":7,"109":3,"118":3,"119":3,"130":2,"135":11,"137":5,"146":2,"158":1,"161":1}}],["1e",{"0":{"50":1}}],["1",{"2":{"14":1,"15":1,"16":1,"26":1,"27":1,"34":1,"38":2,"91":1,"119":6,"150":1,"151":1,"152":1,"158":4,"161":4}}],["180",{"2":{"5":1,"8":1}}],["正割值",{"2":{"15":4}}],["正切值",{"2":{"13":4}}],["正弦值",{"2":{"11":4}}],["余割值",{"2":{"16":4}}],["余切值",{"2":{"14":4}}],["余弦值",{"2":{"12":4}}],["余角",{"2":{"6":4}}],["最大值",{"2":{"111":2}}],["最大负角度",{"2":{"10":2}}],["最大负角",{"2":{"10":2}}],["最小值",{"2":{"111":2}}],["最小正角度",{"2":{"9":2}}],["最小正角",{"2":{"9":2}}],["弧度",{"2":{"8":2}}],["角度",{"2":{"8":2}}],["角度或弧度值",{"2":{"5":2}}],["补角",{"2":{"7":4}}],["2",{"2":{"6":1,"9":1,"10":1,"27":1,"35":1,"37":3,"38":2,"46":1,"83":3,"109":3,"130":3,"158":2,"161":2}}],[">",{"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"19":1,"20":1,"21":1,"22":1,"34":1,"35":5,"37":3,"38":6,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"96":1,"97":1,"101":1,"102":1,"103":1,"104":2,"106":3,"111":1,"117":1,"118":2,"119":5,"123":1,"124":1,"125":2,"126":1,"127":1,"129":1,"130":1,"131":1,"133":1,"134":1,"135":2,"137":2,"138":1,"139":1,"140":2,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1}}],["rmul",{"2":{"145":1}}],["rsub",{"2":{"141":1}}],["right",{"2":{"37":1}}],["reference",{"0":{"164":1},"2":{"129":1}}],["realnumber",{"0":{"48":1,"61":1,"113":1,"143":1,"145":1,"146":1,"147":1},"2":{"48":3,"62":1,"113":3,"143":1,"145":1,"146":1,"147":1}}],["result",{"2":{"35":4}}],["returns",{"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"34":1,"35":2,"37":1,"38":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"95":1,"96":1,"101":1,"104":1,"105":1,"106":1,"111":1,"117":1,"118":1,"119":1,"123":1,"124":1,"125":1,"126":1,"127":1,"129":1,"130":1,"131":1,"135":1,"136":1,"137":1,"140":1,"141":1,"144":1,"146":1,"148":1,"158":1,"161":1}}],["return",{"2":{"6":2,"7":2,"8":2,"9":2,"10":2,"11":2,"12":2,"13":2,"14":2,"15":2,"16":2,"17":1,"18":1,"19":1,"20":1,"23":2,"34":3,"35":5,"37":2,"38":5,"43":2,"44":2,"45":6,"46":2,"47":2,"48":2,"49":2,"50":2,"51":2,"52":2,"53":2,"54":2,"56":2,"57":4,"58":2,"81":5,"82":3,"83":3,"84":2,"85":2,"86":2,"87":2,"88":2,"89":2,"90":2,"91":2,"92":2,"95":5,"96":2,"97":1,"101":2,"104":2,"105":2,"106":2,"111":2,"114":2,"116":1,"117":2,"118":4,"119":4,"123":2,"124":2,"125":2,"126":2,"127":2,"129":2,"130":2,"131":2,"132":1,"135":3,"136":2,"137":2,"140":3,"141":2,"144":3,"145":1,"146":2,"147":1,"148":2,"158":2,"161":2}}],["range",{"2":{"158":2,"161":2}}],["rand",{"0":{"97":1},"2":{"97":1}}],["radius",{"0":{"158":1,"161":1},"2":{"158":7,"161":7}}],["radian=true",{"2":{"6":1,"7":1,"10":1,"17":1,"19":1,"20":1,"23":1,"82":1,"124":1}}],["radian",{"0":{"5":1},"2":{"5":6,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":2,"18":2,"19":2,"20":1,"23":3}}],["radd",{"2":{"137":1}}],["raise",{"0":{"115":1},"2":{"35":1,"45":1,"46":2,"82":1,"83":1,"84":1,"85":1,"95":1,"114":2,"115":2,"135":1,"140":1,"141":1,"144":1}}],["raises",{"2":{"35":2,"45":2,"46":2,"82":2,"83":2,"84":2,"85":2,"95":2}}],["ratio",{"0":{"27":1}}],["geometricmodels",{"0":{"157":1,"160":1},"1":{"158":1,"161":1}}],["generated",{"2":{"129":1}}],["get",{"0":{"35":1,"48":1,"49":1},"2":{"35":2,"48":1,"49":1,"85":1,"91":1}}],["gradient",{"0":{"37":1},"2":{"37":1}}],["gamma",{"0":{"28":1}}],["golden",{"0":{"27":1}}],["gt",{"0":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"19":1,"20":1,"21":1,"22":1,"34":1,"35":1,"37":1,"38":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"96":1,"97":1,"101":1,"102":1,"103":1,"106":1,"111":1,"117":1,"118":1,"119":1,"123":1,"124":1,"125":1,"126":1,"127":1,"129":1,"130":1,"131":1,"133":1,"134":1,"137":1,"138":1,"139":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1},"2":{"104":2,"106":2,"119":3,"125":1,"135":2,"137":1,"140":2,"141":1}}],["github",{"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1}}],["operand",{"2":{"95":1,"135":1,"140":1,"141":1,"144":1}}],["overload",{"2":{"20":1,"21":2,"22":1,"92":1,"93":2,"94":1,"101":1,"102":2,"103":1,"132":1,"133":2,"134":1,"137":1,"138":2,"139":1,"141":1,"142":2,"143":1}}],["other",{"0":{"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"43":1,"44":1,"45":1,"46":1,"50":1,"51":1,"52":1,"54":1,"57":1,"58":1,"81":1,"82":1,"83":1,"84":1,"85":1,"87":1,"93":1,"94":1,"95":1,"96":1,"97":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"114":1,"115":1,"116":1,"123":1,"124":1,"125":1,"126":1,"127":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1},"2":{"17":2,"18":2,"19":2,"20":2,"21":1,"22":1,"23":4,"43":5,"44":4,"45":13,"46":9,"50":4,"51":4,"52":5,"54":5,"57":7,"58":5,"81":15,"82":9,"83":9,"84":17,"85":11,"87":4,"93":1,"94":1,"95":10,"96":4,"97":2,"101":6,"102":1,"103":1,"104":6,"105":6,"106":6,"114":9,"115":2,"116":2,"123":6,"124":5,"125":9,"126":4,"127":4,"133":1,"134":1,"135":12,"136":6,"137":6,"138":1,"139":1,"140":12,"141":8,"142":1,"143":1,"144":12,"145":2,"146":6,"147":4}}],["only",{"0":{"118":1,"119":1},"2":{"118":4,"119":4}}],["onearrayfunc",{"0":{"67":1},"2":{"68":1}}],["onesinglevarfunc",{"0":{"49":3,"66":1},"2":{"49":7,"68":1}}],["onevarfunc",{"0":{"33":3,"38":1,"68":1},"2":{"33":9,"38":1}}],["on",{"0":{"53":1},"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":2,"54":1,"55":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1}}],["org",{"2":{"43":2,"45":2,"46":1,"49":1,"50":2,"51":1,"52":1,"53":1,"54":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":2,"84":1,"85":1,"87":1,"95":2,"96":1,"100":1,"101":2,"105":1,"111":1,"117":2,"118":3,"119":3,"126":2,"127":1,"129":1,"130":1,"136":1,"144":1,"146":1}}],["order",{"2":{"35":2}}],["or",{"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":2,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":2,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1}}],["v3",{"2":{"125":2}}],["v2",{"2":{"58":2,"90":2,"91":4,"125":2}}],["v1",{"2":{"58":4,"90":2,"91":2,"125":2}}],["vector",{"0":{"120":1},"1":{"121":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"150":1,"151":1,"152":1},"2":{"42":1,"88":1,"89":1,"104":1,"106":3,"144":1}}],["vector3",{"0":{"37":1,"42":1,"88":1,"89":1,"102":1,"106":1,"121":1,"123":1,"124":1,"125":2,"126":1,"127":1,"131":1,"133":2,"138":2,"142":2,"143":1,"144":2,"145":1,"146":1,"147":1,"148":1,"149":1},"1":{"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1},"2":{"37":2,"39":1,"42":3,"59":1,"88":4,"89":3,"91":1,"102":1,"104":2,"106":7,"114":2,"123":1,"124":3,"125":7,"126":3,"127":4,"131":3,"133":2,"135":7,"136":2,"138":2,"140":7,"141":1,"142":2,"143":1,"144":9,"145":1,"146":3,"147":2,"148":4,"149":2,"150":2,"151":2,"152":2}}],["v",{"2":{"35":2,"104":2,"106":4,"135":8,"137":2,"140":8,"141":2}}],["var",{"0":{"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"34":1,"35":1,"38":1,"61":1,"62":1,"63":1,"64":1,"65":2,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"149":1,"150":1,"151":1,"152":1},"2":{"33":3,"34":1,"35":14,"37":1,"38":7,"48":1,"49":1}}],["valueerror",{"2":{"35":3,"46":4,"84":3,"85":3}}],["value",{"0":{"5":1,"113":1},"2":{"5":5,"113":5,"114":6,"115":1}}],["view",{"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1}}],["cz",{"2":{"80":2}}],["clamp",{"0":{"111":1},"2":{"111":1,"158":1,"161":1}}],["classmethod",{"2":{"55":1,"56":1,"88":1,"89":2,"90":2,"91":2,"92":1}}],["class",{"0":{"3":1,"4":1,"32":1,"41":1,"79":1,"99":1,"108":1,"112":1,"121":1,"157":1,"160":1},"1":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"113":1,"114":1,"115":1,"116":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1},"2":{"37":1,"42":2,"43":1,"44":2,"45":2,"46":2,"47":2,"48":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":3,"57":3,"58":1,"81":1,"82":3,"83":2,"84":2,"85":2,"86":2,"87":1,"88":1,"89":3,"90":1,"91":1,"92":2,"95":4,"96":1,"101":1,"104":3,"105":1,"106":3,"109":2,"124":2,"125":2,"126":1,"127":1,"131":1,"135":4,"136":1,"137":2,"140":4,"141":2,"144":2,"146":1,"148":1}}],["cls",{"0":{"56":1,"89":1,"90":1,"91":1,"92":1},"2":{"56":2,"89":2,"90":2,"91":2,"92":2}}],["cross",{"0":{"125":1},"2":{"45":4,"46":3,"47":1,"54":1,"84":1,"90":1,"91":1,"125":3,"126":1,"127":1}}],["c",{"0":{"80":1},"2":{"38":4,"80":5,"81":7,"83":2,"84":6,"85":2,"88":1,"89":3}}],["curried",{"2":{"38":6}}],["currying",{"2":{"38":2}}],["curry",{"0":{"38":1},"2":{"38":3}}],["curveequation",{"0":{"32":1},"1":{"33":1,"34":1},"2":{"39":1,"59":1}}],["cal",{"0":{"37":1,"44":1,"45":1,"46":1,"47":1,"82":1,"83":1,"84":1,"85":1,"86":1,"124":1},"2":{"37":1,"44":2,"45":1,"46":1,"47":1,"57":1,"82":2,"83":1,"84":1,"85":1,"86":1,"95":2,"97":1,"124":1}}],["callable",{"2":{"66":1,"67":1,"69":1,"70":1,"72":1,"73":1,"75":1,"76":1}}],["call",{"0":{"34":1},"2":{"34":1}}],["csc",{"0":{"16":1},"2":{"16":1}}],["coincident",{"2":{"85":1}}],["collinear",{"0":{"52":1},"2":{"52":1,"57":1}}],["coplanar",{"0":{"54":1},"2":{"45":1,"46":2,"54":1,"57":1}}],["complex",{"2":{"62":1}}],["complementary",{"0":{"6":1},"2":{"6":1,"82":1}}],["com",{"2":{"38":1}}],["constants",{"2":{"57":1,"95":1}}],["const",{"0":{"24":1},"1":{"25":1,"26":1,"27":1,"28":1,"29":1,"30":1}}],["cot",{"0":{"14":1},"2":{"14":1}}],["cos",{"0":{"12":1},"2":{"12":2,"15":1,"158":2,"161":2}}],["code",{"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1}}],["sphere",{"0":{"158":1,"161":1},"2":{"158":1,"161":1}}],["staticmethod",{"2":{"157":1,"158":1,"160":1,"161":1}}],["stable",{"2":{"129":1}}],["str",{"0":{"118":1,"119":1},"2":{"118":3,"119":3}}],["stdtypes",{"2":{"49":1}}],["s",{"2":{"95":1,"135":1,"140":1,"141":1,"144":1}}],["solve",{"2":{"84":3}}],["source",{"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1}}],["sign",{"0":{"118":1,"119":1},"2":{"118":1,"119":1}}],["simplify",{"0":{"55":1},"2":{"55":1}}],["singlevar",{"0":{"63":1},"2":{"63":1,"65":1,"66":2,"69":3,"72":4,"75":1}}],["sin",{"0":{"11":1},"2":{"11":2,"16":1,"158":3,"161":3}}],["sqrt",{"2":{"27":1,"130":1,"158":1,"161":1}}],["sub",{"2":{"19":1,"106":1,"138":1,"139":1,"140":1}}],["supplementary",{"0":{"7":1},"2":{"7":1}}],["segment",{"0":{"107":1},"1":{"108":1,"109":1}}],["segment3",{"0":{"108":1},"1":{"109":1},"2":{"39":1,"59":1}}],["sec",{"0":{"15":1},"2":{"15":1}}],["self",{"0":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"113":1,"114":1,"115":1,"116":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1},"2":{"5":3,"6":2,"7":2,"8":2,"9":2,"10":2,"11":2,"12":2,"13":2,"14":2,"15":2,"16":2,"17":2,"18":2,"19":2,"20":2,"21":1,"22":1,"23":3,"33":4,"34":7,"42":3,"43":4,"44":2,"45":13,"46":8,"47":3,"48":3,"49":7,"50":2,"51":2,"52":4,"53":3,"54":3,"55":8,"57":6,"58":4,"80":5,"81":16,"82":4,"83":8,"84":15,"85":9,"86":2,"87":2,"88":4,"93":1,"94":1,"95":5,"96":2,"97":2,"100":4,"101":4,"102":1,"103":1,"104":4,"105":4,"106":4,"109":15,"113":2,"114":9,"115":2,"116":2,"122":4,"123":4,"124":3,"125":7,"126":2,"127":2,"128":5,"129":4,"130":4,"131":3,"132":2,"133":1,"134":1,"135":7,"136":4,"137":4,"138":1,"139":1,"140":7,"141":4,"142":1,"143":1,"144":7,"145":2,"146":4,"147":4,"148":4}}],["默认为否",{"2":{"5":2}}],["all",{"2":{"101":1,"114":1,"123":1}}],["acos",{"2":{"82":1,"124":1}}],["axis",{"0":{"150":1,"151":1,"152":1}}],["ax",{"2":{"80":2}}],["arccos",{"2":{"158":1,"161":1}}],["array",{"0":{"129":1},"2":{"84":6,"129":2,"158":6,"161":6}}],["arrayvar",{"0":{"64":1},"2":{"64":1,"65":1,"67":2,"70":3,"73":4,"76":1}}],["area",{"2":{"158":2,"161":2}}],["are",{"2":{"46":2,"84":1,"85":1}}],["args2",{"2":{"38":2}}],["args",{"0":{"38":1},"2":{"5":1,"33":1,"34":1,"35":14,"37":1,"38":5,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"89":1,"90":1,"91":1,"92":1,"95":1,"96":1,"100":1,"101":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"135":1,"136":1,"137":1,"140":1,"141":1,"144":1,"146":1,"158":1,"161":1}}],["arguments",{"2":{"5":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"89":1,"90":1,"91":1,"92":1,"95":1,"96":1,"100":1,"101":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"135":1,"136":1,"137":1,"140":1,"141":1,"144":1,"146":1,"158":1,"161":1}}],["abs",{"0":{"132":1},"2":{"45":1,"83":1,"101":3,"114":1,"117":1,"119":1,"123":3,"132":1}}],["a",{"0":{"80":1},"2":{"38":4,"80":5,"81":7,"83":2,"84":12,"85":2,"88":1,"89":3}}],["aaa",{"2":{"36":1}}],["approx",{"0":{"30":1,"43":2,"50":1,"81":1,"101":2,"112":1,"117":2,"123":2,"126":2},"1":{"113":1,"114":1,"115":1,"116":1},"2":{"18":1,"43":3,"50":2,"81":10,"96":1,"101":1,"105":3,"114":4,"117":1,"123":1,"126":1,"127":1,"136":3}}],["add",{"2":{"17":1,"38":8,"102":1,"103":1,"104":1,"133":1,"134":1,"135":1}}],["and",{"0":{"57":1,"89":1,"92":1,"93":1,"94":1,"95":1},"2":{"43":1,"46":2,"52":1,"57":1,"58":1,"81":6,"84":4,"85":1,"86":1,"89":1,"90":1,"91":1,"92":2,"93":1,"94":1,"95":2,"105":2,"115":1,"135":1,"136":2,"140":1,"141":1,"144":1}}],["anyangle",{"0":{"4":1,"6":1,"7":1,"9":1,"10":1,"17":2,"19":2,"20":1,"21":1,"22":1,"44":1,"82":1,"124":1},"1":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1},"2":{"6":2,"7":2,"9":2,"10":2,"17":3,"19":3,"20":2,"21":1,"22":1,"23":2,"39":1,"44":3,"59":1,"82":4,"124":4}}],["angle",{"0":{"2":1,"3":1,"4":1,"44":1,"82":1,"124":1},"1":{"3":1,"4":1,"5":2,"6":2,"7":2,"8":2,"9":2,"10":2,"11":2,"12":2,"13":2,"14":2,"15":2,"16":2,"17":2,"18":2,"19":2,"20":2,"21":2,"22":2,"23":2},"2":{"44":3,"82":3,"124":2}}],["任意角度",{"2":{"5":2,"39":1,"59":1}}],["from",{"0":{"56":1,"89":1,"90":1,"91":1,"92":1},"2":{"56":1,"86":1,"89":1,"90":2,"91":2,"92":2,"106":1}}],["frac",{"2":{"37":3}}],["f",{"2":{"37":4,"82":1,"83":1,"95":1,"115":1,"119":3,"135":1,"140":1,"141":1,"144":1}}],["format",{"0":{"119":1},"2":{"119":1}}],["for",{"2":{"34":1,"35":1,"95":1,"135":1,"140":1,"141":1,"144":1,"158":2,"161":2}}],["functions",{"2":{"43":2,"45":1,"50":2,"51":1,"52":1,"53":1,"54":1,"58":1,"80":1,"81":1,"83":1,"87":1,"96":1,"100":1,"101":2,"105":1,"111":1,"117":2,"118":3,"119":3,"126":2,"127":1,"130":1,"136":1,"144":1,"146":1}}],["function",{"0":{"36":1},"1":{"37":1,"38":1}}],["func",{"0":{"33":3,"35":2,"37":1,"38":1},"2":{"33":15,"34":6,"35":16,"37":9,"38":6}}],["false",{"0":{"5":1,"118":1,"119":1},"2":{"81":1}}],["float=0",{"2":{"117":1}}],["float=1e",{"2":{"50":1}}],["float=approx",{"2":{"43":1,"101":1,"117":1,"123":1,"126":1}}],["float=epsilon",{"2":{"37":1}}],["float",{"0":{"5":1,"8":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"20":1,"21":1,"22":1,"37":1,"43":1,"45":1,"50":1,"80":4,"83":1,"100":3,"101":1,"111":4,"117":3,"118":1,"119":1,"122":3,"123":1,"126":1,"130":1,"144":1,"158":2,"161":2},"2":{"5":1,"8":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"20":1,"21":1,"22":1,"43":2,"45":3,"50":2,"61":1,"80":9,"83":3,"100":7,"101":2,"111":9,"114":2,"117":5,"118":3,"119":3,"122":3,"126":2,"130":3,"144":4,"146":2,"158":2,"161":2}}],["==",{"2":{"34":1,"45":1,"54":1,"55":3,"85":1,"91":1,"95":1}}],["=",{"0":{"5":1,"17":1,"19":1,"20":1,"21":1,"22":1,"35":1,"37":1,"43":1,"50":1,"101":1,"102":1,"103":1,"106":1,"117":2,"118":1,"119":1,"123":1,"126":1,"133":1,"134":1,"137":1,"138":1,"139":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1},"2":{"5":2,"33":3,"35":5,"37":5,"38":2,"42":2,"55":3,"56":1,"80":6,"81":6,"84":17,"85":2,"89":2,"90":3,"91":3,"100":3,"109":5,"113":1,"122":3,"128":4,"158":7,"161":7}}],["improve",{"2":{"164":1}}],["import",{"2":{"106":1}}],["i",{"2":{"158":4,"161":4}}],["invalid",{"2":{"35":1}}],["intersect",{"2":{"46":2}}],["intersection",{"0":{"46":1,"84":1,"85":1},"2":{"46":1,"57":1,"84":2,"85":1,"95":2,"97":1}}],["int",{"0":{"35":2,"144":1},"2":{"35":3,"38":8,"61":1,"114":2,"144":2,"158":1,"161":1}}],["in",{"2":{"34":1,"35":1,"158":2,"161":2}}],["init",{"0":{"5":1,"33":1,"42":1,"80":1,"100":1,"109":1,"113":1,"122":1},"2":{"5":1,"33":1,"42":1,"80":1,"100":1,"109":1,"113":1,"122":1}}],["if",{"2":{"5":1,"23":1,"34":1,"35":1,"45":2,"46":2,"55":3,"57":1,"81":1,"82":1,"83":1,"84":2,"85":1,"91":1,"95":3,"114":3,"118":2,"119":2,"135":1,"140":1,"141":1,"144":1}}],["isinstance",{"2":{"23":1,"35":2,"45":2,"82":2,"83":2,"95":2,"114":4,"135":2,"140":2,"141":1,"144":2}}],["is",{"0":{"5":1,"50":1,"51":1,"52":1,"53":1,"54":1,"87":1,"126":1,"127":1},"2":{"5":4,"6":1,"7":1,"10":1,"17":1,"19":1,"20":1,"23":1,"43":2,"45":2,"46":2,"50":2,"51":2,"52":3,"53":2,"54":1,"57":3,"58":2,"82":1,"84":1,"87":2,"95":1,"124":1,"126":1,"127":1}}],["预设",{"2":{"0":1,"1":1}}],["phi",{"2":{"158":5,"161":5}}],["p3",{"0":{"90":1},"2":{"90":4}}],["p2",{"0":{"56":1,"90":1,"109":1},"2":{"56":4,"58":2,"90":4,"109":9}}],["p1",{"0":{"56":1,"90":1,"109":1},"2":{"56":5,"58":2,"90":6,"109":9}}],["perpendicular",{"0":{"47":1},"2":{"47":1}}],["parametric",{"0":{"49":1},"2":{"49":1,"85":1}}],["parallel",{"0":{"50":1,"51":1,"86":1,"87":1,"126":1,"127":1},"2":{"43":2,"45":1,"46":2,"50":2,"51":2,"52":2,"53":1,"57":1,"58":2,"84":2,"85":1,"86":1,"87":2,"95":1,"126":1,"127":1}}],["partial",{"0":{"35":1},"2":{"35":6,"37":6}}],["particle",{"0":{"153":1,"154":1},"2":{"0":1,"1":1}}],["planes",{"2":{"84":1}}],["plane",{"0":{"78":1},"1":{"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1},"2":{"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"89":1,"95":1,"96":1}}],["plane3",{"0":{"79":1,"81":1,"82":1,"83":1,"84":1,"86":2,"87":1,"89":1,"90":1,"91":1,"92":1,"94":1},"1":{"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1},"2":{"39":1,"59":1,"81":3,"82":4,"83":4,"84":3,"86":5,"87":3,"89":3,"90":1,"91":1,"92":1,"94":1,"95":4,"96":2,"114":1}}],["plus",{"2":{"35":3}}],["p",{"0":{"37":1},"2":{"37":21,"38":1,"104":10,"106":8,"135":4,"137":4,"140":4,"141":4}}],["points",{"0":{"56":1,"90":1},"2":{"56":1,"90":1}}],["point",{"0":{"42":1,"47":1,"48":1,"53":2,"86":1,"89":2,"92":2,"98":1},"1":{"99":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1},"2":{"37":1,"42":6,"43":2,"45":6,"46":4,"47":7,"48":3,"49":3,"52":2,"53":7,"54":2,"55":3,"56":2,"57":1,"58":2,"83":1,"85":4,"86":6,"89":8,"90":2,"91":6,"92":7,"95":1,"101":1,"104":2,"105":1,"106":1,"109":2,"135":2,"137":2,"140":2,"141":2}}],["point3",{"0":{"34":2,"37":1,"42":1,"45":1,"46":1,"47":1,"48":1,"53":1,"56":2,"57":1,"83":1,"85":2,"86":1,"89":1,"90":3,"92":1,"93":1,"97":1,"99":1,"101":1,"102":1,"103":2,"106":1,"109":2,"134":2,"137":2,"139":2,"141":1},"1":{"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1},"2":{"34":4,"37":3,"39":1,"42":3,"45":4,"46":3,"47":3,"48":3,"53":3,"56":6,"57":3,"59":1,"83":4,"84":1,"85":5,"86":3,"89":3,"90":7,"92":3,"93":1,"95":3,"97":2,"101":3,"102":1,"103":2,"104":5,"105":2,"106":3,"109":7,"114":1,"134":2,"135":6,"137":7,"139":2,"140":6,"141":7,"158":3,"161":3}}],["positive",{"0":{"9":1},"2":{"6":1,"7":1,"9":1}}],["python",{"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"21":1,"22":1,"43":2,"45":2,"46":1,"49":1,"50":2,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":2,"84":1,"85":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":2,"96":1,"100":1,"101":2,"102":1,"103":1,"105":1,"111":1,"117":2,"118":3,"119":3,"126":2,"127":1,"129":1,"130":2,"131":1,"133":1,"134":1,"136":1,"138":1,"139":1,"142":1,"143":1,"144":1,"146":1,"158":1,"161":1}}],["pythondef",{"2":{"5":1,"17":1,"18":1,"19":1,"20":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":2,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"95":1,"96":1,"97":1,"100":1,"101":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"132":1,"135":1,"136":1,"137":1,"140":1,"141":1,"144":1,"145":1,"146":1,"147":1,"148":1}}],["property",{"2":{"5":1,"6":2,"7":2,"8":2,"9":2,"10":2,"11":2,"12":2,"13":2,"14":2,"15":2,"16":1,"87":1,"88":1,"128":1,"129":2,"130":2,"131":1}}],["presets",{"0":{"155":1,"156":1,"159":1,"162":1},"1":{"157":1,"158":1,"160":1,"161":1},"2":{"0":1,"1":1}}],["pi",{"0":{"25":1},"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"25":1,"158":2,"161":2}}],["粒子生成工具",{"2":{"0":1,"1":1}}],["model",{"0":{"156":1,"159":1},"1":{"157":1,"158":1,"160":1,"161":1}}],["midpoint",{"2":{"109":1}}],["min",{"0":{"111":1},"2":{"111":5}}],["minus",{"2":{"35":3}}],["minimum",{"0":{"9":1},"2":{"6":1,"7":1,"9":1}}],["multiarraysfunc",{"0":{"76":1},"2":{"77":1}}],["multisinglevarsfunc",{"0":{"75":1},"2":{"77":1}}],["multivarsfunc",{"0":{"35":2,"38":1,"77":1},"2":{"35":4,"38":3}}],["mul",{"2":{"20":1,"142":1,"143":1,"144":1,"145":1}}],["matmul",{"2":{"146":1}}],["math导入使用",{"2":{"39":1,"59":1}}],["math",{"0":{"2":1,"24":1,"31":1,"36":1,"39":1,"40":1,"59":1,"60":2,"78":1,"98":1,"107":1,"110":1,"120":1},"1":{"3":1,"4":1,"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"32":1,"33":1,"34":1,"35":1,"37":1,"38":1,"41":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"61":2,"62":2,"63":2,"64":2,"65":2,"66":2,"67":2,"68":2,"69":2,"70":2,"71":2,"72":2,"73":2,"74":2,"75":2,"76":2,"77":2,"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"99":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"108":1,"109":1,"111":1,"112":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"121":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"150":1,"151":1,"152":1},"2":{"0":1,"1":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"25":1,"26":1,"27":1,"33":3,"35":1,"37":1,"38":2,"48":1,"49":1,"82":1,"113":1,"124":1,"130":1}}],["max",{"0":{"111":1},"2":{"111":5}}],["maximum",{"0":{"10":1},"2":{"10":1}}],["mp",{"0":{"2":1,"24":1,"31":1,"36":1,"39":1,"40":1,"59":1,"60":2,"78":1,"98":1,"107":1,"110":1,"120":1},"1":{"3":1,"4":1,"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"32":1,"33":1,"34":1,"35":1,"37":1,"38":1,"41":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"61":2,"62":2,"63":2,"64":2,"65":2,"66":2,"67":2,"68":2,"69":2,"70":2,"71":2,"72":2,"73":2,"74":2,"75":2,"76":2,"77":2,"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"99":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"108":1,"109":1,"111":1,"112":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"121":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"150":1,"151":1,"152":1},"2":{"0":1,"1":1,"33":3,"35":1,"37":1,"38":2,"39":1,"48":1,"49":1,"59":1,"113":1}}],["mbcp",{"0":{"0":1,"1":1,"2":1,"24":1,"31":1,"36":1,"39":1,"40":1,"59":1,"60":1,"78":1,"98":1,"107":1,"110":1,"120":1,"153":1,"154":1,"155":1,"156":1,"159":1,"162":1},"1":{"3":1,"4":1,"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"32":1,"33":1,"34":1,"35":1,"37":1,"38":1,"41":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"99":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"108":1,"109":1,"111":1,"112":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"121":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"150":1,"151":1,"152":1,"157":1,"158":1,"160":1,"161":1},"2":{"0":3,"1":3}}],["提供了一些工具",{"2":{"0":1,"1":1}}]],"serializationVersion":2}';export{t as default};
diff --git a/assets/chunks/@localSearchIndexen.CzNg5TZu.js b/assets/chunks/@localSearchIndexen.CzNg5TZu.js
new file mode 100644
index 0000000..cbcf187
--- /dev/null
+++ b/assets/chunks/@localSearchIndexen.CzNg5TZu.js
@@ -0,0 +1 @@
+const t='{"documentCount":165,"nextId":165,"documentIds":{"0":"/en/api/api.html#mbcp","1":"/en/api/#mbcp","2":"/en/api/mp_math/const.html#mbcp-mp-math-const","3":"/en/api/mp_math/const.html#var-pi","4":"/en/api/mp_math/const.html#var-e","5":"/en/api/mp_math/const.html#var-golden-ratio","6":"/en/api/mp_math/const.html#var-gamma","7":"/en/api/mp_math/const.html#var-epsilon","8":"/en/api/mp_math/const.html#var-approx","9":"/en/api/mp_math/angle.html#mbcp-mp-math-angle","10":"/en/api/mp_math/angle.html#class-angle","11":"/en/api/mp_math/angle.html#class-anyangle-angle","12":"/en/api/mp_math/angle.html#def-init-self-value-float-is-radian-bool-false","13":"/en/api/mp_math/angle.html#def-complementary-self-anyangle","14":"/en/api/mp_math/angle.html#def-supplementary-self-anyangle","15":"/en/api/mp_math/angle.html#def-degree-self-float","16":"/en/api/mp_math/angle.html#def-minimum-positive-self-anyangle","17":"/en/api/mp_math/angle.html#def-maximum-negative-self-anyangle","18":"/en/api/mp_math/angle.html#def-sin-self-float","19":"/en/api/mp_math/angle.html#def-cos-self-float","20":"/en/api/mp_math/angle.html#def-tan-self-float","21":"/en/api/mp_math/angle.html#def-cot-self-float","22":"/en/api/mp_math/angle.html#def-sec-self-float","23":"/en/api/mp_math/angle.html#def-csc-self-float","24":"/en/api/mp_math/angle.html#def-self-other-anyangle-anyangle","25":"/en/api/mp_math/angle.html#def-eq-self-other","26":"/en/api/mp_math/angle.html#def-self-other-anyangle-anyangle-1","27":"/en/api/mp_math/angle.html#def-self-other-float-anyangle","28":"/en/api/mp_math/angle.html#def-self-other-float-anyangle-1","29":"/en/api/mp_math/angle.html#def-self-other-anyangle-float","30":"/en/api/mp_math/angle.html#def-self-other","31":"/en/api/mp_math/equation.html#mbcp-mp-math-equation","32":"/en/api/mp_math/equation.html#class-curveequation","33":"/en/api/mp_math/equation.html#def-init-self-x-func-onevarfunc-y-func-onevarfunc-z-func-onevarfunc","34":"/en/api/mp_math/equation.html#def-call-self-t-var-point3-tuple-point3","35":"/en/api/mp_math/equation.html#def-get-partial-derivative-func-func-multivarsfunc-var-int-tuple-int-epsilon-number-epsilon-multivarsfunc","36":"/en/api/mp_math/function.html#mbcp-mp-math-function","37":"/en/api/mp_math/function.html#def-cal-gradient-3vf-func-threesinglevarsfunc-p-point3-epsilon-float-epsilon-vector3","38":"/en/api/mp_math/function.html#def-curry-func-multivarsfunc-args-var-onevarfunc","39":"/en/api/mp_math/#mbcp-mp-math","40":"/en/api/mp_math/mp_math.html#mbcp-mp-math","41":"/en/api/mp_math/line.html#mbcp-mp-math-line","42":"/en/api/mp_math/line.html#class-line3","43":"/en/api/mp_math/line.html#def-init-self-point-point3-direction-vector3","44":"/en/api/mp_math/line.html#def-approx-self-other-line3-epsilon-float-approx-bool","45":"/en/api/mp_math/line.html#def-cal-angle-self-other-line3-anyangle","46":"/en/api/mp_math/line.html#def-cal-distance-self-other-line3-point3-float","47":"/en/api/mp_math/line.html#def-cal-intersection-self-other-line3-point3","48":"/en/api/mp_math/line.html#def-cal-perpendicular-self-point-point3-line3","49":"/en/api/mp_math/line.html#def-get-point-self-t-realnumber-point3","50":"/en/api/mp_math/line.html#def-get-parametric-equations-self-tuple-onesinglevarfunc-onesinglevarfunc-onesinglevarfunc","51":"/en/api/mp_math/line.html#def-is-approx-parallel-self-other-line3-epsilon-float-1e-06-bool","52":"/en/api/mp_math/line.html#def-is-parallel-self-other-line3-bool","53":"/en/api/mp_math/line.html#def-is-collinear-self-other-line3-bool","54":"/en/api/mp_math/line.html#def-is-point-on-self-point-point3-bool","55":"/en/api/mp_math/line.html#def-is-coplanar-self-other-line3-bool","56":"/en/api/mp_math/line.html#def-simplify-self","57":"/en/api/mp_math/line.html#def-from-two-points-cls-p1-point3-p2-point3-line3","58":"/en/api/mp_math/line.html#def-and-self-other-line3-line3-point3-none","59":"/en/api/mp_math/line.html#def-eq-self-other-bool","60":"/en/api/mp_math/mp_math_typing.html#mbcp-mp-math-mp-math-typing","61":"/en/api/mp_math/mp_math_typing.html#var-realnumber","62":"/en/api/mp_math/mp_math_typing.html#var-number","63":"/en/api/mp_math/mp_math_typing.html#var-singlevar","64":"/en/api/mp_math/mp_math_typing.html#var-arrayvar","65":"/en/api/mp_math/mp_math_typing.html#var-var","66":"/en/api/mp_math/mp_math_typing.html#var-onesinglevarfunc","67":"/en/api/mp_math/mp_math_typing.html#var-onearrayfunc","68":"/en/api/mp_math/mp_math_typing.html#var-onevarfunc","69":"/en/api/mp_math/mp_math_typing.html#var-twosinglevarsfunc","70":"/en/api/mp_math/mp_math_typing.html#var-twoarraysfunc","71":"/en/api/mp_math/mp_math_typing.html#var-twovarsfunc","72":"/en/api/mp_math/mp_math_typing.html#var-threesinglevarsfunc","73":"/en/api/mp_math/mp_math_typing.html#var-threearraysfunc","74":"/en/api/mp_math/mp_math_typing.html#var-threevarsfunc","75":"/en/api/mp_math/mp_math_typing.html#var-multisinglevarsfunc","76":"/en/api/mp_math/mp_math_typing.html#var-multiarraysfunc","77":"/en/api/mp_math/mp_math_typing.html#var-multivarsfunc","78":"/en/api/mp_math/plane.html#mbcp-mp-math-plane","79":"/en/api/mp_math/plane.html#class-plane3","80":"/en/api/mp_math/plane.html#def-init-self-a-float-b-float-c-float-d-float","81":"/en/api/mp_math/plane.html#def-approx-self-other-plane3-bool","82":"/en/api/mp_math/plane.html#def-cal-angle-self-other-line3-plane3-anyangle","83":"/en/api/mp_math/plane.html#def-cal-distance-self-other-plane3-point3-float","84":"/en/api/mp_math/plane.html#def-cal-intersection-line3-self-other-plane3-line3","85":"/en/api/mp_math/plane.html#def-cal-intersection-point3-self-other-line3-point3","86":"/en/api/mp_math/plane.html#def-cal-parallel-plane3-self-point-point3-plane3","87":"/en/api/mp_math/plane.html#def-is-parallel-self-other-plane3-bool","88":"/en/api/mp_math/plane.html#def-normal-self-vector3","89":"/en/api/mp_math/plane.html#def-from-point-and-normal-cls-point-point3-normal-vector3-plane3","90":"/en/api/mp_math/plane.html#def-from-three-points-cls-p1-point3-p2-point3-p3-point3-plane3","91":"/en/api/mp_math/plane.html#def-from-two-lines-cls-l1-line3-l2-line3-plane3","92":"/en/api/mp_math/plane.html#def-from-point-and-line-cls-point-point3-line-line3-plane3","93":"/en/api/mp_math/plane.html#def-and-self-other-line3-point3-none","94":"/en/api/mp_math/plane.html#def-and-self-other-plane3-line3-none","95":"/en/api/mp_math/plane.html#def-and-self-other","96":"/en/api/mp_math/plane.html#def-eq-self-other-bool","97":"/en/api/mp_math/plane.html#def-rand-self-other-line3-point3","98":"/en/api/mp_math/point.html#mbcp-mp-math-point","99":"/en/api/mp_math/point.html#class-point3","100":"/en/api/mp_math/point.html#def-init-self-x-float-y-float-z-float","101":"/en/api/mp_math/point.html#def-approx-self-other-point3-epsilon-float-approx-bool","102":"/en/api/mp_math/point.html#def-self-other-vector3-point3","103":"/en/api/mp_math/point.html#def-self-other-point3-point3","104":"/en/api/mp_math/point.html#def-self-other","105":"/en/api/mp_math/point.html#def-eq-self-other","106":"/en/api/mp_math/point.html#def-self-other-point3-vector3","107":"/en/api/mp_math/segment.html#mbcp-mp-math-segment","108":"/en/api/mp_math/segment.html#class-segment3","109":"/en/api/mp_math/segment.html#def-init-self-p1-point3-p2-point3","110":"/en/api/mp_math/utils.html#mbcp-mp-math-utils","111":"/en/api/mp_math/utils.html#def-clamp-x-float-min-float-max-float-float","112":"/en/api/mp_math/utils.html#class-approx","113":"/en/api/mp_math/utils.html#def-init-self-value-realnumber","114":"/en/api/mp_math/utils.html#def-eq-self-other","115":"/en/api/mp_math/utils.html#def-raise-type-error-self-other","116":"/en/api/mp_math/utils.html#def-ne-self-other","117":"/en/api/mp_math/utils.html#def-approx-x-float-y-float-0-0-epsilon-float-approx-bool","118":"/en/api/mp_math/utils.html#def-sign-x-float-only-neg-bool-false-str","119":"/en/api/mp_math/utils.html#def-sign-format-x-float-only-neg-bool-false-str","120":"/en/api/mp_math/vector.html#mbcp-mp-math-vector","121":"/en/api/mp_math/vector.html#class-vector3","122":"/en/api/mp_math/vector.html#def-init-self-x-float-y-float-z-float","123":"/en/api/mp_math/vector.html#def-approx-self-other-vector3-epsilon-float-approx-bool","124":"/en/api/mp_math/vector.html#def-cal-angle-self-other-vector3-anyangle","125":"/en/api/mp_math/vector.html#def-cross-self-other-vector3-vector3","126":"/en/api/mp_math/vector.html#def-is-approx-parallel-self-other-vector3-epsilon-float-approx-bool","127":"/en/api/mp_math/vector.html#def-is-parallel-self-other-vector3-bool","128":"/en/api/mp_math/vector.html#def-normalize-self","129":"/en/api/mp_math/vector.html#def-np-array-self-np-ndarray","130":"/en/api/mp_math/vector.html#def-length-self-float","131":"/en/api/mp_math/vector.html#def-unit-self-vector3","132":"/en/api/mp_math/vector.html#def-abs-self","133":"/en/api/mp_math/vector.html#def-self-other-vector3-vector3","134":"/en/api/mp_math/vector.html#def-self-other-point3-point3","135":"/en/api/mp_math/vector.html#def-self-other","136":"/en/api/mp_math/vector.html#def-eq-self-other","137":"/en/api/mp_math/vector.html#def-self-other-point3-point3-1","138":"/en/api/mp_math/vector.html#def-self-other-vector3-vector3-1","139":"/en/api/mp_math/vector.html#def-self-other-point3-point3-2","140":"/en/api/mp_math/vector.html#def-self-other-1","141":"/en/api/mp_math/vector.html#def-self-other-point3","142":"/en/api/mp_math/vector.html#def-self-other-vector3-vector3-2","143":"/en/api/mp_math/vector.html#def-self-other-realnumber-vector3","144":"/en/api/mp_math/vector.html#def-self-other-int-float-vector3-vector3","145":"/en/api/mp_math/vector.html#def-self-other-realnumber-vector3-1","146":"/en/api/mp_math/vector.html#def-self-other-vector3-realnumber","147":"/en/api/mp_math/vector.html#def-self-other-realnumber-vector3-2","148":"/en/api/mp_math/vector.html#def-self-vector3","149":"/en/api/mp_math/vector.html#var-zero-vector3","150":"/en/api/mp_math/vector.html#var-x-axis","151":"/en/api/mp_math/vector.html#var-y-axis","152":"/en/api/mp_math/vector.html#var-z-axis","153":"/en/api/particle/#mbcp-particle","154":"/en/api/particle/particle.html#mbcp-particle","155":"/en/api/presets/#mbcp-presets","156":"/en/api/presets/model/#mbcp-presets-model","157":"/en/api/presets/model/#class-geometricmodels","158":"/en/api/presets/model/#def-sphere-radius-float-density-float","159":"/en/api/presets/model/model.html#mbcp-presets-model","160":"/en/api/presets/model/model.html#class-geometricmodels","161":"/en/api/presets/model/model.html#def-sphere-radius-float-density-float","162":"/en/guide/#开始不了一点","163":"/en/api/presets/presets.html#mbcp-presets","164":"/en/refer/#reference"},"fieldIds":{"title":0,"titles":1,"text":2},"fieldLength":{"0":[1,1,13],"1":[1,1,13],"2":[4,1,3],"3":[2,4,7],"4":[2,4,8],"5":[3,4,10],"6":[2,4,6],"7":[2,4,6],"8":[2,4,6],"9":[4,1,3],"10":[2,4,1],"11":[4,4,1],"12":[11,8,28],"13":[5,8,27],"14":[5,8,26],"15":[5,8,23],"16":[6,8,24],"17":[6,8,26],"18":[5,8,21],"19":[5,8,21],"20":[5,8,21],"21":[5,8,23],"22":[5,8,23],"23":[5,8,23],"24":[7,8,18],"25":[5,8,14],"26":[6,8,17],"27":[7,8,19],"28":[7,8,16],"29":[7,8,16],"30":[3,8,18],"31":[4,1,3],"32":[2,4,1],"33":[9,6,29],"34":[10,6,38],"35":[15,4,76],"36":[4,1,3],"37":[14,4,72],"38":[8,4,65],"39":[3,1,21],"40":[3,1,21],"41":[4,1,3],"42":[2,4,1],"43":[8,6,28],"44":[11,6,46],"45":[8,6,31],"46":[10,6,65],"47":[8,6,62],"48":[8,6,32],"49":[8,6,38],"50":[9,6,45],"51":[14,6,46],"52":[8,6,39],"53":[8,6,42],"54":[8,6,38],"55":[8,6,45],"56":[4,6,30],"57":[10,6,39],"58":[9,6,54],"59":[6,6,47],"60":[4,1,3],"61":[2,4,9],"62":[2,4,9],"63":[2,4,7],"64":[2,4,8],"65":[2,4,9],"66":[2,4,8],"67":[2,4,8],"68":[2,4,9],"69":[2,4,8],"70":[2,4,8],"71":[2,4,9],"72":[2,4,8],"73":[2,4,8],"74":[2,4,9],"75":[2,4,8],"76":[2,4,8],"77":[2,4,9],"78":[4,1,3],"79":[2,4,1],"80":[9,6,39],"81":[7,6,48],"82":[10,6,64],"83":[10,6,68],"84":[9,6,73],"85":[9,6,70],"86":[9,6,33],"87":[8,6,40],"88":[5,6,28],"89":[10,6,48],"90":[11,6,42],"91":[10,6,47],"92":[10,6,38],"93":[9,6,18],"94":[9,6,18],"95":[5,6,72],"96":[6,6,38],"97":[7,6,18],"98":[4,1,3],"99":[2,4,1],"100":[8,6,29],"101":[11,6,48],"102":[8,6,16],"103":[7,6,15],"104":[4,6,37],"105":[5,6,40],"106":[7,6,39],"107":[4,1,3],"108":[2,4,1],"109":[7,6,35],"110":[4,1,3],"111":[7,4,34],"112":[2,4,1],"113":[6,6,23],"114":[5,6,34],"115":[7,6,18],"116":[5,6,14],"117":[11,4,43],"118":[11,4,46],"119":[12,4,52],"120":[4,1,4],"121":[2,4,1],"122":[8,6,32],"123":[11,6,47],"124":[8,6,34],"125":[6,6,46],"126":[13,6,46],"127":[8,6,40],"128":[4,6,20],"129":[6,6,34],"130":[5,6,36],"131":[5,6,24],"132":[4,6,13],"133":[7,6,15],"134":[7,6,15],"135":[4,6,49],"136":[5,6,40],"137":[7,6,34],"138":[6,6,15],"139":[6,6,15],"140":[3,6,48],"141":[4,6,45],"142":[6,6,15],"143":[7,6,16],"144":[9,6,58],"145":[7,6,16],"146":[7,6,41],"147":[7,6,18],"148":[5,6,24],"149":[3,4,7],"150":[3,4,8],"151":[3,4,8],"152":[3,4,8],"153":[2,1,3],"154":[2,1,3],"155":[2,1,3],"156":[3,1,3],"157":[2,3,2],"158":[6,5,51],"159":[3,1,3],"160":[2,3,2],"161":[6,5,51],"162":[1,1,2],"163":[2,1,3],"164":[1,1,7]},"averageFieldLength":[5.593939393939395,4.963636363636361,24.436363636363634],"storedFields":{"0":{"title":"mbcp","titles":[]},"1":{"title":"mbcp","titles":[]},"2":{"title":"mbcp.mp_math.const","titles":[]},"3":{"title":"var PI","titles":["mbcp.mp_math.const"]},"4":{"title":"var E","titles":["mbcp.mp_math.const"]},"5":{"title":"var GOLDEN_RATIO","titles":["mbcp.mp_math.const"]},"6":{"title":"var GAMMA","titles":["mbcp.mp_math.const"]},"7":{"title":"var EPSILON","titles":["mbcp.mp_math.const"]},"8":{"title":"var APPROX","titles":["mbcp.mp_math.const"]},"9":{"title":"mbcp.mp_math.angle","titles":[]},"10":{"title":"class Angle","titles":["mbcp.mp_math.angle"]},"11":{"title":"class AnyAngle(Angle)","titles":["mbcp.mp_math.angle"]},"12":{"title":"def __init__(self, value: float, is_radian: bool = False)","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"13":{"title":"def complementary(self) -> AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"14":{"title":"def supplementary(self) -> AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"15":{"title":"def degree(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"16":{"title":"def minimum_positive(self) -> AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"17":{"title":"def maximum_negative(self) -> AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"18":{"title":"def sin(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"19":{"title":"def cos(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"20":{"title":"def tan(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"21":{"title":"def cot(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"22":{"title":"def sec(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"23":{"title":"def csc(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"24":{"title":"def self + other: AnyAngle => AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"25":{"title":"def __eq__(self, other)","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"26":{"title":"def self - other: AnyAngle => AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"27":{"title":"def self * other: float => AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"28":{"title":"def self / other: float => AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"29":{"title":"def self / other: AnyAngle => float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"30":{"title":"def self / other","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"31":{"title":"mbcp.mp_math.equation","titles":[]},"32":{"title":"class CurveEquation","titles":["mbcp.mp_math.equation"]},"33":{"title":"def __init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc)","titles":["mbcp.mp_math.equation","class CurveEquation"]},"34":{"title":"def __call__(self, *t: Var) -> Point3 | tuple[Point3, ...]","titles":["mbcp.mp_math.equation","class CurveEquation"]},"35":{"title":"def get_partial_derivative_func(func: MultiVarsFunc, var: int | tuple[int, ...], epsilon: Number = EPSILON) -> MultiVarsFunc","titles":["mbcp.mp_math.equation"]},"36":{"title":"mbcp.mp_math.function","titles":[]},"37":{"title":"def cal_gradient_3vf(func: ThreeSingleVarsFunc, p: Point3, epsilon: float = EPSILON) -> Vector3","titles":["mbcp.mp_math.function"]},"38":{"title":"def curry(func: MultiVarsFunc, *args: Var) -> OneVarFunc","titles":["mbcp.mp_math.function"]},"39":{"title":"mbcp.mp_math","titles":[]},"40":{"title":"mbcp.mp_math","titles":[]},"41":{"title":"mbcp.mp_math.line","titles":[]},"42":{"title":"class Line3","titles":["mbcp.mp_math.line"]},"43":{"title":"def __init__(self, point: Point3, direction: Vector3)","titles":["mbcp.mp_math.line","class Line3"]},"44":{"title":"def approx(self, other: Line3, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"45":{"title":"def cal_angle(self, other: Line3) -> AnyAngle","titles":["mbcp.mp_math.line","class Line3"]},"46":{"title":"def cal_distance(self, other: Line3 | Point3) -> float","titles":["mbcp.mp_math.line","class Line3"]},"47":{"title":"def cal_intersection(self, other: Line3) -> Point3","titles":["mbcp.mp_math.line","class Line3"]},"48":{"title":"def cal_perpendicular(self, point: Point3) -> Line3","titles":["mbcp.mp_math.line","class Line3"]},"49":{"title":"def get_point(self, t: RealNumber) -> Point3","titles":["mbcp.mp_math.line","class Line3"]},"50":{"title":"def get_parametric_equations(self) -> tuple[OneSingleVarFunc, OneSingleVarFunc, OneSingleVarFunc]","titles":["mbcp.mp_math.line","class Line3"]},"51":{"title":"def is_approx_parallel(self, other: Line3, epsilon: float = 1e-06) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"52":{"title":"def is_parallel(self, other: Line3) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"53":{"title":"def is_collinear(self, other: Line3) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"54":{"title":"def is_point_on(self, point: Point3) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"55":{"title":"def is_coplanar(self, other: Line3) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"56":{"title":"def simplify(self)","titles":["mbcp.mp_math.line","class Line3"]},"57":{"title":"def from_two_points(cls, p1: Point3, p2: Point3) -> Line3","titles":["mbcp.mp_math.line","class Line3"]},"58":{"title":"def __and__(self, other: Line3) -> Line3 | Point3 | None","titles":["mbcp.mp_math.line","class Line3"]},"59":{"title":"def __eq__(self, other) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"60":{"title":"mbcp.mp_math.mp_math_typing","titles":[]},"61":{"title":"var RealNumber","titles":["mbcp.mp_math.mp_math_typing"]},"62":{"title":"var Number","titles":["mbcp.mp_math.mp_math_typing"]},"63":{"title":"var SingleVar","titles":["mbcp.mp_math.mp_math_typing"]},"64":{"title":"var ArrayVar","titles":["mbcp.mp_math.mp_math_typing"]},"65":{"title":"var Var","titles":["mbcp.mp_math.mp_math_typing"]},"66":{"title":"var OneSingleVarFunc","titles":["mbcp.mp_math.mp_math_typing"]},"67":{"title":"var OneArrayFunc","titles":["mbcp.mp_math.mp_math_typing"]},"68":{"title":"var OneVarFunc","titles":["mbcp.mp_math.mp_math_typing"]},"69":{"title":"var TwoSingleVarsFunc","titles":["mbcp.mp_math.mp_math_typing"]},"70":{"title":"var TwoArraysFunc","titles":["mbcp.mp_math.mp_math_typing"]},"71":{"title":"var TwoVarsFunc","titles":["mbcp.mp_math.mp_math_typing"]},"72":{"title":"var ThreeSingleVarsFunc","titles":["mbcp.mp_math.mp_math_typing"]},"73":{"title":"var ThreeArraysFunc","titles":["mbcp.mp_math.mp_math_typing"]},"74":{"title":"var ThreeVarsFunc","titles":["mbcp.mp_math.mp_math_typing"]},"75":{"title":"var MultiSingleVarsFunc","titles":["mbcp.mp_math.mp_math_typing"]},"76":{"title":"var MultiArraysFunc","titles":["mbcp.mp_math.mp_math_typing"]},"77":{"title":"var MultiVarsFunc","titles":["mbcp.mp_math.mp_math_typing"]},"78":{"title":"mbcp.mp_math.plane","titles":[]},"79":{"title":"class Plane3","titles":["mbcp.mp_math.plane"]},"80":{"title":"def __init__(self, a: float, b: float, c: float, d: float)","titles":["mbcp.mp_math.plane","class Plane3"]},"81":{"title":"def approx(self, other: Plane3) -> bool","titles":["mbcp.mp_math.plane","class Plane3"]},"82":{"title":"def cal_angle(self, other: Line3 | Plane3) -> AnyAngle","titles":["mbcp.mp_math.plane","class Plane3"]},"83":{"title":"def cal_distance(self, other: Plane3 | Point3) -> float","titles":["mbcp.mp_math.plane","class Plane3"]},"84":{"title":"def cal_intersection_line3(self, other: Plane3) -> Line3","titles":["mbcp.mp_math.plane","class Plane3"]},"85":{"title":"def cal_intersection_point3(self, other: Line3) -> Point3","titles":["mbcp.mp_math.plane","class Plane3"]},"86":{"title":"def cal_parallel_plane3(self, point: Point3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"87":{"title":"def is_parallel(self, other: Plane3) -> bool","titles":["mbcp.mp_math.plane","class Plane3"]},"88":{"title":"def normal(self) -> Vector3","titles":["mbcp.mp_math.plane","class Plane3"]},"89":{"title":"def from_point_and_normal(cls, point: Point3, normal: Vector3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"90":{"title":"def from_three_points(cls, p1: Point3, p2: Point3, p3: Point3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"91":{"title":"def from_two_lines(cls, l1: Line3, l2: Line3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"92":{"title":"def from_point_and_line(cls, point: Point3, line: Line3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"93":{"title":"def __and__(self, other: Line3) -> Point3 | None","titles":["mbcp.mp_math.plane","class Plane3"]},"94":{"title":"def __and__(self, other: Plane3) -> Line3 | None","titles":["mbcp.mp_math.plane","class Plane3"]},"95":{"title":"def __and__(self, other)","titles":["mbcp.mp_math.plane","class Plane3"]},"96":{"title":"def __eq__(self, other) -> bool","titles":["mbcp.mp_math.plane","class Plane3"]},"97":{"title":"def __rand__(self, other: Line3) -> Point3","titles":["mbcp.mp_math.plane","class Plane3"]},"98":{"title":"mbcp.mp_math.point","titles":[]},"99":{"title":"class Point3","titles":["mbcp.mp_math.point"]},"100":{"title":"def __init__(self, x: float, y: float, z: float)","titles":["mbcp.mp_math.point","class Point3"]},"101":{"title":"def approx(self, other: Point3, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.point","class Point3"]},"102":{"title":"def self + other: Vector3 => Point3","titles":["mbcp.mp_math.point","class Point3"]},"103":{"title":"def self + other: Point3 => Point3","titles":["mbcp.mp_math.point","class Point3"]},"104":{"title":"def self + other","titles":["mbcp.mp_math.point","class Point3"]},"105":{"title":"def __eq__(self, other)","titles":["mbcp.mp_math.point","class Point3"]},"106":{"title":"def self - other: Point3 => Vector3","titles":["mbcp.mp_math.point","class Point3"]},"107":{"title":"mbcp.mp_math.segment","titles":[]},"108":{"title":"class Segment3","titles":["mbcp.mp_math.segment"]},"109":{"title":"def __init__(self, p1: Point3, p2: Point3)","titles":["mbcp.mp_math.segment","class Segment3"]},"110":{"title":"mbcp.mp_math.utils","titles":[]},"111":{"title":"def clamp(x: float, min_: float, max_: float) -> float","titles":["mbcp.mp_math.utils"]},"112":{"title":"class Approx","titles":["mbcp.mp_math.utils"]},"113":{"title":"def __init__(self, value: RealNumber)","titles":["mbcp.mp_math.utils","class Approx"]},"114":{"title":"def __eq__(self, other)","titles":["mbcp.mp_math.utils","class Approx"]},"115":{"title":"def raise_type_error(self, other)","titles":["mbcp.mp_math.utils","class Approx"]},"116":{"title":"def __ne__(self, other)","titles":["mbcp.mp_math.utils","class Approx"]},"117":{"title":"def approx(x: float, y: float = 0.0, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.utils"]},"118":{"title":"def sign(x: float, only_neg: bool = False) -> str","titles":["mbcp.mp_math.utils"]},"119":{"title":"def sign_format(x: float, only_neg: bool = False) -> str","titles":["mbcp.mp_math.utils"]},"120":{"title":"mbcp.mp_math.vector","titles":[]},"121":{"title":"class Vector3","titles":["mbcp.mp_math.vector"]},"122":{"title":"def __init__(self, x: float, y: float, z: float)","titles":["mbcp.mp_math.vector","class Vector3"]},"123":{"title":"def approx(self, other: Vector3, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.vector","class Vector3"]},"124":{"title":"def cal_angle(self, other: Vector3) -> AnyAngle","titles":["mbcp.mp_math.vector","class Vector3"]},"125":{"title":"def cross(self, other: Vector3) -> Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"126":{"title":"def is_approx_parallel(self, other: Vector3, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.vector","class Vector3"]},"127":{"title":"def is_parallel(self, other: Vector3) -> bool","titles":["mbcp.mp_math.vector","class Vector3"]},"128":{"title":"def normalize(self)","titles":["mbcp.mp_math.vector","class Vector3"]},"129":{"title":"def np_array(self) -> np.ndarray","titles":["mbcp.mp_math.vector","class Vector3"]},"130":{"title":"def length(self) -> float","titles":["mbcp.mp_math.vector","class Vector3"]},"131":{"title":"def unit(self) -> Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"132":{"title":"def __abs__(self)","titles":["mbcp.mp_math.vector","class Vector3"]},"133":{"title":"def self + other: Vector3 => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"134":{"title":"def self + other: Point3 => Point3","titles":["mbcp.mp_math.vector","class Vector3"]},"135":{"title":"def self + other","titles":["mbcp.mp_math.vector","class Vector3"]},"136":{"title":"def __eq__(self, other)","titles":["mbcp.mp_math.vector","class Vector3"]},"137":{"title":"def self + other: Point3 => Point3","titles":["mbcp.mp_math.vector","class Vector3"]},"138":{"title":"def self - other: Vector3 => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"139":{"title":"def self - other: Point3 => Point3","titles":["mbcp.mp_math.vector","class Vector3"]},"140":{"title":"def self - other","titles":["mbcp.mp_math.vector","class Vector3"]},"141":{"title":"def self - other: Point3","titles":["mbcp.mp_math.vector","class Vector3"]},"142":{"title":"def self * other: Vector3 => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"143":{"title":"def self * other: RealNumber => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"144":{"title":"def self * other: int | float | Vector3 => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"145":{"title":"def self * other: RealNumber => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"146":{"title":"def self @ other: Vector3 => RealNumber","titles":["mbcp.mp_math.vector","class Vector3"]},"147":{"title":"def self / other: RealNumber => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"148":{"title":"def - self => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"149":{"title":"var zero_vector3","titles":["mbcp.mp_math.vector"]},"150":{"title":"var x_axis","titles":["mbcp.mp_math.vector"]},"151":{"title":"var y_axis","titles":["mbcp.mp_math.vector"]},"152":{"title":"var z_axis","titles":["mbcp.mp_math.vector"]},"153":{"title":"mbcp.particle","titles":[]},"154":{"title":"mbcp.particle","titles":[]},"155":{"title":"mbcp.presets","titles":[]},"156":{"title":"mbcp.presets.model","titles":[]},"157":{"title":"class GeometricModels","titles":["mbcp.presets.model"]},"158":{"title":"def sphere(radius: float, density: float)","titles":["mbcp.presets.model","class GeometricModels"]},"159":{"title":"mbcp.presets.model","titles":[]},"160":{"title":"class GeometricModels","titles":["mbcp.presets.model"]},"161":{"title":"def sphere(radius: float, density: float)","titles":["mbcp.presets.model","class GeometricModels"]},"162":{"title":"开始不了一点","titles":[]},"163":{"title":"mbcp.presets","titles":[]},"164":{"title":"Reference","titles":[]}},"dirtCount":0,"index":[["∫12x111",{"2":{"162":1}}],["开始不了一点",{"0":{"162":1}}],["4",{"2":{"158":1,"161":1}}],["球体上的点集",{"2":{"158":2,"161":2}}],["生成球体上的点集",{"2":{"158":2,"161":2}}],["几何模型点集",{"2":{"156":1,"159":1}}],["零向量",{"2":{"149":1}}],["负向量",{"2":{"148":2}}],["取负",{"2":{"148":2}}],["取两平面的交集",{"2":{"95":2}}],["非点乘",{"2":{"144":2}}],["别去点那边实现了",{"2":{"137":2}}],["单位向量",{"2":{"131":2}}],["单变量",{"2":{"63":1}}],["模",{"2":{"130":2}}],["向量的模",{"2":{"130":2}}],["向量积",{"2":{"125":2}}],["返回numpy数组",{"2":{"129":1}}],["返回如下行列式的结果",{"2":{"125":1}}],["将向量归一化",{"2":{"128":2}}],["j",{"2":{"125":1}}],["其余结果的模为平行四边形的面积",{"2":{"125":2}}],["叉乘使用cross",{"2":{"144":2}}],["叉乘结果",{"2":{"125":2}}],["叉乘为0",{"2":{"125":2}}],["叉乘",{"2":{"125":2}}],["以及一些常用的向量",{"2":{"120":1}}],["格式化符号数",{"2":{"119":2}}],["quot",{"2":{"118":2,"119":4}}],["符号",{"2":{"118":2,"119":2}}],["获取该向量的单位向量",{"2":{"131":2}}],["获取数的符号",{"2":{"118":2}}],["获取直线的参数方程",{"2":{"50":2}}],["获取直线上的点",{"2":{"49":2}}],["用于判断是否近似于0",{"2":{"117":2}}],["用于近似比较对象",{"2":{"113":2}}],["或包装一个实数",{"2":{"117":2}}],["或整数元组",{"2":{"35":2}}],["限定在区间内的值",{"2":{"111":2}}],["值",{"2":{"111":2}}],["区间限定函数",{"2":{"111":2}}],["us",{"2":{"164":1}}],["unit",{"0":{"131":1},"2":{"131":1}}],["unsupported",{"2":{"46":1,"82":1,"83":1,"95":1,"115":1,"135":1,"140":1,"141":1,"144":1}}],["utils",{"0":{"110":1},"1":{"111":1,"112":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1}}],["中心点",{"2":{"109":1}}],["中实现",{"2":{"106":2}}],["长度",{"2":{"109":1}}],["线段的另一个端点",{"2":{"109":2}}],["线段的一个端点",{"2":{"109":2}}],["新的向量或点",{"2":{"135":2}}],["新的向量",{"2":{"106":2,"140":2}}],["新的点",{"2":{"104":2,"137":2,"141":2}}],["已在",{"2":{"106":2}}],["已知一个函数$f",{"2":{"37":1}}],["已知一个函数f",{"2":{"37":1}}],["坐标",{"2":{"100":6}}],["笛卡尔坐标系中的点",{"2":{"100":2}}],["人话",{"2":{"95":2}}],["法向量",{"2":{"88":2,"89":2}}],["k``",{"2":{"125":1}}],["k",{"2":{"81":12}}],["常数项",{"2":{"80":2}}],["常量",{"2":{"3":1}}],["平面上一点",{"2":{"89":2,"92":2}}],["平面的法向量",{"2":{"88":2}}],["平面",{"2":{"86":2,"89":2,"90":2,"91":2,"92":2}}],["平面与直线平行或重合",{"2":{"85":2}}],["平面平行且无交线",{"2":{"84":2}}],["平面方程",{"2":{"80":2}}],["平行线返回none",{"2":{"58":2}}],["多元函数",{"2":{"77":1}}],["多元数组函数",{"2":{"76":1}}],["多元单变量函数",{"2":{"75":1}}],["二元函数",{"2":{"71":1}}],["二元数组函数",{"2":{"70":1}}],["二元单变量函数",{"2":{"69":1}}],["一元函数",{"2":{"68":1}}],["一元数组函数",{"2":{"67":1}}],["一元单变量函数",{"2":{"66":1}}],["一阶偏导",{"2":{"35":2}}],["变量",{"2":{"65":1}}],["变量位置",{"2":{"35":2}}],["数组运算结果",{"2":{"144":2}}],["数组运算",{"2":{"144":2}}],["数组变量",{"2":{"64":1}}],["数2",{"2":{"117":2}}],["数1",{"2":{"117":2}}],["数",{"2":{"62":1,"118":2,"119":2}}],["数学工具",{"2":{"0":1,"1":1}}],["实数",{"2":{"61":1,"113":2}}],["∧",{"2":{"59":2}}],["交线",{"2":{"84":2,"95":2}}],["交线返回交点",{"2":{"58":2}}],["交集",{"2":{"58":2,"95":2}}],["交点",{"2":{"47":2,"85":2}}],["重合线返回自身",{"2":{"58":2}}],["由点和直线构造平面",{"2":{"92":2}}],["由点和法向量构造平面",{"2":{"89":2}}],["由两直线构造平面",{"2":{"91":2}}],["由两点构造直线",{"2":{"57":2}}],["由三点构造平面",{"2":{"90":2}}],["由一个点和一个方向向量确定",{"2":{"43":2}}],["工厂函数",{"2":{"57":2,"89":2,"90":2,"91":2,"92":2}}],["并对向量单位化",{"2":{"56":2}}],["处理",{"2":{"56":2}}],["处的梯度向量为",{"2":{"37":1}}],["化",{"2":{"56":2}}],["按照可行性一次对x",{"2":{"56":2}}],["不返回值",{"2":{"56":2,"128":2}}],["不支持的类型",{"2":{"46":2,"82":2,"83":2,"95":2}}],["自体归一化",{"2":{"128":2}}],["自体简化",{"2":{"56":2}}],["自然对数的底",{"2":{"4":1}}],["等价相等",{"2":{"56":2}}],["简化直线方程",{"2":{"56":2}}],["两直线方向向量的叉乘与两直线上任意一点的向量的点积为0",{"2":{"55":2}}],["两角的和为180°",{"2":{"14":2}}],["两角的和为90°",{"2":{"13":2}}],["充要条件",{"2":{"55":2}}],["判断两个向量是否相等",{"2":{"136":2}}],["判断两个向量是否平行",{"2":{"127":2}}],["判断两个向量是否近似平行",{"2":{"126":2}}],["判断两个向量是否近似相等",{"2":{"123":2}}],["判断两个数是否近似相等",{"2":{"117":2}}],["判断两个点是否相等",{"2":{"105":2}}],["判断两个点是否近似相等",{"2":{"101":2}}],["判断两个平面是否等价",{"2":{"96":2}}],["判断两个平面是否平行",{"2":{"87":2}}],["判断两个平面是否近似相等",{"2":{"81":2}}],["判断两条直线是否等价",{"2":{"59":2}}],["判断两条直线是否共面",{"2":{"55":2}}],["判断两条直线是否共线",{"2":{"53":2}}],["判断两条直线是否平行",{"2":{"52":2}}],["判断两条直线是否近似平行",{"2":{"51":2}}],["判断两条直线是否近似相等",{"2":{"44":2}}],["判断点是否在直线上",{"2":{"54":2}}],["另一个向量或数",{"2":{"144":2}}],["另一个向量或点",{"2":{"135":2,"140":2}}],["另一个向量",{"2":{"123":2,"124":2,"125":2,"126":2,"127":2,"136":2,"146":2}}],["另一个点或向量",{"2":{"104":2}}],["另一个点",{"2":{"101":2,"105":2,"106":2,"137":2,"141":2}}],["另一个平面或点",{"2":{"83":2}}],["另一个平面或直线",{"2":{"82":2,"95":2}}],["另一个平面",{"2":{"81":2,"84":2,"87":2,"96":2}}],["另一",{"2":{"52":2,"53":2,"55":2}}],["另一条直线或点",{"2":{"46":2}}],["另一条直线",{"2":{"44":2,"45":2,"47":2,"51":2,"58":2,"59":2}}],["则两向量平行",{"2":{"125":2}}],["则同一个t对应的点不同",{"2":{"49":2}}],["则其在点$",{"2":{"37":1}}],["则其在点",{"2":{"37":1}}],["但起始点和方向向量不同",{"2":{"49":2}}],["同一条直线",{"2":{"49":2}}],["垂线",{"2":{"48":2}}],["指定点",{"2":{"48":2,"86":2}}],["直线",{"2":{"57":2,"85":2,"91":4,"92":2}}],["直线不共面",{"2":{"47":2}}],["直线平行",{"2":{"47":2}}],["直线上的一点",{"2":{"43":2}}],["距离",{"2":{"46":2,"83":2}}],["夹角",{"2":{"45":2,"82":2,"124":2}}],["是否只返回负数的符号",{"2":{"118":2,"119":2}}],["是否相等",{"2":{"105":2,"136":2}}],["是否等价",{"2":{"59":2,"96":2}}],["是否共面",{"2":{"55":2}}],["是否共线",{"2":{"53":2}}],["是否在直线上",{"2":{"54":2}}],["是否平行",{"2":{"52":2,"87":2,"127":2}}],["是否近似平行",{"2":{"51":2,"126":2}}],["是否近似相等",{"2":{"44":2,"81":2,"101":2,"117":2,"123":2}}],["是否为弧度",{"2":{"12":2}}],["误差",{"2":{"44":2,"51":2,"101":2,"117":2,"123":2,"126":2}}],["方向向量",{"2":{"43":2,"109":1}}],["三元数组函数",{"2":{"73":1}}],["三元单变量函数",{"2":{"72":1}}],["三元函数",{"2":{"37":2,"74":1}}],["三维空间中的线段",{"2":{"109":2}}],["三维空间中的直线",{"2":{"43":2}}],["三维向量",{"2":{"39":1,"40":1}}],["三维线段",{"2":{"39":1,"40":1}}],["三维点",{"2":{"39":1,"40":1}}],["三维平面",{"2":{"39":1,"40":1}}],["三维直线",{"2":{"39":1,"40":1}}],["导入的类有",{"2":{"39":1,"40":1}}],["本包定义了一些常用的导入",{"2":{"39":1,"40":1}}],["本模块塞了一些预设",{"2":{"155":1,"163":1}}],["本模块用于内部类型提示",{"2":{"60":1}}],["本模块定义了粒子生成相关的工具",{"2":{"153":1,"154":1}}],["本模块定义了3维向量的类vector3",{"2":{"120":1}}],["本模块定义了一些常用的工具函数",{"2":{"110":1}}],["本模块定义了一些常用的常量",{"2":{"2":1}}],["本模块定义了三维空间中点的类",{"2":{"98":1}}],["本模块定义了三维空间中的线段类",{"2":{"107":1}}],["本模块定义了三维空间中的平面类",{"2":{"78":1}}],["本模块定义了三维空间中的直线类",{"2":{"41":1}}],["本模块定义了方程相关的类和函数以及一些常用的数学函数",{"2":{"31":1}}],["本模块定义了角度相关的类",{"2":{"9":1}}],["本模块是主模块",{"2":{"0":1,"1":1}}],["help",{"2":{"164":1}}],["have",{"2":{"84":1}}],["html",{"2":{"44":2,"46":2,"47":1,"50":1,"51":2,"52":1,"53":1,"54":1,"55":1,"58":1,"59":1,"80":1,"81":1,"82":1,"83":2,"84":1,"85":1,"87":1,"95":2,"96":1,"100":1,"101":2,"105":1,"111":1,"117":2,"118":3,"119":3,"122":1,"123":2,"126":2,"127":1,"129":1,"130":1,"136":1,"144":1,"146":1}}],["https",{"2":{"38":1,"44":2,"46":2,"47":1,"50":1,"51":2,"52":1,"53":1,"54":1,"55":1,"58":1,"59":1,"80":1,"81":1,"82":1,"83":2,"84":1,"85":1,"87":1,"95":2,"96":1,"100":1,"101":2,"105":1,"111":1,"117":2,"118":3,"119":3,"122":1,"123":2,"126":2,"127":1,"129":1,"130":1,"136":1,"144":1,"146":1}}],["high",{"2":{"35":2}}],["hide",{"2":{"35":2,"38":1}}],["6",{"2":{"38":2}}],["3维向量",{"2":{"122":2}}],["3a",{"2":{"46":2,"47":1,"50":1,"51":2,"52":1,"53":1,"54":1,"55":1,"59":1,"80":1,"82":1,"83":2,"84":1,"85":1,"87":1,"95":2,"96":1,"122":1,"123":2,"126":2,"127":1,"129":1,"130":1,"136":1,"144":1,"146":1}}],["355859667",{"2":{"38":1}}],["3",{"2":{"38":2,"44":2,"46":2,"47":1,"50":1,"51":2,"52":1,"53":1,"54":1,"55":1,"58":1,"59":1,"80":1,"81":1,"82":1,"83":2,"84":1,"85":1,"87":1,"95":2,"96":1,"100":1,"101":2,"105":1,"111":1,"117":2,"118":3,"119":3,"122":1,"123":2,"126":2,"127":1,"130":1,"136":1,"144":1,"146":1}}],["3vf",{"0":{"37":1},"2":{"37":1}}],["by",{"2":{"80":2}}],["bound=iterable",{"2":{"64":1}}],["bound=number",{"2":{"63":1}}],["bool=false",{"2":{"12":1,"118":1,"119":1}}],["bool",{"0":{"12":1,"44":1,"51":1,"52":1,"53":1,"54":1,"55":1,"59":1,"81":1,"87":1,"96":1,"101":1,"117":1,"118":1,"119":1,"123":1,"126":1,"127":1},"2":{"44":3,"51":3,"52":3,"53":3,"54":3,"55":3,"59":3,"81":3,"87":3,"96":3,"101":3,"105":2,"117":3,"118":2,"119":2,"123":3,"126":3,"127":3,"136":2}}],["b",{"0":{"80":1},"2":{"38":4,"80":5,"81":7,"83":2,"84":12,"85":2,"88":1,"89":3}}],["柯里化后的函数",{"2":{"38":2}}],["柯理化",{"2":{"38":2}}],["函数式编程",{"2":{"38":1}}],["函数",{"2":{"38":2}}],["有关函数柯里化",{"2":{"38":2}}],["对多参数函数进行柯里化",{"2":{"38":2}}],["d",{"0":{"80":1},"2":{"80":7,"81":6,"83":1,"84":6,"85":1,"89":2}}],["documentation",{"2":{"164":1}}],["doc",{"2":{"129":1}}],["docs",{"2":{"44":2,"46":2,"47":1,"50":1,"51":2,"52":1,"53":1,"54":1,"55":1,"58":1,"59":1,"80":1,"81":1,"82":1,"83":2,"84":1,"85":1,"87":1,"95":2,"96":1,"100":1,"101":2,"105":1,"111":1,"117":2,"118":3,"119":3,"122":1,"123":2,"126":2,"127":1,"130":1,"136":1,"144":1,"146":1}}],["do",{"2":{"47":2}}],["distance",{"0":{"46":1,"83":1},"2":{"46":1,"83":1}}],["direction",{"0":{"43":1},"2":{"43":5,"44":1,"45":2,"46":8,"47":6,"48":1,"49":1,"50":3,"51":2,"52":2,"53":1,"54":1,"55":2,"56":4,"57":2,"59":3,"82":1,"84":2,"85":4,"91":1,"92":1,"95":1,"109":2}}],["dz",{"2":{"37":2}}],["dy",{"2":{"37":2}}],["dx",{"2":{"37":2}}],["density",{"0":{"158":1,"161":1},"2":{"158":4,"161":4}}],["derivative",{"0":{"35":1},"2":{"35":6}}],["degree",{"0":{"15":1},"2":{"15":1}}],["def",{"0":{"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"24":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"33":1,"34":1,"35":1,"37":1,"38":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"59":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1},"2":{"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"28":1,"29":1,"35":2,"38":2,"57":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"102":1,"103":1,"129":1,"130":1,"131":1,"133":1,"134":1,"138":1,"139":1,"142":1,"143":1,"158":1,"161":1}}],["default",{"2":{"3":1,"4":1,"5":1,"6":1,"7":1,"8":1,"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"149":1,"150":1,"151":1,"152":1}}],["description",{"2":{"0":1,"1":1,"2":1,"3":1,"4":1,"5":1,"6":1,"7":1,"8":1,"9":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"31":1,"33":1,"34":1,"35":1,"36":1,"37":1,"38":1,"39":1,"40":1,"41":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"59":1,"60":1,"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"78":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"95":1,"96":1,"98":1,"100":1,"101":1,"104":1,"105":1,"106":1,"107":1,"109":1,"110":1,"111":1,"113":1,"117":1,"118":1,"119":1,"120":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"130":1,"131":1,"135":1,"136":1,"137":1,"140":1,"141":1,"144":1,"146":1,"148":1,"149":1,"150":1,"151":1,"152":1,"153":1,"154":1,"155":1,"156":1,"158":1,"159":1,"161":1,"163":1}}],["$处的梯度向量为",{"2":{"37":1}}],["$",{"2":{"37":3}}],["梯度",{"2":{"37":2}}],["点乘结果",{"2":{"146":2}}],["点乘",{"2":{"146":2}}],["点乘使用",{"2":{"144":2}}],["点3",{"2":{"90":2}}],["点法式构造",{"2":{"89":2}}],["点2",{"2":{"57":2,"90":2}}],["点1",{"2":{"57":2,"90":2}}],["点",{"2":{"37":2,"49":2,"54":2}}],["∂f∂z",{"2":{"37":1}}],["∂f∂y",{"2":{"37":1}}],["∂f∂x",{"2":{"37":1}}],["∇f",{"2":{"37":1}}],["计算平行于该平面且过指定点的平面",{"2":{"86":2}}],["计算平面与直线的交点",{"2":{"85":2}}],["计算平面与平面或点之间的距离",{"2":{"83":2}}],["计算平面与平面之间的夹角",{"2":{"82":2}}],["计算两个向量之间的夹角",{"2":{"124":2}}],["计算两平面的交线",{"2":{"84":2}}],["计算两条直线点集合的交集",{"2":{"58":2}}],["计算两条直线的交点",{"2":{"47":2}}],["计算直线经过指定点p的垂线",{"2":{"48":2}}],["计算直线和直线或点之间的距离",{"2":{"46":2}}],["计算直线和直线之间的夹角",{"2":{"45":2}}],["计算三元函数在某点的梯度向量",{"2":{"37":2}}],["计算曲线上的点",{"2":{"34":2}}],["求高阶偏导函数",{"2":{"35":1}}],["求n元函数一阶偏导函数",{"2":{"35":2}}],["l2",{"0":{"91":1},"2":{"91":5}}],["l1",{"0":{"91":1},"2":{"91":7}}],["lambda",{"2":{"50":3}}],["left",{"2":{"37":1}}],["length",{"0":{"130":1},"2":{"46":5,"47":1,"82":2,"109":2,"124":2,"126":1,"128":5,"130":1,"131":1,"132":1}}],["len",{"2":{"34":1}}],["linalg",{"2":{"84":3}}],["lines",{"0":{"91":1},"2":{"47":2,"91":1}}],["line",{"0":{"41":1,"92":2},"1":{"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"59":1},"2":{"44":1,"45":1,"46":1,"47":1,"48":1,"51":1,"52":1,"53":1,"55":1,"57":1,"58":2,"59":1,"82":1,"84":1,"85":2,"91":1,"92":6,"95":2}}],["line3",{"0":{"42":1,"44":1,"45":1,"46":1,"47":1,"48":1,"51":1,"52":1,"53":1,"55":1,"57":1,"58":2,"82":1,"84":2,"85":1,"91":2,"92":1,"93":1,"94":1,"97":1},"1":{"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"59":1},"2":{"39":1,"40":1,"44":3,"45":3,"46":4,"47":3,"48":4,"51":3,"52":3,"53":3,"55":3,"57":3,"58":6,"59":2,"82":4,"84":5,"85":3,"91":5,"92":3,"93":1,"94":1,"95":6,"97":1,"114":1}}],["library",{"2":{"44":2,"46":2,"47":1,"50":1,"51":2,"52":1,"53":1,"54":1,"55":1,"58":1,"59":1,"80":1,"81":1,"82":1,"83":2,"84":1,"85":1,"87":1,"95":2,"96":1,"100":1,"101":2,"105":1,"111":1,"117":2,"118":3,"119":3,"122":1,"123":2,"126":2,"127":1,"130":1,"136":1,"144":1,"146":1}}],["list",{"2":{"35":8,"158":10,"161":10}}],["litedoc",{"2":{"35":2,"38":1}}],["`np",{"2":{"129":1}}],["`none`",{"2":{"58":1,"95":1}}],["``x2",{"2":{"125":1}}],["``x1",{"2":{"125":1}}],["``i",{"2":{"125":1}}],["```",{"2":{"38":1}}],["```python",{"2":{"38":1}}],["`str`",{"2":{"118":1,"119":1}}],["`plane3`",{"2":{"81":1,"82":1,"83":1,"84":1,"86":1,"87":1,"89":1,"95":1,"96":1}}],["`point3`",{"2":{"37":1,"43":1,"46":1,"47":1,"48":1,"49":1,"54":1,"57":2,"58":1,"83":1,"85":1,"86":1,"89":1,"90":3,"92":1,"95":1,"101":1,"104":2,"105":1,"106":1,"109":2,"135":2,"137":2,"140":2,"141":2}}],["`onesinglevarfunc`",{"2":{"50":3}}],["`onevarfunc`",{"2":{"33":3}}],["`realnumber`",{"2":{"49":1,"113":1}}],["`tuple`",{"2":{"50":1}}],["`typeerror`",{"2":{"46":1,"82":1,"83":1,"95":1}}],["`threesinglevarsfunc`",{"2":{"37":1}}],["`anyangle`",{"2":{"45":1,"82":1,"124":1}}],["`bool`",{"2":{"44":1,"51":1,"52":1,"53":1,"54":1,"55":1,"59":1,"81":1,"87":1,"96":1,"101":1,"105":1,"117":1,"118":1,"119":1,"123":1,"126":1,"127":1,"136":1}}],["`float`",{"2":{"44":1,"46":1,"51":1,"80":4,"83":1,"100":3,"101":1,"111":4,"117":3,"118":1,"119":1,"122":3,"123":1,"126":1,"130":1,"144":1,"146":1}}],["`line3`",{"2":{"44":1,"45":1,"46":1,"47":1,"48":1,"51":1,"52":1,"53":1,"55":1,"57":1,"58":2,"59":1,"82":1,"84":1,"85":1,"91":2,"92":1,"95":2}}],["`valueerror`",{"2":{"47":2,"84":1,"85":1}}],["`var`",{"2":{"38":1}}],["`vector3`",{"2":{"43":1,"88":1,"89":1,"104":1,"106":2,"123":1,"124":1,"125":2,"126":1,"127":1,"131":1,"135":2,"136":1,"140":2,"144":2,"146":1,"148":1}}],["`multivarsfunc`",{"2":{"35":1,"38":1}}],["无效变量类型",{"2":{"35":2}}],["偏导函数",{"2":{"35":2}}],["偏移量",{"2":{"35":2,"37":2}}],["高阶偏导数值",{"2":{"35":1}}],["高阶偏导",{"2":{"35":2}}],["可直接从mbcp",{"2":{"39":1,"40":1}}],["可参考",{"2":{"38":1}}],["可参考函数式编程",{"2":{"38":1}}],["可为整数",{"2":{"35":2}}],["可导入",{"2":{"0":1,"1":1}}],["因此该函数的稳定性有待提升",{"2":{"35":2}}],["目前数学界对于一个函数的导函数并没有通解的说法",{"2":{"35":2}}],["目标点",{"2":{"34":2}}],["warning",{"2":{"35":2}}],["慎用",{"2":{"35":2}}],["这玩意不太稳定",{"2":{"35":2}}],["num",{"2":{"158":5,"161":5}}],["numpy",{"2":{"129":2}}],["numpy数组",{"2":{"129":2}}],["number=epsilon",{"2":{"35":1}}],["number",{"0":{"35":1,"62":1},"2":{"64":1}}],["ndarray`",{"2":{"129":1}}],["ndarray",{"0":{"129":1},"2":{"129":3}}],["neg",{"0":{"118":1,"119":1},"2":{"118":4,"119":4,"148":1}}],["negative",{"0":{"17":1},"2":{"17":1}}],["ne",{"0":{"116":1},"2":{"116":1}}],["np",{"0":{"129":2},"2":{"84":9,"129":4,"158":9,"161":9}}],["no",{"2":{"84":1}}],["normal",{"0":{"88":1,"89":2},"2":{"82":5,"84":4,"85":1,"86":2,"87":2,"88":1,"89":7,"90":3,"91":1,"92":1,"95":3}}],["normalize",{"0":{"128":1},"2":{"56":1,"128":1}}],["none",{"0":{"58":1,"93":1,"94":1},"2":{"58":4,"93":1,"94":1,"95":4}}],["not",{"2":{"46":1,"47":4,"58":1,"116":1,"118":1,"119":1}}],["nabla",{"2":{"37":1}}],["n元函数",{"2":{"35":2}}],["参数方程",{"2":{"50":2}}],["参数t",{"2":{"49":2}}],["参数",{"2":{"34":2,"35":1,"38":2}}],["|",{"0":{"34":1,"35":1,"46":1,"58":2,"82":1,"83":1,"93":1,"94":1,"144":2},"2":{"34":1,"35":1,"46":3,"58":6,"61":1,"62":1,"65":1,"68":1,"71":1,"74":1,"77":1,"82":3,"83":3,"93":1,"94":1,"95":6,"104":2,"135":4,"140":4,"144":4}}],["曲线方程",{"2":{"33":2,"39":1,"40":1}}],["z轴单位向量",{"2":{"152":1}}],["z轴分量",{"2":{"122":2}}],["z2``",{"2":{"125":1}}],["z1``",{"2":{"125":1}}],["zero",{"0":{"149":1},"2":{"91":1,"127":1}}],["z系数",{"2":{"80":2}}],["zhihu",{"2":{"38":1}}],["zhuanlan",{"2":{"38":1}}],["z0",{"2":{"37":2}}],["zip",{"2":{"34":1}}],["z函数",{"2":{"33":2}}],["z",{"0":{"33":1,"100":1,"122":1,"152":1},"2":{"33":5,"34":4,"37":11,"50":2,"56":4,"83":1,"84":4,"85":4,"89":2,"100":7,"101":2,"104":2,"105":2,"106":2,"109":2,"114":2,"122":5,"123":2,"125":4,"128":1,"129":1,"130":1,"135":4,"136":2,"137":2,"140":4,"141":2,"144":3,"146":2,"147":1,"148":1,"158":2,"161":2}}],["y轴单位向量",{"2":{"151":1}}],["y轴分量",{"2":{"122":2}}],["y2",{"2":{"125":1}}],["y1",{"2":{"125":1}}],["y系数",{"2":{"80":2}}],["y0",{"2":{"37":2}}],["y函数",{"2":{"33":2}}],["y",{"0":{"33":1,"100":1,"117":1,"122":1,"151":1},"2":{"33":5,"34":4,"37":11,"50":2,"56":4,"83":1,"84":4,"85":4,"89":2,"100":7,"101":2,"104":2,"105":2,"106":2,"109":2,"114":2,"117":4,"122":5,"123":2,"125":4,"128":1,"129":1,"130":1,"135":4,"136":2,"137":2,"140":4,"141":2,"144":3,"146":2,"147":1,"148":1,"158":2,"161":2}}],["x轴单位向量",{"2":{"150":1}}],["x轴分量",{"2":{"122":2}}],["x3c",{"2":{"101":3,"114":1,"117":1,"118":1,"119":1,"123":3,"126":1}}],["x26",{"2":{"95":1}}],["x系数",{"2":{"80":2}}],["x0",{"2":{"37":2}}],["x函数",{"2":{"33":2}}],["x",{"0":{"33":1,"100":1,"111":1,"117":1,"118":1,"119":1,"122":1,"150":1},"2":{"33":5,"34":4,"37":11,"50":2,"56":2,"83":1,"84":4,"85":4,"89":2,"100":7,"101":2,"104":2,"105":2,"106":2,"109":2,"111":4,"114":2,"117":4,"118":5,"119":8,"122":5,"123":2,"125":4,"128":1,"129":1,"130":1,"135":4,"136":2,"137":2,"140":4,"141":2,"144":3,"146":2,"147":1,"148":1,"158":2,"161":2}}],["to",{"2":{"164":1}}],["theta",{"2":{"158":3,"161":3}}],["the",{"2":{"85":2,"164":1}}],["three",{"0":{"90":1},"2":{"90":1}}],["threevarsfunc",{"0":{"74":1}}],["threearraysfunc",{"0":{"73":1},"2":{"74":1}}],["threesinglevarsfunc",{"0":{"37":1,"72":1},"2":{"37":3,"74":1}}],["twovarsfunc",{"0":{"71":1}}],["twoarraysfunc",{"0":{"70":1},"2":{"71":1}}],["twosinglevarsfunc",{"0":{"69":1},"2":{"71":1}}],["two",{"0":{"57":1,"91":1},"2":{"57":1,"91":1}}],["tip",{"2":{"37":2,"38":2}}],["typevar",{"2":{"63":1,"64":1}}],["typealias",{"2":{"61":1,"62":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1}}],["typeerror",{"2":{"46":3,"47":1,"82":3,"83":3,"95":3,"115":1,"135":1,"140":1,"141":1,"144":1}}],["type",{"0":{"115":1},"2":{"35":1,"46":1,"61":1,"62":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"82":2,"83":2,"95":2,"114":2,"115":4,"135":2,"140":2,"141":2,"144":2,"149":1,"150":1,"151":1,"152":1}}],["typing",{"0":{"60":1},"1":{"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1},"2":{"33":3,"35":1,"37":1,"38":2,"49":1,"50":1,"113":1}}],["tuple",{"0":{"34":1,"35":1,"50":1},"2":{"34":2,"35":2,"50":3}}],["t",{"0":{"34":1,"49":1},"2":{"34":10,"49":4,"50":6,"85":4}}],["truediv",{"2":{"28":1,"29":1,"30":1,"147":1}}],["tan",{"0":{"20":1},"2":{"20":2,"21":1}}],["正割值",{"2":{"22":4}}],["正切值",{"2":{"20":4}}],["正弦值",{"2":{"18":4}}],["余割值",{"2":{"23":4}}],["余切值",{"2":{"21":4}}],["余弦值",{"2":{"19":4}}],["余角",{"2":{"13":4}}],["最大值",{"2":{"111":2}}],["最大负角度",{"2":{"17":2}}],["最大负角",{"2":{"17":2}}],["最小值",{"2":{"111":2}}],["最小正角度",{"2":{"16":2}}],["最小正角",{"2":{"16":2}}],["弧度",{"2":{"15":2}}],["角度",{"2":{"15":2}}],["角度或弧度值",{"2":{"12":2}}],["补角",{"2":{"14":4}}],[">",{"2":{"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"24":1,"26":1,"27":1,"28":1,"29":1,"34":1,"35":5,"37":3,"38":6,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"57":1,"58":1,"59":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"96":1,"97":1,"101":1,"102":1,"103":1,"104":2,"106":3,"111":1,"117":1,"118":2,"119":5,"123":1,"124":1,"125":2,"126":1,"127":1,"129":1,"130":1,"131":1,"133":1,"134":1,"135":2,"137":2,"138":1,"139":1,"140":2,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1}}],["rmul",{"2":{"145":1}}],["rsub",{"2":{"141":1}}],["right",{"2":{"37":1}}],["reference",{"0":{"164":1},"2":{"129":1}}],["realnumber",{"0":{"49":1,"61":1,"113":1,"143":1,"145":1,"146":1,"147":1},"2":{"49":3,"62":1,"113":3,"143":1,"145":1,"146":1,"147":1}}],["result",{"2":{"35":4}}],["returns",{"2":{"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"34":1,"35":2,"37":1,"38":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"57":1,"58":1,"59":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"95":1,"96":1,"101":1,"104":1,"105":1,"106":1,"111":1,"117":1,"118":1,"119":1,"123":1,"124":1,"125":1,"126":1,"127":1,"129":1,"130":1,"131":1,"135":1,"136":1,"137":1,"140":1,"141":1,"144":1,"146":1,"148":1,"158":1,"161":1}}],["return",{"2":{"13":2,"14":2,"15":2,"16":2,"17":2,"18":2,"19":2,"20":2,"21":2,"22":2,"23":2,"24":1,"25":1,"26":1,"27":1,"30":2,"34":3,"35":5,"37":2,"38":5,"44":2,"45":2,"46":6,"47":2,"48":2,"49":2,"50":2,"51":2,"52":2,"53":2,"54":2,"55":2,"57":2,"58":4,"59":2,"81":5,"82":3,"83":3,"84":2,"85":2,"86":2,"87":2,"88":2,"89":2,"90":2,"91":2,"92":2,"95":5,"96":2,"97":1,"101":2,"104":2,"105":2,"106":2,"111":2,"114":2,"116":1,"117":2,"118":4,"119":4,"123":2,"124":2,"125":2,"126":2,"127":2,"129":2,"130":2,"131":2,"132":1,"135":3,"136":2,"137":2,"140":3,"141":2,"144":3,"145":1,"146":2,"147":1,"148":2,"158":2,"161":2}}],["range",{"2":{"158":2,"161":2}}],["rand",{"0":{"97":1},"2":{"97":1}}],["radius",{"0":{"158":1,"161":1},"2":{"158":7,"161":7}}],["radian=true",{"2":{"13":1,"14":1,"17":1,"24":1,"26":1,"27":1,"30":1,"82":1,"124":1}}],["radian",{"0":{"12":1},"2":{"12":6,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"24":2,"25":2,"26":2,"27":1,"30":3}}],["radd",{"2":{"137":1}}],["raise",{"0":{"115":1},"2":{"35":1,"46":1,"47":2,"82":1,"83":1,"84":1,"85":1,"95":1,"114":2,"115":2,"135":1,"140":1,"141":1,"144":1}}],["raises",{"2":{"35":2,"46":2,"47":2,"82":2,"83":2,"84":2,"85":2,"95":2}}],["ratio",{"0":{"5":1}}],["operand",{"2":{"95":1,"135":1,"140":1,"141":1,"144":1}}],["overload",{"2":{"27":1,"28":2,"29":1,"92":1,"93":2,"94":1,"101":1,"102":2,"103":1,"132":1,"133":2,"134":1,"137":1,"138":2,"139":1,"141":1,"142":2,"143":1}}],["other",{"0":{"24":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"44":1,"45":1,"46":1,"47":1,"51":1,"52":1,"53":1,"55":1,"58":1,"59":1,"81":1,"82":1,"83":1,"84":1,"85":1,"87":1,"93":1,"94":1,"95":1,"96":1,"97":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"114":1,"115":1,"116":1,"123":1,"124":1,"125":1,"126":1,"127":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1},"2":{"24":2,"25":2,"26":2,"27":2,"28":1,"29":1,"30":4,"44":5,"45":4,"46":13,"47":9,"51":4,"52":4,"53":5,"55":5,"58":7,"59":5,"81":15,"82":9,"83":9,"84":17,"85":11,"87":4,"93":1,"94":1,"95":10,"96":4,"97":2,"101":6,"102":1,"103":1,"104":6,"105":6,"106":6,"114":9,"115":2,"116":2,"123":6,"124":5,"125":9,"126":4,"127":4,"133":1,"134":1,"135":12,"136":6,"137":6,"138":1,"139":1,"140":12,"141":8,"142":1,"143":1,"144":12,"145":2,"146":6,"147":4}}],["only",{"0":{"118":1,"119":1},"2":{"118":4,"119":4}}],["onearrayfunc",{"0":{"67":1},"2":{"68":1}}],["onesinglevarfunc",{"0":{"50":3,"66":1},"2":{"50":7,"68":1}}],["onevarfunc",{"0":{"33":3,"38":1,"68":1},"2":{"33":9,"38":1}}],["on",{"0":{"54":1},"2":{"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"24":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"33":1,"34":1,"35":1,"37":1,"38":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":2,"55":1,"56":1,"57":1,"58":1,"59":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1}}],["org",{"2":{"44":2,"46":2,"47":1,"50":1,"51":2,"52":1,"53":1,"54":1,"55":1,"58":1,"59":1,"80":1,"81":1,"82":1,"83":2,"84":1,"85":1,"87":1,"95":2,"96":1,"100":1,"101":2,"105":1,"111":1,"117":2,"118":3,"119":3,"122":1,"123":2,"126":2,"127":1,"129":1,"130":1,"136":1,"144":1,"146":1}}],["order",{"2":{"35":2}}],["or",{"2":{"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"24":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"33":1,"34":1,"35":1,"37":1,"38":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":2,"59":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":2,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1}}],["v3",{"2":{"125":2}}],["v2",{"2":{"59":2,"90":2,"91":4,"125":2}}],["v1",{"2":{"59":4,"90":2,"91":2,"125":2}}],["vector",{"0":{"120":1},"1":{"121":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"150":1,"151":1,"152":1},"2":{"43":1,"88":1,"89":1,"104":1,"106":3,"144":1}}],["vector3",{"0":{"37":1,"43":1,"88":1,"89":1,"102":1,"106":1,"121":1,"123":1,"124":1,"125":2,"126":1,"127":1,"131":1,"133":2,"138":2,"142":2,"143":1,"144":2,"145":1,"146":1,"147":1,"148":1,"149":1},"1":{"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1},"2":{"37":2,"39":1,"40":1,"43":3,"88":4,"89":3,"91":1,"102":1,"104":2,"106":7,"114":2,"123":3,"124":3,"125":7,"126":3,"127":4,"131":3,"133":2,"135":7,"136":2,"138":2,"140":7,"141":1,"142":2,"143":1,"144":9,"145":1,"146":3,"147":2,"148":4,"149":2,"150":2,"151":2,"152":2}}],["v",{"2":{"35":2,"104":2,"106":4,"135":8,"137":2,"140":8,"141":2}}],["view",{"2":{"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"24":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"33":1,"34":1,"35":1,"37":1,"38":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"59":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1}}],["valueerror",{"2":{"35":3,"47":4,"84":3,"85":3}}],["value",{"0":{"12":1,"113":1},"2":{"12":5,"113":5,"114":6,"115":1}}],["var",{"0":{"3":1,"4":1,"5":1,"6":1,"7":1,"8":1,"34":1,"35":1,"38":1,"61":1,"62":1,"63":1,"64":1,"65":2,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"149":1,"150":1,"151":1,"152":1},"2":{"33":3,"34":1,"35":14,"37":1,"38":7,"49":1,"50":1}}],["默认为否",{"2":{"12":2}}],["任意角度",{"2":{"12":2,"39":1,"40":1}}],["from",{"0":{"57":1,"89":1,"90":1,"91":1,"92":1},"2":{"57":1,"86":1,"89":1,"90":2,"91":2,"92":2,"106":1}}],["frac",{"2":{"37":3}}],["f",{"2":{"37":4,"82":1,"83":1,"95":1,"115":1,"119":3,"135":1,"140":1,"141":1,"144":1}}],["format",{"0":{"119":1},"2":{"119":1}}],["for",{"2":{"34":1,"35":1,"95":1,"135":1,"140":1,"141":1,"144":1,"158":2,"161":2}}],["functions",{"2":{"44":2,"46":1,"51":2,"52":1,"53":1,"54":1,"55":1,"59":1,"80":1,"81":1,"83":1,"87":1,"96":1,"100":1,"101":2,"105":1,"111":1,"117":2,"118":3,"119":3,"122":1,"123":2,"126":2,"127":1,"130":1,"136":1,"144":1,"146":1}}],["function",{"0":{"36":1},"1":{"37":1,"38":1}}],["func",{"0":{"33":3,"35":2,"37":1,"38":1},"2":{"33":15,"34":6,"35":16,"37":9,"38":6}}],["false",{"0":{"12":1,"118":1,"119":1},"2":{"81":1}}],["float=0",{"2":{"117":1}}],["float=1e",{"2":{"51":1}}],["float=approx",{"2":{"44":1,"101":1,"117":1,"123":1,"126":1}}],["float=epsilon",{"2":{"37":1}}],["float",{"0":{"12":1,"15":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"27":1,"28":1,"29":1,"37":1,"44":1,"46":1,"51":1,"80":4,"83":1,"100":3,"101":1,"111":4,"117":3,"118":1,"119":1,"122":3,"123":1,"126":1,"130":1,"144":1,"158":2,"161":2},"2":{"12":1,"15":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"27":1,"28":1,"29":1,"44":2,"46":3,"51":2,"61":1,"80":9,"83":3,"100":7,"101":2,"111":9,"114":2,"117":5,"118":3,"119":3,"122":7,"123":2,"126":2,"130":3,"144":4,"146":2,"158":2,"161":2}}],["==",{"2":{"34":1,"46":1,"55":1,"56":3,"85":1,"91":1,"95":1}}],["=",{"0":{"12":1,"24":1,"26":1,"27":1,"28":1,"29":1,"35":1,"37":1,"44":1,"51":1,"101":1,"102":1,"103":1,"106":1,"117":2,"118":1,"119":1,"123":1,"126":1,"133":1,"134":1,"137":1,"138":1,"139":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1},"2":{"12":2,"33":3,"35":5,"37":5,"38":2,"43":2,"56":3,"57":1,"80":6,"81":6,"84":17,"85":2,"89":2,"90":3,"91":3,"100":3,"109":5,"113":1,"122":3,"128":4,"158":7,"161":7}}],["improve",{"2":{"164":1}}],["import",{"2":{"106":1}}],["i",{"2":{"158":4,"161":4}}],["invalid",{"2":{"35":1}}],["intersect",{"2":{"47":2}}],["intersection",{"0":{"47":1,"84":1,"85":1},"2":{"47":1,"58":1,"84":2,"85":1,"95":2,"97":1}}],["int",{"0":{"35":2,"144":1},"2":{"35":3,"38":8,"61":1,"114":2,"144":2,"158":1,"161":1}}],["in",{"2":{"34":1,"35":1,"158":2,"161":2}}],["init",{"0":{"12":1,"33":1,"43":1,"80":1,"100":1,"109":1,"113":1,"122":1},"2":{"12":1,"33":1,"43":1,"80":1,"100":1,"109":1,"113":1,"122":1}}],["if",{"2":{"12":1,"30":1,"34":1,"35":1,"46":2,"47":2,"56":3,"58":1,"81":1,"82":1,"83":1,"84":2,"85":1,"91":1,"95":3,"114":3,"118":2,"119":2,"135":1,"140":1,"141":1,"144":1}}],["isinstance",{"2":{"30":1,"35":2,"46":2,"82":2,"83":2,"95":2,"114":4,"135":2,"140":2,"141":1,"144":2}}],["is",{"0":{"12":1,"51":1,"52":1,"53":1,"54":1,"55":1,"87":1,"126":1,"127":1},"2":{"12":4,"13":1,"14":1,"17":1,"24":1,"26":1,"27":1,"30":1,"44":2,"46":2,"47":2,"51":2,"52":2,"53":3,"54":2,"55":1,"58":3,"59":2,"82":1,"84":1,"87":2,"95":1,"124":1,"126":1,"127":1}}],["sphere",{"0":{"158":1,"161":1},"2":{"158":1,"161":1}}],["staticmethod",{"2":{"157":1,"158":1,"160":1,"161":1}}],["stable",{"2":{"129":1}}],["str",{"0":{"118":1,"119":1},"2":{"118":3,"119":3}}],["stdtypes",{"2":{"50":1}}],["s",{"2":{"95":1,"135":1,"140":1,"141":1,"144":1}}],["solve",{"2":{"84":3}}],["source",{"2":{"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"24":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"33":1,"34":1,"35":1,"37":1,"38":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"59":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1}}],["sign",{"0":{"118":1,"119":1},"2":{"118":1,"119":1}}],["simplify",{"0":{"56":1},"2":{"56":1}}],["singlevar",{"0":{"63":1},"2":{"63":1,"65":1,"66":2,"69":3,"72":4,"75":1}}],["sin",{"0":{"18":1},"2":{"18":2,"23":1,"158":3,"161":3}}],["sub",{"2":{"26":1,"106":1,"138":1,"139":1,"140":1}}],["supplementary",{"0":{"14":1},"2":{"14":1}}],["segment",{"0":{"107":1},"1":{"108":1,"109":1}}],["segment3",{"0":{"108":1},"1":{"109":1},"2":{"39":1,"40":1}}],["sec",{"0":{"22":1},"2":{"22":1}}],["self",{"0":{"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"24":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"33":1,"34":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"58":1,"59":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"113":1,"114":1,"115":1,"116":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1},"2":{"12":3,"13":2,"14":2,"15":2,"16":2,"17":2,"18":2,"19":2,"20":2,"21":2,"22":2,"23":2,"24":2,"25":2,"26":2,"27":2,"28":1,"29":1,"30":3,"33":4,"34":7,"43":3,"44":4,"45":2,"46":13,"47":8,"48":3,"49":3,"50":7,"51":2,"52":2,"53":4,"54":3,"55":3,"56":8,"58":6,"59":4,"80":5,"81":16,"82":4,"83":8,"84":15,"85":9,"86":2,"87":2,"88":4,"93":1,"94":1,"95":5,"96":2,"97":2,"100":4,"101":4,"102":1,"103":1,"104":4,"105":4,"106":4,"109":15,"113":2,"114":9,"115":2,"116":2,"122":4,"123":4,"124":3,"125":7,"126":2,"127":2,"128":5,"129":4,"130":4,"131":3,"132":2,"133":1,"134":1,"135":7,"136":4,"137":4,"138":1,"139":1,"140":7,"141":4,"142":1,"143":1,"144":7,"145":2,"146":4,"147":4,"148":4}}],["sqrt",{"2":{"5":1,"130":1,"158":1,"161":1}}],["cz",{"2":{"80":2}}],["clamp",{"0":{"111":1},"2":{"111":1,"158":1,"161":1}}],["classmethod",{"2":{"56":1,"57":1,"88":1,"89":2,"90":2,"91":2,"92":1}}],["class",{"0":{"10":1,"11":1,"32":1,"42":1,"79":1,"99":1,"108":1,"112":1,"121":1,"157":1,"160":1},"1":{"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"24":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"33":1,"34":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"59":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"113":1,"114":1,"115":1,"116":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1},"2":{"37":1,"43":2,"44":1,"45":2,"46":2,"47":2,"48":2,"49":1,"51":1,"52":1,"53":1,"54":1,"55":1,"57":3,"58":3,"59":1,"81":1,"82":3,"83":2,"84":2,"85":2,"86":2,"87":1,"88":1,"89":3,"90":1,"91":1,"92":2,"95":4,"96":1,"101":1,"104":3,"105":1,"106":3,"109":2,"123":1,"124":2,"125":2,"126":1,"127":1,"131":1,"135":4,"136":1,"137":2,"140":4,"141":2,"144":2,"146":1,"148":1}}],["cls",{"0":{"57":1,"89":1,"90":1,"91":1,"92":1},"2":{"57":2,"89":2,"90":2,"91":2,"92":2}}],["cross",{"0":{"125":1},"2":{"46":4,"47":3,"48":1,"55":1,"84":1,"90":1,"91":1,"125":3,"126":1,"127":1}}],["c",{"0":{"80":1},"2":{"38":4,"80":5,"81":7,"83":2,"84":6,"85":2,"88":1,"89":3}}],["curried",{"2":{"38":6}}],["currying",{"2":{"38":2}}],["curry",{"0":{"38":1},"2":{"38":3}}],["curveequation",{"0":{"32":1},"1":{"33":1,"34":1},"2":{"39":1,"40":1}}],["cal",{"0":{"37":1,"45":1,"46":1,"47":1,"48":1,"82":1,"83":1,"84":1,"85":1,"86":1,"124":1},"2":{"37":1,"45":2,"46":1,"47":1,"48":1,"58":1,"82":2,"83":1,"84":1,"85":1,"86":1,"95":2,"97":1,"124":1}}],["callable",{"2":{"66":1,"67":1,"69":1,"70":1,"72":1,"73":1,"75":1,"76":1}}],["call",{"0":{"34":1},"2":{"34":1}}],["csc",{"0":{"23":1},"2":{"23":1}}],["coincident",{"2":{"85":1}}],["collinear",{"0":{"53":1},"2":{"53":1,"58":1}}],["coplanar",{"0":{"55":1},"2":{"46":1,"47":2,"55":1,"58":1}}],["complex",{"2":{"62":1}}],["complementary",{"0":{"13":1},"2":{"13":1,"82":1}}],["com",{"2":{"38":1}}],["cot",{"0":{"21":1},"2":{"21":1}}],["cos",{"0":{"19":1},"2":{"19":2,"22":1,"158":2,"161":2}}],["code",{"2":{"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"24":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"33":1,"34":1,"35":1,"37":1,"38":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"59":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1}}],["constants",{"2":{"58":1,"95":1}}],["const",{"0":{"2":1},"1":{"3":1,"4":1,"5":1,"6":1,"7":1,"8":1}}],["all",{"2":{"101":1,"114":1,"123":1}}],["acos",{"2":{"82":1,"124":1}}],["axis",{"0":{"150":1,"151":1,"152":1}}],["ax",{"2":{"80":2}}],["arccos",{"2":{"158":1,"161":1}}],["array",{"0":{"129":1},"2":{"84":6,"129":2,"158":6,"161":6}}],["arrayvar",{"0":{"64":1},"2":{"64":1,"65":1,"67":2,"70":3,"73":4,"76":1}}],["area",{"2":{"158":2,"161":2}}],["are",{"2":{"47":2,"84":1,"85":1}}],["args2",{"2":{"38":2}}],["args",{"0":{"38":1},"2":{"12":1,"33":1,"34":1,"35":14,"37":1,"38":5,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"51":1,"52":1,"53":1,"54":1,"55":1,"57":1,"58":1,"59":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"89":1,"90":1,"91":1,"92":1,"95":1,"96":1,"100":1,"101":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"135":1,"136":1,"137":1,"140":1,"141":1,"144":1,"146":1,"158":1,"161":1}}],["arguments",{"2":{"12":1,"33":1,"34":1,"35":1,"37":1,"38":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"51":1,"52":1,"53":1,"54":1,"55":1,"57":1,"58":1,"59":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"89":1,"90":1,"91":1,"92":1,"95":1,"96":1,"100":1,"101":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"135":1,"136":1,"137":1,"140":1,"141":1,"144":1,"146":1,"158":1,"161":1}}],["abs",{"0":{"132":1},"2":{"46":1,"83":1,"101":3,"114":1,"117":1,"119":1,"123":3,"132":1}}],["a",{"0":{"80":1},"2":{"38":4,"80":5,"81":7,"83":2,"84":12,"85":2,"88":1,"89":3}}],["aaa",{"2":{"36":1}}],["add",{"2":{"24":1,"38":8,"102":1,"103":1,"104":1,"133":1,"134":1,"135":1}}],["and",{"0":{"58":1,"89":1,"92":1,"93":1,"94":1,"95":1},"2":{"44":1,"47":2,"53":1,"58":1,"59":1,"81":6,"84":4,"85":1,"86":1,"89":1,"90":1,"91":1,"92":2,"93":1,"94":1,"95":2,"105":2,"115":1,"135":1,"136":2,"140":1,"141":1,"144":1}}],["anyangle",{"0":{"11":1,"13":1,"14":1,"16":1,"17":1,"24":2,"26":2,"27":1,"28":1,"29":1,"45":1,"82":1,"124":1},"1":{"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"24":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1},"2":{"13":2,"14":2,"16":2,"17":2,"24":3,"26":3,"27":2,"28":1,"29":1,"30":2,"39":1,"40":1,"45":3,"82":4,"124":4}}],["angle",{"0":{"9":1,"10":1,"11":1,"45":1,"82":1,"124":1},"1":{"10":1,"11":1,"12":2,"13":2,"14":2,"15":2,"16":2,"17":2,"18":2,"19":2,"20":2,"21":2,"22":2,"23":2,"24":2,"25":2,"26":2,"27":2,"28":2,"29":2,"30":2},"2":{"45":3,"82":3,"124":2}}],["approx",{"0":{"8":1,"44":2,"51":1,"81":1,"101":2,"112":1,"117":2,"123":2,"126":2},"1":{"113":1,"114":1,"115":1,"116":1},"2":{"25":1,"44":3,"51":2,"81":10,"96":1,"101":1,"105":3,"114":4,"117":1,"123":1,"126":1,"127":1,"136":3}}],["约等于判定误差",{"2":{"8":1}}],["精度误差",{"2":{"7":1}}],["06",{"0":{"51":1},"2":{"51":1}}],["001",{"2":{"8":1}}],["0001",{"2":{"7":1}}],["0",{"0":{"117":2},"2":{"6":1,"7":1,"8":1,"34":3,"37":6,"46":2,"55":1,"56":8,"80":2,"81":3,"83":2,"84":9,"85":1,"95":1,"117":1,"118":2,"119":4,"149":3,"150":2,"151":2,"152":2,"158":2,"161":2}}],["欧拉常数",{"2":{"6":1}}],["geometricmodels",{"0":{"157":1,"160":1},"1":{"158":1,"161":1}}],["generated",{"2":{"129":1}}],["get",{"0":{"35":1,"49":1,"50":1},"2":{"35":2,"49":1,"50":1,"85":1,"91":1}}],["gradient",{"0":{"37":1},"2":{"37":1}}],["gt",{"0":{"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"24":1,"26":1,"27":1,"28":1,"29":1,"34":1,"35":1,"37":1,"38":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"57":1,"58":1,"59":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"96":1,"97":1,"101":1,"102":1,"103":1,"106":1,"111":1,"117":1,"118":1,"119":1,"123":1,"124":1,"125":1,"126":1,"127":1,"129":1,"130":1,"131":1,"133":1,"134":1,"137":1,"138":1,"139":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1},"2":{"104":2,"106":2,"119":3,"125":1,"135":2,"137":1,"140":2,"141":1}}],["github",{"2":{"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"24":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"33":1,"34":1,"35":1,"37":1,"38":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"59":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1}}],["gamma",{"0":{"6":1}}],["golden",{"0":{"5":1}}],["2",{"2":{"5":1,"13":1,"16":1,"17":1,"35":1,"37":3,"38":2,"47":1,"83":3,"109":3,"130":3,"158":2,"161":2}}],["5772156649015329",{"2":{"6":1}}],["5",{"2":{"5":1,"83":1}}],["+1",{"2":{"119":2}}],["+=",{"2":{"35":1}}],["+",{"0":{"24":1,"102":1,"103":1,"104":1,"133":1,"134":1,"135":1,"137":1},"2":{"5":1,"24":1,"37":3,"38":4,"47":1,"49":1,"50":3,"80":6,"83":5,"85":5,"104":7,"109":3,"118":3,"119":3,"130":2,"135":11,"137":5,"146":2,"158":1,"161":1}}],["黄金分割比",{"2":{"5":1}}],["1e",{"0":{"51":1}}],["180",{"2":{"12":1,"15":1}}],["1",{"2":{"4":1,"5":1,"21":1,"22":1,"23":1,"34":1,"38":2,"91":1,"119":6,"150":1,"151":1,"152":1,"158":4,"161":4}}],["error",{"0":{"115":1},"2":{"114":2,"115":1}}],["exceptions",{"2":{"46":1,"47":1,"82":1,"83":1,"84":1,"85":1,"95":1}}],["examples",{"2":{"38":2}}],["exp",{"2":{"4":1}}],["elif",{"2":{"35":1,"46":3,"58":1,"81":2,"82":1,"83":1,"84":2,"95":1,"114":1,"118":1,"119":1,"135":1,"140":1,"144":1}}],["else",{"2":{"12":1,"34":1,"35":1,"46":2,"58":1,"81":1,"82":1,"83":1,"95":1,"114":2,"118":2,"119":2,"135":1,"140":1,"141":1,"144":1}}],["equations",{"0":{"50":1},"2":{"50":1,"85":1}}],["equation",{"0":{"31":1},"1":{"32":1,"33":1,"34":1,"35":1}}],["eq",{"0":{"25":1,"59":1,"96":1,"105":1,"114":1,"136":1},"2":{"25":1,"59":1,"96":1,"105":1,"114":1,"116":1,"136":1}}],["epsilon",{"0":{"7":1,"35":2,"37":2,"44":1,"51":1,"101":1,"117":1,"123":1,"126":1},"2":{"35":7,"37":12,"44":5,"51":4,"101":6,"117":4,"123":6,"126":4}}],["e",{"0":{"4":1},"2":{"4":1}}],["π",{"2":{"3":1}}],["预设",{"2":{"0":1,"1":1}}],["phi",{"2":{"158":5,"161":5}}],["p3",{"0":{"90":1},"2":{"90":4}}],["p2",{"0":{"57":1,"90":1,"109":1},"2":{"57":4,"59":2,"90":4,"109":9}}],["p1",{"0":{"57":1,"90":1,"109":1},"2":{"57":5,"59":2,"90":6,"109":9}}],["perpendicular",{"0":{"48":1},"2":{"48":1}}],["parametric",{"0":{"50":1},"2":{"50":1,"85":1}}],["parallel",{"0":{"51":1,"52":1,"86":1,"87":1,"126":1,"127":1},"2":{"44":2,"46":1,"47":2,"51":2,"52":2,"53":2,"54":1,"58":1,"59":2,"84":2,"85":1,"86":1,"87":2,"95":1,"126":1,"127":1}}],["partial",{"0":{"35":1},"2":{"35":6,"37":6}}],["particle",{"0":{"153":1,"154":1},"2":{"0":1,"1":1}}],["planes",{"2":{"84":1}}],["plane",{"0":{"78":1},"1":{"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1},"2":{"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"89":1,"95":1,"96":1}}],["plane3",{"0":{"79":1,"81":1,"82":1,"83":1,"84":1,"86":2,"87":1,"89":1,"90":1,"91":1,"92":1,"94":1},"1":{"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1},"2":{"39":1,"40":1,"81":3,"82":4,"83":4,"84":3,"86":5,"87":3,"89":3,"90":1,"91":1,"92":1,"94":1,"95":4,"96":2,"114":1}}],["plus",{"2":{"35":3}}],["p",{"0":{"37":1},"2":{"37":21,"38":1,"104":10,"106":8,"135":4,"137":4,"140":4,"141":4}}],["points",{"0":{"57":1,"90":1},"2":{"57":1,"90":1}}],["point",{"0":{"43":1,"48":1,"49":1,"54":2,"86":1,"89":2,"92":2,"98":1},"1":{"99":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1},"2":{"37":1,"43":6,"44":2,"46":6,"47":4,"48":7,"49":3,"50":3,"53":2,"54":7,"55":2,"56":3,"57":2,"58":1,"59":2,"83":1,"85":4,"86":6,"89":8,"90":2,"91":6,"92":7,"95":1,"101":1,"104":2,"105":1,"106":1,"109":2,"135":2,"137":2,"140":2,"141":2}}],["point3",{"0":{"34":2,"37":1,"43":1,"46":1,"47":1,"48":1,"49":1,"54":1,"57":2,"58":1,"83":1,"85":2,"86":1,"89":1,"90":3,"92":1,"93":1,"97":1,"99":1,"101":1,"102":1,"103":2,"106":1,"109":2,"134":2,"137":2,"139":2,"141":1},"1":{"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1},"2":{"34":4,"37":3,"39":1,"40":1,"43":3,"46":4,"47":3,"48":3,"49":3,"54":3,"57":6,"58":3,"83":4,"84":1,"85":5,"86":3,"89":3,"90":7,"92":3,"93":1,"95":3,"97":2,"101":3,"102":1,"103":2,"104":5,"105":2,"106":3,"109":7,"114":1,"134":2,"135":6,"137":7,"139":2,"140":6,"141":7,"158":3,"161":3}}],["positive",{"0":{"16":1},"2":{"13":1,"14":1,"16":1}}],["python",{"2":{"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"28":1,"29":1,"44":2,"46":2,"47":1,"50":1,"51":2,"52":1,"53":1,"54":1,"55":1,"57":1,"58":1,"59":1,"80":1,"81":1,"82":1,"83":2,"84":1,"85":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":2,"96":1,"100":1,"101":2,"102":1,"103":1,"105":1,"111":1,"117":2,"118":3,"119":3,"122":1,"123":2,"126":2,"127":1,"129":1,"130":2,"131":1,"133":1,"134":1,"136":1,"138":1,"139":1,"142":1,"143":1,"144":1,"146":1,"158":1,"161":1}}],["pythondef",{"2":{"12":1,"24":1,"25":1,"26":1,"27":1,"30":1,"33":1,"34":1,"35":1,"37":1,"38":2,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"58":1,"59":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"95":1,"96":1,"97":1,"100":1,"101":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"132":1,"135":1,"136":1,"137":1,"140":1,"141":1,"144":1,"145":1,"146":1,"147":1,"148":1}}],["property",{"2":{"12":1,"13":2,"14":2,"15":2,"16":2,"17":2,"18":2,"19":2,"20":2,"21":2,"22":2,"23":1,"87":1,"88":1,"128":1,"129":2,"130":2,"131":1}}],["presets",{"0":{"155":1,"156":1,"159":1,"163":1},"1":{"157":1,"158":1,"160":1,"161":1},"2":{"0":1,"1":1}}],["pi",{"0":{"3":1},"2":{"3":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"158":2,"161":2}}],["粒子生成工具",{"2":{"0":1,"1":1}}],["model",{"0":{"156":1,"159":1},"1":{"157":1,"158":1,"160":1,"161":1}}],["midpoint",{"2":{"109":1}}],["min",{"0":{"111":1},"2":{"111":5}}],["minus",{"2":{"35":3}}],["minimum",{"0":{"16":1},"2":{"13":1,"14":1,"16":1}}],["multiarraysfunc",{"0":{"76":1},"2":{"77":1}}],["multisinglevarsfunc",{"0":{"75":1},"2":{"77":1}}],["multivarsfunc",{"0":{"35":2,"38":1,"77":1},"2":{"35":4,"38":3}}],["mul",{"2":{"27":1,"142":1,"143":1,"144":1,"145":1}}],["matmul",{"2":{"146":1}}],["math导入使用",{"2":{"39":1,"40":1}}],["math",{"0":{"2":1,"9":1,"31":1,"36":1,"39":1,"40":1,"41":1,"60":2,"78":1,"98":1,"107":1,"110":1,"120":1},"1":{"3":1,"4":1,"5":1,"6":1,"7":1,"8":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"24":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"32":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"59":1,"61":2,"62":2,"63":2,"64":2,"65":2,"66":2,"67":2,"68":2,"69":2,"70":2,"71":2,"72":2,"73":2,"74":2,"75":2,"76":2,"77":2,"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"99":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"108":1,"109":1,"111":1,"112":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"121":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"150":1,"151":1,"152":1},"2":{"0":1,"1":1,"3":1,"4":1,"5":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":3,"35":1,"37":1,"38":2,"49":1,"50":1,"82":1,"113":1,"124":1,"130":1}}],["max",{"0":{"111":1},"2":{"111":5}}],["maximum",{"0":{"17":1},"2":{"17":1}}],["mp",{"0":{"2":1,"9":1,"31":1,"36":1,"39":1,"40":1,"41":1,"60":2,"78":1,"98":1,"107":1,"110":1,"120":1},"1":{"3":1,"4":1,"5":1,"6":1,"7":1,"8":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"24":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"32":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"59":1,"61":2,"62":2,"63":2,"64":2,"65":2,"66":2,"67":2,"68":2,"69":2,"70":2,"71":2,"72":2,"73":2,"74":2,"75":2,"76":2,"77":2,"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"99":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"108":1,"109":1,"111":1,"112":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"121":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"150":1,"151":1,"152":1},"2":{"0":1,"1":1,"33":3,"35":1,"37":1,"38":2,"39":1,"40":1,"49":1,"50":1,"113":1}}],["mbcp",{"0":{"0":1,"1":1,"2":1,"9":1,"31":1,"36":1,"39":1,"40":1,"41":1,"60":1,"78":1,"98":1,"107":1,"110":1,"120":1,"153":1,"154":1,"155":1,"156":1,"159":1,"163":1},"1":{"3":1,"4":1,"5":1,"6":1,"7":1,"8":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"24":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"32":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"59":1,"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"99":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"108":1,"109":1,"111":1,"112":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"121":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"150":1,"151":1,"152":1,"157":1,"158":1,"160":1,"161":1},"2":{"0":3,"1":3}}],["提供了一些工具",{"2":{"0":1,"1":1}}]],"serializationVersion":2}';export{t as default};
diff --git a/assets/chunks/@localSearchIndexja.CH-7cmaD.js b/assets/chunks/@localSearchIndexja.CH-7cmaD.js
new file mode 100644
index 0000000..2770712
--- /dev/null
+++ b/assets/chunks/@localSearchIndexja.CH-7cmaD.js
@@ -0,0 +1 @@
+const t='{"documentCount":165,"nextId":165,"documentIds":{"0":"/ja/api/api.html#mbcp","1":"/ja/api/#mbcp","2":"/ja/api/mp_math/angle.html#mbcp-mp-math-angle","3":"/ja/api/mp_math/angle.html#class-angle","4":"/ja/api/mp_math/angle.html#class-anyangle-angle","5":"/ja/api/mp_math/angle.html#def-init-self-value-float-is-radian-bool-false","6":"/ja/api/mp_math/angle.html#def-complementary-self-anyangle","7":"/ja/api/mp_math/angle.html#def-supplementary-self-anyangle","8":"/ja/api/mp_math/angle.html#def-degree-self-float","9":"/ja/api/mp_math/angle.html#def-minimum-positive-self-anyangle","10":"/ja/api/mp_math/angle.html#def-maximum-negative-self-anyangle","11":"/ja/api/mp_math/angle.html#def-sin-self-float","12":"/ja/api/mp_math/angle.html#def-cos-self-float","13":"/ja/api/mp_math/angle.html#def-tan-self-float","14":"/ja/api/mp_math/angle.html#def-cot-self-float","15":"/ja/api/mp_math/angle.html#def-sec-self-float","16":"/ja/api/mp_math/angle.html#def-csc-self-float","17":"/ja/api/mp_math/angle.html#def-self-other-anyangle-anyangle","18":"/ja/api/mp_math/angle.html#def-eq-self-other","19":"/ja/api/mp_math/angle.html#def-self-other-anyangle-anyangle-1","20":"/ja/api/mp_math/angle.html#def-self-other-float-anyangle","21":"/ja/api/mp_math/angle.html#def-self-other-float-anyangle-1","22":"/ja/api/mp_math/angle.html#def-self-other-anyangle-float","23":"/ja/api/mp_math/angle.html#def-self-other","24":"/ja/api/mp_math/const.html#mbcp-mp-math-const","25":"/ja/api/mp_math/const.html#var-pi","26":"/ja/api/mp_math/const.html#var-e","27":"/ja/api/mp_math/const.html#var-golden-ratio","28":"/ja/api/mp_math/const.html#var-gamma","29":"/ja/api/mp_math/const.html#var-epsilon","30":"/ja/api/mp_math/const.html#var-approx","31":"/ja/api/mp_math/equation.html#mbcp-mp-math-equation","32":"/ja/api/mp_math/equation.html#class-curveequation","33":"/ja/api/mp_math/equation.html#def-init-self-x-func-onevarfunc-y-func-onevarfunc-z-func-onevarfunc","34":"/ja/api/mp_math/equation.html#def-call-self-t-var-point3-tuple-point3","35":"/ja/api/mp_math/equation.html#def-get-partial-derivative-func-func-multivarsfunc-var-int-tuple-int-epsilon-number-epsilon-multivarsfunc","36":"/ja/api/mp_math/function.html#mbcp-mp-math-function","37":"/ja/api/mp_math/function.html#def-cal-gradient-3vf-func-threesinglevarsfunc-p-point3-epsilon-float-epsilon-vector3","38":"/ja/api/mp_math/function.html#def-curry-func-multivarsfunc-args-var-onevarfunc","39":"/ja/api/mp_math/#mbcp-mp-math","40":"/ja/api/mp_math/mp_math.html#mbcp-mp-math","41":"/ja/api/mp_math/line.html#mbcp-mp-math-line","42":"/ja/api/mp_math/line.html#class-line3","43":"/ja/api/mp_math/line.html#def-init-self-point-point3-direction-vector3","44":"/ja/api/mp_math/line.html#def-approx-self-other-line3-epsilon-float-approx-bool","45":"/ja/api/mp_math/line.html#def-cal-angle-self-other-line3-anyangle","46":"/ja/api/mp_math/line.html#def-cal-distance-self-other-line3-point3-float","47":"/ja/api/mp_math/line.html#def-cal-intersection-self-other-line3-point3","48":"/ja/api/mp_math/line.html#def-cal-perpendicular-self-point-point3-line3","49":"/ja/api/mp_math/line.html#def-get-point-self-t-realnumber-point3","50":"/ja/api/mp_math/line.html#def-get-parametric-equations-self-tuple-onesinglevarfunc-onesinglevarfunc-onesinglevarfunc","51":"/ja/api/mp_math/line.html#def-is-approx-parallel-self-other-line3-epsilon-float-1e-06-bool","52":"/ja/api/mp_math/line.html#def-is-parallel-self-other-line3-bool","53":"/ja/api/mp_math/line.html#def-is-collinear-self-other-line3-bool","54":"/ja/api/mp_math/line.html#def-is-point-on-self-point-point3-bool","55":"/ja/api/mp_math/line.html#def-is-coplanar-self-other-line3-bool","56":"/ja/api/mp_math/line.html#def-simplify-self","57":"/ja/api/mp_math/line.html#def-from-two-points-cls-p1-point3-p2-point3-line3","58":"/ja/api/mp_math/line.html#def-and-self-other-line3-line3-point3-none","59":"/ja/api/mp_math/line.html#def-eq-self-other-bool","60":"/ja/api/mp_math/mp_math_typing.html#mbcp-mp-math-mp-math-typing","61":"/ja/api/mp_math/mp_math_typing.html#var-realnumber","62":"/ja/api/mp_math/mp_math_typing.html#var-number","63":"/ja/api/mp_math/mp_math_typing.html#var-singlevar","64":"/ja/api/mp_math/mp_math_typing.html#var-arrayvar","65":"/ja/api/mp_math/mp_math_typing.html#var-var","66":"/ja/api/mp_math/mp_math_typing.html#var-onesinglevarfunc","67":"/ja/api/mp_math/mp_math_typing.html#var-onearrayfunc","68":"/ja/api/mp_math/mp_math_typing.html#var-onevarfunc","69":"/ja/api/mp_math/mp_math_typing.html#var-twosinglevarsfunc","70":"/ja/api/mp_math/mp_math_typing.html#var-twoarraysfunc","71":"/ja/api/mp_math/mp_math_typing.html#var-twovarsfunc","72":"/ja/api/mp_math/mp_math_typing.html#var-threesinglevarsfunc","73":"/ja/api/mp_math/mp_math_typing.html#var-threearraysfunc","74":"/ja/api/mp_math/mp_math_typing.html#var-threevarsfunc","75":"/ja/api/mp_math/mp_math_typing.html#var-multisinglevarsfunc","76":"/ja/api/mp_math/mp_math_typing.html#var-multiarraysfunc","77":"/ja/api/mp_math/mp_math_typing.html#var-multivarsfunc","78":"/ja/api/mp_math/plane.html#mbcp-mp-math-plane","79":"/ja/api/mp_math/plane.html#class-plane3","80":"/ja/api/mp_math/plane.html#def-init-self-a-float-b-float-c-float-d-float","81":"/ja/api/mp_math/plane.html#def-approx-self-other-plane3-bool","82":"/ja/api/mp_math/plane.html#def-cal-angle-self-other-line3-plane3-anyangle","83":"/ja/api/mp_math/plane.html#def-cal-distance-self-other-plane3-point3-float","84":"/ja/api/mp_math/plane.html#def-cal-intersection-line3-self-other-plane3-line3","85":"/ja/api/mp_math/plane.html#def-cal-intersection-point3-self-other-line3-point3","86":"/ja/api/mp_math/plane.html#def-cal-parallel-plane3-self-point-point3-plane3","87":"/ja/api/mp_math/plane.html#def-is-parallel-self-other-plane3-bool","88":"/ja/api/mp_math/plane.html#def-normal-self-vector3","89":"/ja/api/mp_math/plane.html#def-from-point-and-normal-cls-point-point3-normal-vector3-plane3","90":"/ja/api/mp_math/plane.html#def-from-three-points-cls-p1-point3-p2-point3-p3-point3-plane3","91":"/ja/api/mp_math/plane.html#def-from-two-lines-cls-l1-line3-l2-line3-plane3","92":"/ja/api/mp_math/plane.html#def-from-point-and-line-cls-point-point3-line-line3-plane3","93":"/ja/api/mp_math/plane.html#def-and-self-other-line3-point3-none","94":"/ja/api/mp_math/plane.html#def-and-self-other-plane3-line3-none","95":"/ja/api/mp_math/plane.html#def-and-self-other","96":"/ja/api/mp_math/plane.html#def-eq-self-other-bool","97":"/ja/api/mp_math/plane.html#def-rand-self-other-line3-point3","98":"/ja/api/mp_math/point.html#mbcp-mp-math-point","99":"/ja/api/mp_math/point.html#class-point3","100":"/ja/api/mp_math/point.html#def-init-self-x-float-y-float-z-float","101":"/ja/api/mp_math/point.html#def-approx-self-other-point3-epsilon-float-approx-bool","102":"/ja/api/mp_math/point.html#def-self-other-vector3-point3","103":"/ja/api/mp_math/point.html#def-self-other-point3-point3","104":"/ja/api/mp_math/point.html#def-self-other","105":"/ja/api/mp_math/point.html#def-eq-self-other","106":"/ja/api/mp_math/point.html#def-self-other-point3-vector3","107":"/ja/api/mp_math/segment.html#mbcp-mp-math-segment","108":"/ja/api/mp_math/segment.html#class-segment3","109":"/ja/api/mp_math/segment.html#def-init-self-p1-point3-p2-point3","110":"/ja/api/mp_math/utils.html#mbcp-mp-math-utils","111":"/ja/api/mp_math/utils.html#def-clamp-x-float-min-float-max-float-float","112":"/ja/api/mp_math/utils.html#class-approx","113":"/ja/api/mp_math/utils.html#def-init-self-value-realnumber","114":"/ja/api/mp_math/utils.html#def-eq-self-other","115":"/ja/api/mp_math/utils.html#def-raise-type-error-self-other","116":"/ja/api/mp_math/utils.html#def-ne-self-other","117":"/ja/api/mp_math/utils.html#def-approx-x-float-y-float-0-0-epsilon-float-approx-bool","118":"/ja/api/mp_math/utils.html#def-sign-x-float-only-neg-bool-false-str","119":"/ja/api/mp_math/utils.html#def-sign-format-x-float-only-neg-bool-false-str","120":"/ja/api/mp_math/vector.html#mbcp-mp-math-vector","121":"/ja/api/mp_math/vector.html#class-vector3","122":"/ja/api/mp_math/vector.html#def-init-self-x-float-y-float-z-float","123":"/ja/api/mp_math/vector.html#def-approx-self-other-vector3-epsilon-float-approx-bool","124":"/ja/api/mp_math/vector.html#def-cal-angle-self-other-vector3-anyangle","125":"/ja/api/mp_math/vector.html#def-cross-self-other-vector3-vector3","126":"/ja/api/mp_math/vector.html#def-is-approx-parallel-self-other-vector3-epsilon-float-approx-bool","127":"/ja/api/mp_math/vector.html#def-is-parallel-self-other-vector3-bool","128":"/ja/api/mp_math/vector.html#def-normalize-self","129":"/ja/api/mp_math/vector.html#def-np-array-self-np-ndarray","130":"/ja/api/mp_math/vector.html#def-length-self-float","131":"/ja/api/mp_math/vector.html#def-unit-self-vector3","132":"/ja/api/mp_math/vector.html#def-abs-self","133":"/ja/api/mp_math/vector.html#def-self-other-vector3-vector3","134":"/ja/api/mp_math/vector.html#def-self-other-point3-point3","135":"/ja/api/mp_math/vector.html#def-self-other","136":"/ja/api/mp_math/vector.html#def-eq-self-other","137":"/ja/api/mp_math/vector.html#def-self-other-point3-point3-1","138":"/ja/api/mp_math/vector.html#def-self-other-vector3-vector3-1","139":"/ja/api/mp_math/vector.html#def-self-other-point3-point3-2","140":"/ja/api/mp_math/vector.html#def-self-other-1","141":"/ja/api/mp_math/vector.html#def-self-other-point3","142":"/ja/api/mp_math/vector.html#def-self-other-vector3-vector3-2","143":"/ja/api/mp_math/vector.html#def-self-other-realnumber-vector3","144":"/ja/api/mp_math/vector.html#def-self-other-int-float-vector3-vector3","145":"/ja/api/mp_math/vector.html#def-self-other-realnumber-vector3-1","146":"/ja/api/mp_math/vector.html#def-self-other-vector3-realnumber","147":"/ja/api/mp_math/vector.html#def-self-other-realnumber-vector3-2","148":"/ja/api/mp_math/vector.html#def-self-vector3","149":"/ja/api/mp_math/vector.html#var-zero-vector3","150":"/ja/api/mp_math/vector.html#var-x-axis","151":"/ja/api/mp_math/vector.html#var-y-axis","152":"/ja/api/mp_math/vector.html#var-z-axis","153":"/ja/api/particle/#mbcp-particle","154":"/ja/api/presets/#mbcp-presets","155":"/ja/api/presets/model/#mbcp-presets-model","156":"/ja/api/presets/model/#class-geometricmodels","157":"/ja/api/presets/model/#def-sphere-radius-float-density-float","158":"/ja/api/particle/particle.html#mbcp-particle","159":"/ja/api/presets/model/model.html#mbcp-presets-model","160":"/ja/api/presets/model/model.html#class-geometricmodels","161":"/ja/api/presets/model/model.html#def-sphere-radius-float-density-float","162":"/ja/api/presets/presets.html#mbcp-presets","163":"/ja/guide/#开始不了一点","164":"/ja/refer/#reference"},"fieldIds":{"title":0,"titles":1,"text":2},"fieldLength":{"0":[1,1,13],"1":[1,1,13],"2":[4,1,3],"3":[2,4,1],"4":[4,4,1],"5":[11,8,25],"6":[5,8,24],"7":[5,8,23],"8":[5,8,20],"9":[6,8,21],"10":[6,8,23],"11":[5,8,18],"12":[5,8,18],"13":[5,8,18],"14":[5,8,20],"15":[5,8,20],"16":[5,8,20],"17":[7,8,15],"18":[5,8,11],"19":[6,8,14],"20":[7,8,16],"21":[7,8,13],"22":[7,8,13],"23":[3,8,15],"24":[4,1,3],"25":[2,4,7],"26":[2,4,8],"27":[3,4,10],"28":[2,4,6],"29":[2,4,6],"30":[2,4,6],"31":[4,1,3],"32":[2,4,1],"33":[9,6,26],"34":[10,6,35],"35":[15,4,74],"36":[4,1,3],"37":[14,4,69],"38":[8,4,63],"39":[3,1,21],"40":[3,1,21],"41":[4,1,3],"42":[2,4,1],"43":[8,6,25],"44":[11,6,43],"45":[8,6,28],"46":[10,6,63],"47":[8,6,60],"48":[8,6,29],"49":[8,6,35],"50":[9,6,42],"51":[14,6,43],"52":[8,6,36],"53":[8,6,39],"54":[8,6,36],"55":[8,6,42],"56":[4,6,27],"57":[10,6,36],"58":[9,6,52],"59":[6,6,44],"60":[4,1,3],"61":[2,4,9],"62":[2,4,9],"63":[2,4,7],"64":[2,4,8],"65":[2,4,9],"66":[2,4,8],"67":[2,4,8],"68":[2,4,9],"69":[2,4,8],"70":[2,4,8],"71":[2,4,9],"72":[2,4,8],"73":[2,4,8],"74":[2,4,9],"75":[2,4,8],"76":[2,4,8],"77":[2,4,9],"78":[4,1,3],"79":[2,4,1],"80":[9,6,36],"81":[7,6,45],"82":[10,6,62],"83":[10,6,66],"84":[9,6,71],"85":[9,6,69],"86":[9,6,30],"87":[8,6,37],"88":[5,6,25],"89":[10,6,45],"90":[11,6,39],"91":[10,6,44],"92":[10,6,35],"93":[9,6,15],"94":[9,6,15],"95":[5,6,70],"96":[6,6,35],"97":[7,6,15],"98":[4,1,3],"99":[2,4,1],"100":[8,6,26],"101":[11,6,45],"102":[8,6,13],"103":[7,6,12],"104":[4,6,34],"105":[5,6,37],"106":[7,6,36],"107":[4,1,3],"108":[2,4,1],"109":[7,6,32],"110":[4,1,3],"111":[7,4,31],"112":[2,4,1],"113":[6,6,20],"114":[5,6,31],"115":[7,6,15],"116":[5,6,11],"117":[11,4,40],"118":[11,4,43],"119":[12,4,49],"120":[4,1,4],"121":[2,4,1],"122":[8,6,29],"123":[11,6,44],"124":[8,6,31],"125":[6,6,43],"126":[13,6,43],"127":[8,6,37],"128":[4,6,17],"129":[6,6,31],"130":[5,6,33],"131":[5,6,21],"132":[4,6,10],"133":[7,6,12],"134":[7,6,12],"135":[4,6,46],"136":[5,6,37],"137":[7,6,31],"138":[6,6,12],"139":[6,6,12],"140":[3,6,45],"141":[4,6,42],"142":[6,6,12],"143":[7,6,13],"144":[9,6,55],"145":[7,6,13],"146":[7,6,38],"147":[7,6,15],"148":[5,6,21],"149":[3,4,7],"150":[3,4,8],"151":[3,4,8],"152":[3,4,8],"153":[2,1,3],"154":[2,1,3],"155":[3,1,3],"156":[2,3,2],"157":[6,5,48],"158":[2,1,3],"159":[3,1,3],"160":[2,3,2],"161":[6,5,48],"162":[2,1,3],"163":[1,1,2],"164":[1,1,7]},"averageFieldLength":[5.593939393939394,4.963636363636361,22.61818181818181],"storedFields":{"0":{"title":"mbcp","titles":[]},"1":{"title":"mbcp","titles":[]},"2":{"title":"mbcp.mp_math.angle","titles":[]},"3":{"title":"class Angle","titles":["mbcp.mp_math.angle"]},"4":{"title":"class AnyAngle(Angle)","titles":["mbcp.mp_math.angle"]},"5":{"title":"def __init__(self, value: float, is_radian: bool = False)","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"6":{"title":"def complementary(self) -> AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"7":{"title":"def supplementary(self) -> AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"8":{"title":"def degree(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"9":{"title":"def minimum_positive(self) -> AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"10":{"title":"def maximum_negative(self) -> AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"11":{"title":"def sin(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"12":{"title":"def cos(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"13":{"title":"def tan(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"14":{"title":"def cot(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"15":{"title":"def sec(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"16":{"title":"def csc(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"17":{"title":"def self + other: AnyAngle => AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"18":{"title":"def __eq__(self, other)","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"19":{"title":"def self - other: AnyAngle => AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"20":{"title":"def self * other: float => AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"21":{"title":"def self / other: float => AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"22":{"title":"def self / other: AnyAngle => float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"23":{"title":"def self / other","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"24":{"title":"mbcp.mp_math.const","titles":[]},"25":{"title":"var PI","titles":["mbcp.mp_math.const"]},"26":{"title":"var E","titles":["mbcp.mp_math.const"]},"27":{"title":"var GOLDEN_RATIO","titles":["mbcp.mp_math.const"]},"28":{"title":"var GAMMA","titles":["mbcp.mp_math.const"]},"29":{"title":"var EPSILON","titles":["mbcp.mp_math.const"]},"30":{"title":"var APPROX","titles":["mbcp.mp_math.const"]},"31":{"title":"mbcp.mp_math.equation","titles":[]},"32":{"title":"class CurveEquation","titles":["mbcp.mp_math.equation"]},"33":{"title":"def __init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc)","titles":["mbcp.mp_math.equation","class CurveEquation"]},"34":{"title":"def __call__(self, *t: Var) -> Point3 | tuple[Point3, ...]","titles":["mbcp.mp_math.equation","class CurveEquation"]},"35":{"title":"def get_partial_derivative_func(func: MultiVarsFunc, var: int | tuple[int, ...], epsilon: Number = EPSILON) -> MultiVarsFunc","titles":["mbcp.mp_math.equation"]},"36":{"title":"mbcp.mp_math.function","titles":[]},"37":{"title":"def cal_gradient_3vf(func: ThreeSingleVarsFunc, p: Point3, epsilon: float = EPSILON) -> Vector3","titles":["mbcp.mp_math.function"]},"38":{"title":"def curry(func: MultiVarsFunc, *args: Var) -> OneVarFunc","titles":["mbcp.mp_math.function"]},"39":{"title":"mbcp.mp_math","titles":[]},"40":{"title":"mbcp.mp_math","titles":[]},"41":{"title":"mbcp.mp_math.line","titles":[]},"42":{"title":"class Line3","titles":["mbcp.mp_math.line"]},"43":{"title":"def __init__(self, point: Point3, direction: Vector3)","titles":["mbcp.mp_math.line","class Line3"]},"44":{"title":"def approx(self, other: Line3, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"45":{"title":"def cal_angle(self, other: Line3) -> AnyAngle","titles":["mbcp.mp_math.line","class Line3"]},"46":{"title":"def cal_distance(self, other: Line3 | Point3) -> float","titles":["mbcp.mp_math.line","class Line3"]},"47":{"title":"def cal_intersection(self, other: Line3) -> Point3","titles":["mbcp.mp_math.line","class Line3"]},"48":{"title":"def cal_perpendicular(self, point: Point3) -> Line3","titles":["mbcp.mp_math.line","class Line3"]},"49":{"title":"def get_point(self, t: RealNumber) -> Point3","titles":["mbcp.mp_math.line","class Line3"]},"50":{"title":"def get_parametric_equations(self) -> tuple[OneSingleVarFunc, OneSingleVarFunc, OneSingleVarFunc]","titles":["mbcp.mp_math.line","class Line3"]},"51":{"title":"def is_approx_parallel(self, other: Line3, epsilon: float = 1e-06) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"52":{"title":"def is_parallel(self, other: Line3) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"53":{"title":"def is_collinear(self, other: Line3) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"54":{"title":"def is_point_on(self, point: Point3) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"55":{"title":"def is_coplanar(self, other: Line3) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"56":{"title":"def simplify(self)","titles":["mbcp.mp_math.line","class Line3"]},"57":{"title":"def from_two_points(cls, p1: Point3, p2: Point3) -> Line3","titles":["mbcp.mp_math.line","class Line3"]},"58":{"title":"def __and__(self, other: Line3) -> Line3 | Point3 | None","titles":["mbcp.mp_math.line","class Line3"]},"59":{"title":"def __eq__(self, other) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"60":{"title":"mbcp.mp_math.mp_math_typing","titles":[]},"61":{"title":"var RealNumber","titles":["mbcp.mp_math.mp_math_typing"]},"62":{"title":"var Number","titles":["mbcp.mp_math.mp_math_typing"]},"63":{"title":"var SingleVar","titles":["mbcp.mp_math.mp_math_typing"]},"64":{"title":"var ArrayVar","titles":["mbcp.mp_math.mp_math_typing"]},"65":{"title":"var Var","titles":["mbcp.mp_math.mp_math_typing"]},"66":{"title":"var OneSingleVarFunc","titles":["mbcp.mp_math.mp_math_typing"]},"67":{"title":"var OneArrayFunc","titles":["mbcp.mp_math.mp_math_typing"]},"68":{"title":"var OneVarFunc","titles":["mbcp.mp_math.mp_math_typing"]},"69":{"title":"var TwoSingleVarsFunc","titles":["mbcp.mp_math.mp_math_typing"]},"70":{"title":"var TwoArraysFunc","titles":["mbcp.mp_math.mp_math_typing"]},"71":{"title":"var TwoVarsFunc","titles":["mbcp.mp_math.mp_math_typing"]},"72":{"title":"var ThreeSingleVarsFunc","titles":["mbcp.mp_math.mp_math_typing"]},"73":{"title":"var ThreeArraysFunc","titles":["mbcp.mp_math.mp_math_typing"]},"74":{"title":"var ThreeVarsFunc","titles":["mbcp.mp_math.mp_math_typing"]},"75":{"title":"var MultiSingleVarsFunc","titles":["mbcp.mp_math.mp_math_typing"]},"76":{"title":"var MultiArraysFunc","titles":["mbcp.mp_math.mp_math_typing"]},"77":{"title":"var MultiVarsFunc","titles":["mbcp.mp_math.mp_math_typing"]},"78":{"title":"mbcp.mp_math.plane","titles":[]},"79":{"title":"class Plane3","titles":["mbcp.mp_math.plane"]},"80":{"title":"def __init__(self, a: float, b: float, c: float, d: float)","titles":["mbcp.mp_math.plane","class Plane3"]},"81":{"title":"def approx(self, other: Plane3) -> bool","titles":["mbcp.mp_math.plane","class Plane3"]},"82":{"title":"def cal_angle(self, other: Line3 | Plane3) -> AnyAngle","titles":["mbcp.mp_math.plane","class Plane3"]},"83":{"title":"def cal_distance(self, other: Plane3 | Point3) -> float","titles":["mbcp.mp_math.plane","class Plane3"]},"84":{"title":"def cal_intersection_line3(self, other: Plane3) -> Line3","titles":["mbcp.mp_math.plane","class Plane3"]},"85":{"title":"def cal_intersection_point3(self, other: Line3) -> Point3","titles":["mbcp.mp_math.plane","class Plane3"]},"86":{"title":"def cal_parallel_plane3(self, point: Point3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"87":{"title":"def is_parallel(self, other: Plane3) -> bool","titles":["mbcp.mp_math.plane","class Plane3"]},"88":{"title":"def normal(self) -> Vector3","titles":["mbcp.mp_math.plane","class Plane3"]},"89":{"title":"def from_point_and_normal(cls, point: Point3, normal: Vector3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"90":{"title":"def from_three_points(cls, p1: Point3, p2: Point3, p3: Point3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"91":{"title":"def from_two_lines(cls, l1: Line3, l2: Line3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"92":{"title":"def from_point_and_line(cls, point: Point3, line: Line3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"93":{"title":"def __and__(self, other: Line3) -> Point3 | None","titles":["mbcp.mp_math.plane","class Plane3"]},"94":{"title":"def __and__(self, other: Plane3) -> Line3 | None","titles":["mbcp.mp_math.plane","class Plane3"]},"95":{"title":"def __and__(self, other)","titles":["mbcp.mp_math.plane","class Plane3"]},"96":{"title":"def __eq__(self, other) -> bool","titles":["mbcp.mp_math.plane","class Plane3"]},"97":{"title":"def __rand__(self, other: Line3) -> Point3","titles":["mbcp.mp_math.plane","class Plane3"]},"98":{"title":"mbcp.mp_math.point","titles":[]},"99":{"title":"class Point3","titles":["mbcp.mp_math.point"]},"100":{"title":"def __init__(self, x: float, y: float, z: float)","titles":["mbcp.mp_math.point","class Point3"]},"101":{"title":"def approx(self, other: Point3, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.point","class Point3"]},"102":{"title":"def self + other: Vector3 => Point3","titles":["mbcp.mp_math.point","class Point3"]},"103":{"title":"def self + other: Point3 => Point3","titles":["mbcp.mp_math.point","class Point3"]},"104":{"title":"def self + other","titles":["mbcp.mp_math.point","class Point3"]},"105":{"title":"def __eq__(self, other)","titles":["mbcp.mp_math.point","class Point3"]},"106":{"title":"def self - other: Point3 => Vector3","titles":["mbcp.mp_math.point","class Point3"]},"107":{"title":"mbcp.mp_math.segment","titles":[]},"108":{"title":"class Segment3","titles":["mbcp.mp_math.segment"]},"109":{"title":"def __init__(self, p1: Point3, p2: Point3)","titles":["mbcp.mp_math.segment","class Segment3"]},"110":{"title":"mbcp.mp_math.utils","titles":[]},"111":{"title":"def clamp(x: float, min_: float, max_: float) -> float","titles":["mbcp.mp_math.utils"]},"112":{"title":"class Approx","titles":["mbcp.mp_math.utils"]},"113":{"title":"def __init__(self, value: RealNumber)","titles":["mbcp.mp_math.utils","class Approx"]},"114":{"title":"def __eq__(self, other)","titles":["mbcp.mp_math.utils","class Approx"]},"115":{"title":"def raise_type_error(self, other)","titles":["mbcp.mp_math.utils","class Approx"]},"116":{"title":"def __ne__(self, other)","titles":["mbcp.mp_math.utils","class Approx"]},"117":{"title":"def approx(x: float, y: float = 0.0, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.utils"]},"118":{"title":"def sign(x: float, only_neg: bool = False) -> str","titles":["mbcp.mp_math.utils"]},"119":{"title":"def sign_format(x: float, only_neg: bool = False) -> str","titles":["mbcp.mp_math.utils"]},"120":{"title":"mbcp.mp_math.vector","titles":[]},"121":{"title":"class Vector3","titles":["mbcp.mp_math.vector"]},"122":{"title":"def __init__(self, x: float, y: float, z: float)","titles":["mbcp.mp_math.vector","class Vector3"]},"123":{"title":"def approx(self, other: Vector3, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.vector","class Vector3"]},"124":{"title":"def cal_angle(self, other: Vector3) -> AnyAngle","titles":["mbcp.mp_math.vector","class Vector3"]},"125":{"title":"def cross(self, other: Vector3) -> Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"126":{"title":"def is_approx_parallel(self, other: Vector3, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.vector","class Vector3"]},"127":{"title":"def is_parallel(self, other: Vector3) -> bool","titles":["mbcp.mp_math.vector","class Vector3"]},"128":{"title":"def normalize(self)","titles":["mbcp.mp_math.vector","class Vector3"]},"129":{"title":"def np_array(self) -> np.ndarray","titles":["mbcp.mp_math.vector","class Vector3"]},"130":{"title":"def length(self) -> float","titles":["mbcp.mp_math.vector","class Vector3"]},"131":{"title":"def unit(self) -> Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"132":{"title":"def __abs__(self)","titles":["mbcp.mp_math.vector","class Vector3"]},"133":{"title":"def self + other: Vector3 => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"134":{"title":"def self + other: Point3 => Point3","titles":["mbcp.mp_math.vector","class Vector3"]},"135":{"title":"def self + other","titles":["mbcp.mp_math.vector","class Vector3"]},"136":{"title":"def __eq__(self, other)","titles":["mbcp.mp_math.vector","class Vector3"]},"137":{"title":"def self + other: Point3 => Point3","titles":["mbcp.mp_math.vector","class Vector3"]},"138":{"title":"def self - other: Vector3 => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"139":{"title":"def self - other: Point3 => Point3","titles":["mbcp.mp_math.vector","class Vector3"]},"140":{"title":"def self - other","titles":["mbcp.mp_math.vector","class Vector3"]},"141":{"title":"def self - other: Point3","titles":["mbcp.mp_math.vector","class Vector3"]},"142":{"title":"def self * other: Vector3 => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"143":{"title":"def self * other: RealNumber => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"144":{"title":"def self * other: int | float | Vector3 => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"145":{"title":"def self * other: RealNumber => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"146":{"title":"def self @ other: Vector3 => RealNumber","titles":["mbcp.mp_math.vector","class Vector3"]},"147":{"title":"def self / other: RealNumber => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"148":{"title":"def - self => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"149":{"title":"var zero_vector3","titles":["mbcp.mp_math.vector"]},"150":{"title":"var x_axis","titles":["mbcp.mp_math.vector"]},"151":{"title":"var y_axis","titles":["mbcp.mp_math.vector"]},"152":{"title":"var z_axis","titles":["mbcp.mp_math.vector"]},"153":{"title":"mbcp.particle","titles":[]},"154":{"title":"mbcp.presets","titles":[]},"155":{"title":"mbcp.presets.model","titles":[]},"156":{"title":"class GeometricModels","titles":["mbcp.presets.model"]},"157":{"title":"def sphere(radius: float, density: float)","titles":["mbcp.presets.model","class GeometricModels"]},"158":{"title":"mbcp.particle","titles":[]},"159":{"title":"mbcp.presets.model","titles":[]},"160":{"title":"class GeometricModels","titles":["mbcp.presets.model"]},"161":{"title":"def sphere(radius: float, density: float)","titles":["mbcp.presets.model","class GeometricModels"]},"162":{"title":"mbcp.presets","titles":[]},"163":{"title":"开始不了一点","titles":[]},"164":{"title":"Reference","titles":[]}},"dirtCount":0,"index":[["∫12x111",{"2":{"163":1}}],["开始不了一点",{"0":{"163":1}}],["4",{"2":{"157":1,"161":1}}],["球体上的点集",{"2":{"157":2,"161":2}}],["生成球体上的点集",{"2":{"157":2,"161":2}}],["几何模型点集",{"2":{"155":1,"159":1}}],["零向量",{"2":{"149":1}}],["负向量",{"2":{"148":2}}],["取负",{"2":{"148":2}}],["取两平面的交集",{"2":{"95":2}}],["非点乘",{"2":{"144":2}}],["别去点那边实现了",{"2":{"137":2}}],["单位向量",{"2":{"131":2}}],["单变量",{"2":{"63":1}}],["模",{"2":{"130":2}}],["向量的模",{"2":{"130":2}}],["向量积",{"2":{"125":2}}],["返回numpy数组",{"2":{"129":1}}],["返回如下行列式的结果",{"2":{"125":1}}],["将向量归一化",{"2":{"128":2}}],["j",{"2":{"125":1}}],["其余结果的模为平行四边形的面积",{"2":{"125":2}}],["叉乘使用cross",{"2":{"144":2}}],["叉乘结果",{"2":{"125":2}}],["叉乘为0",{"2":{"125":2}}],["叉乘",{"2":{"125":2}}],["以及一些常用的向量",{"2":{"120":1}}],["格式化符号数",{"2":{"119":2}}],["quot",{"2":{"118":2,"119":4}}],["符号",{"2":{"118":2,"119":2}}],["获取该向量的单位向量",{"2":{"131":2}}],["获取数的符号",{"2":{"118":2}}],["获取直线的参数方程",{"2":{"50":2}}],["获取直线上的点",{"2":{"49":2}}],["用于判断是否近似于0",{"2":{"117":2}}],["用于近似比较对象",{"2":{"113":2}}],["或包装一个实数",{"2":{"117":2}}],["或整数元组",{"2":{"35":2}}],["限定在区间内的值",{"2":{"111":2}}],["值",{"2":{"111":2}}],["区间限定函数",{"2":{"111":2}}],["us",{"2":{"164":1}}],["unit",{"0":{"131":1},"2":{"131":1}}],["unsupported",{"2":{"46":1,"82":1,"83":1,"95":1,"115":1,"135":1,"140":1,"141":1,"144":1}}],["utils",{"0":{"110":1},"1":{"111":1,"112":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1}}],["中心点",{"2":{"109":1}}],["中实现",{"2":{"106":2}}],["长度",{"2":{"109":1}}],["线段的另一个端点",{"2":{"109":2}}],["线段的一个端点",{"2":{"109":2}}],["新的向量或点",{"2":{"135":2}}],["新的向量",{"2":{"106":2,"140":2}}],["新的点",{"2":{"104":2,"137":2,"141":2}}],["已在",{"2":{"106":2}}],["已知一个函数$f",{"2":{"37":1}}],["已知一个函数f",{"2":{"37":1}}],["坐标",{"2":{"100":6}}],["笛卡尔坐标系中的点",{"2":{"100":2}}],["人话",{"2":{"95":2}}],["法向量",{"2":{"88":2,"89":2}}],["k``",{"2":{"125":1}}],["k",{"2":{"81":12}}],["常数项",{"2":{"80":2}}],["常量",{"2":{"25":1}}],["平面上一点",{"2":{"89":2,"92":2}}],["平面的法向量",{"2":{"88":2}}],["平面",{"2":{"86":2,"89":2,"90":2,"91":2,"92":2}}],["平面与直线平行或重合",{"2":{"85":2}}],["平面平行且无交线",{"2":{"84":2}}],["平面方程",{"2":{"80":2}}],["平行线返回none",{"2":{"58":2}}],["多元函数",{"2":{"77":1}}],["多元数组函数",{"2":{"76":1}}],["多元单变量函数",{"2":{"75":1}}],["二元函数",{"2":{"71":1}}],["二元数组函数",{"2":{"70":1}}],["二元单变量函数",{"2":{"69":1}}],["一元函数",{"2":{"68":1}}],["一元数组函数",{"2":{"67":1}}],["一元单变量函数",{"2":{"66":1}}],["一阶偏导",{"2":{"35":2}}],["变量",{"2":{"65":1}}],["变量位置",{"2":{"35":2}}],["数组运算结果",{"2":{"144":2}}],["数组运算",{"2":{"144":2}}],["数组变量",{"2":{"64":1}}],["数2",{"2":{"117":2}}],["数1",{"2":{"117":2}}],["数",{"2":{"62":1,"118":2,"119":2}}],["数学工具",{"2":{"0":1,"1":1}}],["タイプ",{"2":{"61":1,"62":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"149":1,"150":1,"151":1,"152":1}}],["实数",{"2":{"61":1,"113":2}}],["∧",{"2":{"59":2}}],["交线",{"2":{"84":2,"95":2}}],["交线返回交点",{"2":{"58":2}}],["交集",{"2":{"58":2,"95":2}}],["交点",{"2":{"47":2,"85":2}}],["重合线返回自身",{"2":{"58":2}}],["由点和直线构造平面",{"2":{"92":2}}],["由点和法向量构造平面",{"2":{"89":2}}],["由两直线构造平面",{"2":{"91":2}}],["由两点构造直线",{"2":{"57":2}}],["由三点构造平面",{"2":{"90":2}}],["由一个点和一个方向向量确定",{"2":{"43":2}}],["工厂函数",{"2":{"57":2,"89":2,"90":2,"91":2,"92":2}}],["并对向量单位化",{"2":{"56":2}}],["处理",{"2":{"56":2}}],["处的梯度向量为",{"2":{"37":1}}],["化",{"2":{"56":2}}],["按照可行性一次对x",{"2":{"56":2}}],["不返回值",{"2":{"56":2,"128":2}}],["不支持的类型",{"2":{"46":2,"82":2,"83":2,"95":2}}],["自体归一化",{"2":{"128":2}}],["自体简化",{"2":{"56":2}}],["自然对数的底",{"2":{"26":1}}],["等价相等",{"2":{"56":2}}],["简化直线方程",{"2":{"56":2}}],["两直线方向向量的叉乘与两直线上任意一点的向量的点积为0",{"2":{"55":2}}],["两角的和为180°",{"2":{"7":2}}],["两角的和为90°",{"2":{"6":2}}],["充要条件",{"2":{"55":2}}],["判断两个向量是否相等",{"2":{"136":2}}],["判断两个向量是否平行",{"2":{"127":2}}],["判断两个向量是否近似平行",{"2":{"126":2}}],["判断两个向量是否近似相等",{"2":{"123":2}}],["判断两个数是否近似相等",{"2":{"117":2}}],["判断两个点是否相等",{"2":{"105":2}}],["判断两个点是否近似相等",{"2":{"101":2}}],["判断两个平面是否等价",{"2":{"96":2}}],["判断两个平面是否平行",{"2":{"87":2}}],["判断两个平面是否近似相等",{"2":{"81":2}}],["判断两条直线是否等价",{"2":{"59":2}}],["判断两条直线是否共面",{"2":{"55":2}}],["判断两条直线是否共线",{"2":{"53":2}}],["判断两条直线是否平行",{"2":{"52":2}}],["判断两条直线是否近似平行",{"2":{"51":2}}],["判断两条直线是否近似相等",{"2":{"44":2}}],["判断点是否在直线上",{"2":{"54":2}}],["另一个向量或数",{"2":{"144":2}}],["另一个向量或点",{"2":{"135":2,"140":2}}],["另一个向量",{"2":{"123":2,"124":2,"125":2,"126":2,"127":2,"136":2,"146":2}}],["另一个点或向量",{"2":{"104":2}}],["另一个点",{"2":{"101":2,"105":2,"106":2,"137":2,"141":2}}],["另一个平面或点",{"2":{"83":2}}],["另一个平面或直线",{"2":{"82":2,"95":2}}],["另一个平面",{"2":{"81":2,"84":2,"87":2,"96":2}}],["另一",{"2":{"52":2,"53":2,"55":2}}],["另一条直线或点",{"2":{"46":2}}],["另一条直线",{"2":{"44":2,"45":2,"47":2,"51":2,"58":2,"59":2}}],["则两向量平行",{"2":{"125":2}}],["则同一个t对应的点不同",{"2":{"49":2}}],["则其在点$",{"2":{"37":1}}],["则其在点",{"2":{"37":1}}],["但起始点和方向向量不同",{"2":{"49":2}}],["同一条直线",{"2":{"49":2}}],["垂线",{"2":{"48":2}}],["指定点",{"2":{"48":2,"86":2}}],["直线",{"2":{"57":2,"85":2,"91":4,"92":2}}],["直线不共面",{"2":{"47":2}}],["直线平行",{"2":{"47":2}}],["直线上的一点",{"2":{"43":2}}],["距离",{"2":{"46":2,"83":2}}],["夹角",{"2":{"45":2,"82":2,"124":2}}],["是否只返回负数的符号",{"2":{"118":2,"119":2}}],["是否相等",{"2":{"105":2,"136":2}}],["是否等价",{"2":{"59":2,"96":2}}],["是否共面",{"2":{"55":2}}],["是否共线",{"2":{"53":2}}],["是否在直线上",{"2":{"54":2}}],["是否平行",{"2":{"52":2,"87":2,"127":2}}],["是否近似平行",{"2":{"51":2,"126":2}}],["是否近似相等",{"2":{"44":2,"81":2,"101":2,"117":2,"123":2}}],["是否为弧度",{"2":{"5":2}}],["误差",{"2":{"44":2,"51":2,"101":2,"117":2,"123":2,"126":2}}],["方向向量",{"2":{"43":2,"109":1}}],["三元数组函数",{"2":{"73":1}}],["三元单变量函数",{"2":{"72":1}}],["三元函数",{"2":{"37":2,"74":1}}],["三维空间中的线段",{"2":{"109":2}}],["三维空间中的直线",{"2":{"43":2}}],["三维向量",{"2":{"39":1,"40":1}}],["三维线段",{"2":{"39":1,"40":1}}],["三维点",{"2":{"39":1,"40":1}}],["三维平面",{"2":{"39":1,"40":1}}],["三维直线",{"2":{"39":1,"40":1}}],["导入的类有",{"2":{"39":1,"40":1}}],["本包定义了一些常用的导入",{"2":{"39":1,"40":1}}],["本模块塞了一些预设",{"2":{"154":1,"162":1}}],["本模块用于内部类型提示",{"2":{"60":1}}],["本模块定义了粒子生成相关的工具",{"2":{"153":1,"158":1}}],["本模块定义了3维向量的类vector3",{"2":{"120":1}}],["本模块定义了一些常用的工具函数",{"2":{"110":1}}],["本模块定义了一些常用的常量",{"2":{"24":1}}],["本模块定义了三维空间中点的类",{"2":{"98":1}}],["本模块定义了三维空间中的线段类",{"2":{"107":1}}],["本模块定义了三维空间中的平面类",{"2":{"78":1}}],["本模块定义了三维空间中的直线类",{"2":{"41":1}}],["本模块定义了方程相关的类和函数以及一些常用的数学函数",{"2":{"31":1}}],["本模块定义了角度相关的类",{"2":{"2":1}}],["本模块是主模块",{"2":{"0":1,"1":1}}],["help",{"2":{"164":1}}],["have",{"2":{"84":1}}],["html",{"2":{"44":2,"46":2,"47":1,"50":1,"51":2,"52":1,"53":1,"54":1,"55":1,"58":1,"59":1,"80":1,"81":1,"82":1,"83":2,"84":1,"85":1,"87":1,"95":2,"96":1,"100":1,"101":2,"105":1,"111":1,"117":2,"118":3,"119":3,"122":1,"123":2,"126":2,"127":1,"129":1,"130":1,"136":1,"144":1,"146":1}}],["https",{"2":{"38":1,"44":2,"46":2,"47":1,"50":1,"51":2,"52":1,"53":1,"54":1,"55":1,"58":1,"59":1,"80":1,"81":1,"82":1,"83":2,"84":1,"85":1,"87":1,"95":2,"96":1,"100":1,"101":2,"105":1,"111":1,"117":2,"118":3,"119":3,"122":1,"123":2,"126":2,"127":1,"129":1,"130":1,"136":1,"144":1,"146":1}}],["high",{"2":{"35":2}}],["hide",{"2":{"35":2,"38":1}}],["6",{"2":{"38":2}}],["3维向量",{"2":{"122":2}}],["3a",{"2":{"46":2,"47":1,"50":1,"51":2,"52":1,"53":1,"54":1,"55":1,"59":1,"80":1,"82":1,"83":2,"84":1,"85":1,"87":1,"95":2,"96":1,"122":1,"123":2,"126":2,"127":1,"129":1,"130":1,"136":1,"144":1,"146":1}}],["355859667",{"2":{"38":1}}],["3",{"2":{"38":2,"44":2,"46":2,"47":1,"50":1,"51":2,"52":1,"53":1,"54":1,"55":1,"58":1,"59":1,"80":1,"81":1,"82":1,"83":2,"84":1,"85":1,"87":1,"95":2,"96":1,"100":1,"101":2,"105":1,"111":1,"117":2,"118":3,"119":3,"122":1,"123":2,"126":2,"127":1,"130":1,"136":1,"144":1,"146":1}}],["3vf",{"0":{"37":1},"2":{"37":1}}],["by",{"2":{"80":2}}],["bound=iterable",{"2":{"64":1}}],["bound=number",{"2":{"63":1}}],["bool=false",{"2":{"5":1,"118":1,"119":1}}],["bool",{"0":{"5":1,"44":1,"51":1,"52":1,"53":1,"54":1,"55":1,"59":1,"81":1,"87":1,"96":1,"101":1,"117":1,"118":1,"119":1,"123":1,"126":1,"127":1},"2":{"44":3,"51":3,"52":3,"53":3,"54":3,"55":3,"59":3,"81":3,"87":3,"96":3,"101":3,"105":2,"117":3,"118":2,"119":2,"123":3,"126":3,"127":3,"136":2}}],["b",{"0":{"80":1},"2":{"38":4,"80":5,"81":7,"83":2,"84":12,"85":2,"88":1,"89":3}}],["例",{"2":{"38":1}}],["例外",{"2":{"35":1,"46":1,"47":1,"82":1,"83":1,"84":1,"85":1,"95":1}}],["柯里化后的函数",{"2":{"38":2}}],["柯理化",{"2":{"38":2}}],["函数式编程",{"2":{"38":1}}],["函数",{"2":{"38":2}}],["有关函数柯里化",{"2":{"38":2}}],["对多参数函数进行柯里化",{"2":{"38":2}}],["d",{"0":{"80":1},"2":{"80":7,"81":6,"83":1,"84":6,"85":1,"89":2}}],["documentation",{"2":{"164":1}}],["doc",{"2":{"129":1}}],["docs",{"2":{"44":2,"46":2,"47":1,"50":1,"51":2,"52":1,"53":1,"54":1,"55":1,"58":1,"59":1,"80":1,"81":1,"82":1,"83":2,"84":1,"85":1,"87":1,"95":2,"96":1,"100":1,"101":2,"105":1,"111":1,"117":2,"118":3,"119":3,"122":1,"123":2,"126":2,"127":1,"130":1,"136":1,"144":1,"146":1}}],["do",{"2":{"47":2}}],["distance",{"0":{"46":1,"83":1},"2":{"46":1,"83":1}}],["direction",{"0":{"43":1},"2":{"43":5,"44":1,"45":2,"46":8,"47":6,"48":1,"49":1,"50":3,"51":2,"52":2,"53":1,"54":1,"55":2,"56":4,"57":2,"59":3,"82":1,"84":2,"85":4,"91":1,"92":1,"95":1,"109":2}}],["dz",{"2":{"37":2}}],["dy",{"2":{"37":2}}],["dx",{"2":{"37":2}}],["density",{"0":{"157":1,"161":1},"2":{"157":4,"161":4}}],["derivative",{"0":{"35":1},"2":{"35":6}}],["degree",{"0":{"8":1},"2":{"8":1}}],["def",{"0":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"59":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"157":1,"161":1},"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"21":1,"22":1,"35":2,"38":2,"57":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"102":1,"103":1,"129":1,"130":1,"131":1,"133":1,"134":1,"138":1,"139":1,"142":1,"143":1,"157":1,"161":1}}],["$处的梯度向量为",{"2":{"37":1}}],["$",{"2":{"37":3}}],["梯度",{"2":{"37":2}}],["点乘结果",{"2":{"146":2}}],["点乘",{"2":{"146":2}}],["点乘使用",{"2":{"144":2}}],["点3",{"2":{"90":2}}],["点法式构造",{"2":{"89":2}}],["点2",{"2":{"57":2,"90":2}}],["点1",{"2":{"57":2,"90":2}}],["点",{"2":{"37":2,"49":2,"54":2}}],["∂f∂z",{"2":{"37":1}}],["∂f∂y",{"2":{"37":1}}],["∂f∂x",{"2":{"37":1}}],["∇f",{"2":{"37":1}}],["计算平行于该平面且过指定点的平面",{"2":{"86":2}}],["计算平面与直线的交点",{"2":{"85":2}}],["计算平面与平面或点之间的距离",{"2":{"83":2}}],["计算平面与平面之间的夹角",{"2":{"82":2}}],["计算两个向量之间的夹角",{"2":{"124":2}}],["计算两平面的交线",{"2":{"84":2}}],["计算两条直线点集合的交集",{"2":{"58":2}}],["计算两条直线的交点",{"2":{"47":2}}],["计算直线经过指定点p的垂线",{"2":{"48":2}}],["计算直线和直线或点之间的距离",{"2":{"46":2}}],["计算直线和直线之间的夹角",{"2":{"45":2}}],["计算三元函数在某点的梯度向量",{"2":{"37":2}}],["计算曲线上的点",{"2":{"34":2}}],["v3",{"2":{"125":2}}],["v2",{"2":{"59":2,"90":2,"91":4,"125":2}}],["v1",{"2":{"59":4,"90":2,"91":2,"125":2}}],["vector",{"0":{"120":1},"1":{"121":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"150":1,"151":1,"152":1},"2":{"43":1,"88":1,"89":1,"104":1,"106":3,"144":1}}],["vector3",{"0":{"37":1,"43":1,"88":1,"89":1,"102":1,"106":1,"121":1,"123":1,"124":1,"125":2,"126":1,"127":1,"131":1,"133":2,"138":2,"142":2,"143":1,"144":2,"145":1,"146":1,"147":1,"148":1,"149":1},"1":{"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1},"2":{"37":2,"39":1,"40":1,"43":3,"88":4,"89":3,"91":1,"102":1,"104":2,"106":7,"114":2,"123":3,"124":3,"125":7,"126":3,"127":4,"131":3,"133":2,"135":7,"136":2,"138":2,"140":7,"141":1,"142":2,"143":1,"144":9,"145":1,"146":3,"147":2,"148":4,"149":2,"150":2,"151":2,"152":2}}],["v",{"2":{"35":2,"104":2,"106":4,"135":8,"137":2,"140":8,"141":2}}],["var",{"0":{"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"34":1,"35":1,"38":1,"61":1,"62":1,"63":1,"64":1,"65":2,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"149":1,"150":1,"151":1,"152":1},"2":{"33":3,"34":1,"35":14,"37":1,"38":7,"49":1,"50":1}}],["valueerror",{"2":{"35":3,"47":4,"84":3,"85":3}}],["value",{"0":{"5":1,"113":1},"2":{"5":5,"113":5,"114":6,"115":1}}],["求高阶偏导函数",{"2":{"35":1}}],["求n元函数一阶偏导函数",{"2":{"35":2}}],["l2",{"0":{"91":1},"2":{"91":5}}],["l1",{"0":{"91":1},"2":{"91":7}}],["lambda",{"2":{"50":3}}],["left",{"2":{"37":1}}],["length",{"0":{"130":1},"2":{"46":5,"47":1,"82":2,"109":2,"124":2,"126":1,"128":5,"130":1,"131":1,"132":1}}],["len",{"2":{"34":1}}],["linalg",{"2":{"84":3}}],["lines",{"0":{"91":1},"2":{"47":2,"91":1}}],["line",{"0":{"41":1,"92":2},"1":{"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"59":1},"2":{"44":1,"45":1,"46":1,"47":1,"48":1,"51":1,"52":1,"53":1,"55":1,"57":1,"58":2,"59":1,"82":1,"84":1,"85":2,"91":1,"92":6,"95":2}}],["line3",{"0":{"42":1,"44":1,"45":1,"46":1,"47":1,"48":1,"51":1,"52":1,"53":1,"55":1,"57":1,"58":2,"82":1,"84":2,"85":1,"91":2,"92":1,"93":1,"94":1,"97":1},"1":{"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"59":1},"2":{"39":1,"40":1,"44":3,"45":3,"46":4,"47":3,"48":4,"51":3,"52":3,"53":3,"55":3,"57":3,"58":6,"59":2,"82":4,"84":5,"85":3,"91":5,"92":3,"93":1,"94":1,"95":6,"97":1,"114":1}}],["library",{"2":{"44":2,"46":2,"47":1,"50":1,"51":2,"52":1,"53":1,"54":1,"55":1,"58":1,"59":1,"80":1,"81":1,"82":1,"83":2,"84":1,"85":1,"87":1,"95":2,"96":1,"100":1,"101":2,"105":1,"111":1,"117":2,"118":3,"119":3,"122":1,"123":2,"126":2,"127":1,"130":1,"136":1,"144":1,"146":1}}],["list",{"2":{"35":8,"157":10,"161":10}}],["litedoc",{"2":{"35":2,"38":1}}],["`np",{"2":{"129":1}}],["`none`",{"2":{"58":1,"95":1}}],["``x2",{"2":{"125":1}}],["``x1",{"2":{"125":1}}],["``i",{"2":{"125":1}}],["```",{"2":{"38":1}}],["```python",{"2":{"38":1}}],["`str`",{"2":{"118":1,"119":1}}],["`plane3`",{"2":{"81":1,"82":1,"83":1,"84":1,"86":1,"87":1,"89":1,"95":1,"96":1}}],["`point3`",{"2":{"37":1,"43":1,"46":1,"47":1,"48":1,"49":1,"54":1,"57":2,"58":1,"83":1,"85":1,"86":1,"89":1,"90":3,"92":1,"95":1,"101":1,"104":2,"105":1,"106":1,"109":2,"135":2,"137":2,"140":2,"141":2}}],["`onesinglevarfunc`",{"2":{"50":3}}],["`onevarfunc`",{"2":{"33":3}}],["`realnumber`",{"2":{"49":1,"113":1}}],["`tuple`",{"2":{"50":1}}],["`typeerror`",{"2":{"46":1,"82":1,"83":1,"95":1}}],["`threesinglevarsfunc`",{"2":{"37":1}}],["`anyangle`",{"2":{"45":1,"82":1,"124":1}}],["`bool`",{"2":{"44":1,"51":1,"52":1,"53":1,"54":1,"55":1,"59":1,"81":1,"87":1,"96":1,"101":1,"105":1,"117":1,"118":1,"119":1,"123":1,"126":1,"127":1,"136":1}}],["`float`",{"2":{"44":1,"46":1,"51":1,"80":4,"83":1,"100":3,"101":1,"111":4,"117":3,"118":1,"119":1,"122":3,"123":1,"126":1,"130":1,"144":1,"146":1}}],["`line3`",{"2":{"44":1,"45":1,"46":1,"47":1,"48":1,"51":1,"52":1,"53":1,"55":1,"57":1,"58":2,"59":1,"82":1,"84":1,"85":1,"91":2,"92":1,"95":2}}],["`valueerror`",{"2":{"47":2,"84":1,"85":1}}],["`var`",{"2":{"38":1}}],["`vector3`",{"2":{"43":1,"88":1,"89":1,"104":1,"106":2,"123":1,"124":1,"125":2,"126":1,"127":1,"131":1,"135":2,"136":1,"140":2,"144":2,"146":1,"148":1}}],["`multivarsfunc`",{"2":{"35":1,"38":1}}],["无效变量类型",{"2":{"35":2}}],["偏导函数",{"2":{"35":2}}],["偏移量",{"2":{"35":2,"37":2}}],["高阶偏导数值",{"2":{"35":1}}],["高阶偏导",{"2":{"35":2}}],["可直接从mbcp",{"2":{"39":1,"40":1}}],["可参考",{"2":{"38":1}}],["可参考函数式编程",{"2":{"38":1}}],["可为整数",{"2":{"35":2}}],["可导入",{"2":{"0":1,"1":1}}],["因此该函数的稳定性有待提升",{"2":{"35":2}}],["目前数学界对于一个函数的导函数并没有通解的说法",{"2":{"35":2}}],["目标点",{"2":{"34":2}}],["warning",{"2":{"35":2}}],["慎用",{"2":{"35":2}}],["这玩意不太稳定",{"2":{"35":2}}],["num",{"2":{"157":5,"161":5}}],["numpy",{"2":{"129":2}}],["numpy数组",{"2":{"129":2}}],["number=epsilon",{"2":{"35":1}}],["number",{"0":{"35":1,"62":1},"2":{"64":1}}],["ndarray`",{"2":{"129":1}}],["ndarray",{"0":{"129":1},"2":{"129":3}}],["neg",{"0":{"118":1,"119":1},"2":{"118":4,"119":4,"148":1}}],["negative",{"0":{"10":1},"2":{"10":1}}],["ne",{"0":{"116":1},"2":{"116":1}}],["np",{"0":{"129":2},"2":{"84":9,"129":4,"157":9,"161":9}}],["no",{"2":{"84":1}}],["normal",{"0":{"88":1,"89":2},"2":{"82":5,"84":4,"85":1,"86":2,"87":2,"88":1,"89":7,"90":3,"91":1,"92":1,"95":3}}],["normalize",{"0":{"128":1},"2":{"56":1,"128":1}}],["none",{"0":{"58":1,"93":1,"94":1},"2":{"58":4,"93":1,"94":1,"95":4}}],["not",{"2":{"46":1,"47":4,"58":1,"116":1,"118":1,"119":1}}],["nabla",{"2":{"37":1}}],["n元函数",{"2":{"35":2}}],["参数方程",{"2":{"50":2}}],["参数t",{"2":{"49":2}}],["参数",{"2":{"34":2,"35":1,"38":2}}],["|",{"0":{"34":1,"35":1,"46":1,"58":2,"82":1,"83":1,"93":1,"94":1,"144":2},"2":{"34":1,"35":1,"46":3,"58":6,"61":1,"62":1,"65":1,"68":1,"71":1,"74":1,"77":1,"82":3,"83":3,"93":1,"94":1,"95":6,"104":2,"135":4,"140":4,"144":4}}],["曲线方程",{"2":{"33":2,"39":1,"40":1}}],["z轴单位向量",{"2":{"152":1}}],["z轴分量",{"2":{"122":2}}],["z2``",{"2":{"125":1}}],["z1``",{"2":{"125":1}}],["zero",{"0":{"149":1},"2":{"91":1,"127":1}}],["z系数",{"2":{"80":2}}],["zhihu",{"2":{"38":1}}],["zhuanlan",{"2":{"38":1}}],["z0",{"2":{"37":2}}],["zip",{"2":{"34":1}}],["z函数",{"2":{"33":2}}],["z",{"0":{"33":1,"100":1,"122":1,"152":1},"2":{"33":5,"34":4,"37":11,"50":2,"56":4,"83":1,"84":4,"85":4,"89":2,"100":7,"101":2,"104":2,"105":2,"106":2,"109":2,"114":2,"122":5,"123":2,"125":4,"128":1,"129":1,"130":1,"135":4,"136":2,"137":2,"140":4,"141":2,"144":3,"146":2,"147":1,"148":1,"157":2,"161":2}}],["y轴单位向量",{"2":{"151":1}}],["y轴分量",{"2":{"122":2}}],["y2",{"2":{"125":1}}],["y1",{"2":{"125":1}}],["y系数",{"2":{"80":2}}],["y0",{"2":{"37":2}}],["y函数",{"2":{"33":2}}],["y",{"0":{"33":1,"100":1,"117":1,"122":1,"151":1},"2":{"33":5,"34":4,"37":11,"50":2,"56":4,"83":1,"84":4,"85":4,"89":2,"100":7,"101":2,"104":2,"105":2,"106":2,"109":2,"114":2,"117":4,"122":5,"123":2,"125":4,"128":1,"129":1,"130":1,"135":4,"136":2,"137":2,"140":4,"141":2,"144":3,"146":2,"147":1,"148":1,"157":2,"161":2}}],["x轴单位向量",{"2":{"150":1}}],["x轴分量",{"2":{"122":2}}],["x3c",{"2":{"101":3,"114":1,"117":1,"118":1,"119":1,"123":3,"126":1}}],["x26",{"2":{"95":1}}],["x系数",{"2":{"80":2}}],["x0",{"2":{"37":2}}],["x函数",{"2":{"33":2}}],["x",{"0":{"33":1,"100":1,"111":1,"117":1,"118":1,"119":1,"122":1,"150":1},"2":{"33":5,"34":4,"37":11,"50":2,"56":2,"83":1,"84":4,"85":4,"89":2,"100":7,"101":2,"104":2,"105":2,"106":2,"109":2,"111":4,"114":2,"117":4,"118":5,"119":8,"122":5,"123":2,"125":4,"128":1,"129":1,"130":1,"135":4,"136":2,"137":2,"140":4,"141":2,"144":3,"146":2,"147":1,"148":1,"157":2,"161":2}}],["约等于判定误差",{"2":{"30":1}}],["精度误差",{"2":{"29":1}}],["06",{"0":{"51":1},"2":{"51":1}}],["001",{"2":{"30":1}}],["0001",{"2":{"29":1}}],["0",{"0":{"117":2},"2":{"28":1,"29":1,"30":1,"34":3,"37":6,"46":2,"55":1,"56":8,"80":2,"81":3,"83":2,"84":9,"85":1,"95":1,"117":1,"118":2,"119":4,"149":3,"150":2,"151":2,"152":2,"157":2,"161":2}}],["欧拉常数",{"2":{"28":1}}],["5772156649015329",{"2":{"28":1}}],["5",{"2":{"27":1,"83":1}}],["黄金分割比",{"2":{"27":1}}],["デフォルト",{"2":{"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"149":1,"150":1,"151":1,"152":1}}],["π",{"2":{"25":1}}],["to",{"2":{"164":1}}],["theta",{"2":{"157":3,"161":3}}],["the",{"2":{"85":2,"164":1}}],["three",{"0":{"90":1},"2":{"90":1}}],["threevarsfunc",{"0":{"74":1}}],["threearraysfunc",{"0":{"73":1},"2":{"74":1}}],["threesinglevarsfunc",{"0":{"37":1,"72":1},"2":{"37":3,"74":1}}],["twovarsfunc",{"0":{"71":1}}],["twoarraysfunc",{"0":{"70":1},"2":{"71":1}}],["twosinglevarsfunc",{"0":{"69":1},"2":{"71":1}}],["two",{"0":{"57":1,"91":1},"2":{"57":1,"91":1}}],["tip",{"2":{"37":2,"38":2}}],["typevar",{"2":{"63":1,"64":1}}],["typealias",{"2":{"61":1,"62":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1}}],["typeerror",{"2":{"46":3,"47":1,"82":3,"83":3,"95":3,"115":1,"135":1,"140":1,"141":1,"144":1}}],["type",{"0":{"115":1},"2":{"35":1,"46":1,"82":2,"83":2,"95":2,"114":2,"115":4,"135":2,"140":2,"141":2,"144":2}}],["typing",{"0":{"60":1},"1":{"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1},"2":{"33":3,"35":1,"37":1,"38":2,"49":1,"50":1,"113":1}}],["tuple",{"0":{"34":1,"35":1,"50":1},"2":{"34":2,"35":2,"50":3}}],["t",{"0":{"34":1,"49":1},"2":{"34":10,"49":4,"50":6,"85":4}}],["truediv",{"2":{"21":1,"22":1,"23":1,"147":1}}],["tan",{"0":{"13":1},"2":{"13":2,"14":1}}],["operand",{"2":{"95":1,"135":1,"140":1,"141":1,"144":1}}],["only",{"0":{"118":1,"119":1},"2":{"118":4,"119":4}}],["on",{"0":{"54":1},"2":{"54":1}}],["onearrayfunc",{"0":{"67":1},"2":{"68":1}}],["onesinglevarfunc",{"0":{"50":3,"66":1},"2":{"50":7,"68":1}}],["onevarfunc",{"0":{"33":3,"38":1,"68":1},"2":{"33":9,"38":1}}],["or",{"2":{"58":1,"85":1}}],["org",{"2":{"44":2,"46":2,"47":1,"50":1,"51":2,"52":1,"53":1,"54":1,"55":1,"58":1,"59":1,"80":1,"81":1,"82":1,"83":2,"84":1,"85":1,"87":1,"95":2,"96":1,"100":1,"101":2,"105":1,"111":1,"117":2,"118":3,"119":3,"122":1,"123":2,"126":2,"127":1,"129":1,"130":1,"136":1,"144":1,"146":1}}],["order",{"2":{"35":2}}],["overload",{"2":{"20":1,"21":2,"22":1,"92":1,"93":2,"94":1,"101":1,"102":2,"103":1,"132":1,"133":2,"134":1,"137":1,"138":2,"139":1,"141":1,"142":2,"143":1}}],["other",{"0":{"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"44":1,"45":1,"46":1,"47":1,"51":1,"52":1,"53":1,"55":1,"58":1,"59":1,"81":1,"82":1,"83":1,"84":1,"85":1,"87":1,"93":1,"94":1,"95":1,"96":1,"97":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"114":1,"115":1,"116":1,"123":1,"124":1,"125":1,"126":1,"127":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1},"2":{"17":2,"18":2,"19":2,"20":2,"21":1,"22":1,"23":4,"44":5,"45":4,"46":13,"47":9,"51":4,"52":4,"53":5,"55":5,"58":7,"59":5,"81":15,"82":9,"83":9,"84":17,"85":11,"87":4,"93":1,"94":1,"95":10,"96":4,"97":2,"101":6,"102":1,"103":1,"104":6,"105":6,"106":6,"114":9,"115":2,"116":2,"123":6,"124":5,"125":9,"126":4,"127":4,"133":1,"134":1,"135":12,"136":6,"137":6,"138":1,"139":1,"140":12,"141":8,"142":1,"143":1,"144":12,"145":2,"146":6,"147":4}}],["error",{"0":{"115":1},"2":{"114":2,"115":1}}],["exceptions",{"2":{"46":1,"47":1,"82":1,"83":1,"84":1,"85":1,"95":1}}],["examples",{"2":{"38":1}}],["exp",{"2":{"26":1}}],["elif",{"2":{"35":1,"46":3,"58":1,"81":2,"82":1,"83":1,"84":2,"95":1,"114":1,"118":1,"119":1,"135":1,"140":1,"144":1}}],["else",{"2":{"5":1,"34":1,"35":1,"46":2,"58":1,"81":1,"82":1,"83":1,"95":1,"114":2,"118":2,"119":2,"135":1,"140":1,"141":1,"144":1}}],["epsilon",{"0":{"29":1,"35":2,"37":2,"44":1,"51":1,"101":1,"117":1,"123":1,"126":1},"2":{"35":7,"37":12,"44":5,"51":4,"101":6,"117":4,"123":6,"126":4}}],["e",{"0":{"26":1},"2":{"26":1}}],["equations",{"0":{"50":1},"2":{"50":1,"85":1}}],["equation",{"0":{"31":1},"1":{"32":1,"33":1,"34":1,"35":1}}],["eq",{"0":{"18":1,"59":1,"96":1,"105":1,"114":1,"136":1},"2":{"18":1,"59":1,"96":1,"105":1,"114":1,"116":1,"136":1}}],["+1",{"2":{"119":2}}],["+=",{"2":{"35":1}}],["+",{"0":{"17":1,"102":1,"103":1,"104":1,"133":1,"134":1,"135":1,"137":1},"2":{"17":1,"27":1,"37":3,"38":4,"47":1,"49":1,"50":3,"80":6,"83":5,"85":5,"104":7,"109":3,"118":3,"119":3,"130":2,"135":11,"137":5,"146":2,"157":1,"161":1}}],["1e",{"0":{"51":1}}],["1",{"2":{"14":1,"15":1,"16":1,"26":1,"27":1,"34":1,"38":2,"91":1,"119":6,"150":1,"151":1,"152":1,"157":4,"161":4}}],["180",{"2":{"5":1,"8":1}}],["正割值",{"2":{"15":4}}],["正切值",{"2":{"13":4}}],["正弦值",{"2":{"11":4}}],["余割值",{"2":{"16":4}}],["余切值",{"2":{"14":4}}],["余弦值",{"2":{"12":4}}],["余角",{"2":{"6":4}}],["最大值",{"2":{"111":2}}],["最大负角度",{"2":{"10":2}}],["最大负角",{"2":{"10":2}}],["最小值",{"2":{"111":2}}],["最小正角度",{"2":{"9":2}}],["最小正角",{"2":{"9":2}}],["弧度",{"2":{"8":2}}],["角度",{"2":{"8":2}}],["角度或弧度值",{"2":{"5":2}}],["补角",{"2":{"7":4}}],["sphere",{"0":{"157":1,"161":1},"2":{"157":1,"161":1}}],["staticmethod",{"2":{"156":1,"157":1,"160":1,"161":1}}],["stable",{"2":{"129":1}}],["str",{"0":{"118":1,"119":1},"2":{"118":3,"119":3}}],["stdtypes",{"2":{"50":1}}],["s",{"2":{"95":1,"135":1,"140":1,"141":1,"144":1}}],["solve",{"2":{"84":3}}],["sign",{"0":{"118":1,"119":1},"2":{"118":1,"119":1}}],["simplify",{"0":{"56":1},"2":{"56":1}}],["singlevar",{"0":{"63":1},"2":{"63":1,"65":1,"66":2,"69":3,"72":4,"75":1}}],["sin",{"0":{"11":1},"2":{"11":2,"16":1,"157":3,"161":3}}],["sqrt",{"2":{"27":1,"130":1,"157":1,"161":1}}],["sub",{"2":{"19":1,"106":1,"138":1,"139":1,"140":1}}],["supplementary",{"0":{"7":1},"2":{"7":1}}],["segment",{"0":{"107":1},"1":{"108":1,"109":1}}],["segment3",{"0":{"108":1},"1":{"109":1},"2":{"39":1,"40":1}}],["sec",{"0":{"15":1},"2":{"15":1}}],["self",{"0":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"58":1,"59":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"113":1,"114":1,"115":1,"116":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1},"2":{"5":3,"6":2,"7":2,"8":2,"9":2,"10":2,"11":2,"12":2,"13":2,"14":2,"15":2,"16":2,"17":2,"18":2,"19":2,"20":2,"21":1,"22":1,"23":3,"33":4,"34":7,"43":3,"44":4,"45":2,"46":13,"47":8,"48":3,"49":3,"50":7,"51":2,"52":2,"53":4,"54":3,"55":3,"56":8,"58":6,"59":4,"80":5,"81":16,"82":4,"83":8,"84":15,"85":9,"86":2,"87":2,"88":4,"93":1,"94":1,"95":5,"96":2,"97":2,"100":4,"101":4,"102":1,"103":1,"104":4,"105":4,"106":4,"109":15,"113":2,"114":9,"115":2,"116":2,"122":4,"123":4,"124":3,"125":7,"126":2,"127":2,"128":5,"129":4,"130":4,"131":3,"132":2,"133":1,"134":1,"135":7,"136":4,"137":4,"138":1,"139":1,"140":7,"141":4,"142":1,"143":1,"144":7,"145":2,"146":4,"147":4,"148":4}}],["2",{"2":{"6":1,"9":1,"10":1,"27":1,"35":1,"37":3,"38":2,"47":1,"83":3,"109":3,"130":3,"157":2,"161":2}}],["rmul",{"2":{"145":1}}],["rsub",{"2":{"141":1}}],["right",{"2":{"37":1}}],["reference",{"0":{"164":1},"2":{"129":1}}],["realnumber",{"0":{"49":1,"61":1,"113":1,"143":1,"145":1,"146":1,"147":1},"2":{"49":3,"62":1,"113":3,"143":1,"145":1,"146":1,"147":1}}],["result",{"2":{"35":4}}],["return",{"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"23":2,"34":2,"35":4,"37":1,"38":4,"44":1,"45":1,"46":5,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"57":1,"58":3,"59":1,"81":4,"82":2,"83":2,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"95":4,"96":1,"97":1,"101":1,"104":1,"105":1,"106":1,"111":1,"114":2,"116":1,"117":1,"118":3,"119":3,"123":1,"124":1,"125":1,"126":1,"127":1,"129":1,"130":1,"131":1,"132":1,"135":2,"136":1,"137":1,"140":2,"141":1,"144":2,"145":1,"146":1,"147":1,"148":1,"157":1,"161":1}}],["returns",{"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"34":1,"35":2,"37":1,"38":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"57":1,"58":1,"59":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"95":1,"96":1,"101":1,"104":1,"105":1,"106":1,"111":1,"117":1,"118":1,"119":1,"123":1,"124":1,"125":1,"126":1,"127":1,"129":1,"130":1,"131":1,"135":1,"136":1,"137":1,"140":1,"141":1,"144":1,"146":1,"148":1,"157":1,"161":1}}],["range",{"2":{"157":2,"161":2}}],["rand",{"0":{"97":1},"2":{"97":1}}],["radius",{"0":{"157":1,"161":1},"2":{"157":7,"161":7}}],["radian=true",{"2":{"6":1,"7":1,"10":1,"17":1,"19":1,"20":1,"23":1,"82":1,"124":1}}],["radian",{"0":{"5":1},"2":{"5":6,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":2,"18":2,"19":2,"20":1,"23":3}}],["radd",{"2":{"137":1}}],["raise",{"0":{"115":1},"2":{"35":1,"46":1,"47":2,"82":1,"83":1,"84":1,"85":1,"95":1,"114":2,"115":2,"135":1,"140":1,"141":1,"144":1}}],["raises",{"2":{"35":1,"46":1,"47":1,"82":1,"83":1,"84":1,"85":1,"95":1}}],["ratio",{"0":{"27":1}}],[">",{"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"19":1,"20":1,"21":1,"22":1,"34":1,"35":5,"37":3,"38":6,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"57":1,"58":1,"59":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"96":1,"97":1,"101":1,"102":1,"103":1,"104":2,"106":3,"111":1,"117":1,"118":2,"119":5,"123":1,"124":1,"125":2,"126":1,"127":1,"129":1,"130":1,"131":1,"133":1,"134":1,"135":2,"137":2,"138":1,"139":1,"140":2,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1}}],["戻り値",{"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"34":1,"35":1,"37":1,"38":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"57":1,"58":1,"59":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"95":1,"96":1,"101":1,"104":1,"105":1,"106":1,"111":1,"117":1,"118":1,"119":1,"123":1,"124":1,"125":1,"126":1,"127":1,"129":1,"130":1,"131":1,"135":1,"136":1,"137":1,"140":1,"141":1,"144":1,"146":1,"148":1,"157":1,"161":1}}],["geometricmodels",{"0":{"156":1,"160":1},"1":{"157":1,"161":1}}],["generated",{"2":{"129":1}}],["get",{"0":{"35":1,"49":1,"50":1},"2":{"35":2,"49":1,"50":1,"85":1,"91":1}}],["gradient",{"0":{"37":1},"2":{"37":1}}],["gamma",{"0":{"28":1}}],["golden",{"0":{"27":1}}],["gt",{"0":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"19":1,"20":1,"21":1,"22":1,"34":1,"35":1,"37":1,"38":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"57":1,"58":1,"59":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"96":1,"97":1,"101":1,"102":1,"103":1,"106":1,"111":1,"117":1,"118":1,"119":1,"123":1,"124":1,"125":1,"126":1,"127":1,"129":1,"130":1,"131":1,"133":1,"134":1,"137":1,"138":1,"139":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1},"2":{"104":2,"106":2,"119":3,"125":1,"135":2,"137":1,"140":2,"141":1}}],["githubで表示",{"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"59":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"157":1,"161":1}}],["cz",{"2":{"80":2}}],["clamp",{"0":{"111":1},"2":{"111":1,"157":1,"161":1}}],["classmethod",{"2":{"56":1,"57":1,"88":1,"89":2,"90":2,"91":2,"92":1}}],["class",{"0":{"3":1,"4":1,"32":1,"42":1,"79":1,"99":1,"108":1,"112":1,"121":1,"156":1,"160":1},"1":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"59":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"113":1,"114":1,"115":1,"116":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"157":1,"161":1},"2":{"37":1,"43":2,"44":1,"45":2,"46":2,"47":2,"48":2,"49":1,"51":1,"52":1,"53":1,"54":1,"55":1,"57":3,"58":3,"59":1,"81":1,"82":3,"83":2,"84":2,"85":2,"86":2,"87":1,"88":1,"89":3,"90":1,"91":1,"92":2,"95":4,"96":1,"101":1,"104":3,"105":1,"106":3,"109":2,"123":1,"124":2,"125":2,"126":1,"127":1,"131":1,"135":4,"136":1,"137":2,"140":4,"141":2,"144":2,"146":1,"148":1}}],["cls",{"0":{"57":1,"89":1,"90":1,"91":1,"92":1},"2":{"57":2,"89":2,"90":2,"91":2,"92":2}}],["cross",{"0":{"125":1},"2":{"46":4,"47":3,"48":1,"55":1,"84":1,"90":1,"91":1,"125":3,"126":1,"127":1}}],["c",{"0":{"80":1},"2":{"38":4,"80":5,"81":7,"83":2,"84":6,"85":2,"88":1,"89":3}}],["curried",{"2":{"38":6}}],["currying",{"2":{"38":2}}],["curry",{"0":{"38":1},"2":{"38":3}}],["curveequation",{"0":{"32":1},"1":{"33":1,"34":1},"2":{"39":1,"40":1}}],["cal",{"0":{"37":1,"45":1,"46":1,"47":1,"48":1,"82":1,"83":1,"84":1,"85":1,"86":1,"124":1},"2":{"37":1,"45":2,"46":1,"47":1,"48":1,"58":1,"82":2,"83":1,"84":1,"85":1,"86":1,"95":2,"97":1,"124":1}}],["callable",{"2":{"66":1,"67":1,"69":1,"70":1,"72":1,"73":1,"75":1,"76":1}}],["call",{"0":{"34":1},"2":{"34":1}}],["csc",{"0":{"16":1},"2":{"16":1}}],["coincident",{"2":{"85":1}}],["collinear",{"0":{"53":1},"2":{"53":1,"58":1}}],["coplanar",{"0":{"55":1},"2":{"46":1,"47":2,"55":1,"58":1}}],["complex",{"2":{"62":1}}],["complementary",{"0":{"6":1},"2":{"6":1,"82":1}}],["com",{"2":{"38":1}}],["constants",{"2":{"58":1,"95":1}}],["const",{"0":{"24":1},"1":{"25":1,"26":1,"27":1,"28":1,"29":1,"30":1}}],["cot",{"0":{"14":1},"2":{"14":1}}],["cos",{"0":{"12":1},"2":{"12":2,"15":1,"157":2,"161":2}}],["all",{"2":{"101":1,"114":1,"123":1}}],["acos",{"2":{"82":1,"124":1}}],["axis",{"0":{"150":1,"151":1,"152":1}}],["ax",{"2":{"80":2}}],["arccos",{"2":{"157":1,"161":1}}],["array",{"0":{"129":1},"2":{"84":6,"129":2,"157":6,"161":6}}],["arrayvar",{"0":{"64":1},"2":{"64":1,"65":1,"67":2,"70":3,"73":4,"76":1}}],["area",{"2":{"157":2,"161":2}}],["are",{"2":{"47":2,"84":1,"85":1}}],["args2",{"2":{"38":2}}],["args",{"0":{"38":1},"2":{"5":1,"33":1,"34":1,"35":14,"37":1,"38":5,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"51":1,"52":1,"53":1,"54":1,"55":1,"57":1,"58":1,"59":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"89":1,"90":1,"91":1,"92":1,"95":1,"96":1,"100":1,"101":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"135":1,"136":1,"137":1,"140":1,"141":1,"144":1,"146":1,"157":1,"161":1}}],["abs",{"0":{"132":1},"2":{"46":1,"83":1,"101":3,"114":1,"117":1,"119":1,"123":3,"132":1}}],["a",{"0":{"80":1},"2":{"38":4,"80":5,"81":7,"83":2,"84":12,"85":2,"88":1,"89":3}}],["aaa",{"2":{"36":1}}],["approx",{"0":{"30":1,"44":2,"51":1,"81":1,"101":2,"112":1,"117":2,"123":2,"126":2},"1":{"113":1,"114":1,"115":1,"116":1},"2":{"18":1,"44":3,"51":2,"81":10,"96":1,"101":1,"105":3,"114":4,"117":1,"123":1,"126":1,"127":1,"136":3}}],["add",{"2":{"17":1,"38":8,"102":1,"103":1,"104":1,"133":1,"134":1,"135":1}}],["and",{"0":{"58":1,"89":1,"92":1,"93":1,"94":1,"95":1},"2":{"44":1,"47":2,"53":1,"58":1,"59":1,"81":6,"84":4,"85":1,"86":1,"89":1,"90":1,"91":1,"92":2,"93":1,"94":1,"95":2,"105":2,"115":1,"135":1,"136":2,"140":1,"141":1,"144":1}}],["anyangle",{"0":{"4":1,"6":1,"7":1,"9":1,"10":1,"17":2,"19":2,"20":1,"21":1,"22":1,"45":1,"82":1,"124":1},"1":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1},"2":{"6":2,"7":2,"9":2,"10":2,"17":3,"19":3,"20":2,"21":1,"22":1,"23":2,"39":1,"40":1,"45":3,"82":4,"124":4}}],["angle",{"0":{"2":1,"3":1,"4":1,"45":1,"82":1,"124":1},"1":{"3":1,"4":1,"5":2,"6":2,"7":2,"8":2,"9":2,"10":2,"11":2,"12":2,"13":2,"14":2,"15":2,"16":2,"17":2,"18":2,"19":2,"20":2,"21":2,"22":2,"23":2},"2":{"45":3,"82":3,"124":2}}],["または",{"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"59":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"157":1,"161":1}}],["ソースコード",{"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"59":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"157":1,"161":1}}],["默认为否",{"2":{"5":2}}],["引数",{"2":{"5":1,"33":1,"34":1,"35":1,"37":1,"38":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"51":1,"52":1,"53":1,"54":1,"55":1,"57":1,"58":1,"59":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"89":1,"90":1,"91":1,"92":1,"95":1,"96":1,"100":1,"101":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"135":1,"136":1,"137":1,"140":1,"141":1,"144":1,"146":1,"157":1,"161":1}}],["任意角度",{"2":{"5":2,"39":1,"40":1}}],["from",{"0":{"57":1,"89":1,"90":1,"91":1,"92":1},"2":{"57":1,"86":1,"89":1,"90":2,"91":2,"92":2,"106":1}}],["frac",{"2":{"37":3}}],["f",{"2":{"37":4,"82":1,"83":1,"95":1,"115":1,"119":3,"135":1,"140":1,"141":1,"144":1}}],["format",{"0":{"119":1},"2":{"119":1}}],["for",{"2":{"34":1,"35":1,"95":1,"135":1,"140":1,"141":1,"144":1,"157":2,"161":2}}],["functions",{"2":{"44":2,"46":1,"51":2,"52":1,"53":1,"54":1,"55":1,"59":1,"80":1,"81":1,"83":1,"87":1,"96":1,"100":1,"101":2,"105":1,"111":1,"117":2,"118":3,"119":3,"122":1,"123":2,"126":2,"127":1,"130":1,"136":1,"144":1,"146":1}}],["function",{"0":{"36":1},"1":{"37":1,"38":1}}],["func",{"0":{"33":3,"35":2,"37":1,"38":1},"2":{"33":15,"34":6,"35":16,"37":9,"38":6}}],["false",{"0":{"5":1,"118":1,"119":1},"2":{"81":1}}],["float=0",{"2":{"117":1}}],["float=1e",{"2":{"51":1}}],["float=approx",{"2":{"44":1,"101":1,"117":1,"123":1,"126":1}}],["float=epsilon",{"2":{"37":1}}],["float",{"0":{"5":1,"8":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"20":1,"21":1,"22":1,"37":1,"44":1,"46":1,"51":1,"80":4,"83":1,"100":3,"101":1,"111":4,"117":3,"118":1,"119":1,"122":3,"123":1,"126":1,"130":1,"144":1,"157":2,"161":2},"2":{"5":1,"8":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"20":1,"21":1,"22":1,"44":2,"46":3,"51":2,"61":1,"80":9,"83":3,"100":7,"101":2,"111":9,"114":2,"117":5,"118":3,"119":3,"122":7,"123":2,"126":2,"130":3,"144":4,"146":2,"157":2,"161":2}}],["==",{"2":{"34":1,"46":1,"55":1,"56":3,"85":1,"91":1,"95":1}}],["=",{"0":{"5":1,"17":1,"19":1,"20":1,"21":1,"22":1,"35":1,"37":1,"44":1,"51":1,"101":1,"102":1,"103":1,"106":1,"117":2,"118":1,"119":1,"123":1,"126":1,"133":1,"134":1,"137":1,"138":1,"139":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1},"2":{"5":2,"33":3,"35":5,"37":5,"38":2,"43":2,"56":3,"57":1,"80":6,"81":6,"84":17,"85":2,"89":2,"90":3,"91":3,"100":3,"109":5,"113":1,"122":3,"128":4,"157":7,"161":7}}],["improve",{"2":{"164":1}}],["import",{"2":{"106":1}}],["i",{"2":{"157":4,"161":4}}],["invalid",{"2":{"35":1}}],["intersect",{"2":{"47":2}}],["intersection",{"0":{"47":1,"84":1,"85":1},"2":{"47":1,"58":1,"84":2,"85":1,"95":2,"97":1}}],["int",{"0":{"35":2,"144":1},"2":{"35":3,"38":8,"61":1,"114":2,"144":2,"157":1,"161":1}}],["in",{"2":{"34":1,"35":1,"157":2,"161":2}}],["init",{"0":{"5":1,"33":1,"43":1,"80":1,"100":1,"109":1,"113":1,"122":1},"2":{"5":1,"33":1,"43":1,"80":1,"100":1,"109":1,"113":1,"122":1}}],["if",{"2":{"5":1,"23":1,"34":1,"35":1,"46":2,"47":2,"56":3,"58":1,"81":1,"82":1,"83":1,"84":2,"85":1,"91":1,"95":3,"114":3,"118":2,"119":2,"135":1,"140":1,"141":1,"144":1}}],["isinstance",{"2":{"23":1,"35":2,"46":2,"82":2,"83":2,"95":2,"114":4,"135":2,"140":2,"141":1,"144":2}}],["is",{"0":{"5":1,"51":1,"52":1,"53":1,"54":1,"55":1,"87":1,"126":1,"127":1},"2":{"5":4,"6":1,"7":1,"10":1,"17":1,"19":1,"20":1,"23":1,"44":2,"46":2,"47":2,"51":2,"52":2,"53":3,"54":2,"55":1,"58":3,"59":2,"82":1,"84":1,"87":2,"95":1,"124":1,"126":1,"127":1}}],["预设",{"2":{"0":1,"1":1}}],["phi",{"2":{"157":5,"161":5}}],["p3",{"0":{"90":1},"2":{"90":4}}],["p2",{"0":{"57":1,"90":1,"109":1},"2":{"57":4,"59":2,"90":4,"109":9}}],["p1",{"0":{"57":1,"90":1,"109":1},"2":{"57":5,"59":2,"90":6,"109":9}}],["perpendicular",{"0":{"48":1},"2":{"48":1}}],["parametric",{"0":{"50":1},"2":{"50":1,"85":1}}],["parallel",{"0":{"51":1,"52":1,"86":1,"87":1,"126":1,"127":1},"2":{"44":2,"46":1,"47":2,"51":2,"52":2,"53":2,"54":1,"58":1,"59":2,"84":2,"85":1,"86":1,"87":2,"95":1,"126":1,"127":1}}],["partial",{"0":{"35":1},"2":{"35":6,"37":6}}],["particle",{"0":{"153":1,"158":1},"2":{"0":1,"1":1}}],["planes",{"2":{"84":1}}],["plane",{"0":{"78":1},"1":{"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1},"2":{"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"89":1,"95":1,"96":1}}],["plane3",{"0":{"79":1,"81":1,"82":1,"83":1,"84":1,"86":2,"87":1,"89":1,"90":1,"91":1,"92":1,"94":1},"1":{"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1},"2":{"39":1,"40":1,"81":3,"82":4,"83":4,"84":3,"86":5,"87":3,"89":3,"90":1,"91":1,"92":1,"94":1,"95":4,"96":2,"114":1}}],["plus",{"2":{"35":3}}],["p",{"0":{"37":1},"2":{"37":21,"38":1,"104":10,"106":8,"135":4,"137":4,"140":4,"141":4}}],["points",{"0":{"57":1,"90":1},"2":{"57":1,"90":1}}],["point",{"0":{"43":1,"48":1,"49":1,"54":2,"86":1,"89":2,"92":2,"98":1},"1":{"99":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1},"2":{"37":1,"43":6,"44":2,"46":6,"47":4,"48":7,"49":3,"50":3,"53":2,"54":7,"55":2,"56":3,"57":2,"58":1,"59":2,"83":1,"85":4,"86":6,"89":8,"90":2,"91":6,"92":7,"95":1,"101":1,"104":2,"105":1,"106":1,"109":2,"135":2,"137":2,"140":2,"141":2}}],["point3",{"0":{"34":2,"37":1,"43":1,"46":1,"47":1,"48":1,"49":1,"54":1,"57":2,"58":1,"83":1,"85":2,"86":1,"89":1,"90":3,"92":1,"93":1,"97":1,"99":1,"101":1,"102":1,"103":2,"106":1,"109":2,"134":2,"137":2,"139":2,"141":1},"1":{"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1},"2":{"34":4,"37":3,"39":1,"40":1,"43":3,"46":4,"47":3,"48":3,"49":3,"54":3,"57":6,"58":3,"83":4,"84":1,"85":5,"86":3,"89":3,"90":7,"92":3,"93":1,"95":3,"97":2,"101":3,"102":1,"103":2,"104":5,"105":2,"106":3,"109":7,"114":1,"134":2,"135":6,"137":7,"139":2,"140":6,"141":7,"157":3,"161":3}}],["positive",{"0":{"9":1},"2":{"6":1,"7":1,"9":1}}],["python",{"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"21":1,"22":1,"44":2,"46":2,"47":1,"50":1,"51":2,"52":1,"53":1,"54":1,"55":1,"57":1,"58":1,"59":1,"80":1,"81":1,"82":1,"83":2,"84":1,"85":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":2,"96":1,"100":1,"101":2,"102":1,"103":1,"105":1,"111":1,"117":2,"118":3,"119":3,"122":1,"123":2,"126":2,"127":1,"129":1,"130":2,"131":1,"133":1,"134":1,"136":1,"138":1,"139":1,"142":1,"143":1,"144":1,"146":1,"157":1,"161":1}}],["pythondef",{"2":{"5":1,"17":1,"18":1,"19":1,"20":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":2,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"58":1,"59":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"95":1,"96":1,"97":1,"100":1,"101":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"132":1,"135":1,"136":1,"137":1,"140":1,"141":1,"144":1,"145":1,"146":1,"147":1,"148":1}}],["property",{"2":{"5":1,"6":2,"7":2,"8":2,"9":2,"10":2,"11":2,"12":2,"13":2,"14":2,"15":2,"16":1,"87":1,"88":1,"128":1,"129":2,"130":2,"131":1}}],["presets",{"0":{"154":1,"155":1,"159":1,"162":1},"1":{"156":1,"157":1,"160":1,"161":1},"2":{"0":1,"1":1}}],["pi",{"0":{"25":1},"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"25":1,"157":2,"161":2}}],["粒子生成工具",{"2":{"0":1,"1":1}}],["model",{"0":{"155":1,"159":1},"1":{"156":1,"157":1,"160":1,"161":1}}],["midpoint",{"2":{"109":1}}],["min",{"0":{"111":1},"2":{"111":5}}],["minus",{"2":{"35":3}}],["minimum",{"0":{"9":1},"2":{"6":1,"7":1,"9":1}}],["multiarraysfunc",{"0":{"76":1},"2":{"77":1}}],["multisinglevarsfunc",{"0":{"75":1},"2":{"77":1}}],["multivarsfunc",{"0":{"35":2,"38":1,"77":1},"2":{"35":4,"38":3}}],["mul",{"2":{"20":1,"142":1,"143":1,"144":1,"145":1}}],["matmul",{"2":{"146":1}}],["math导入使用",{"2":{"39":1,"40":1}}],["math",{"0":{"2":1,"24":1,"31":1,"36":1,"39":1,"40":1,"41":1,"60":2,"78":1,"98":1,"107":1,"110":1,"120":1},"1":{"3":1,"4":1,"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"32":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"59":1,"61":2,"62":2,"63":2,"64":2,"65":2,"66":2,"67":2,"68":2,"69":2,"70":2,"71":2,"72":2,"73":2,"74":2,"75":2,"76":2,"77":2,"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"99":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"108":1,"109":1,"111":1,"112":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"121":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"150":1,"151":1,"152":1},"2":{"0":1,"1":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"25":1,"26":1,"27":1,"33":3,"35":1,"37":1,"38":2,"49":1,"50":1,"82":1,"113":1,"124":1,"130":1}}],["max",{"0":{"111":1},"2":{"111":5}}],["maximum",{"0":{"10":1},"2":{"10":1}}],["mp",{"0":{"2":1,"24":1,"31":1,"36":1,"39":1,"40":1,"41":1,"60":2,"78":1,"98":1,"107":1,"110":1,"120":1},"1":{"3":1,"4":1,"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"32":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"59":1,"61":2,"62":2,"63":2,"64":2,"65":2,"66":2,"67":2,"68":2,"69":2,"70":2,"71":2,"72":2,"73":2,"74":2,"75":2,"76":2,"77":2,"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"99":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"108":1,"109":1,"111":1,"112":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"121":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"150":1,"151":1,"152":1},"2":{"0":1,"1":1,"33":3,"35":1,"37":1,"38":2,"39":1,"40":1,"49":1,"50":1,"113":1}}],["mbcp",{"0":{"0":1,"1":1,"2":1,"24":1,"31":1,"36":1,"39":1,"40":1,"41":1,"60":1,"78":1,"98":1,"107":1,"110":1,"120":1,"153":1,"154":1,"155":1,"158":1,"159":1,"162":1},"1":{"3":1,"4":1,"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"32":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"59":1,"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"99":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"108":1,"109":1,"111":1,"112":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"121":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"150":1,"151":1,"152":1,"156":1,"157":1,"160":1,"161":1},"2":{"0":3,"1":3}}],["提供了一些工具",{"2":{"0":1,"1":1}}],["説明",{"2":{"0":1,"1":1,"2":1,"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"24":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"31":1,"33":1,"34":1,"35":1,"36":1,"37":1,"38":1,"39":1,"40":1,"41":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"59":1,"60":1,"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"78":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"95":1,"96":1,"98":1,"100":1,"101":1,"104":1,"105":1,"106":1,"107":1,"109":1,"110":1,"111":1,"113":1,"117":1,"118":1,"119":1,"120":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"130":1,"131":1,"135":1,"136":1,"137":1,"140":1,"141":1,"144":1,"146":1,"148":1,"149":1,"150":1,"151":1,"152":1,"153":1,"154":1,"155":1,"157":1,"158":1,"159":1,"161":1,"162":1}}]],"serializationVersion":2}';export{t as default};
diff --git a/assets/chunks/@localSearchIndexja.CXXagdCq.js b/assets/chunks/@localSearchIndexja.CXXagdCq.js
deleted file mode 100644
index 029b104..0000000
--- a/assets/chunks/@localSearchIndexja.CXXagdCq.js
+++ /dev/null
@@ -1 +0,0 @@
-const t='{"documentCount":165,"nextId":165,"documentIds":{"0":"/ja/api/api.html#mbcp","1":"/ja/api/#mbcp","2":"/ja/api/mp_math/angle.html#mbcp-mp-math-angle","3":"/ja/api/mp_math/angle.html#class-angle","4":"/ja/api/mp_math/angle.html#class-anyangle-angle","5":"/ja/api/mp_math/angle.html#def-init-self-value-float-is-radian-bool-false","6":"/ja/api/mp_math/angle.html#def-complementary-self-anyangle","7":"/ja/api/mp_math/angle.html#def-supplementary-self-anyangle","8":"/ja/api/mp_math/angle.html#def-degree-self-float","9":"/ja/api/mp_math/angle.html#def-minimum-positive-self-anyangle","10":"/ja/api/mp_math/angle.html#def-maximum-negative-self-anyangle","11":"/ja/api/mp_math/angle.html#def-sin-self-float","12":"/ja/api/mp_math/angle.html#def-cos-self-float","13":"/ja/api/mp_math/angle.html#def-tan-self-float","14":"/ja/api/mp_math/angle.html#def-cot-self-float","15":"/ja/api/mp_math/angle.html#def-sec-self-float","16":"/ja/api/mp_math/angle.html#def-csc-self-float","17":"/ja/api/mp_math/angle.html#def-self-other-anyangle-anyangle","18":"/ja/api/mp_math/angle.html#def-eq-self-other","19":"/ja/api/mp_math/angle.html#def-self-other-anyangle-anyangle-1","20":"/ja/api/mp_math/angle.html#def-self-other-float-anyangle","21":"/ja/api/mp_math/angle.html#def-self-other-float-anyangle-1","22":"/ja/api/mp_math/angle.html#def-self-other-anyangle-float","23":"/ja/api/mp_math/angle.html#def-self-other","24":"/ja/api/mp_math/const.html#mbcp-mp-math-const","25":"/ja/api/mp_math/const.html#var-pi","26":"/ja/api/mp_math/const.html#var-e","27":"/ja/api/mp_math/const.html#var-golden-ratio","28":"/ja/api/mp_math/const.html#var-gamma","29":"/ja/api/mp_math/const.html#var-epsilon","30":"/ja/api/mp_math/const.html#var-approx","31":"/ja/api/mp_math/function.html#mbcp-mp-math-function","32":"/ja/api/mp_math/function.html#def-cal-gradient-3vf-func-threesinglevarsfunc-p-point3-epsilon-float-epsilon-vector3","33":"/ja/api/mp_math/function.html#def-curry-func-multivarsfunc-args-var-onevarfunc","34":"/ja/api/mp_math/equation.html#mbcp-mp-math-equation","35":"/ja/api/mp_math/equation.html#class-curveequation","36":"/ja/api/mp_math/equation.html#def-init-self-x-func-onevarfunc-y-func-onevarfunc-z-func-onevarfunc","37":"/ja/api/mp_math/equation.html#def-call-self-t-var-point3-tuple-point3","38":"/ja/api/mp_math/equation.html#def-get-partial-derivative-func-func-multivarsfunc-var-int-tuple-int-epsilon-number-epsilon-multivarsfunc","39":"/ja/api/mp_math/#mbcp-mp-math","40":"/ja/api/mp_math/line.html#mbcp-mp-math-line","41":"/ja/api/mp_math/line.html#class-line3","42":"/ja/api/mp_math/line.html#def-init-self-point-point3-direction-vector3","43":"/ja/api/mp_math/line.html#def-approx-self-other-line3-epsilon-float-approx-bool","44":"/ja/api/mp_math/line.html#def-cal-angle-self-other-line3-anyangle","45":"/ja/api/mp_math/line.html#def-cal-distance-self-other-line3-point3-float","46":"/ja/api/mp_math/line.html#def-cal-intersection-self-other-line3-point3","47":"/ja/api/mp_math/line.html#def-cal-perpendicular-self-point-point3-line3","48":"/ja/api/mp_math/line.html#def-get-point-self-t-realnumber-point3","49":"/ja/api/mp_math/line.html#def-get-parametric-equations-self-tuple-onesinglevarfunc-onesinglevarfunc-onesinglevarfunc","50":"/ja/api/mp_math/line.html#def-is-approx-parallel-self-other-line3-epsilon-float-1e-06-bool","51":"/ja/api/mp_math/line.html#def-is-parallel-self-other-line3-bool","52":"/ja/api/mp_math/line.html#def-is-collinear-self-other-line3-bool","53":"/ja/api/mp_math/line.html#def-is-point-on-self-point-point3-bool","54":"/ja/api/mp_math/line.html#def-is-coplanar-self-other-line3-bool","55":"/ja/api/mp_math/line.html#def-simplify-self","56":"/ja/api/mp_math/line.html#def-from-two-points-cls-p1-point3-p2-point3-line3","57":"/ja/api/mp_math/line.html#def-and-self-other-line3-line3-point3-none","58":"/ja/api/mp_math/line.html#def-eq-self-other-bool","59":"/ja/api/mp_math/mp_math.html#mbcp-mp-math","60":"/ja/api/mp_math/mp_math_typing.html#mbcp-mp-math-mp-math-typing","61":"/ja/api/mp_math/mp_math_typing.html#var-realnumber","62":"/ja/api/mp_math/mp_math_typing.html#var-number","63":"/ja/api/mp_math/mp_math_typing.html#var-singlevar","64":"/ja/api/mp_math/mp_math_typing.html#var-arrayvar","65":"/ja/api/mp_math/mp_math_typing.html#var-var","66":"/ja/api/mp_math/mp_math_typing.html#var-onesinglevarfunc","67":"/ja/api/mp_math/mp_math_typing.html#var-onearrayfunc","68":"/ja/api/mp_math/mp_math_typing.html#var-onevarfunc","69":"/ja/api/mp_math/mp_math_typing.html#var-twosinglevarsfunc","70":"/ja/api/mp_math/mp_math_typing.html#var-twoarraysfunc","71":"/ja/api/mp_math/mp_math_typing.html#var-twovarsfunc","72":"/ja/api/mp_math/mp_math_typing.html#var-threesinglevarsfunc","73":"/ja/api/mp_math/mp_math_typing.html#var-threearraysfunc","74":"/ja/api/mp_math/mp_math_typing.html#var-threevarsfunc","75":"/ja/api/mp_math/mp_math_typing.html#var-multisinglevarsfunc","76":"/ja/api/mp_math/mp_math_typing.html#var-multiarraysfunc","77":"/ja/api/mp_math/mp_math_typing.html#var-multivarsfunc","78":"/ja/api/mp_math/plane.html#mbcp-mp-math-plane","79":"/ja/api/mp_math/plane.html#class-plane3","80":"/ja/api/mp_math/plane.html#def-init-self-a-float-b-float-c-float-d-float","81":"/ja/api/mp_math/plane.html#def-approx-self-other-plane3-bool","82":"/ja/api/mp_math/plane.html#def-cal-angle-self-other-line3-plane3-anyangle","83":"/ja/api/mp_math/plane.html#def-cal-distance-self-other-plane3-point3-float","84":"/ja/api/mp_math/plane.html#def-cal-intersection-line3-self-other-plane3-line3","85":"/ja/api/mp_math/plane.html#def-cal-intersection-point3-self-other-line3-point3","86":"/ja/api/mp_math/plane.html#def-cal-parallel-plane3-self-point-point3-plane3","87":"/ja/api/mp_math/plane.html#def-is-parallel-self-other-plane3-bool","88":"/ja/api/mp_math/plane.html#def-normal-self-vector3","89":"/ja/api/mp_math/plane.html#def-from-point-and-normal-cls-point-point3-normal-vector3-plane3","90":"/ja/api/mp_math/plane.html#def-from-three-points-cls-p1-point3-p2-point3-p3-point3-plane3","91":"/ja/api/mp_math/plane.html#def-from-two-lines-cls-l1-line3-l2-line3-plane3","92":"/ja/api/mp_math/plane.html#def-from-point-and-line-cls-point-point3-line-line3-plane3","93":"/ja/api/mp_math/plane.html#def-and-self-other-line3-point3-none","94":"/ja/api/mp_math/plane.html#def-and-self-other-plane3-line3-none","95":"/ja/api/mp_math/plane.html#def-and-self-other","96":"/ja/api/mp_math/plane.html#def-eq-self-other-bool","97":"/ja/api/mp_math/plane.html#def-rand-self-other-line3-point3","98":"/ja/api/mp_math/point.html#mbcp-mp-math-point","99":"/ja/api/mp_math/point.html#class-point3","100":"/ja/api/mp_math/point.html#def-init-self-x-float-y-float-z-float","101":"/ja/api/mp_math/point.html#def-approx-self-other-point3-epsilon-float-approx-bool","102":"/ja/api/mp_math/point.html#def-self-other-vector3-point3","103":"/ja/api/mp_math/point.html#def-self-other-point3-point3","104":"/ja/api/mp_math/point.html#def-self-other","105":"/ja/api/mp_math/point.html#def-eq-self-other","106":"/ja/api/mp_math/point.html#def-self-other-point3-vector3","107":"/ja/api/mp_math/segment.html#mbcp-mp-math-segment","108":"/ja/api/mp_math/segment.html#class-segment3","109":"/ja/api/mp_math/segment.html#def-init-self-p1-point3-p2-point3","110":"/ja/api/mp_math/utils.html#mbcp-mp-math-utils","111":"/ja/api/mp_math/utils.html#def-clamp-x-float-min-float-max-float-float","112":"/ja/api/mp_math/utils.html#class-approx","113":"/ja/api/mp_math/utils.html#def-init-self-value-realnumber","114":"/ja/api/mp_math/utils.html#def-eq-self-other","115":"/ja/api/mp_math/utils.html#def-raise-type-error-self-other","116":"/ja/api/mp_math/utils.html#def-ne-self-other","117":"/ja/api/mp_math/utils.html#def-approx-x-float-y-float-0-0-epsilon-float-approx-bool","118":"/ja/api/mp_math/utils.html#def-sign-x-float-only-neg-bool-false-str","119":"/ja/api/mp_math/utils.html#def-sign-format-x-float-only-neg-bool-false-str","120":"/ja/api/mp_math/vector.html#mbcp-mp-math-vector","121":"/ja/api/mp_math/vector.html#class-vector3","122":"/ja/api/mp_math/vector.html#def-init-self-x-float-y-float-z-float","123":"/ja/api/mp_math/vector.html#def-approx-self-other-vector3-epsilon-float-approx-bool","124":"/ja/api/mp_math/vector.html#def-cal-angle-self-other-vector3-anyangle","125":"/ja/api/mp_math/vector.html#def-cross-self-other-vector3-vector3","126":"/ja/api/mp_math/vector.html#def-is-approx-parallel-self-other-vector3-epsilon-float-approx-bool","127":"/ja/api/mp_math/vector.html#def-is-parallel-self-other-vector3-bool","128":"/ja/api/mp_math/vector.html#def-normalize-self","129":"/ja/api/mp_math/vector.html#def-np-array-self-np-ndarray","130":"/ja/api/mp_math/vector.html#def-length-self-float","131":"/ja/api/mp_math/vector.html#def-unit-self-vector3","132":"/ja/api/mp_math/vector.html#def-abs-self","133":"/ja/api/mp_math/vector.html#def-self-other-vector3-vector3","134":"/ja/api/mp_math/vector.html#def-self-other-point3-point3","135":"/ja/api/mp_math/vector.html#def-self-other","136":"/ja/api/mp_math/vector.html#def-eq-self-other","137":"/ja/api/mp_math/vector.html#def-self-other-point3-point3-1","138":"/ja/api/mp_math/vector.html#def-self-other-vector3-vector3-1","139":"/ja/api/mp_math/vector.html#def-self-other-point3-point3-2","140":"/ja/api/mp_math/vector.html#def-self-other-1","141":"/ja/api/mp_math/vector.html#def-self-other-point3","142":"/ja/api/mp_math/vector.html#def-self-other-vector3-vector3-2","143":"/ja/api/mp_math/vector.html#def-self-other-realnumber-vector3","144":"/ja/api/mp_math/vector.html#def-self-other-int-float-vector3-vector3","145":"/ja/api/mp_math/vector.html#def-self-other-realnumber-vector3-1","146":"/ja/api/mp_math/vector.html#def-self-other-vector3-realnumber","147":"/ja/api/mp_math/vector.html#def-self-other-realnumber-vector3-2","148":"/ja/api/mp_math/vector.html#def-self-vector3","149":"/ja/api/mp_math/vector.html#var-zero-vector3","150":"/ja/api/mp_math/vector.html#var-x-axis","151":"/ja/api/mp_math/vector.html#var-y-axis","152":"/ja/api/mp_math/vector.html#var-z-axis","153":"/ja/api/particle/#mbcp-particle","154":"/ja/api/particle/particle.html#mbcp-particle","155":"/ja/api/presets/#mbcp-presets","156":"/ja/api/presets/model/#mbcp-presets-model","157":"/ja/api/presets/model/#class-geometricmodels","158":"/ja/api/presets/model/#def-sphere-radius-float-density-float","159":"/ja/api/presets/model/model.html#mbcp-presets-model","160":"/ja/api/presets/model/model.html#class-geometricmodels","161":"/ja/api/presets/model/model.html#def-sphere-radius-float-density-float","162":"/ja/api/presets/presets.html#mbcp-presets","163":"/ja/guide/#开始不了一点","164":"/ja/refer/#reference"},"fieldIds":{"title":0,"titles":1,"text":2},"fieldLength":{"0":[1,1,13],"1":[1,1,13],"2":[4,1,3],"3":[2,4,1],"4":[4,4,1],"5":[11,8,25],"6":[5,8,24],"7":[5,8,23],"8":[5,8,20],"9":[6,8,21],"10":[6,8,23],"11":[5,8,18],"12":[5,8,18],"13":[5,8,18],"14":[5,8,20],"15":[5,8,20],"16":[5,8,20],"17":[7,8,15],"18":[5,8,11],"19":[6,8,14],"20":[7,8,16],"21":[7,8,13],"22":[7,8,13],"23":[3,8,15],"24":[4,1,3],"25":[2,4,7],"26":[2,4,8],"27":[3,4,10],"28":[2,4,6],"29":[2,4,6],"30":[2,4,6],"31":[4,1,3],"32":[14,4,69],"33":[8,4,63],"34":[4,1,3],"35":[2,4,1],"36":[9,6,26],"37":[10,6,35],"38":[15,4,74],"39":[3,1,21],"40":[4,1,3],"41":[2,4,1],"42":[8,6,25],"43":[11,6,43],"44":[8,6,28],"45":[10,6,63],"46":[8,6,60],"47":[8,6,29],"48":[8,6,35],"49":[9,6,42],"50":[14,6,43],"51":[8,6,36],"52":[8,6,39],"53":[8,6,36],"54":[8,6,42],"55":[4,6,27],"56":[10,6,36],"57":[9,6,52],"58":[6,6,44],"59":[3,1,21],"60":[4,1,3],"61":[2,4,9],"62":[2,4,9],"63":[2,4,7],"64":[2,4,8],"65":[2,4,9],"66":[2,4,8],"67":[2,4,8],"68":[2,4,9],"69":[2,4,8],"70":[2,4,8],"71":[2,4,9],"72":[2,4,8],"73":[2,4,8],"74":[2,4,9],"75":[2,4,8],"76":[2,4,8],"77":[2,4,9],"78":[4,1,3],"79":[2,4,1],"80":[9,6,36],"81":[7,6,45],"82":[10,6,62],"83":[10,6,66],"84":[9,6,71],"85":[9,6,69],"86":[9,6,30],"87":[8,6,37],"88":[5,6,25],"89":[10,6,45],"90":[11,6,39],"91":[10,6,44],"92":[10,6,35],"93":[9,6,15],"94":[9,6,15],"95":[5,6,70],"96":[6,6,35],"97":[7,6,15],"98":[4,1,3],"99":[2,4,1],"100":[8,6,26],"101":[11,6,45],"102":[8,6,13],"103":[7,6,12],"104":[4,6,34],"105":[5,6,37],"106":[7,6,36],"107":[4,1,3],"108":[2,4,1],"109":[7,6,32],"110":[4,1,3],"111":[7,4,31],"112":[2,4,1],"113":[6,6,20],"114":[5,6,31],"115":[7,6,15],"116":[5,6,11],"117":[11,4,40],"118":[11,4,43],"119":[12,4,49],"120":[4,1,4],"121":[2,4,1],"122":[8,6,19],"123":[11,6,27],"124":[8,6,31],"125":[6,6,43],"126":[13,6,43],"127":[8,6,37],"128":[4,6,17],"129":[6,6,31],"130":[5,6,33],"131":[5,6,21],"132":[4,6,10],"133":[7,6,12],"134":[7,6,12],"135":[4,6,46],"136":[5,6,37],"137":[7,6,31],"138":[6,6,12],"139":[6,6,12],"140":[3,6,45],"141":[4,6,42],"142":[6,6,12],"143":[7,6,13],"144":[9,6,55],"145":[7,6,13],"146":[7,6,38],"147":[7,6,15],"148":[5,6,21],"149":[3,4,7],"150":[3,4,8],"151":[3,4,8],"152":[3,4,8],"153":[2,1,3],"154":[2,1,3],"155":[2,1,3],"156":[3,1,3],"157":[2,3,2],"158":[6,5,48],"159":[3,1,3],"160":[2,3,2],"161":[6,5,48],"162":[2,1,3],"163":[1,1,2],"164":[1,1,7]},"averageFieldLength":[5.593939393939395,4.963636363636361,22.454545454545457],"storedFields":{"0":{"title":"mbcp","titles":[]},"1":{"title":"mbcp","titles":[]},"2":{"title":"mbcp.mp_math.angle","titles":[]},"3":{"title":"class Angle","titles":["mbcp.mp_math.angle"]},"4":{"title":"class AnyAngle(Angle)","titles":["mbcp.mp_math.angle"]},"5":{"title":"def __init__(self, value: float, is_radian: bool = False)","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"6":{"title":"def complementary(self) -> AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"7":{"title":"def supplementary(self) -> AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"8":{"title":"def degree(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"9":{"title":"def minimum_positive(self) -> AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"10":{"title":"def maximum_negative(self) -> AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"11":{"title":"def sin(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"12":{"title":"def cos(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"13":{"title":"def tan(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"14":{"title":"def cot(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"15":{"title":"def sec(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"16":{"title":"def csc(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"17":{"title":"def self + other: AnyAngle => AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"18":{"title":"def __eq__(self, other)","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"19":{"title":"def self - other: AnyAngle => AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"20":{"title":"def self * other: float => AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"21":{"title":"def self / other: float => AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"22":{"title":"def self / other: AnyAngle => float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"23":{"title":"def self / other","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"24":{"title":"mbcp.mp_math.const","titles":[]},"25":{"title":"var PI","titles":["mbcp.mp_math.const"]},"26":{"title":"var E","titles":["mbcp.mp_math.const"]},"27":{"title":"var GOLDEN_RATIO","titles":["mbcp.mp_math.const"]},"28":{"title":"var GAMMA","titles":["mbcp.mp_math.const"]},"29":{"title":"var EPSILON","titles":["mbcp.mp_math.const"]},"30":{"title":"var APPROX","titles":["mbcp.mp_math.const"]},"31":{"title":"mbcp.mp_math.function","titles":[]},"32":{"title":"def cal_gradient_3vf(func: ThreeSingleVarsFunc, p: Point3, epsilon: float = EPSILON) -> Vector3","titles":["mbcp.mp_math.function"]},"33":{"title":"def curry(func: MultiVarsFunc, *args: Var) -> OneVarFunc","titles":["mbcp.mp_math.function"]},"34":{"title":"mbcp.mp_math.equation","titles":[]},"35":{"title":"class CurveEquation","titles":["mbcp.mp_math.equation"]},"36":{"title":"def __init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc)","titles":["mbcp.mp_math.equation","class CurveEquation"]},"37":{"title":"def __call__(self, *t: Var) -> Point3 | tuple[Point3, ...]","titles":["mbcp.mp_math.equation","class CurveEquation"]},"38":{"title":"def get_partial_derivative_func(func: MultiVarsFunc, var: int | tuple[int, ...], epsilon: Number = EPSILON) -> MultiVarsFunc","titles":["mbcp.mp_math.equation"]},"39":{"title":"mbcp.mp_math","titles":[]},"40":{"title":"mbcp.mp_math.line","titles":[]},"41":{"title":"class Line3","titles":["mbcp.mp_math.line"]},"42":{"title":"def __init__(self, point: Point3, direction: Vector3)","titles":["mbcp.mp_math.line","class Line3"]},"43":{"title":"def approx(self, other: Line3, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"44":{"title":"def cal_angle(self, other: Line3) -> AnyAngle","titles":["mbcp.mp_math.line","class Line3"]},"45":{"title":"def cal_distance(self, other: Line3 | Point3) -> float","titles":["mbcp.mp_math.line","class Line3"]},"46":{"title":"def cal_intersection(self, other: Line3) -> Point3","titles":["mbcp.mp_math.line","class Line3"]},"47":{"title":"def cal_perpendicular(self, point: Point3) -> Line3","titles":["mbcp.mp_math.line","class Line3"]},"48":{"title":"def get_point(self, t: RealNumber) -> Point3","titles":["mbcp.mp_math.line","class Line3"]},"49":{"title":"def get_parametric_equations(self) -> tuple[OneSingleVarFunc, OneSingleVarFunc, OneSingleVarFunc]","titles":["mbcp.mp_math.line","class Line3"]},"50":{"title":"def is_approx_parallel(self, other: Line3, epsilon: float = 1e-06) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"51":{"title":"def is_parallel(self, other: Line3) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"52":{"title":"def is_collinear(self, other: Line3) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"53":{"title":"def is_point_on(self, point: Point3) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"54":{"title":"def is_coplanar(self, other: Line3) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"55":{"title":"def simplify(self)","titles":["mbcp.mp_math.line","class Line3"]},"56":{"title":"def from_two_points(cls, p1: Point3, p2: Point3) -> Line3","titles":["mbcp.mp_math.line","class Line3"]},"57":{"title":"def __and__(self, other: Line3) -> Line3 | Point3 | None","titles":["mbcp.mp_math.line","class Line3"]},"58":{"title":"def __eq__(self, other) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"59":{"title":"mbcp.mp_math","titles":[]},"60":{"title":"mbcp.mp_math.mp_math_typing","titles":[]},"61":{"title":"var RealNumber","titles":["mbcp.mp_math.mp_math_typing"]},"62":{"title":"var Number","titles":["mbcp.mp_math.mp_math_typing"]},"63":{"title":"var SingleVar","titles":["mbcp.mp_math.mp_math_typing"]},"64":{"title":"var ArrayVar","titles":["mbcp.mp_math.mp_math_typing"]},"65":{"title":"var Var","titles":["mbcp.mp_math.mp_math_typing"]},"66":{"title":"var OneSingleVarFunc","titles":["mbcp.mp_math.mp_math_typing"]},"67":{"title":"var OneArrayFunc","titles":["mbcp.mp_math.mp_math_typing"]},"68":{"title":"var OneVarFunc","titles":["mbcp.mp_math.mp_math_typing"]},"69":{"title":"var TwoSingleVarsFunc","titles":["mbcp.mp_math.mp_math_typing"]},"70":{"title":"var TwoArraysFunc","titles":["mbcp.mp_math.mp_math_typing"]},"71":{"title":"var TwoVarsFunc","titles":["mbcp.mp_math.mp_math_typing"]},"72":{"title":"var ThreeSingleVarsFunc","titles":["mbcp.mp_math.mp_math_typing"]},"73":{"title":"var ThreeArraysFunc","titles":["mbcp.mp_math.mp_math_typing"]},"74":{"title":"var ThreeVarsFunc","titles":["mbcp.mp_math.mp_math_typing"]},"75":{"title":"var MultiSingleVarsFunc","titles":["mbcp.mp_math.mp_math_typing"]},"76":{"title":"var MultiArraysFunc","titles":["mbcp.mp_math.mp_math_typing"]},"77":{"title":"var MultiVarsFunc","titles":["mbcp.mp_math.mp_math_typing"]},"78":{"title":"mbcp.mp_math.plane","titles":[]},"79":{"title":"class Plane3","titles":["mbcp.mp_math.plane"]},"80":{"title":"def __init__(self, a: float, b: float, c: float, d: float)","titles":["mbcp.mp_math.plane","class Plane3"]},"81":{"title":"def approx(self, other: Plane3) -> bool","titles":["mbcp.mp_math.plane","class Plane3"]},"82":{"title":"def cal_angle(self, other: Line3 | Plane3) -> AnyAngle","titles":["mbcp.mp_math.plane","class Plane3"]},"83":{"title":"def cal_distance(self, other: Plane3 | Point3) -> float","titles":["mbcp.mp_math.plane","class Plane3"]},"84":{"title":"def cal_intersection_line3(self, other: Plane3) -> Line3","titles":["mbcp.mp_math.plane","class Plane3"]},"85":{"title":"def cal_intersection_point3(self, other: Line3) -> Point3","titles":["mbcp.mp_math.plane","class Plane3"]},"86":{"title":"def cal_parallel_plane3(self, point: Point3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"87":{"title":"def is_parallel(self, other: Plane3) -> bool","titles":["mbcp.mp_math.plane","class Plane3"]},"88":{"title":"def normal(self) -> Vector3","titles":["mbcp.mp_math.plane","class Plane3"]},"89":{"title":"def from_point_and_normal(cls, point: Point3, normal: Vector3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"90":{"title":"def from_three_points(cls, p1: Point3, p2: Point3, p3: Point3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"91":{"title":"def from_two_lines(cls, l1: Line3, l2: Line3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"92":{"title":"def from_point_and_line(cls, point: Point3, line: Line3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"93":{"title":"def __and__(self, other: Line3) -> Point3 | None","titles":["mbcp.mp_math.plane","class Plane3"]},"94":{"title":"def __and__(self, other: Plane3) -> Line3 | None","titles":["mbcp.mp_math.plane","class Plane3"]},"95":{"title":"def __and__(self, other)","titles":["mbcp.mp_math.plane","class Plane3"]},"96":{"title":"def __eq__(self, other) -> bool","titles":["mbcp.mp_math.plane","class Plane3"]},"97":{"title":"def __rand__(self, other: Line3) -> Point3","titles":["mbcp.mp_math.plane","class Plane3"]},"98":{"title":"mbcp.mp_math.point","titles":[]},"99":{"title":"class Point3","titles":["mbcp.mp_math.point"]},"100":{"title":"def __init__(self, x: float, y: float, z: float)","titles":["mbcp.mp_math.point","class Point3"]},"101":{"title":"def approx(self, other: Point3, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.point","class Point3"]},"102":{"title":"def self + other: Vector3 => Point3","titles":["mbcp.mp_math.point","class Point3"]},"103":{"title":"def self + other: Point3 => Point3","titles":["mbcp.mp_math.point","class Point3"]},"104":{"title":"def self + other","titles":["mbcp.mp_math.point","class Point3"]},"105":{"title":"def __eq__(self, other)","titles":["mbcp.mp_math.point","class Point3"]},"106":{"title":"def self - other: Point3 => Vector3","titles":["mbcp.mp_math.point","class Point3"]},"107":{"title":"mbcp.mp_math.segment","titles":[]},"108":{"title":"class Segment3","titles":["mbcp.mp_math.segment"]},"109":{"title":"def __init__(self, p1: Point3, p2: Point3)","titles":["mbcp.mp_math.segment","class Segment3"]},"110":{"title":"mbcp.mp_math.utils","titles":[]},"111":{"title":"def clamp(x: float, min_: float, max_: float) -> float","titles":["mbcp.mp_math.utils"]},"112":{"title":"class Approx","titles":["mbcp.mp_math.utils"]},"113":{"title":"def __init__(self, value: RealNumber)","titles":["mbcp.mp_math.utils","class Approx"]},"114":{"title":"def __eq__(self, other)","titles":["mbcp.mp_math.utils","class Approx"]},"115":{"title":"def raise_type_error(self, other)","titles":["mbcp.mp_math.utils","class Approx"]},"116":{"title":"def __ne__(self, other)","titles":["mbcp.mp_math.utils","class Approx"]},"117":{"title":"def approx(x: float, y: float = 0.0, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.utils"]},"118":{"title":"def sign(x: float, only_neg: bool = False) -> str","titles":["mbcp.mp_math.utils"]},"119":{"title":"def sign_format(x: float, only_neg: bool = False) -> str","titles":["mbcp.mp_math.utils"]},"120":{"title":"mbcp.mp_math.vector","titles":[]},"121":{"title":"class Vector3","titles":["mbcp.mp_math.vector"]},"122":{"title":"def __init__(self, x: float, y: float, z: float)","titles":["mbcp.mp_math.vector","class Vector3"]},"123":{"title":"def approx(self, other: Vector3, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.vector","class Vector3"]},"124":{"title":"def cal_angle(self, other: Vector3) -> AnyAngle","titles":["mbcp.mp_math.vector","class Vector3"]},"125":{"title":"def cross(self, other: Vector3) -> Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"126":{"title":"def is_approx_parallel(self, other: Vector3, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.vector","class Vector3"]},"127":{"title":"def is_parallel(self, other: Vector3) -> bool","titles":["mbcp.mp_math.vector","class Vector3"]},"128":{"title":"def normalize(self)","titles":["mbcp.mp_math.vector","class Vector3"]},"129":{"title":"def np_array(self) -> np.ndarray","titles":["mbcp.mp_math.vector","class Vector3"]},"130":{"title":"def length(self) -> float","titles":["mbcp.mp_math.vector","class Vector3"]},"131":{"title":"def unit(self) -> Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"132":{"title":"def __abs__(self)","titles":["mbcp.mp_math.vector","class Vector3"]},"133":{"title":"def self + other: Vector3 => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"134":{"title":"def self + other: Point3 => Point3","titles":["mbcp.mp_math.vector","class Vector3"]},"135":{"title":"def self + other","titles":["mbcp.mp_math.vector","class Vector3"]},"136":{"title":"def __eq__(self, other)","titles":["mbcp.mp_math.vector","class Vector3"]},"137":{"title":"def self + other: Point3 => Point3","titles":["mbcp.mp_math.vector","class Vector3"]},"138":{"title":"def self - other: Vector3 => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"139":{"title":"def self - other: Point3 => Point3","titles":["mbcp.mp_math.vector","class Vector3"]},"140":{"title":"def self - other","titles":["mbcp.mp_math.vector","class Vector3"]},"141":{"title":"def self - other: Point3","titles":["mbcp.mp_math.vector","class Vector3"]},"142":{"title":"def self * other: Vector3 => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"143":{"title":"def self * other: RealNumber => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"144":{"title":"def self * other: int | float | Vector3 => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"145":{"title":"def self * other: RealNumber => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"146":{"title":"def self @ other: Vector3 => RealNumber","titles":["mbcp.mp_math.vector","class Vector3"]},"147":{"title":"def self / other: RealNumber => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"148":{"title":"def - self => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"149":{"title":"var zero_vector3","titles":["mbcp.mp_math.vector"]},"150":{"title":"var x_axis","titles":["mbcp.mp_math.vector"]},"151":{"title":"var y_axis","titles":["mbcp.mp_math.vector"]},"152":{"title":"var z_axis","titles":["mbcp.mp_math.vector"]},"153":{"title":"mbcp.particle","titles":[]},"154":{"title":"mbcp.particle","titles":[]},"155":{"title":"mbcp.presets","titles":[]},"156":{"title":"mbcp.presets.model","titles":[]},"157":{"title":"class GeometricModels","titles":["mbcp.presets.model"]},"158":{"title":"def sphere(radius: float, density: float)","titles":["mbcp.presets.model","class GeometricModels"]},"159":{"title":"mbcp.presets.model","titles":[]},"160":{"title":"class GeometricModels","titles":["mbcp.presets.model"]},"161":{"title":"def sphere(radius: float, density: float)","titles":["mbcp.presets.model","class GeometricModels"]},"162":{"title":"mbcp.presets","titles":[]},"163":{"title":"开始不了一点","titles":[]},"164":{"title":"Reference","titles":[]}},"dirtCount":0,"index":[["∫12x111",{"2":{"163":1}}],["开始不了一点",{"0":{"163":1}}],["4",{"2":{"158":1,"161":1}}],["球体上的点集",{"2":{"158":2,"161":2}}],["生成球体上的点集",{"2":{"158":2,"161":2}}],["几何模型点集",{"2":{"156":1,"159":1}}],["零向量",{"2":{"149":1}}],["负向量",{"2":{"148":2}}],["取负",{"2":{"148":2}}],["取两平面的交集",{"2":{"95":2}}],["非点乘",{"2":{"144":2}}],["别去点那边实现了",{"2":{"137":2}}],["单位向量",{"2":{"131":2}}],["单变量",{"2":{"63":1}}],["模",{"2":{"130":2}}],["向量的模",{"2":{"130":2}}],["向量积",{"2":{"125":2}}],["返回numpy数组",{"2":{"129":1}}],["返回如下行列式的结果",{"2":{"125":1}}],["将向量归一化",{"2":{"128":2}}],["j",{"2":{"125":1}}],["其余结果的模为平行四边形的面积",{"2":{"125":2}}],["叉乘使用cross",{"2":{"144":2}}],["叉乘结果",{"2":{"125":2}}],["叉乘为0",{"2":{"125":2}}],["叉乘",{"2":{"125":2}}],["以及一些常用的向量",{"2":{"120":1}}],["格式化符号数",{"2":{"119":2}}],["quot",{"2":{"118":2,"119":4}}],["符号",{"2":{"118":2,"119":2}}],["获取该向量的单位向量",{"2":{"131":2}}],["获取数的符号",{"2":{"118":2}}],["获取直线的参数方程",{"2":{"49":2}}],["获取直线上的点",{"2":{"48":2}}],["用于判断是否近似于0",{"2":{"117":2}}],["用于近似比较对象",{"2":{"113":2}}],["或包装一个实数",{"2":{"117":2}}],["或整数元组",{"2":{"38":2}}],["限定在区间内的值",{"2":{"111":2}}],["值",{"2":{"111":2}}],["区间限定函数",{"2":{"111":2}}],["us",{"2":{"164":1}}],["unit",{"0":{"131":1},"2":{"131":1}}],["unsupported",{"2":{"45":1,"82":1,"83":1,"95":1,"115":1,"135":1,"140":1,"141":1,"144":1}}],["utils",{"0":{"110":1},"1":{"111":1,"112":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1}}],["中心点",{"2":{"109":1}}],["中实现",{"2":{"106":2}}],["长度",{"2":{"109":1}}],["线段的另一个端点",{"2":{"109":2}}],["线段的一个端点",{"2":{"109":2}}],["新的向量或点",{"2":{"135":2}}],["新的向量",{"2":{"106":2,"140":2}}],["新的点",{"2":{"104":2,"137":2,"141":2}}],["已在",{"2":{"106":2}}],["已知一个函数$f",{"2":{"32":1}}],["已知一个函数f",{"2":{"32":1}}],["坐标",{"2":{"100":6}}],["笛卡尔坐标系中的点",{"2":{"100":2}}],["人话",{"2":{"95":2}}],["法向量",{"2":{"88":2,"89":2}}],["k``",{"2":{"125":1}}],["k",{"2":{"81":12}}],["常数项",{"2":{"80":2}}],["常量",{"2":{"25":1}}],["平面上一点",{"2":{"89":2,"92":2}}],["平面的法向量",{"2":{"88":2}}],["平面",{"2":{"86":2,"89":2,"90":2,"91":2,"92":2}}],["平面与直线平行或重合",{"2":{"85":2}}],["平面平行且无交线",{"2":{"84":2}}],["平面方程",{"2":{"80":2}}],["平行线返回none",{"2":{"57":2}}],["多元函数",{"2":{"77":1}}],["多元数组函数",{"2":{"76":1}}],["多元单变量函数",{"2":{"75":1}}],["二元函数",{"2":{"71":1}}],["二元数组函数",{"2":{"70":1}}],["二元单变量函数",{"2":{"69":1}}],["一元函数",{"2":{"68":1}}],["一元数组函数",{"2":{"67":1}}],["一元单变量函数",{"2":{"66":1}}],["一阶偏导",{"2":{"38":2}}],["变量",{"2":{"65":1}}],["变量位置",{"2":{"38":2}}],["数组运算结果",{"2":{"144":2}}],["数组运算",{"2":{"144":2}}],["数组变量",{"2":{"64":1}}],["数2",{"2":{"117":2}}],["数1",{"2":{"117":2}}],["数",{"2":{"62":1,"118":2,"119":2}}],["数学工具",{"2":{"0":1,"1":1}}],["タイプ",{"2":{"61":1,"62":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"149":1,"150":1,"151":1,"152":1}}],["实数",{"2":{"61":1,"113":2}}],["∧",{"2":{"58":2}}],["交线",{"2":{"84":2,"95":2}}],["交线返回交点",{"2":{"57":2}}],["交集",{"2":{"57":2,"95":2}}],["交点",{"2":{"46":2,"85":2}}],["重合线返回自身",{"2":{"57":2}}],["由点和直线构造平面",{"2":{"92":2}}],["由点和法向量构造平面",{"2":{"89":2}}],["由两直线构造平面",{"2":{"91":2}}],["由两点构造直线",{"2":{"56":2}}],["由三点构造平面",{"2":{"90":2}}],["由一个点和一个方向向量确定",{"2":{"42":2}}],["工厂函数",{"2":{"56":2,"89":2,"90":2,"91":2,"92":2}}],["并对向量单位化",{"2":{"55":2}}],["处理",{"2":{"55":2}}],["处的梯度向量为",{"2":{"32":1}}],["化",{"2":{"55":2}}],["按照可行性一次对x",{"2":{"55":2}}],["不返回值",{"2":{"55":2,"128":2}}],["不支持的类型",{"2":{"45":2,"82":2,"83":2,"95":2}}],["自体归一化",{"2":{"128":2}}],["自体简化",{"2":{"55":2}}],["自然对数的底",{"2":{"26":1}}],["等价相等",{"2":{"55":2}}],["简化直线方程",{"2":{"55":2}}],["两直线方向向量的叉乘与两直线上任意一点的向量的点积为0",{"2":{"54":2}}],["两角的和为180°",{"2":{"7":2}}],["两角的和为90°",{"2":{"6":2}}],["充要条件",{"2":{"54":2}}],["判断两个向量是否相等",{"2":{"136":2}}],["判断两个向量是否平行",{"2":{"127":2}}],["判断两个向量是否近似平行",{"2":{"126":2}}],["判断两个向量是否近似相等",{"2":{"123":2}}],["判断两个数是否近似相等",{"2":{"117":2}}],["判断两个点是否相等",{"2":{"105":2}}],["判断两个点是否近似相等",{"2":{"101":2}}],["判断两个平面是否等价",{"2":{"96":2}}],["判断两个平面是否平行",{"2":{"87":2}}],["判断两个平面是否近似相等",{"2":{"81":2}}],["判断两条直线是否等价",{"2":{"58":2}}],["判断两条直线是否共面",{"2":{"54":2}}],["判断两条直线是否共线",{"2":{"52":2}}],["判断两条直线是否平行",{"2":{"51":2}}],["判断两条直线是否近似平行",{"2":{"50":2}}],["判断两条直线是否近似相等",{"2":{"43":2}}],["判断点是否在直线上",{"2":{"53":2}}],["另一个向量或数",{"2":{"144":2}}],["另一个向量或点",{"2":{"135":2,"140":2}}],["另一个向量",{"2":{"124":2,"125":2,"126":2,"127":2,"136":2,"146":2}}],["另一个点或向量",{"2":{"104":2}}],["另一个点",{"2":{"101":2,"105":2,"106":2,"137":2,"141":2}}],["另一个平面或点",{"2":{"83":2}}],["另一个平面或直线",{"2":{"82":2,"95":2}}],["另一个平面",{"2":{"81":2,"84":2,"87":2,"96":2}}],["另一",{"2":{"51":2,"52":2,"54":2}}],["另一条直线或点",{"2":{"45":2}}],["另一条直线",{"2":{"43":2,"44":2,"46":2,"50":2,"57":2,"58":2}}],["则两向量平行",{"2":{"125":2}}],["则同一个t对应的点不同",{"2":{"48":2}}],["则其在点$",{"2":{"32":1}}],["则其在点",{"2":{"32":1}}],["但起始点和方向向量不同",{"2":{"48":2}}],["同一条直线",{"2":{"48":2}}],["垂线",{"2":{"47":2}}],["指定点",{"2":{"47":2,"86":2}}],["直线",{"2":{"56":2,"85":2,"91":4,"92":2}}],["直线不共面",{"2":{"46":2}}],["直线平行",{"2":{"46":2}}],["直线上的一点",{"2":{"42":2}}],["距离",{"2":{"45":2,"83":2}}],["夹角",{"2":{"44":2,"82":2,"124":2}}],["是否只返回负数的符号",{"2":{"118":2,"119":2}}],["是否相等",{"2":{"105":2,"136":2}}],["是否等价",{"2":{"58":2,"96":2}}],["是否共面",{"2":{"54":2}}],["是否共线",{"2":{"52":2}}],["是否在直线上",{"2":{"53":2}}],["是否平行",{"2":{"51":2,"87":2,"127":2}}],["是否近似平行",{"2":{"50":2,"126":2}}],["是否近似相等",{"2":{"43":2,"81":2,"101":2,"117":2,"123":2}}],["是否为弧度",{"2":{"5":2}}],["误差",{"2":{"43":2,"50":2,"101":2,"117":2,"126":2}}],["方向向量",{"2":{"42":2,"109":1}}],["三元数组函数",{"2":{"73":1}}],["三元单变量函数",{"2":{"72":1}}],["三元函数",{"2":{"32":2,"74":1}}],["三维空间中的线段",{"2":{"109":2}}],["三维空间中的直线",{"2":{"42":2}}],["三维向量",{"2":{"39":1,"59":1}}],["三维线段",{"2":{"39":1,"59":1}}],["三维点",{"2":{"39":1,"59":1}}],["三维平面",{"2":{"39":1,"59":1}}],["三维直线",{"2":{"39":1,"59":1}}],["导入的类有",{"2":{"39":1,"59":1}}],["本包定义了一些常用的导入",{"2":{"39":1,"59":1}}],["本模块塞了一些预设",{"2":{"155":1,"162":1}}],["本模块用于内部类型提示",{"2":{"60":1}}],["本模块定义了粒子生成相关的工具",{"2":{"153":1,"154":1}}],["本模块定义了3维向量的类vector3",{"2":{"120":1}}],["本模块定义了一些常用的工具函数",{"2":{"110":1}}],["本模块定义了一些常用的常量",{"2":{"24":1}}],["本模块定义了三维空间中点的类",{"2":{"98":1}}],["本模块定义了三维空间中的线段类",{"2":{"107":1}}],["本模块定义了三维空间中的平面类",{"2":{"78":1}}],["本模块定义了三维空间中的直线类",{"2":{"40":1}}],["本模块定义了方程相关的类和函数以及一些常用的数学函数",{"2":{"34":1}}],["本模块定义了角度相关的类",{"2":{"2":1}}],["本模块是主模块",{"2":{"0":1,"1":1}}],["求高阶偏导函数",{"2":{"38":1}}],["求n元函数一阶偏导函数",{"2":{"38":2}}],["无效变量类型",{"2":{"38":2}}],["偏导函数",{"2":{"38":2}}],["偏移量",{"2":{"32":2,"38":2}}],["高阶偏导数值",{"2":{"38":1}}],["高阶偏导",{"2":{"38":2}}],["因此该函数的稳定性有待提升",{"2":{"38":2}}],["目前数学界对于一个函数的导函数并没有通解的说法",{"2":{"38":2}}],["目标点",{"2":{"37":2}}],["warning",{"2":{"38":2}}],["慎用",{"2":{"38":2}}],["这玩意不太稳定",{"2":{"38":2}}],["计算平行于该平面且过指定点的平面",{"2":{"86":2}}],["计算平面与直线的交点",{"2":{"85":2}}],["计算平面与平面或点之间的距离",{"2":{"83":2}}],["计算平面与平面之间的夹角",{"2":{"82":2}}],["计算两个向量之间的夹角",{"2":{"124":2}}],["计算两平面的交线",{"2":{"84":2}}],["计算两条直线点集合的交集",{"2":{"57":2}}],["计算两条直线的交点",{"2":{"46":2}}],["计算直线经过指定点p的垂线",{"2":{"47":2}}],["计算直线和直线或点之间的距离",{"2":{"45":2}}],["计算直线和直线之间的夹角",{"2":{"44":2}}],["计算曲线上的点",{"2":{"37":2}}],["计算三元函数在某点的梯度向量",{"2":{"32":2}}],["|",{"0":{"37":1,"38":1,"45":1,"57":2,"82":1,"83":1,"93":1,"94":1,"144":2},"2":{"37":1,"38":1,"45":3,"57":6,"61":1,"62":1,"65":1,"68":1,"71":1,"74":1,"77":1,"82":3,"83":3,"93":1,"94":1,"95":6,"104":2,"135":4,"140":4,"144":4}}],["曲线方程",{"2":{"36":2,"39":1,"59":1}}],["help",{"2":{"164":1}}],["have",{"2":{"84":1}}],["html",{"2":{"43":2,"45":2,"46":1,"49":1,"50":2,"51":1,"52":1,"53":1,"54":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":2,"84":1,"85":1,"87":1,"95":2,"96":1,"100":1,"101":2,"105":1,"111":1,"117":2,"118":3,"119":3,"126":2,"127":1,"129":1,"130":1,"136":1,"144":1,"146":1}}],["https",{"2":{"33":1,"43":2,"45":2,"46":1,"49":1,"50":2,"51":1,"52":1,"53":1,"54":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":2,"84":1,"85":1,"87":1,"95":2,"96":1,"100":1,"101":2,"105":1,"111":1,"117":2,"118":3,"119":3,"126":2,"127":1,"129":1,"130":1,"136":1,"144":1,"146":1}}],["high",{"2":{"38":2}}],["hide",{"2":{"33":1,"38":2}}],["l2",{"0":{"91":1},"2":{"91":5}}],["l1",{"0":{"91":1},"2":{"91":7}}],["lambda",{"2":{"49":3}}],["linalg",{"2":{"84":3}}],["lines",{"0":{"91":1},"2":{"46":2,"91":1}}],["line",{"0":{"40":1,"92":2},"1":{"41":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1},"2":{"43":1,"44":1,"45":1,"46":1,"47":1,"50":1,"51":1,"52":1,"54":1,"56":1,"57":2,"58":1,"82":1,"84":1,"85":2,"91":1,"92":6,"95":2}}],["line3",{"0":{"41":1,"43":1,"44":1,"45":1,"46":1,"47":1,"50":1,"51":1,"52":1,"54":1,"56":1,"57":2,"82":1,"84":2,"85":1,"91":2,"92":1,"93":1,"94":1,"97":1},"1":{"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1},"2":{"39":1,"43":3,"44":3,"45":4,"46":3,"47":4,"50":3,"51":3,"52":3,"54":3,"56":3,"57":6,"58":2,"59":1,"82":4,"84":5,"85":3,"91":5,"92":3,"93":1,"94":1,"95":6,"97":1,"114":1}}],["library",{"2":{"43":2,"45":2,"46":1,"49":1,"50":2,"51":1,"52":1,"53":1,"54":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":2,"84":1,"85":1,"87":1,"95":2,"96":1,"100":1,"101":2,"105":1,"111":1,"117":2,"118":3,"119":3,"126":2,"127":1,"130":1,"136":1,"144":1,"146":1}}],["list",{"2":{"38":8,"158":10,"161":10}}],["litedoc",{"2":{"33":1,"38":2}}],["length",{"0":{"130":1},"2":{"45":5,"46":1,"82":2,"109":2,"124":2,"126":1,"128":5,"130":1,"131":1,"132":1}}],["len",{"2":{"37":1}}],["left",{"2":{"32":1}}],["6",{"2":{"33":2}}],["3维向量",{"2":{"122":2}}],["3a",{"2":{"45":2,"46":1,"49":1,"50":2,"51":1,"52":1,"53":1,"54":1,"58":1,"80":1,"82":1,"83":2,"84":1,"85":1,"87":1,"95":2,"96":1,"126":2,"127":1,"129":1,"130":1,"136":1,"144":1,"146":1}}],["355859667",{"2":{"33":1}}],["3",{"2":{"33":2,"43":2,"45":2,"46":1,"49":1,"50":2,"51":1,"52":1,"53":1,"54":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":2,"84":1,"85":1,"87":1,"95":2,"96":1,"100":1,"101":2,"105":1,"111":1,"117":2,"118":3,"119":3,"126":2,"127":1,"130":1,"136":1,"144":1,"146":1}}],["3vf",{"0":{"32":1},"2":{"32":1}}],["by",{"2":{"80":2}}],["bound=iterable",{"2":{"64":1}}],["bound=number",{"2":{"63":1}}],["bool=false",{"2":{"5":1,"118":1,"119":1}}],["bool",{"0":{"5":1,"43":1,"50":1,"51":1,"52":1,"53":1,"54":1,"58":1,"81":1,"87":1,"96":1,"101":1,"117":1,"118":1,"119":1,"123":1,"126":1,"127":1},"2":{"43":3,"50":3,"51":3,"52":3,"53":3,"54":3,"58":3,"81":3,"87":3,"96":3,"101":3,"105":2,"117":3,"118":2,"119":2,"123":1,"126":3,"127":3,"136":2}}],["b",{"0":{"80":1},"2":{"33":4,"80":5,"81":7,"83":2,"84":12,"85":2,"88":1,"89":3}}],["例外",{"2":{"38":1,"45":1,"46":1,"82":1,"83":1,"84":1,"85":1,"95":1}}],["例",{"2":{"33":1}}],["柯里化后的函数",{"2":{"33":2}}],["柯理化",{"2":{"33":2}}],["参数方程",{"2":{"49":2}}],["参数t",{"2":{"48":2}}],["参数",{"2":{"33":2,"37":2,"38":1}}],["函数式编程",{"2":{"33":1}}],["函数",{"2":{"33":2}}],["可直接从mbcp",{"2":{"39":1,"59":1}}],["可为整数",{"2":{"38":2}}],["可参考",{"2":{"33":1}}],["可参考函数式编程",{"2":{"33":1}}],["可导入",{"2":{"0":1,"1":1}}],["有关函数柯里化",{"2":{"33":2}}],["对多参数函数进行柯里化",{"2":{"33":2}}],["d",{"0":{"80":1},"2":{"80":7,"81":6,"83":1,"84":6,"85":1,"89":2}}],["documentation",{"2":{"164":1}}],["doc",{"2":{"129":1}}],["docs",{"2":{"43":2,"45":2,"46":1,"49":1,"50":2,"51":1,"52":1,"53":1,"54":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":2,"84":1,"85":1,"87":1,"95":2,"96":1,"100":1,"101":2,"105":1,"111":1,"117":2,"118":3,"119":3,"126":2,"127":1,"130":1,"136":1,"144":1,"146":1}}],["do",{"2":{"46":2}}],["distance",{"0":{"45":1,"83":1},"2":{"45":1,"83":1}}],["direction",{"0":{"42":1},"2":{"42":5,"43":1,"44":2,"45":8,"46":6,"47":1,"48":1,"49":3,"50":2,"51":2,"52":1,"53":1,"54":2,"55":4,"56":2,"58":3,"82":1,"84":2,"85":4,"91":1,"92":1,"95":1,"109":2}}],["dz",{"2":{"32":2}}],["dy",{"2":{"32":2}}],["dx",{"2":{"32":2}}],["density",{"0":{"158":1,"161":1},"2":{"158":4,"161":4}}],["derivative",{"0":{"38":1},"2":{"38":6}}],["degree",{"0":{"8":1},"2":{"8":1}}],["def",{"0":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"32":1,"33":1,"36":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1},"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"21":1,"22":1,"33":2,"38":2,"56":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"102":1,"103":1,"129":1,"130":1,"131":1,"133":1,"134":1,"138":1,"139":1,"142":1,"143":1,"158":1,"161":1}}],["`np",{"2":{"129":1}}],["`none`",{"2":{"57":1,"95":1}}],["``x2",{"2":{"125":1}}],["``x1",{"2":{"125":1}}],["``i",{"2":{"125":1}}],["```",{"2":{"33":1}}],["```python",{"2":{"33":1}}],["`str`",{"2":{"118":1,"119":1}}],["`plane3`",{"2":{"81":1,"82":1,"83":1,"84":1,"86":1,"87":1,"89":1,"95":1,"96":1}}],["`point3`",{"2":{"32":1,"42":1,"45":1,"46":1,"47":1,"48":1,"53":1,"56":2,"57":1,"83":1,"85":1,"86":1,"89":1,"90":3,"92":1,"95":1,"101":1,"104":2,"105":1,"106":1,"109":2,"135":2,"137":2,"140":2,"141":2}}],["`onesinglevarfunc`",{"2":{"49":3}}],["`onevarfunc`",{"2":{"36":3}}],["`realnumber`",{"2":{"48":1,"113":1}}],["`tuple`",{"2":{"49":1}}],["`typeerror`",{"2":{"45":1,"82":1,"83":1,"95":1}}],["`threesinglevarsfunc`",{"2":{"32":1}}],["`anyangle`",{"2":{"44":1,"82":1,"124":1}}],["`bool`",{"2":{"43":1,"50":1,"51":1,"52":1,"53":1,"54":1,"58":1,"81":1,"87":1,"96":1,"101":1,"105":1,"117":1,"118":1,"119":1,"126":1,"127":1,"136":1}}],["`float`",{"2":{"43":1,"45":1,"50":1,"80":4,"83":1,"100":3,"101":1,"111":4,"117":3,"118":1,"119":1,"126":1,"130":1,"144":1,"146":1}}],["`line3`",{"2":{"43":1,"44":1,"45":1,"46":1,"47":1,"50":1,"51":1,"52":1,"54":1,"56":1,"57":2,"58":1,"82":1,"84":1,"85":1,"91":2,"92":1,"95":2}}],["`valueerror`",{"2":{"46":2,"84":1,"85":1}}],["`var`",{"2":{"33":1}}],["`vector3`",{"2":{"42":1,"88":1,"89":1,"104":1,"106":2,"124":1,"125":2,"126":1,"127":1,"131":1,"135":2,"136":1,"140":2,"144":2,"146":1,"148":1}}],["`multivarsfunc`",{"2":{"33":1,"38":1}}],["num",{"2":{"158":5,"161":5}}],["numpy",{"2":{"129":2}}],["numpy数组",{"2":{"129":2}}],["number=epsilon",{"2":{"38":1}}],["number",{"0":{"38":1,"62":1},"2":{"64":1}}],["ndarray`",{"2":{"129":1}}],["ndarray",{"0":{"129":1},"2":{"129":3}}],["neg",{"0":{"118":1,"119":1},"2":{"118":4,"119":4,"148":1}}],["negative",{"0":{"10":1},"2":{"10":1}}],["ne",{"0":{"116":1},"2":{"116":1}}],["np",{"0":{"129":2},"2":{"84":9,"129":4,"158":9,"161":9}}],["no",{"2":{"84":1}}],["normal",{"0":{"88":1,"89":2},"2":{"82":5,"84":4,"85":1,"86":2,"87":2,"88":1,"89":7,"90":3,"91":1,"92":1,"95":3}}],["normalize",{"0":{"128":1},"2":{"55":1,"128":1}}],["none",{"0":{"57":1,"93":1,"94":1},"2":{"57":4,"93":1,"94":1,"95":4}}],["not",{"2":{"45":1,"46":4,"57":1,"116":1,"118":1,"119":1}}],["n元函数",{"2":{"38":2}}],["nabla",{"2":{"32":1}}],["$处的梯度向量为",{"2":{"32":1}}],["$",{"2":{"32":3}}],["梯度",{"2":{"32":2}}],["点乘结果",{"2":{"146":2}}],["点乘",{"2":{"146":2}}],["点乘使用",{"2":{"144":2}}],["点3",{"2":{"90":2}}],["点法式构造",{"2":{"89":2}}],["点2",{"2":{"56":2,"90":2}}],["点1",{"2":{"56":2,"90":2}}],["点",{"2":{"32":2,"48":2,"53":2}}],["∂f∂z",{"2":{"32":1}}],["∂f∂y",{"2":{"32":1}}],["∂f∂x",{"2":{"32":1}}],["∇f",{"2":{"32":1}}],["z轴单位向量",{"2":{"152":1}}],["z轴分量",{"2":{"122":2}}],["z2``",{"2":{"125":1}}],["z1``",{"2":{"125":1}}],["zero",{"0":{"149":1},"2":{"91":1,"127":1}}],["z系数",{"2":{"80":2}}],["zip",{"2":{"37":1}}],["z函数",{"2":{"36":2}}],["zhihu",{"2":{"33":1}}],["zhuanlan",{"2":{"33":1}}],["z0",{"2":{"32":2}}],["z",{"0":{"36":1,"100":1,"122":1,"152":1},"2":{"32":11,"36":5,"37":4,"49":2,"55":4,"83":1,"84":4,"85":4,"89":2,"100":7,"101":2,"104":2,"105":2,"106":2,"109":2,"114":2,"122":5,"123":2,"125":4,"128":1,"129":1,"130":1,"135":4,"136":2,"137":2,"140":4,"141":2,"144":3,"146":2,"147":1,"148":1,"158":2,"161":2}}],["y轴单位向量",{"2":{"151":1}}],["y轴分量",{"2":{"122":2}}],["y2",{"2":{"125":1}}],["y1",{"2":{"125":1}}],["y系数",{"2":{"80":2}}],["y函数",{"2":{"36":2}}],["y0",{"2":{"32":2}}],["y",{"0":{"36":1,"100":1,"117":1,"122":1,"151":1},"2":{"32":11,"36":5,"37":4,"49":2,"55":4,"83":1,"84":4,"85":4,"89":2,"100":7,"101":2,"104":2,"105":2,"106":2,"109":2,"114":2,"117":4,"122":5,"123":2,"125":4,"128":1,"129":1,"130":1,"135":4,"136":2,"137":2,"140":4,"141":2,"144":3,"146":2,"147":1,"148":1,"158":2,"161":2}}],["x轴单位向量",{"2":{"150":1}}],["x轴分量",{"2":{"122":2}}],["x3c",{"2":{"101":3,"114":1,"117":1,"118":1,"119":1,"123":3,"126":1}}],["x26",{"2":{"95":1}}],["x系数",{"2":{"80":2}}],["x函数",{"2":{"36":2}}],["x0",{"2":{"32":2}}],["x",{"0":{"36":1,"100":1,"111":1,"117":1,"118":1,"119":1,"122":1,"150":1},"2":{"32":11,"36":5,"37":4,"49":2,"55":2,"83":1,"84":4,"85":4,"89":2,"100":7,"101":2,"104":2,"105":2,"106":2,"109":2,"111":4,"114":2,"117":4,"118":5,"119":8,"122":5,"123":2,"125":4,"128":1,"129":1,"130":1,"135":4,"136":2,"137":2,"140":4,"141":2,"144":3,"146":2,"147":1,"148":1,"158":2,"161":2}}],["v3",{"2":{"125":2}}],["v2",{"2":{"58":2,"90":2,"91":4,"125":2}}],["v1",{"2":{"58":4,"90":2,"91":2,"125":2}}],["vector",{"0":{"120":1},"1":{"121":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"150":1,"151":1,"152":1},"2":{"42":1,"88":1,"89":1,"104":1,"106":3,"144":1}}],["vector3",{"0":{"32":1,"42":1,"88":1,"89":1,"102":1,"106":1,"121":1,"123":1,"124":1,"125":2,"126":1,"127":1,"131":1,"133":2,"138":2,"142":2,"143":1,"144":2,"145":1,"146":1,"147":1,"148":1,"149":1},"1":{"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1},"2":{"32":2,"39":1,"42":3,"59":1,"88":4,"89":3,"91":1,"102":1,"104":2,"106":7,"114":2,"123":1,"124":3,"125":7,"126":3,"127":4,"131":3,"133":2,"135":7,"136":2,"138":2,"140":7,"141":1,"142":2,"143":1,"144":9,"145":1,"146":3,"147":2,"148":4,"149":2,"150":2,"151":2,"152":2}}],["v",{"2":{"38":2,"104":2,"106":4,"135":8,"137":2,"140":8,"141":2}}],["var",{"0":{"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"33":1,"37":1,"38":1,"61":1,"62":1,"63":1,"64":1,"65":2,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"149":1,"150":1,"151":1,"152":1},"2":{"32":1,"33":7,"36":3,"37":1,"38":14,"48":1,"49":1}}],["valueerror",{"2":{"38":3,"46":4,"84":3,"85":3}}],["value",{"0":{"5":1,"113":1},"2":{"5":5,"113":5,"114":6,"115":1}}],["约等于判定误差",{"2":{"30":1}}],["精度误差",{"2":{"29":1}}],["06",{"0":{"50":1},"2":{"50":1}}],["001",{"2":{"30":1}}],["0001",{"2":{"29":1}}],["0",{"0":{"117":2},"2":{"28":1,"29":1,"30":1,"32":6,"37":3,"45":2,"54":1,"55":8,"80":2,"81":3,"83":2,"84":9,"85":1,"95":1,"117":1,"118":2,"119":4,"149":3,"150":2,"151":2,"152":2,"158":2,"161":2}}],["欧拉常数",{"2":{"28":1}}],["5772156649015329",{"2":{"28":1}}],["5",{"2":{"27":1,"83":1}}],["黄金分割比",{"2":{"27":1}}],["デフォルト",{"2":{"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"149":1,"150":1,"151":1,"152":1}}],["π",{"2":{"25":1}}],["to",{"2":{"164":1}}],["theta",{"2":{"158":3,"161":3}}],["the",{"2":{"85":2,"164":1}}],["three",{"0":{"90":1},"2":{"90":1}}],["threevarsfunc",{"0":{"74":1}}],["threearraysfunc",{"0":{"73":1},"2":{"74":1}}],["threesinglevarsfunc",{"0":{"32":1,"72":1},"2":{"32":3,"74":1}}],["twovarsfunc",{"0":{"71":1}}],["twoarraysfunc",{"0":{"70":1},"2":{"71":1}}],["twosinglevarsfunc",{"0":{"69":1},"2":{"71":1}}],["two",{"0":{"56":1,"91":1},"2":{"56":1,"91":1}}],["typevar",{"2":{"63":1,"64":1}}],["typealias",{"2":{"61":1,"62":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1}}],["typeerror",{"2":{"45":3,"46":1,"82":3,"83":3,"95":3,"115":1,"135":1,"140":1,"141":1,"144":1}}],["type",{"0":{"115":1},"2":{"38":1,"45":1,"82":2,"83":2,"95":2,"114":2,"115":4,"135":2,"140":2,"141":2,"144":2}}],["typing",{"0":{"60":1},"1":{"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1},"2":{"32":1,"33":2,"36":3,"38":1,"48":1,"49":1,"113":1}}],["tuple",{"0":{"37":1,"38":1,"49":1},"2":{"37":2,"38":2,"49":3}}],["t",{"0":{"37":1,"48":1},"2":{"37":10,"48":4,"49":6,"85":4}}],["tip",{"2":{"32":2,"33":2}}],["truediv",{"2":{"21":1,"22":1,"23":1,"147":1}}],["tan",{"0":{"13":1},"2":{"13":2,"14":1}}],["operand",{"2":{"95":1,"135":1,"140":1,"141":1,"144":1}}],["only",{"0":{"118":1,"119":1},"2":{"118":4,"119":4}}],["on",{"0":{"53":1},"2":{"53":1}}],["onearrayfunc",{"0":{"67":1},"2":{"68":1}}],["onesinglevarfunc",{"0":{"49":3,"66":1},"2":{"49":7,"68":1}}],["onevarfunc",{"0":{"33":1,"36":3,"68":1},"2":{"33":1,"36":9}}],["or",{"2":{"57":1,"85":1}}],["org",{"2":{"43":2,"45":2,"46":1,"49":1,"50":2,"51":1,"52":1,"53":1,"54":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":2,"84":1,"85":1,"87":1,"95":2,"96":1,"100":1,"101":2,"105":1,"111":1,"117":2,"118":3,"119":3,"126":2,"127":1,"129":1,"130":1,"136":1,"144":1,"146":1}}],["order",{"2":{"38":2}}],["overload",{"2":{"20":1,"21":2,"22":1,"92":1,"93":2,"94":1,"101":1,"102":2,"103":1,"132":1,"133":2,"134":1,"137":1,"138":2,"139":1,"141":1,"142":2,"143":1}}],["other",{"0":{"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"43":1,"44":1,"45":1,"46":1,"50":1,"51":1,"52":1,"54":1,"57":1,"58":1,"81":1,"82":1,"83":1,"84":1,"85":1,"87":1,"93":1,"94":1,"95":1,"96":1,"97":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"114":1,"115":1,"116":1,"123":1,"124":1,"125":1,"126":1,"127":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1},"2":{"17":2,"18":2,"19":2,"20":2,"21":1,"22":1,"23":4,"43":5,"44":4,"45":13,"46":9,"50":4,"51":4,"52":5,"54":5,"57":7,"58":5,"81":15,"82":9,"83":9,"84":17,"85":11,"87":4,"93":1,"94":1,"95":10,"96":4,"97":2,"101":6,"102":1,"103":1,"104":6,"105":6,"106":6,"114":9,"115":2,"116":2,"123":6,"124":5,"125":9,"126":4,"127":4,"133":1,"134":1,"135":12,"136":6,"137":6,"138":1,"139":1,"140":12,"141":8,"142":1,"143":1,"144":12,"145":2,"146":6,"147":4}}],["error",{"0":{"115":1},"2":{"114":2,"115":1}}],["elif",{"2":{"38":1,"45":3,"57":1,"81":2,"82":1,"83":1,"84":2,"95":1,"114":1,"118":1,"119":1,"135":1,"140":1,"144":1}}],["else",{"2":{"5":1,"37":1,"38":1,"45":2,"57":1,"81":1,"82":1,"83":1,"95":1,"114":2,"118":2,"119":2,"135":1,"140":1,"141":1,"144":1}}],["exceptions",{"2":{"45":1,"46":1,"82":1,"83":1,"84":1,"85":1,"95":1}}],["examples",{"2":{"33":1}}],["exp",{"2":{"26":1}}],["epsilon",{"0":{"29":1,"32":2,"38":2,"43":1,"50":1,"101":1,"117":1,"123":1,"126":1},"2":{"32":12,"38":7,"43":5,"50":4,"101":6,"117":4,"123":6,"126":4}}],["e",{"0":{"26":1},"2":{"26":1}}],["equations",{"0":{"49":1},"2":{"49":1,"85":1}}],["equation",{"0":{"34":1},"1":{"35":1,"36":1,"37":1,"38":1}}],["eq",{"0":{"18":1,"58":1,"96":1,"105":1,"114":1,"136":1},"2":{"18":1,"58":1,"96":1,"105":1,"114":1,"116":1,"136":1}}],["+1",{"2":{"119":2}}],["+=",{"2":{"38":1}}],["+",{"0":{"17":1,"102":1,"103":1,"104":1,"133":1,"134":1,"135":1,"137":1},"2":{"17":1,"27":1,"32":3,"33":4,"46":1,"48":1,"49":3,"80":6,"83":5,"85":5,"104":7,"109":3,"118":3,"119":3,"130":2,"135":11,"137":5,"146":2,"158":1,"161":1}}],["1e",{"0":{"50":1}}],["1",{"2":{"14":1,"15":1,"16":1,"26":1,"27":1,"33":2,"37":1,"91":1,"119":6,"150":1,"151":1,"152":1,"158":4,"161":4}}],["180",{"2":{"5":1,"8":1}}],["正割值",{"2":{"15":4}}],["正切值",{"2":{"13":4}}],["正弦值",{"2":{"11":4}}],["余割值",{"2":{"16":4}}],["余切值",{"2":{"14":4}}],["余弦值",{"2":{"12":4}}],["余角",{"2":{"6":4}}],["最大值",{"2":{"111":2}}],["最大负角度",{"2":{"10":2}}],["最大负角",{"2":{"10":2}}],["最小值",{"2":{"111":2}}],["最小正角度",{"2":{"9":2}}],["最小正角",{"2":{"9":2}}],["弧度",{"2":{"8":2}}],["角度",{"2":{"8":2}}],["角度或弧度值",{"2":{"5":2}}],["补角",{"2":{"7":4}}],["sphere",{"0":{"158":1,"161":1},"2":{"158":1,"161":1}}],["staticmethod",{"2":{"157":1,"158":1,"160":1,"161":1}}],["stable",{"2":{"129":1}}],["str",{"0":{"118":1,"119":1},"2":{"118":3,"119":3}}],["stdtypes",{"2":{"49":1}}],["s",{"2":{"95":1,"135":1,"140":1,"141":1,"144":1}}],["solve",{"2":{"84":3}}],["sign",{"0":{"118":1,"119":1},"2":{"118":1,"119":1}}],["simplify",{"0":{"55":1},"2":{"55":1}}],["singlevar",{"0":{"63":1},"2":{"63":1,"65":1,"66":2,"69":3,"72":4,"75":1}}],["sin",{"0":{"11":1},"2":{"11":2,"16":1,"158":3,"161":3}}],["sqrt",{"2":{"27":1,"130":1,"158":1,"161":1}}],["sub",{"2":{"19":1,"106":1,"138":1,"139":1,"140":1}}],["supplementary",{"0":{"7":1},"2":{"7":1}}],["segment",{"0":{"107":1},"1":{"108":1,"109":1}}],["segment3",{"0":{"108":1},"1":{"109":1},"2":{"39":1,"59":1}}],["sec",{"0":{"15":1},"2":{"15":1}}],["self",{"0":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"36":1,"37":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"113":1,"114":1,"115":1,"116":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1},"2":{"5":3,"6":2,"7":2,"8":2,"9":2,"10":2,"11":2,"12":2,"13":2,"14":2,"15":2,"16":2,"17":2,"18":2,"19":2,"20":2,"21":1,"22":1,"23":3,"36":4,"37":7,"42":3,"43":4,"44":2,"45":13,"46":8,"47":3,"48":3,"49":7,"50":2,"51":2,"52":4,"53":3,"54":3,"55":8,"57":6,"58":4,"80":5,"81":16,"82":4,"83":8,"84":15,"85":9,"86":2,"87":2,"88":4,"93":1,"94":1,"95":5,"96":2,"97":2,"100":4,"101":4,"102":1,"103":1,"104":4,"105":4,"106":4,"109":15,"113":2,"114":9,"115":2,"116":2,"122":4,"123":4,"124":3,"125":7,"126":2,"127":2,"128":5,"129":4,"130":4,"131":3,"132":2,"133":1,"134":1,"135":7,"136":4,"137":4,"138":1,"139":1,"140":7,"141":4,"142":1,"143":1,"144":7,"145":2,"146":4,"147":4,"148":4}}],["2",{"2":{"6":1,"9":1,"10":1,"27":1,"32":3,"33":2,"38":1,"46":1,"83":3,"109":3,"130":3,"158":2,"161":2}}],["rmul",{"2":{"145":1}}],["rsub",{"2":{"141":1}}],["reference",{"0":{"164":1},"2":{"129":1}}],["realnumber",{"0":{"48":1,"61":1,"113":1,"143":1,"145":1,"146":1,"147":1},"2":{"48":3,"62":1,"113":3,"143":1,"145":1,"146":1,"147":1}}],["result",{"2":{"38":4}}],["return",{"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"23":2,"32":1,"33":4,"37":2,"38":4,"43":1,"44":1,"45":5,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":3,"58":1,"81":4,"82":2,"83":2,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"95":4,"96":1,"97":1,"101":1,"104":1,"105":1,"106":1,"111":1,"114":2,"116":1,"117":1,"118":3,"119":3,"123":1,"124":1,"125":1,"126":1,"127":1,"129":1,"130":1,"131":1,"132":1,"135":2,"136":1,"137":1,"140":2,"141":1,"144":2,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1}}],["returns",{"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"32":1,"33":1,"37":1,"38":2,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"95":1,"96":1,"101":1,"104":1,"105":1,"106":1,"111":1,"117":1,"118":1,"119":1,"123":1,"124":1,"125":1,"126":1,"127":1,"129":1,"130":1,"131":1,"135":1,"136":1,"137":1,"140":1,"141":1,"144":1,"146":1,"148":1,"158":1,"161":1}}],["right",{"2":{"32":1}}],["range",{"2":{"158":2,"161":2}}],["rand",{"0":{"97":1},"2":{"97":1}}],["radius",{"0":{"158":1,"161":1},"2":{"158":7,"161":7}}],["radian=true",{"2":{"6":1,"7":1,"10":1,"17":1,"19":1,"20":1,"23":1,"82":1,"124":1}}],["radian",{"0":{"5":1},"2":{"5":6,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":2,"18":2,"19":2,"20":1,"23":3}}],["radd",{"2":{"137":1}}],["raise",{"0":{"115":1},"2":{"38":1,"45":1,"46":2,"82":1,"83":1,"84":1,"85":1,"95":1,"114":2,"115":2,"135":1,"140":1,"141":1,"144":1}}],["raises",{"2":{"38":1,"45":1,"46":1,"82":1,"83":1,"84":1,"85":1,"95":1}}],["ratio",{"0":{"27":1}}],[">",{"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"19":1,"20":1,"21":1,"22":1,"32":3,"33":6,"37":1,"38":5,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"96":1,"97":1,"101":1,"102":1,"103":1,"104":2,"106":3,"111":1,"117":1,"118":2,"119":5,"123":1,"124":1,"125":2,"126":1,"127":1,"129":1,"130":1,"131":1,"133":1,"134":1,"135":2,"137":2,"138":1,"139":1,"140":2,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1}}],["戻り値",{"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"32":1,"33":1,"37":1,"38":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"95":1,"96":1,"101":1,"104":1,"105":1,"106":1,"111":1,"117":1,"118":1,"119":1,"123":1,"124":1,"125":1,"126":1,"127":1,"129":1,"130":1,"131":1,"135":1,"136":1,"137":1,"140":1,"141":1,"144":1,"146":1,"148":1,"158":1,"161":1}}],["geometricmodels",{"0":{"157":1,"160":1},"1":{"158":1,"161":1}}],["generated",{"2":{"129":1}}],["get",{"0":{"38":1,"48":1,"49":1},"2":{"38":2,"48":1,"49":1,"85":1,"91":1}}],["gradient",{"0":{"32":1},"2":{"32":1}}],["gamma",{"0":{"28":1}}],["golden",{"0":{"27":1}}],["gt",{"0":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"19":1,"20":1,"21":1,"22":1,"32":1,"33":1,"37":1,"38":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"96":1,"97":1,"101":1,"102":1,"103":1,"106":1,"111":1,"117":1,"118":1,"119":1,"123":1,"124":1,"125":1,"126":1,"127":1,"129":1,"130":1,"131":1,"133":1,"134":1,"137":1,"138":1,"139":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1},"2":{"104":2,"106":2,"119":3,"125":1,"135":2,"137":1,"140":2,"141":1}}],["githubで表示",{"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"32":1,"33":1,"36":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1}}],["cz",{"2":{"80":2}}],["clamp",{"0":{"111":1},"2":{"111":1,"158":1,"161":1}}],["classmethod",{"2":{"55":1,"56":1,"88":1,"89":2,"90":2,"91":2,"92":1}}],["class",{"0":{"3":1,"4":1,"35":1,"41":1,"79":1,"99":1,"108":1,"112":1,"121":1,"157":1,"160":1},"1":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"36":1,"37":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"113":1,"114":1,"115":1,"116":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1},"2":{"32":1,"42":2,"43":1,"44":2,"45":2,"46":2,"47":2,"48":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":3,"57":3,"58":1,"81":1,"82":3,"83":2,"84":2,"85":2,"86":2,"87":1,"88":1,"89":3,"90":1,"91":1,"92":2,"95":4,"96":1,"101":1,"104":3,"105":1,"106":3,"109":2,"124":2,"125":2,"126":1,"127":1,"131":1,"135":4,"136":1,"137":2,"140":4,"141":2,"144":2,"146":1,"148":1}}],["cls",{"0":{"56":1,"89":1,"90":1,"91":1,"92":1},"2":{"56":2,"89":2,"90":2,"91":2,"92":2}}],["cross",{"0":{"125":1},"2":{"45":4,"46":3,"47":1,"54":1,"84":1,"90":1,"91":1,"125":3,"126":1,"127":1}}],["curveequation",{"0":{"35":1},"1":{"36":1,"37":1},"2":{"39":1,"59":1}}],["curried",{"2":{"33":6}}],["currying",{"2":{"33":2}}],["curry",{"0":{"33":1},"2":{"33":3}}],["c",{"0":{"80":1},"2":{"33":4,"80":5,"81":7,"83":2,"84":6,"85":2,"88":1,"89":3}}],["callable",{"2":{"66":1,"67":1,"69":1,"70":1,"72":1,"73":1,"75":1,"76":1}}],["call",{"0":{"37":1},"2":{"37":1}}],["cal",{"0":{"32":1,"44":1,"45":1,"46":1,"47":1,"82":1,"83":1,"84":1,"85":1,"86":1,"124":1},"2":{"32":1,"44":2,"45":1,"46":1,"47":1,"57":1,"82":2,"83":1,"84":1,"85":1,"86":1,"95":2,"97":1,"124":1}}],["csc",{"0":{"16":1},"2":{"16":1}}],["coincident",{"2":{"85":1}}],["collinear",{"0":{"52":1},"2":{"52":1,"57":1}}],["coplanar",{"0":{"54":1},"2":{"45":1,"46":2,"54":1,"57":1}}],["complex",{"2":{"62":1}}],["complementary",{"0":{"6":1},"2":{"6":1,"82":1}}],["com",{"2":{"33":1}}],["constants",{"2":{"57":1,"95":1}}],["const",{"0":{"24":1},"1":{"25":1,"26":1,"27":1,"28":1,"29":1,"30":1}}],["cot",{"0":{"14":1},"2":{"14":1}}],["cos",{"0":{"12":1},"2":{"12":2,"15":1,"158":2,"161":2}}],["all",{"2":{"101":1,"114":1,"123":1}}],["acos",{"2":{"82":1,"124":1}}],["axis",{"0":{"150":1,"151":1,"152":1}}],["ax",{"2":{"80":2}}],["arccos",{"2":{"158":1,"161":1}}],["array",{"0":{"129":1},"2":{"84":6,"129":2,"158":6,"161":6}}],["arrayvar",{"0":{"64":1},"2":{"64":1,"65":1,"67":2,"70":3,"73":4,"76":1}}],["area",{"2":{"158":2,"161":2}}],["are",{"2":{"46":2,"84":1,"85":1}}],["args2",{"2":{"33":2}}],["args",{"0":{"33":1},"2":{"5":1,"32":1,"33":5,"36":1,"37":1,"38":14,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"89":1,"90":1,"91":1,"92":1,"95":1,"96":1,"100":1,"101":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"135":1,"136":1,"137":1,"140":1,"141":1,"144":1,"146":1,"158":1,"161":1}}],["abs",{"0":{"132":1},"2":{"45":1,"83":1,"101":3,"114":1,"117":1,"119":1,"123":3,"132":1}}],["a",{"0":{"80":1},"2":{"33":4,"80":5,"81":7,"83":2,"84":12,"85":2,"88":1,"89":3}}],["aaa",{"2":{"31":1}}],["approx",{"0":{"30":1,"43":2,"50":1,"81":1,"101":2,"112":1,"117":2,"123":2,"126":2},"1":{"113":1,"114":1,"115":1,"116":1},"2":{"18":1,"43":3,"50":2,"81":10,"96":1,"101":1,"105":3,"114":4,"117":1,"123":1,"126":1,"127":1,"136":3}}],["add",{"2":{"17":1,"33":8,"102":1,"103":1,"104":1,"133":1,"134":1,"135":1}}],["and",{"0":{"57":1,"89":1,"92":1,"93":1,"94":1,"95":1},"2":{"43":1,"46":2,"52":1,"57":1,"58":1,"81":6,"84":4,"85":1,"86":1,"89":1,"90":1,"91":1,"92":2,"93":1,"94":1,"95":2,"105":2,"115":1,"135":1,"136":2,"140":1,"141":1,"144":1}}],["anyangle",{"0":{"4":1,"6":1,"7":1,"9":1,"10":1,"17":2,"19":2,"20":1,"21":1,"22":1,"44":1,"82":1,"124":1},"1":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1},"2":{"6":2,"7":2,"9":2,"10":2,"17":3,"19":3,"20":2,"21":1,"22":1,"23":2,"39":1,"44":3,"59":1,"82":4,"124":4}}],["angle",{"0":{"2":1,"3":1,"4":1,"44":1,"82":1,"124":1},"1":{"3":1,"4":1,"5":2,"6":2,"7":2,"8":2,"9":2,"10":2,"11":2,"12":2,"13":2,"14":2,"15":2,"16":2,"17":2,"18":2,"19":2,"20":2,"21":2,"22":2,"23":2},"2":{"44":3,"82":3,"124":2}}],["または",{"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"32":1,"33":1,"36":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1}}],["ソースコード",{"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"32":1,"33":1,"36":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1}}],["默认为否",{"2":{"5":2}}],["引数",{"2":{"5":1,"32":1,"33":1,"36":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"89":1,"90":1,"91":1,"92":1,"95":1,"96":1,"100":1,"101":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"135":1,"136":1,"137":1,"140":1,"141":1,"144":1,"146":1,"158":1,"161":1}}],["任意角度",{"2":{"5":2,"39":1,"59":1}}],["from",{"0":{"56":1,"89":1,"90":1,"91":1,"92":1},"2":{"56":1,"86":1,"89":1,"90":2,"91":2,"92":2,"106":1}}],["frac",{"2":{"32":3}}],["format",{"0":{"119":1},"2":{"119":1}}],["for",{"2":{"37":1,"38":1,"95":1,"135":1,"140":1,"141":1,"144":1,"158":2,"161":2}}],["f",{"2":{"32":4,"82":1,"83":1,"95":1,"115":1,"119":3,"135":1,"140":1,"141":1,"144":1}}],["func",{"0":{"32":1,"33":1,"36":3,"38":2},"2":{"32":9,"33":6,"36":15,"37":6,"38":16}}],["functions",{"2":{"43":2,"45":1,"50":2,"51":1,"52":1,"53":1,"54":1,"58":1,"80":1,"81":1,"83":1,"87":1,"96":1,"100":1,"101":2,"105":1,"111":1,"117":2,"118":3,"119":3,"126":2,"127":1,"130":1,"136":1,"144":1,"146":1}}],["function",{"0":{"31":1},"1":{"32":1,"33":1}}],["false",{"0":{"5":1,"118":1,"119":1},"2":{"81":1}}],["float=0",{"2":{"117":1}}],["float=1e",{"2":{"50":1}}],["float=approx",{"2":{"43":1,"101":1,"117":1,"123":1,"126":1}}],["float=epsilon",{"2":{"32":1}}],["float",{"0":{"5":1,"8":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"20":1,"21":1,"22":1,"32":1,"43":1,"45":1,"50":1,"80":4,"83":1,"100":3,"101":1,"111":4,"117":3,"118":1,"119":1,"122":3,"123":1,"126":1,"130":1,"144":1,"158":2,"161":2},"2":{"5":1,"8":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"20":1,"21":1,"22":1,"43":2,"45":3,"50":2,"61":1,"80":9,"83":3,"100":7,"101":2,"111":9,"114":2,"117":5,"118":3,"119":3,"122":3,"126":2,"130":3,"144":4,"146":2,"158":2,"161":2}}],["==",{"2":{"37":1,"45":1,"54":1,"55":3,"85":1,"91":1,"95":1}}],["=",{"0":{"5":1,"17":1,"19":1,"20":1,"21":1,"22":1,"32":1,"38":1,"43":1,"50":1,"101":1,"102":1,"103":1,"106":1,"117":2,"118":1,"119":1,"123":1,"126":1,"133":1,"134":1,"137":1,"138":1,"139":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1},"2":{"5":2,"32":5,"33":2,"36":3,"38":5,"42":2,"55":3,"56":1,"80":6,"81":6,"84":17,"85":2,"89":2,"90":3,"91":3,"100":3,"109":5,"113":1,"122":3,"128":4,"158":7,"161":7}}],["improve",{"2":{"164":1}}],["import",{"2":{"106":1}}],["i",{"2":{"158":4,"161":4}}],["invalid",{"2":{"38":1}}],["in",{"2":{"37":1,"38":1,"158":2,"161":2}}],["intersect",{"2":{"46":2}}],["intersection",{"0":{"46":1,"84":1,"85":1},"2":{"46":1,"57":1,"84":2,"85":1,"95":2,"97":1}}],["int",{"0":{"38":2,"144":1},"2":{"33":8,"38":3,"61":1,"114":2,"144":2,"158":1,"161":1}}],["init",{"0":{"5":1,"36":1,"42":1,"80":1,"100":1,"109":1,"113":1,"122":1},"2":{"5":1,"36":1,"42":1,"80":1,"100":1,"109":1,"113":1,"122":1}}],["if",{"2":{"5":1,"23":1,"37":1,"38":1,"45":2,"46":2,"55":3,"57":1,"81":1,"82":1,"83":1,"84":2,"85":1,"91":1,"95":3,"114":3,"118":2,"119":2,"135":1,"140":1,"141":1,"144":1}}],["isinstance",{"2":{"23":1,"38":2,"45":2,"82":2,"83":2,"95":2,"114":4,"135":2,"140":2,"141":1,"144":2}}],["is",{"0":{"5":1,"50":1,"51":1,"52":1,"53":1,"54":1,"87":1,"126":1,"127":1},"2":{"5":4,"6":1,"7":1,"10":1,"17":1,"19":1,"20":1,"23":1,"43":2,"45":2,"46":2,"50":2,"51":2,"52":3,"53":2,"54":1,"57":3,"58":2,"82":1,"84":1,"87":2,"95":1,"124":1,"126":1,"127":1}}],["预设",{"2":{"0":1,"1":1}}],["phi",{"2":{"158":5,"161":5}}],["p3",{"0":{"90":1},"2":{"90":4}}],["p2",{"0":{"56":1,"90":1,"109":1},"2":{"56":4,"58":2,"90":4,"109":9}}],["p1",{"0":{"56":1,"90":1,"109":1},"2":{"56":5,"58":2,"90":6,"109":9}}],["perpendicular",{"0":{"47":1},"2":{"47":1}}],["parametric",{"0":{"49":1},"2":{"49":1,"85":1}}],["parallel",{"0":{"50":1,"51":1,"86":1,"87":1,"126":1,"127":1},"2":{"43":2,"45":1,"46":2,"50":2,"51":2,"52":2,"53":1,"57":1,"58":2,"84":2,"85":1,"86":1,"87":2,"95":1,"126":1,"127":1}}],["partial",{"0":{"38":1},"2":{"32":6,"38":6}}],["particle",{"0":{"153":1,"154":1},"2":{"0":1,"1":1}}],["planes",{"2":{"84":1}}],["plane",{"0":{"78":1},"1":{"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1},"2":{"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"89":1,"95":1,"96":1}}],["plane3",{"0":{"79":1,"81":1,"82":1,"83":1,"84":1,"86":2,"87":1,"89":1,"90":1,"91":1,"92":1,"94":1},"1":{"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1},"2":{"39":1,"59":1,"81":3,"82":4,"83":4,"84":3,"86":5,"87":3,"89":3,"90":1,"91":1,"92":1,"94":1,"95":4,"96":2,"114":1}}],["plus",{"2":{"38":3}}],["points",{"0":{"56":1,"90":1},"2":{"56":1,"90":1}}],["point",{"0":{"42":1,"47":1,"48":1,"53":2,"86":1,"89":2,"92":2,"98":1},"1":{"99":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1},"2":{"32":1,"42":6,"43":2,"45":6,"46":4,"47":7,"48":3,"49":3,"52":2,"53":7,"54":2,"55":3,"56":2,"57":1,"58":2,"83":1,"85":4,"86":6,"89":8,"90":2,"91":6,"92":7,"95":1,"101":1,"104":2,"105":1,"106":1,"109":2,"135":2,"137":2,"140":2,"141":2}}],["point3",{"0":{"32":1,"37":2,"42":1,"45":1,"46":1,"47":1,"48":1,"53":1,"56":2,"57":1,"83":1,"85":2,"86":1,"89":1,"90":3,"92":1,"93":1,"97":1,"99":1,"101":1,"102":1,"103":2,"106":1,"109":2,"134":2,"137":2,"139":2,"141":1},"1":{"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1},"2":{"32":3,"37":4,"39":1,"42":3,"45":4,"46":3,"47":3,"48":3,"53":3,"56":6,"57":3,"59":1,"83":4,"84":1,"85":5,"86":3,"89":3,"90":7,"92":3,"93":1,"95":3,"97":2,"101":3,"102":1,"103":2,"104":5,"105":2,"106":3,"109":7,"114":1,"134":2,"135":6,"137":7,"139":2,"140":6,"141":7,"158":3,"161":3}}],["positive",{"0":{"9":1},"2":{"6":1,"7":1,"9":1}}],["p",{"0":{"32":1},"2":{"32":21,"33":1,"104":10,"106":8,"135":4,"137":4,"140":4,"141":4}}],["python",{"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"21":1,"22":1,"43":2,"45":2,"46":1,"49":1,"50":2,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":2,"84":1,"85":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":2,"96":1,"100":1,"101":2,"102":1,"103":1,"105":1,"111":1,"117":2,"118":3,"119":3,"126":2,"127":1,"129":1,"130":2,"131":1,"133":1,"134":1,"136":1,"138":1,"139":1,"142":1,"143":1,"144":1,"146":1,"158":1,"161":1}}],["pythondef",{"2":{"5":1,"17":1,"18":1,"19":1,"20":1,"23":1,"32":1,"33":2,"36":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"95":1,"96":1,"97":1,"100":1,"101":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"132":1,"135":1,"136":1,"137":1,"140":1,"141":1,"144":1,"145":1,"146":1,"147":1,"148":1}}],["property",{"2":{"5":1,"6":2,"7":2,"8":2,"9":2,"10":2,"11":2,"12":2,"13":2,"14":2,"15":2,"16":1,"87":1,"88":1,"128":1,"129":2,"130":2,"131":1}}],["presets",{"0":{"155":1,"156":1,"159":1,"162":1},"1":{"157":1,"158":1,"160":1,"161":1},"2":{"0":1,"1":1}}],["pi",{"0":{"25":1},"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"25":1,"158":2,"161":2}}],["粒子生成工具",{"2":{"0":1,"1":1}}],["model",{"0":{"156":1,"159":1},"1":{"157":1,"158":1,"160":1,"161":1}}],["midpoint",{"2":{"109":1}}],["min",{"0":{"111":1},"2":{"111":5}}],["minus",{"2":{"38":3}}],["minimum",{"0":{"9":1},"2":{"6":1,"7":1,"9":1}}],["multiarraysfunc",{"0":{"76":1},"2":{"77":1}}],["multisinglevarsfunc",{"0":{"75":1},"2":{"77":1}}],["multivarsfunc",{"0":{"33":1,"38":2,"77":1},"2":{"33":3,"38":4}}],["mul",{"2":{"20":1,"142":1,"143":1,"144":1,"145":1}}],["matmul",{"2":{"146":1}}],["math导入使用",{"2":{"39":1,"59":1}}],["math",{"0":{"2":1,"24":1,"31":1,"34":1,"39":1,"40":1,"59":1,"60":2,"78":1,"98":1,"107":1,"110":1,"120":1},"1":{"3":1,"4":1,"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"32":1,"33":1,"35":1,"36":1,"37":1,"38":1,"41":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"61":2,"62":2,"63":2,"64":2,"65":2,"66":2,"67":2,"68":2,"69":2,"70":2,"71":2,"72":2,"73":2,"74":2,"75":2,"76":2,"77":2,"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"99":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"108":1,"109":1,"111":1,"112":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"121":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"150":1,"151":1,"152":1},"2":{"0":1,"1":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"25":1,"26":1,"27":1,"32":1,"33":2,"36":3,"38":1,"48":1,"49":1,"82":1,"113":1,"124":1,"130":1}}],["max",{"0":{"111":1},"2":{"111":5}}],["maximum",{"0":{"10":1},"2":{"10":1}}],["mp",{"0":{"2":1,"24":1,"31":1,"34":1,"39":1,"40":1,"59":1,"60":2,"78":1,"98":1,"107":1,"110":1,"120":1},"1":{"3":1,"4":1,"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"32":1,"33":1,"35":1,"36":1,"37":1,"38":1,"41":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"61":2,"62":2,"63":2,"64":2,"65":2,"66":2,"67":2,"68":2,"69":2,"70":2,"71":2,"72":2,"73":2,"74":2,"75":2,"76":2,"77":2,"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"99":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"108":1,"109":1,"111":1,"112":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"121":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"150":1,"151":1,"152":1},"2":{"0":1,"1":1,"32":1,"33":2,"36":3,"38":1,"39":1,"48":1,"49":1,"59":1,"113":1}}],["mbcp",{"0":{"0":1,"1":1,"2":1,"24":1,"31":1,"34":1,"39":1,"40":1,"59":1,"60":1,"78":1,"98":1,"107":1,"110":1,"120":1,"153":1,"154":1,"155":1,"156":1,"159":1,"162":1},"1":{"3":1,"4":1,"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"32":1,"33":1,"35":1,"36":1,"37":1,"38":1,"41":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"99":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"108":1,"109":1,"111":1,"112":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"121":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"150":1,"151":1,"152":1,"157":1,"158":1,"160":1,"161":1},"2":{"0":3,"1":3}}],["提供了一些工具",{"2":{"0":1,"1":1}}],["説明",{"2":{"0":1,"1":1,"2":1,"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"24":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"31":1,"32":1,"33":1,"34":1,"36":1,"37":1,"38":1,"39":1,"40":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"59":1,"60":1,"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"78":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"95":1,"96":1,"98":1,"100":1,"101":1,"104":1,"105":1,"106":1,"107":1,"109":1,"110":1,"111":1,"113":1,"117":1,"118":1,"119":1,"120":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"130":1,"131":1,"135":1,"136":1,"137":1,"140":1,"141":1,"144":1,"146":1,"148":1,"149":1,"150":1,"151":1,"152":1,"153":1,"154":1,"155":1,"156":1,"158":1,"159":1,"161":1,"162":1}}]],"serializationVersion":2}';export{t as default};
diff --git a/assets/chunks/@localSearchIndexroot.BIMNPnzE.js b/assets/chunks/@localSearchIndexroot.BIMNPnzE.js
new file mode 100644
index 0000000..410c951
--- /dev/null
+++ b/assets/chunks/@localSearchIndexroot.BIMNPnzE.js
@@ -0,0 +1 @@
+const t='{"documentCount":170,"nextId":170,"documentIds":{"0":"/api/api.html#mbcp","1":"/api/#mbcp","2":"/api/mp_math/angle.html#mbcp-mp-math-angle","3":"/api/mp_math/angle.html#class-angle","4":"/api/mp_math/angle.html#class-anyangle-angle","5":"/api/mp_math/angle.html#def-init-self-value-float-is-radian-bool-false","6":"/api/mp_math/angle.html#def-complementary-self-anyangle","7":"/api/mp_math/angle.html#def-supplementary-self-anyangle","8":"/api/mp_math/angle.html#def-degree-self-float","9":"/api/mp_math/angle.html#def-minimum-positive-self-anyangle","10":"/api/mp_math/angle.html#def-maximum-negative-self-anyangle","11":"/api/mp_math/angle.html#def-sin-self-float","12":"/api/mp_math/angle.html#def-cos-self-float","13":"/api/mp_math/angle.html#def-tan-self-float","14":"/api/mp_math/angle.html#def-cot-self-float","15":"/api/mp_math/angle.html#def-sec-self-float","16":"/api/mp_math/angle.html#def-csc-self-float","17":"/api/mp_math/angle.html#def-self-other-anyangle-anyangle","18":"/api/mp_math/angle.html#def-eq-self-other","19":"/api/mp_math/angle.html#def-self-other-anyangle-anyangle-1","20":"/api/mp_math/angle.html#def-self-other-float-anyangle","21":"/api/mp_math/angle.html#def-self-other-float-anyangle-1","22":"/api/mp_math/angle.html#def-self-other-anyangle-float","23":"/api/mp_math/angle.html#def-self-other","24":"/api/mp_math/const.html#mbcp-mp-math-const","25":"/api/mp_math/const.html#var-pi","26":"/api/mp_math/const.html#var-e","27":"/api/mp_math/const.html#var-golden-ratio","28":"/api/mp_math/const.html#var-gamma","29":"/api/mp_math/const.html#var-epsilon","30":"/api/mp_math/const.html#var-approx","31":"/api/mp_math/equation.html#mbcp-mp-math-equation","32":"/api/mp_math/equation.html#class-curveequation","33":"/api/mp_math/equation.html#def-init-self-x-func-onevarfunc-y-func-onevarfunc-z-func-onevarfunc","34":"/api/mp_math/equation.html#def-call-self-t-var-point3-tuple-point3","35":"/api/mp_math/equation.html#def-get-partial-derivative-func-func-multivarsfunc-var-int-tuple-int-epsilon-number-epsilon-multivarsfunc","36":"/api/mp_math/function.html#mbcp-mp-math-function","37":"/api/mp_math/function.html#def-cal-gradient-3vf-func-threesinglevarsfunc-p-point3-epsilon-float-epsilon-vector3","38":"/api/mp_math/function.html#def-curry-func-multivarsfunc-args-var-onevarfunc","39":"/api/mp_math/#mbcp-mp-math","40":"/api/mp_math/line.html#mbcp-mp-math-line","41":"/api/mp_math/line.html#class-line3","42":"/api/mp_math/line.html#def-init-self-point-point3-direction-vector3","43":"/api/mp_math/line.html#def-approx-self-other-line3-epsilon-float-approx-bool","44":"/api/mp_math/line.html#def-cal-angle-self-other-line3-anyangle","45":"/api/mp_math/line.html#def-cal-distance-self-other-line3-point3-float","46":"/api/mp_math/line.html#def-cal-intersection-self-other-line3-point3","47":"/api/mp_math/line.html#def-cal-perpendicular-self-point-point3-line3","48":"/api/mp_math/line.html#def-get-point-self-t-realnumber-point3","49":"/api/mp_math/line.html#def-get-parametric-equations-self-tuple-onesinglevarfunc-onesinglevarfunc-onesinglevarfunc","50":"/api/mp_math/line.html#def-is-approx-parallel-self-other-line3-epsilon-float-1e-06-bool","51":"/api/mp_math/line.html#def-is-parallel-self-other-line3-bool","52":"/api/mp_math/line.html#def-is-collinear-self-other-line3-bool","53":"/api/mp_math/line.html#def-is-point-on-self-point-point3-bool","54":"/api/mp_math/line.html#def-is-coplanar-self-other-line3-bool","55":"/api/mp_math/line.html#def-simplify-self","56":"/api/mp_math/line.html#def-from-two-points-cls-p1-point3-p2-point3-line3","57":"/api/mp_math/line.html#def-and-self-other-line3-line3-point3-none","58":"/api/mp_math/line.html#def-eq-self-other-bool","59":"/api/mp_math/mp_math.html#mbcp-mp-math","60":"/api/mp_math/mp_math_typing.html#mbcp-mp-math-mp-math-typing","61":"/api/mp_math/mp_math_typing.html#var-realnumber","62":"/api/mp_math/mp_math_typing.html#var-number","63":"/api/mp_math/mp_math_typing.html#var-singlevar","64":"/api/mp_math/mp_math_typing.html#var-arrayvar","65":"/api/mp_math/mp_math_typing.html#var-var","66":"/api/mp_math/mp_math_typing.html#var-onesinglevarfunc","67":"/api/mp_math/mp_math_typing.html#var-onearrayfunc","68":"/api/mp_math/mp_math_typing.html#var-onevarfunc","69":"/api/mp_math/mp_math_typing.html#var-twosinglevarsfunc","70":"/api/mp_math/mp_math_typing.html#var-twoarraysfunc","71":"/api/mp_math/mp_math_typing.html#var-twovarsfunc","72":"/api/mp_math/mp_math_typing.html#var-threesinglevarsfunc","73":"/api/mp_math/mp_math_typing.html#var-threearraysfunc","74":"/api/mp_math/mp_math_typing.html#var-threevarsfunc","75":"/api/mp_math/mp_math_typing.html#var-multisinglevarsfunc","76":"/api/mp_math/mp_math_typing.html#var-multiarraysfunc","77":"/api/mp_math/mp_math_typing.html#var-multivarsfunc","78":"/api/mp_math/plane.html#mbcp-mp-math-plane","79":"/api/mp_math/plane.html#class-plane3","80":"/api/mp_math/plane.html#def-init-self-a-float-b-float-c-float-d-float","81":"/api/mp_math/plane.html#def-approx-self-other-plane3-bool","82":"/api/mp_math/plane.html#def-cal-angle-self-other-line3-plane3-anyangle","83":"/api/mp_math/plane.html#def-cal-distance-self-other-plane3-point3-float","84":"/api/mp_math/plane.html#def-cal-intersection-line3-self-other-plane3-line3","85":"/api/mp_math/plane.html#def-cal-intersection-point3-self-other-line3-point3","86":"/api/mp_math/plane.html#def-cal-parallel-plane3-self-point-point3-plane3","87":"/api/mp_math/plane.html#def-is-parallel-self-other-plane3-bool","88":"/api/mp_math/plane.html#def-normal-self-vector3","89":"/api/mp_math/plane.html#def-from-point-and-normal-cls-point-point3-normal-vector3-plane3","90":"/api/mp_math/plane.html#def-from-three-points-cls-p1-point3-p2-point3-p3-point3-plane3","91":"/api/mp_math/plane.html#def-from-two-lines-cls-l1-line3-l2-line3-plane3","92":"/api/mp_math/plane.html#def-from-point-and-line-cls-point-point3-line-line3-plane3","93":"/api/mp_math/plane.html#def-and-self-other-line3-point3-none","94":"/api/mp_math/plane.html#def-and-self-other-plane3-line3-none","95":"/api/mp_math/plane.html#def-and-self-other","96":"/api/mp_math/plane.html#def-eq-self-other-bool","97":"/api/mp_math/plane.html#def-rand-self-other-line3-point3","98":"/api/mp_math/point.html#mbcp-mp-math-point","99":"/api/mp_math/point.html#class-point3","100":"/api/mp_math/point.html#def-init-self-x-float-y-float-z-float","101":"/api/mp_math/point.html#def-approx-self-other-point3-epsilon-float-approx-bool","102":"/api/mp_math/point.html#def-self-other-vector3-point3","103":"/api/mp_math/point.html#def-self-other-point3-point3","104":"/api/mp_math/point.html#def-self-other","105":"/api/mp_math/point.html#def-eq-self-other","106":"/api/mp_math/point.html#def-self-other-point3-vector3","107":"/api/mp_math/segment.html#mbcp-mp-math-segment","108":"/api/mp_math/segment.html#class-segment3","109":"/api/mp_math/segment.html#def-init-self-p1-point3-p2-point3","110":"/api/mp_math/utils.html#mbcp-mp-math-utils","111":"/api/mp_math/utils.html#def-clamp-x-float-min-float-max-float-float","112":"/api/mp_math/utils.html#class-approx","113":"/api/mp_math/utils.html#def-init-self-value-realnumber","114":"/api/mp_math/utils.html#def-eq-self-other","115":"/api/mp_math/utils.html#def-raise-type-error-self-other","116":"/api/mp_math/utils.html#def-ne-self-other","117":"/api/mp_math/utils.html#def-approx-x-float-y-float-0-0-epsilon-float-approx-bool","118":"/api/mp_math/utils.html#def-sign-x-float-only-neg-bool-false-str","119":"/api/mp_math/utils.html#def-sign-format-x-float-only-neg-bool-false-str","120":"/api/particle/#mbcp-particle","121":"/api/mp_math/vector.html#mbcp-mp-math-vector","122":"/api/mp_math/vector.html#class-vector3","123":"/api/mp_math/vector.html#def-init-self-x-float-y-float-z-float","124":"/api/mp_math/vector.html#def-approx-self-other-vector3-epsilon-float-approx-bool","125":"/api/mp_math/vector.html#def-cal-angle-self-other-vector3-anyangle","126":"/api/mp_math/vector.html#def-cross-self-other-vector3-vector3","127":"/api/mp_math/vector.html#def-is-approx-parallel-self-other-vector3-epsilon-float-approx-bool","128":"/api/mp_math/vector.html#def-is-parallel-self-other-vector3-bool","129":"/api/mp_math/vector.html#def-normalize-self","130":"/api/mp_math/vector.html#def-np-array-self-np-ndarray","131":"/api/mp_math/vector.html#def-length-self-float","132":"/api/mp_math/vector.html#def-unit-self-vector3","133":"/api/mp_math/vector.html#def-abs-self","134":"/api/mp_math/vector.html#def-self-other-vector3-vector3","135":"/api/mp_math/vector.html#def-self-other-point3-point3","136":"/api/mp_math/vector.html#def-self-other","137":"/api/mp_math/vector.html#def-eq-self-other","138":"/api/mp_math/vector.html#def-self-other-point3-point3-1","139":"/api/mp_math/vector.html#def-self-other-vector3-vector3-1","140":"/api/mp_math/vector.html#def-self-other-point3-point3-2","141":"/api/mp_math/vector.html#def-self-other-1","142":"/api/mp_math/vector.html#def-self-other-point3","143":"/api/mp_math/vector.html#def-self-other-vector3-vector3-2","144":"/api/mp_math/vector.html#def-self-other-realnumber-vector3","145":"/api/mp_math/vector.html#def-self-other-int-float-vector3-vector3","146":"/api/mp_math/vector.html#def-self-other-realnumber-vector3-1","147":"/api/mp_math/vector.html#def-self-other-vector3-realnumber","148":"/api/mp_math/vector.html#def-self-other-realnumber-vector3-2","149":"/api/mp_math/vector.html#def-self-vector3","150":"/api/mp_math/vector.html#var-zero-vector3","151":"/api/mp_math/vector.html#var-x-axis","152":"/api/mp_math/vector.html#var-y-axis","153":"/api/mp_math/vector.html#var-z-axis","154":"/api/particle/particle.html#mbcp-particle","155":"/api/presets/#mbcp-presets","156":"/api/presets/model/#mbcp-presets-model","157":"/api/presets/model/#class-geometricmodels","158":"/api/presets/model/#def-sphere-radius-float-density-float","159":"/api/presets/model/model.html#mbcp-presets-model","160":"/api/presets/model/model.html#class-geometricmodels","161":"/api/presets/model/model.html#def-sphere-radius-float-density-float","162":"/api/presets/presets.html#mbcp-presets","163":"/demo/#demo","164":"/guide/#开始不了一点","165":"/guide/#aaa","166":"/guide/#bbb","167":"/guide/#c","168":"/guide/#ddd","169":"/refer/#reference"},"fieldIds":{"title":0,"titles":1,"text":2},"fieldLength":{"0":[1,1,13],"1":[1,1,13],"2":[4,1,3],"3":[2,4,1],"4":[4,4,1],"5":[11,8,25],"6":[5,8,24],"7":[5,8,23],"8":[5,8,20],"9":[6,8,21],"10":[6,8,23],"11":[5,8,18],"12":[5,8,18],"13":[5,8,18],"14":[5,8,20],"15":[5,8,20],"16":[5,8,20],"17":[7,8,15],"18":[5,8,11],"19":[6,8,14],"20":[7,8,16],"21":[7,8,13],"22":[7,8,13],"23":[3,8,15],"24":[4,1,3],"25":[2,4,7],"26":[2,4,8],"27":[3,4,10],"28":[2,4,6],"29":[2,4,6],"30":[2,4,6],"31":[4,1,3],"32":[2,4,1],"33":[9,6,26],"34":[10,6,34],"35":[15,4,73],"36":[4,1,3],"37":[14,4,69],"38":[8,4,62],"39":[3,1,21],"40":[4,1,3],"41":[2,4,1],"42":[8,6,25],"43":[11,6,43],"44":[8,6,28],"45":[10,6,63],"46":[8,6,60],"47":[8,6,29],"48":[8,6,35],"49":[9,6,42],"50":[14,6,43],"51":[8,6,36],"52":[8,6,39],"53":[8,6,36],"54":[8,6,42],"55":[4,6,27],"56":[10,6,36],"57":[9,6,52],"58":[6,6,44],"59":[3,1,21],"60":[4,1,3],"61":[2,4,9],"62":[2,4,9],"63":[2,4,7],"64":[2,4,8],"65":[2,4,9],"66":[2,4,8],"67":[2,4,8],"68":[2,4,9],"69":[2,4,8],"70":[2,4,8],"71":[2,4,9],"72":[2,4,8],"73":[2,4,8],"74":[2,4,9],"75":[2,4,8],"76":[2,4,8],"77":[2,4,9],"78":[4,1,3],"79":[2,4,1],"80":[9,6,36],"81":[7,6,45],"82":[10,6,62],"83":[10,6,66],"84":[9,6,71],"85":[9,6,69],"86":[9,6,30],"87":[8,6,37],"88":[5,6,25],"89":[10,6,45],"90":[11,6,39],"91":[10,6,44],"92":[10,6,35],"93":[9,6,15],"94":[9,6,15],"95":[5,6,70],"96":[6,6,35],"97":[7,6,15],"98":[4,1,3],"99":[2,4,1],"100":[8,6,26],"101":[11,6,45],"102":[8,6,13],"103":[7,6,12],"104":[4,6,34],"105":[5,6,37],"106":[7,6,36],"107":[4,1,3],"108":[2,4,1],"109":[7,6,32],"110":[4,1,3],"111":[7,4,31],"112":[2,4,1],"113":[6,6,20],"114":[5,6,31],"115":[7,6,15],"116":[5,6,11],"117":[11,4,40],"118":[11,4,43],"119":[12,4,49],"120":[2,1,3],"121":[4,1,4],"122":[2,4,1],"123":[8,6,29],"124":[11,6,44],"125":[8,6,31],"126":[6,6,43],"127":[13,6,43],"128":[8,6,37],"129":[4,6,17],"130":[6,6,31],"131":[5,6,33],"132":[5,6,21],"133":[4,6,10],"134":[7,6,12],"135":[7,6,12],"136":[4,6,46],"137":[5,6,37],"138":[7,6,31],"139":[6,6,12],"140":[6,6,12],"141":[3,6,45],"142":[4,6,42],"143":[6,6,12],"144":[7,6,13],"145":[9,6,55],"146":[7,6,13],"147":[7,6,38],"148":[7,6,15],"149":[5,6,21],"150":[3,4,7],"151":[3,4,8],"152":[3,4,8],"153":[3,4,8],"154":[2,1,3],"155":[2,1,3],"156":[3,1,3],"157":[2,3,2],"158":[6,5,48],"159":[3,1,3],"160":[2,3,2],"161":[6,5,48],"162":[2,1,3],"163":[1,1,1],"164":[1,1,2],"165":[1,1,1],"166":[1,1,1],"167":[1,1,1],"168":[1,1,1],"169":[1,1,7]},"averageFieldLength":[5.458823529411765,4.84705882352941,21.964705882352934],"storedFields":{"0":{"title":"mbcp","titles":[]},"1":{"title":"mbcp","titles":[]},"2":{"title":"mbcp.mp_math.angle","titles":[]},"3":{"title":"class Angle","titles":["mbcp.mp_math.angle"]},"4":{"title":"class AnyAngle(Angle)","titles":["mbcp.mp_math.angle"]},"5":{"title":"def __init__(self, value: float, is_radian: bool = False)","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"6":{"title":"def complementary(self) -> AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"7":{"title":"def supplementary(self) -> AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"8":{"title":"def degree(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"9":{"title":"def minimum_positive(self) -> AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"10":{"title":"def maximum_negative(self) -> AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"11":{"title":"def sin(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"12":{"title":"def cos(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"13":{"title":"def tan(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"14":{"title":"def cot(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"15":{"title":"def sec(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"16":{"title":"def csc(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"17":{"title":"def self + other: AnyAngle => AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"18":{"title":"def __eq__(self, other)","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"19":{"title":"def self - other: AnyAngle => AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"20":{"title":"def self * other: float => AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"21":{"title":"def self / other: float => AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"22":{"title":"def self / other: AnyAngle => float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"23":{"title":"def self / other","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"24":{"title":"mbcp.mp_math.const","titles":[]},"25":{"title":"var PI","titles":["mbcp.mp_math.const"]},"26":{"title":"var E","titles":["mbcp.mp_math.const"]},"27":{"title":"var GOLDEN_RATIO","titles":["mbcp.mp_math.const"]},"28":{"title":"var GAMMA","titles":["mbcp.mp_math.const"]},"29":{"title":"var EPSILON","titles":["mbcp.mp_math.const"]},"30":{"title":"var APPROX","titles":["mbcp.mp_math.const"]},"31":{"title":"mbcp.mp_math.equation","titles":[]},"32":{"title":"class CurveEquation","titles":["mbcp.mp_math.equation"]},"33":{"title":"def __init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc)","titles":["mbcp.mp_math.equation","class CurveEquation"]},"34":{"title":"def __call__(self, *t: Var) -> Point3 | tuple[Point3, ...]","titles":["mbcp.mp_math.equation","class CurveEquation"]},"35":{"title":"def get_partial_derivative_func(func: MultiVarsFunc, var: int | tuple[int, ...], epsilon: Number = EPSILON) -> MultiVarsFunc","titles":["mbcp.mp_math.equation"]},"36":{"title":"mbcp.mp_math.function","titles":[]},"37":{"title":"def cal_gradient_3vf(func: ThreeSingleVarsFunc, p: Point3, epsilon: float = EPSILON) -> Vector3","titles":["mbcp.mp_math.function"]},"38":{"title":"def curry(func: MultiVarsFunc, *args: Var) -> OneVarFunc","titles":["mbcp.mp_math.function"]},"39":{"title":"mbcp.mp_math","titles":[]},"40":{"title":"mbcp.mp_math.line","titles":[]},"41":{"title":"class Line3","titles":["mbcp.mp_math.line"]},"42":{"title":"def __init__(self, point: Point3, direction: Vector3)","titles":["mbcp.mp_math.line","class Line3"]},"43":{"title":"def approx(self, other: Line3, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"44":{"title":"def cal_angle(self, other: Line3) -> AnyAngle","titles":["mbcp.mp_math.line","class Line3"]},"45":{"title":"def cal_distance(self, other: Line3 | Point3) -> float","titles":["mbcp.mp_math.line","class Line3"]},"46":{"title":"def cal_intersection(self, other: Line3) -> Point3","titles":["mbcp.mp_math.line","class Line3"]},"47":{"title":"def cal_perpendicular(self, point: Point3) -> Line3","titles":["mbcp.mp_math.line","class Line3"]},"48":{"title":"def get_point(self, t: RealNumber) -> Point3","titles":["mbcp.mp_math.line","class Line3"]},"49":{"title":"def get_parametric_equations(self) -> tuple[OneSingleVarFunc, OneSingleVarFunc, OneSingleVarFunc]","titles":["mbcp.mp_math.line","class Line3"]},"50":{"title":"def is_approx_parallel(self, other: Line3, epsilon: float = 1e-06) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"51":{"title":"def is_parallel(self, other: Line3) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"52":{"title":"def is_collinear(self, other: Line3) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"53":{"title":"def is_point_on(self, point: Point3) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"54":{"title":"def is_coplanar(self, other: Line3) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"55":{"title":"def simplify(self)","titles":["mbcp.mp_math.line","class Line3"]},"56":{"title":"def from_two_points(cls, p1: Point3, p2: Point3) -> Line3","titles":["mbcp.mp_math.line","class Line3"]},"57":{"title":"def __and__(self, other: Line3) -> Line3 | Point3 | None","titles":["mbcp.mp_math.line","class Line3"]},"58":{"title":"def __eq__(self, other) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"59":{"title":"mbcp.mp_math","titles":[]},"60":{"title":"mbcp.mp_math.mp_math_typing","titles":[]},"61":{"title":"var RealNumber","titles":["mbcp.mp_math.mp_math_typing"]},"62":{"title":"var Number","titles":["mbcp.mp_math.mp_math_typing"]},"63":{"title":"var SingleVar","titles":["mbcp.mp_math.mp_math_typing"]},"64":{"title":"var ArrayVar","titles":["mbcp.mp_math.mp_math_typing"]},"65":{"title":"var Var","titles":["mbcp.mp_math.mp_math_typing"]},"66":{"title":"var OneSingleVarFunc","titles":["mbcp.mp_math.mp_math_typing"]},"67":{"title":"var OneArrayFunc","titles":["mbcp.mp_math.mp_math_typing"]},"68":{"title":"var OneVarFunc","titles":["mbcp.mp_math.mp_math_typing"]},"69":{"title":"var TwoSingleVarsFunc","titles":["mbcp.mp_math.mp_math_typing"]},"70":{"title":"var TwoArraysFunc","titles":["mbcp.mp_math.mp_math_typing"]},"71":{"title":"var TwoVarsFunc","titles":["mbcp.mp_math.mp_math_typing"]},"72":{"title":"var ThreeSingleVarsFunc","titles":["mbcp.mp_math.mp_math_typing"]},"73":{"title":"var ThreeArraysFunc","titles":["mbcp.mp_math.mp_math_typing"]},"74":{"title":"var ThreeVarsFunc","titles":["mbcp.mp_math.mp_math_typing"]},"75":{"title":"var MultiSingleVarsFunc","titles":["mbcp.mp_math.mp_math_typing"]},"76":{"title":"var MultiArraysFunc","titles":["mbcp.mp_math.mp_math_typing"]},"77":{"title":"var MultiVarsFunc","titles":["mbcp.mp_math.mp_math_typing"]},"78":{"title":"mbcp.mp_math.plane","titles":[]},"79":{"title":"class Plane3","titles":["mbcp.mp_math.plane"]},"80":{"title":"def __init__(self, a: float, b: float, c: float, d: float)","titles":["mbcp.mp_math.plane","class Plane3"]},"81":{"title":"def approx(self, other: Plane3) -> bool","titles":["mbcp.mp_math.plane","class Plane3"]},"82":{"title":"def cal_angle(self, other: Line3 | Plane3) -> AnyAngle","titles":["mbcp.mp_math.plane","class Plane3"]},"83":{"title":"def cal_distance(self, other: Plane3 | Point3) -> float","titles":["mbcp.mp_math.plane","class Plane3"]},"84":{"title":"def cal_intersection_line3(self, other: Plane3) -> Line3","titles":["mbcp.mp_math.plane","class Plane3"]},"85":{"title":"def cal_intersection_point3(self, other: Line3) -> Point3","titles":["mbcp.mp_math.plane","class Plane3"]},"86":{"title":"def cal_parallel_plane3(self, point: Point3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"87":{"title":"def is_parallel(self, other: Plane3) -> bool","titles":["mbcp.mp_math.plane","class Plane3"]},"88":{"title":"def normal(self) -> Vector3","titles":["mbcp.mp_math.plane","class Plane3"]},"89":{"title":"def from_point_and_normal(cls, point: Point3, normal: Vector3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"90":{"title":"def from_three_points(cls, p1: Point3, p2: Point3, p3: Point3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"91":{"title":"def from_two_lines(cls, l1: Line3, l2: Line3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"92":{"title":"def from_point_and_line(cls, point: Point3, line: Line3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"93":{"title":"def __and__(self, other: Line3) -> Point3 | None","titles":["mbcp.mp_math.plane","class Plane3"]},"94":{"title":"def __and__(self, other: Plane3) -> Line3 | None","titles":["mbcp.mp_math.plane","class Plane3"]},"95":{"title":"def __and__(self, other)","titles":["mbcp.mp_math.plane","class Plane3"]},"96":{"title":"def __eq__(self, other) -> bool","titles":["mbcp.mp_math.plane","class Plane3"]},"97":{"title":"def __rand__(self, other: Line3) -> Point3","titles":["mbcp.mp_math.plane","class Plane3"]},"98":{"title":"mbcp.mp_math.point","titles":[]},"99":{"title":"class Point3","titles":["mbcp.mp_math.point"]},"100":{"title":"def __init__(self, x: float, y: float, z: float)","titles":["mbcp.mp_math.point","class Point3"]},"101":{"title":"def approx(self, other: Point3, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.point","class Point3"]},"102":{"title":"def self + other: Vector3 => Point3","titles":["mbcp.mp_math.point","class Point3"]},"103":{"title":"def self + other: Point3 => Point3","titles":["mbcp.mp_math.point","class Point3"]},"104":{"title":"def self + other","titles":["mbcp.mp_math.point","class Point3"]},"105":{"title":"def __eq__(self, other)","titles":["mbcp.mp_math.point","class Point3"]},"106":{"title":"def self - other: Point3 => Vector3","titles":["mbcp.mp_math.point","class Point3"]},"107":{"title":"mbcp.mp_math.segment","titles":[]},"108":{"title":"class Segment3","titles":["mbcp.mp_math.segment"]},"109":{"title":"def __init__(self, p1: Point3, p2: Point3)","titles":["mbcp.mp_math.segment","class Segment3"]},"110":{"title":"mbcp.mp_math.utils","titles":[]},"111":{"title":"def clamp(x: float, min_: float, max_: float) -> float","titles":["mbcp.mp_math.utils"]},"112":{"title":"class Approx","titles":["mbcp.mp_math.utils"]},"113":{"title":"def __init__(self, value: RealNumber)","titles":["mbcp.mp_math.utils","class Approx"]},"114":{"title":"def __eq__(self, other)","titles":["mbcp.mp_math.utils","class Approx"]},"115":{"title":"def raise_type_error(self, other)","titles":["mbcp.mp_math.utils","class Approx"]},"116":{"title":"def __ne__(self, other)","titles":["mbcp.mp_math.utils","class Approx"]},"117":{"title":"def approx(x: float, y: float = 0.0, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.utils"]},"118":{"title":"def sign(x: float, only_neg: bool = False) -> str","titles":["mbcp.mp_math.utils"]},"119":{"title":"def sign_format(x: float, only_neg: bool = False) -> str","titles":["mbcp.mp_math.utils"]},"120":{"title":"mbcp.particle","titles":[]},"121":{"title":"mbcp.mp_math.vector","titles":[]},"122":{"title":"class Vector3","titles":["mbcp.mp_math.vector"]},"123":{"title":"def __init__(self, x: float, y: float, z: float)","titles":["mbcp.mp_math.vector","class Vector3"]},"124":{"title":"def approx(self, other: Vector3, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.vector","class Vector3"]},"125":{"title":"def cal_angle(self, other: Vector3) -> AnyAngle","titles":["mbcp.mp_math.vector","class Vector3"]},"126":{"title":"def cross(self, other: Vector3) -> Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"127":{"title":"def is_approx_parallel(self, other: Vector3, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.vector","class Vector3"]},"128":{"title":"def is_parallel(self, other: Vector3) -> bool","titles":["mbcp.mp_math.vector","class Vector3"]},"129":{"title":"def normalize(self)","titles":["mbcp.mp_math.vector","class Vector3"]},"130":{"title":"def np_array(self) -> np.ndarray","titles":["mbcp.mp_math.vector","class Vector3"]},"131":{"title":"def length(self) -> float","titles":["mbcp.mp_math.vector","class Vector3"]},"132":{"title":"def unit(self) -> Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"133":{"title":"def __abs__(self)","titles":["mbcp.mp_math.vector","class Vector3"]},"134":{"title":"def self + other: Vector3 => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"135":{"title":"def self + other: Point3 => Point3","titles":["mbcp.mp_math.vector","class Vector3"]},"136":{"title":"def self + other","titles":["mbcp.mp_math.vector","class Vector3"]},"137":{"title":"def __eq__(self, other)","titles":["mbcp.mp_math.vector","class Vector3"]},"138":{"title":"def self + other: Point3 => Point3","titles":["mbcp.mp_math.vector","class Vector3"]},"139":{"title":"def self - other: Vector3 => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"140":{"title":"def self - other: Point3 => Point3","titles":["mbcp.mp_math.vector","class Vector3"]},"141":{"title":"def self - other","titles":["mbcp.mp_math.vector","class Vector3"]},"142":{"title":"def self - other: Point3","titles":["mbcp.mp_math.vector","class Vector3"]},"143":{"title":"def self * other: Vector3 => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"144":{"title":"def self * other: RealNumber => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"145":{"title":"def self * other: int | float | Vector3 => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"146":{"title":"def self * other: RealNumber => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"147":{"title":"def self @ other: Vector3 => RealNumber","titles":["mbcp.mp_math.vector","class Vector3"]},"148":{"title":"def self / other: RealNumber => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"149":{"title":"def - self => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"150":{"title":"var zero_vector3","titles":["mbcp.mp_math.vector"]},"151":{"title":"var x_axis","titles":["mbcp.mp_math.vector"]},"152":{"title":"var y_axis","titles":["mbcp.mp_math.vector"]},"153":{"title":"var z_axis","titles":["mbcp.mp_math.vector"]},"154":{"title":"mbcp.particle","titles":[]},"155":{"title":"mbcp.presets","titles":[]},"156":{"title":"mbcp.presets.model","titles":[]},"157":{"title":"class GeometricModels","titles":["mbcp.presets.model"]},"158":{"title":"def sphere(radius: float, density: float)","titles":["mbcp.presets.model","class GeometricModels"]},"159":{"title":"mbcp.presets.model","titles":[]},"160":{"title":"class GeometricModels","titles":["mbcp.presets.model"]},"161":{"title":"def sphere(radius: float, density: float)","titles":["mbcp.presets.model","class GeometricModels"]},"162":{"title":"mbcp.presets","titles":[]},"163":{"title":"demo","titles":[]},"164":{"title":"开始不了一点","titles":[]},"165":{"title":"AAA","titles":[]},"166":{"title":"BBB","titles":["AAA"]},"167":{"title":"C","titles":[]},"168":{"title":"ddd","titles":["C"]},"169":{"title":"Reference","titles":[]}},"dirtCount":0,"index":[["∫12x111",{"2":{"164":1}}],["开始不了一点",{"0":{"164":1}}],["4",{"2":{"158":1,"161":1}}],["球体上的点集",{"2":{"158":2,"161":2}}],["生成球体上的点集",{"2":{"158":2,"161":2}}],["几何模型点集",{"2":{"156":1,"159":1}}],["零向量",{"2":{"150":1}}],["负向量",{"2":{"149":2}}],["取负",{"2":{"149":2}}],["取两平面的交集",{"2":{"95":2}}],["非点乘",{"2":{"145":2}}],["别去点那边实现了",{"2":{"138":2}}],["单位向量",{"2":{"132":2}}],["单变量",{"2":{"63":1}}],["模",{"2":{"131":2}}],["向量的模",{"2":{"131":2}}],["向量积",{"2":{"126":2}}],["将向量归一化",{"2":{"129":2}}],["j",{"2":{"126":1}}],["其余结果的模为平行四边形的面积",{"2":{"126":2}}],["叉乘使用cross",{"2":{"145":2}}],["叉乘结果",{"2":{"126":2}}],["叉乘为0",{"2":{"126":2}}],["叉乘",{"2":{"126":2}}],["以及一些常用的向量",{"2":{"121":1}}],["格式化符号数",{"2":{"119":2}}],["quot",{"2":{"118":2,"119":4}}],["符号",{"2":{"118":2,"119":2}}],["获取该向量的单位向量",{"2":{"132":2}}],["获取数的符号",{"2":{"118":2}}],["获取直线的参数方程",{"2":{"49":2}}],["获取直线上的点",{"2":{"48":2}}],["用于判断是否近似于0",{"2":{"117":2}}],["用于近似比较对象",{"2":{"113":2}}],["限定在区间内的值",{"2":{"111":2}}],["值",{"2":{"111":2}}],["区间限定函数",{"2":{"111":2}}],["us",{"2":{"169":1}}],["unit",{"0":{"132":1},"2":{"132":1}}],["unsupported",{"2":{"45":1,"82":1,"83":1,"95":1,"115":1,"136":1,"141":1,"142":1,"145":1}}],["utils",{"0":{"110":1},"1":{"111":1,"112":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1}}],["中心点",{"2":{"109":1}}],["中实现",{"2":{"106":2}}],["长度",{"2":{"109":1}}],["线段的另一个端点",{"2":{"109":2}}],["线段的一个端点",{"2":{"109":2}}],["新的向量或点",{"2":{"136":2}}],["新的向量",{"2":{"106":2,"141":2}}],["新的点",{"2":{"104":2,"138":2,"142":2}}],["已在",{"2":{"106":2}}],["已知一个函数$f",{"2":{"37":1}}],["已知一个函数f",{"2":{"37":1}}],["坐标",{"2":{"100":6}}],["笛卡尔坐标系中的点",{"2":{"100":2}}],["人话",{"2":{"95":2}}],["法向量",{"2":{"88":2,"89":2}}],["k``",{"2":{"126":1}}],["k",{"2":{"81":12}}],["常数项",{"2":{"80":2}}],["常量",{"2":{"25":1}}],["平面上一点",{"2":{"89":2,"92":2}}],["平面的法向量",{"2":{"88":2}}],["平面",{"2":{"86":2,"89":2,"90":2,"91":2,"92":2}}],["平面与直线平行或重合",{"2":{"85":2}}],["平面平行且无交线",{"2":{"84":2}}],["平面方程",{"2":{"80":2}}],["平行线返回none",{"2":{"57":2}}],["多元函数",{"2":{"77":1}}],["多元数组函数",{"2":{"76":1}}],["多元单变量函数",{"2":{"75":1}}],["二元函数",{"2":{"71":1}}],["二元数组函数",{"2":{"70":1}}],["二元单变量函数",{"2":{"69":1}}],["一元函数",{"2":{"68":1}}],["一元数组函数",{"2":{"67":1}}],["一元单变量函数",{"2":{"66":1}}],["一阶偏导",{"2":{"35":2}}],["变量",{"2":{"65":1}}],["变量位置",{"2":{"35":2}}],["数组运算结果",{"2":{"145":2}}],["数组运算",{"2":{"145":2}}],["数组变量",{"2":{"64":1}}],["数2",{"2":{"117":2}}],["数1",{"2":{"117":2}}],["数",{"2":{"62":1,"118":2,"119":2}}],["数学工具",{"2":{"0":1,"1":1}}],["类型",{"2":{"61":1,"62":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"150":1,"151":1,"152":1,"153":1}}],["实数",{"2":{"61":1,"113":2}}],["∧",{"2":{"58":2}}],["交线",{"2":{"84":2,"95":2}}],["交线返回交点",{"2":{"57":2}}],["交集",{"2":{"57":2,"95":2}}],["交点",{"2":{"46":2,"85":2}}],["重合线返回自身",{"2":{"57":2}}],["由点和直线构造平面",{"2":{"92":2}}],["由点和法向量构造平面",{"2":{"89":2}}],["由两直线构造平面",{"2":{"91":2}}],["由两点构造直线",{"2":{"56":2}}],["由三点构造平面",{"2":{"90":2}}],["由一个点和一个方向向量确定",{"2":{"42":2}}],["工厂函数",{"2":{"56":2,"89":2,"90":2,"91":2,"92":2}}],["并对向量单位化",{"2":{"55":2}}],["处理",{"2":{"55":2}}],["处的梯度向量为",{"2":{"37":1}}],["化",{"2":{"55":2}}],["按照可行性一次对x",{"2":{"55":2}}],["不返回值",{"2":{"55":2,"129":2}}],["不支持的类型",{"2":{"45":2,"82":2,"83":2,"95":2}}],["自体归一化",{"2":{"129":2}}],["自体简化",{"2":{"55":2}}],["自然对数的底",{"2":{"26":1}}],["等价相等",{"2":{"55":2}}],["简化直线方程",{"2":{"55":2}}],["两直线方向向量的叉乘与两直线上任意一点的向量的点积为0",{"2":{"54":2}}],["两角的和为180°",{"2":{"7":2}}],["两角的和为90°",{"2":{"6":2}}],["充要条件",{"2":{"54":2}}],["判断两个向量是否相等",{"2":{"137":2}}],["判断两个向量是否平行",{"2":{"128":2}}],["判断两个向量是否近似平行",{"2":{"127":2}}],["判断两个向量是否近似相等",{"2":{"124":2}}],["判断两个数是否近似相等",{"2":{"117":2}}],["判断两个点是否相等",{"2":{"105":2}}],["判断两个点是否近似相等",{"2":{"101":2}}],["判断两个平面是否等价",{"2":{"96":2}}],["判断两个平面是否平行",{"2":{"87":2}}],["判断两个平面是否近似相等",{"2":{"81":2}}],["判断两条直线是否等价",{"2":{"58":2}}],["判断两条直线是否共面",{"2":{"54":2}}],["判断两条直线是否共线",{"2":{"52":2}}],["判断两条直线是否平行",{"2":{"51":2}}],["判断两条直线是否近似平行",{"2":{"50":2}}],["判断两条直线是否近似相等",{"2":{"43":2}}],["判断点是否在直线上",{"2":{"53":2}}],["另一个向量或数",{"2":{"145":2}}],["另一个向量或点",{"2":{"136":2,"141":2}}],["另一个向量",{"2":{"124":2,"125":2,"126":2,"127":2,"128":2,"137":2,"147":2}}],["另一个点或向量",{"2":{"104":2}}],["另一个点",{"2":{"101":2,"105":2,"106":2,"138":2,"142":2}}],["另一个平面或点",{"2":{"83":2}}],["另一个平面或直线",{"2":{"82":2,"95":2}}],["另一个平面",{"2":{"81":2,"84":2,"87":2,"96":2}}],["另一",{"2":{"51":2,"52":2,"54":2}}],["另一条直线或点",{"2":{"45":2}}],["另一条直线",{"2":{"43":2,"44":2,"46":2,"50":2,"57":2,"58":2}}],["则两向量平行",{"2":{"126":2}}],["则同一个t对应的点不同",{"2":{"48":2}}],["则其在点$",{"2":{"37":1}}],["则其在点",{"2":{"37":1}}],["但起始点和方向向量不同",{"2":{"48":2}}],["同一条直线",{"2":{"48":2}}],["垂线",{"2":{"47":2}}],["指定点",{"2":{"47":2,"86":2}}],["直线",{"2":{"56":2,"85":2,"91":4,"92":2}}],["直线不共面",{"2":{"46":2}}],["直线平行",{"2":{"46":2}}],["直线上的一点",{"2":{"42":2}}],["距离",{"2":{"45":2,"83":2}}],["夹角",{"2":{"44":2,"82":2,"125":2}}],["是否只返回负数的符号",{"2":{"118":2,"119":2}}],["是否相等",{"2":{"105":2,"137":2}}],["是否等价",{"2":{"58":2,"96":2}}],["是否共面",{"2":{"54":2}}],["是否共线",{"2":{"52":2}}],["是否在直线上",{"2":{"53":2}}],["是否平行",{"2":{"51":2,"87":2,"128":2}}],["是否近似平行",{"2":{"50":2,"127":2}}],["是否近似相等",{"2":{"43":2,"81":2,"101":2,"117":2,"124":2}}],["是否为弧度",{"2":{"5":2}}],["误差",{"2":{"43":2,"50":2,"101":2,"117":2,"124":2,"127":2}}],["方向向量",{"2":{"42":2,"109":1}}],["三元数组函数",{"2":{"73":1}}],["三元单变量函数",{"2":{"72":1}}],["三元函数",{"2":{"37":2,"74":1}}],["三维空间中的线段",{"2":{"109":2}}],["三维空间中的直线",{"2":{"42":2}}],["三维向量",{"2":{"39":1,"59":1}}],["三维线段",{"2":{"39":1,"59":1}}],["三维点",{"2":{"39":1,"59":1}}],["三维平面",{"2":{"39":1,"59":1}}],["三维直线",{"2":{"39":1,"59":1}}],["导入的类有",{"2":{"39":1,"59":1}}],["本包定义了一些常用的导入",{"2":{"39":1,"59":1}}],["本模块塞了一些预设",{"2":{"155":1,"162":1}}],["本模块用于内部类型提示",{"2":{"60":1}}],["本模块定义了3维向量的类vector3",{"2":{"121":1}}],["本模块定义了粒子生成相关的工具",{"2":{"120":1,"154":1}}],["本模块定义了一些常用的工具函数",{"2":{"110":1}}],["本模块定义了一些常用的常量",{"2":{"24":1}}],["本模块定义了三维空间中点的类",{"2":{"98":1}}],["本模块定义了三维空间中的线段类",{"2":{"107":1}}],["本模块定义了三维空间中的平面类",{"2":{"78":1}}],["本模块定义了三维空间中的直线类",{"2":{"40":1}}],["本模块定义了方程相关的类和函数以及一些常用的数学函数",{"2":{"31":1}}],["本模块定义了角度相关的类",{"2":{"2":1}}],["本模块是主模块",{"2":{"0":1,"1":1}}],["help",{"2":{"169":1}}],["have",{"2":{"84":1}}],["html",{"2":{"43":2,"45":2,"46":1,"49":1,"50":2,"51":1,"52":1,"53":1,"54":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":2,"84":1,"85":1,"87":1,"95":2,"96":1,"100":1,"101":2,"105":1,"111":1,"117":2,"118":3,"119":3,"123":1,"124":2,"127":2,"128":1,"130":1,"131":1,"137":1,"145":1,"147":1}}],["https",{"2":{"38":1,"43":2,"45":2,"46":1,"49":1,"50":2,"51":1,"52":1,"53":1,"54":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":2,"84":1,"85":1,"87":1,"95":2,"96":1,"100":1,"101":2,"105":1,"111":1,"117":2,"118":3,"119":3,"123":1,"124":2,"127":2,"128":1,"130":1,"131":1,"137":1,"145":1,"147":1}}],["high",{"2":{"35":2}}],["hide",{"2":{"35":2,"38":1}}],["6",{"2":{"38":2}}],["3维向量",{"2":{"123":2}}],["3a",{"2":{"45":2,"46":1,"49":1,"50":2,"51":1,"52":1,"53":1,"54":1,"58":1,"80":1,"82":1,"83":2,"84":1,"85":1,"87":1,"95":2,"96":1,"123":1,"124":2,"127":2,"128":1,"130":1,"131":1,"137":1,"145":1,"147":1}}],["355859667",{"2":{"38":1}}],["3",{"2":{"38":2,"43":2,"45":2,"46":1,"49":1,"50":2,"51":1,"52":1,"53":1,"54":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":2,"84":1,"85":1,"87":1,"95":2,"96":1,"100":1,"101":2,"105":1,"111":1,"117":2,"118":3,"119":3,"123":1,"124":2,"127":2,"128":1,"131":1,"137":1,"145":1,"147":1}}],["3vf",{"0":{"37":1},"2":{"37":1}}],["bbb",{"0":{"166":1}}],["by",{"2":{"80":2}}],["bound=iterable",{"2":{"64":1}}],["bound=number",{"2":{"63":1}}],["bool=false",{"2":{"5":1,"118":1,"119":1}}],["bool",{"0":{"5":1,"43":1,"50":1,"51":1,"52":1,"53":1,"54":1,"58":1,"81":1,"87":1,"96":1,"101":1,"117":1,"118":1,"119":1,"124":1,"127":1,"128":1},"2":{"43":3,"50":3,"51":3,"52":3,"53":3,"54":3,"58":3,"81":3,"87":3,"96":3,"101":3,"105":2,"117":3,"118":2,"119":2,"124":3,"127":3,"128":3,"137":2}}],["b",{"0":{"80":1},"2":{"38":4,"80":5,"81":7,"83":2,"84":12,"85":2,"88":1,"89":3}}],["示例",{"2":{"38":1}}],["柯里化后的函数",{"2":{"38":2}}],["柯理化",{"2":{"38":2}}],["函数式编程",{"2":{"38":1}}],["函数",{"2":{"38":2}}],["有关函数柯里化",{"2":{"38":2}}],["对多参数函数进行柯里化",{"2":{"38":2}}],["ddd",{"0":{"168":1}}],["d",{"0":{"80":1},"2":{"80":7,"81":6,"83":1,"84":6,"85":1,"89":2}}],["documentation",{"2":{"169":1}}],["doc",{"2":{"130":1}}],["docs",{"2":{"43":2,"45":2,"46":1,"49":1,"50":2,"51":1,"52":1,"53":1,"54":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":2,"84":1,"85":1,"87":1,"95":2,"96":1,"100":1,"101":2,"105":1,"111":1,"117":2,"118":3,"119":3,"123":1,"124":2,"127":2,"128":1,"131":1,"137":1,"145":1,"147":1}}],["do",{"2":{"46":2}}],["distance",{"0":{"45":1,"83":1},"2":{"45":1,"83":1}}],["direction",{"0":{"42":1},"2":{"42":5,"43":1,"44":2,"45":8,"46":6,"47":1,"48":1,"49":3,"50":2,"51":2,"52":1,"53":1,"54":2,"55":4,"56":2,"58":3,"82":1,"84":2,"85":4,"91":1,"92":1,"95":1,"109":2}}],["dz",{"2":{"37":2}}],["dy",{"2":{"37":2}}],["dx",{"2":{"37":2}}],["demo",{"0":{"163":1}}],["density",{"0":{"158":1,"161":1},"2":{"158":4,"161":4}}],["derivative",{"0":{"35":1},"2":{"35":6}}],["degree",{"0":{"8":1},"2":{"8":1}}],["def",{"0":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"158":1,"161":1},"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"21":1,"22":1,"35":2,"38":2,"56":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"102":1,"103":1,"130":1,"131":1,"132":1,"134":1,"135":1,"139":1,"140":1,"143":1,"144":1,"158":1,"161":1}}],["$处的梯度向量为",{"2":{"37":1}}],["$",{"2":{"37":3}}],["梯度",{"2":{"37":2}}],["点乘结果",{"2":{"147":2}}],["点乘",{"2":{"147":2}}],["点乘使用",{"2":{"145":2}}],["点3",{"2":{"90":2}}],["点法式构造",{"2":{"89":2}}],["点2",{"2":{"56":2,"90":2}}],["点1",{"2":{"56":2,"90":2}}],["点",{"2":{"37":2,"48":2,"53":2}}],["∂f∂z",{"2":{"37":1}}],["∂f∂y",{"2":{"37":1}}],["∂f∂x",{"2":{"37":1}}],["∇f",{"2":{"37":1}}],["计算平行于该平面且过指定点的平面",{"2":{"86":2}}],["计算平面与直线的交点",{"2":{"85":2}}],["计算平面与平面或点之间的距离",{"2":{"83":2}}],["计算平面与平面之间的夹角",{"2":{"82":2}}],["计算两个向量之间的夹角",{"2":{"125":2}}],["计算两平面的交线",{"2":{"84":2}}],["计算两条直线点集合的交集",{"2":{"57":2}}],["计算两条直线的交点",{"2":{"46":2}}],["计算直线经过指定点p的垂线",{"2":{"47":2}}],["计算直线和直线或点之间的距离",{"2":{"45":2}}],["计算直线和直线之间的夹角",{"2":{"44":2}}],["计算三元函数在某点的梯度向量",{"2":{"37":2}}],["计算曲线上的点",{"2":{"34":2}}],["v3",{"2":{"126":2}}],["v2",{"2":{"58":2,"90":2,"91":4,"126":2}}],["v1",{"2":{"58":4,"90":2,"91":2,"126":2}}],["vector",{"0":{"121":1},"1":{"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"150":1,"151":1,"152":1,"153":1},"2":{"42":1,"88":1,"89":1,"104":1,"106":3,"145":1}}],["vector3",{"0":{"37":1,"42":1,"88":1,"89":1,"102":1,"106":1,"122":1,"124":1,"125":1,"126":2,"127":1,"128":1,"132":1,"134":2,"139":2,"143":2,"144":1,"145":2,"146":1,"147":1,"148":1,"149":1,"150":1},"1":{"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1},"2":{"37":2,"39":1,"42":3,"59":1,"88":4,"89":3,"91":1,"102":1,"104":2,"106":7,"114":2,"124":3,"125":3,"126":7,"127":3,"128":4,"132":3,"134":2,"136":7,"137":2,"139":2,"141":7,"142":1,"143":2,"144":1,"145":9,"146":1,"147":3,"148":2,"149":4,"150":2,"151":2,"152":2,"153":2}}],["v",{"2":{"35":2,"104":2,"106":4,"136":8,"138":2,"141":8,"142":2}}],["var",{"0":{"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"34":1,"35":1,"38":1,"61":1,"62":1,"63":1,"64":1,"65":2,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"150":1,"151":1,"152":1,"153":1},"2":{"33":3,"34":1,"35":14,"37":1,"38":7,"48":1,"49":1}}],["valueerror",{"2":{"35":3,"46":4,"84":3,"85":3}}],["value",{"0":{"5":1,"113":1},"2":{"5":5,"113":5,"114":6,"115":1}}],["求高阶偏导函数",{"2":{"35":1}}],["求n元函数一阶偏导函数",{"2":{"35":2}}],["l2",{"0":{"91":1},"2":{"91":5}}],["l1",{"0":{"91":1},"2":{"91":7}}],["lambda",{"2":{"49":3}}],["left",{"2":{"37":1}}],["length",{"0":{"131":1},"2":{"45":5,"46":1,"82":2,"109":2,"125":2,"127":1,"129":5,"131":1,"132":1,"133":1}}],["len",{"2":{"34":1}}],["linalg",{"2":{"84":3}}],["lines",{"0":{"91":1},"2":{"46":2,"91":1}}],["line",{"0":{"40":1,"92":2},"1":{"41":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1},"2":{"43":1,"44":1,"45":1,"46":1,"47":1,"50":1,"51":1,"52":1,"54":1,"56":1,"57":2,"58":1,"82":1,"84":1,"85":2,"91":1,"92":6,"95":2}}],["line3",{"0":{"41":1,"43":1,"44":1,"45":1,"46":1,"47":1,"50":1,"51":1,"52":1,"54":1,"56":1,"57":2,"82":1,"84":2,"85":1,"91":2,"92":1,"93":1,"94":1,"97":1},"1":{"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1},"2":{"39":1,"43":3,"44":3,"45":4,"46":3,"47":4,"50":3,"51":3,"52":3,"54":3,"56":3,"57":6,"58":2,"59":1,"82":4,"84":5,"85":3,"91":5,"92":3,"93":1,"94":1,"95":6,"97":1,"114":1}}],["library",{"2":{"43":2,"45":2,"46":1,"49":1,"50":2,"51":1,"52":1,"53":1,"54":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":2,"84":1,"85":1,"87":1,"95":2,"96":1,"100":1,"101":2,"105":1,"111":1,"117":2,"118":3,"119":3,"123":1,"124":2,"127":2,"128":1,"131":1,"137":1,"145":1,"147":1}}],["list",{"2":{"35":8,"158":10,"161":10}}],["litedoc",{"2":{"35":2,"38":1}}],["`np",{"2":{"130":1}}],["`none`",{"2":{"57":1,"95":1}}],["``x2",{"2":{"126":1}}],["``x1",{"2":{"126":1}}],["``i",{"2":{"126":1}}],["```",{"2":{"38":1}}],["```python",{"2":{"38":1}}],["`str`",{"2":{"118":1,"119":1}}],["`plane3`",{"2":{"81":1,"82":1,"83":1,"84":1,"86":1,"87":1,"89":1,"95":1,"96":1}}],["`point3`",{"2":{"37":1,"42":1,"45":1,"46":1,"47":1,"48":1,"53":1,"56":2,"57":1,"83":1,"85":1,"86":1,"89":1,"90":3,"92":1,"95":1,"101":1,"104":2,"105":1,"106":1,"109":2,"136":2,"138":2,"141":2,"142":2}}],["`onesinglevarfunc`",{"2":{"49":3}}],["`onevarfunc`",{"2":{"33":3}}],["`realnumber`",{"2":{"48":1,"113":1}}],["`tuple`",{"2":{"49":1}}],["`typeerror`",{"2":{"45":1,"82":1,"83":1,"95":1}}],["`threesinglevarsfunc`",{"2":{"37":1}}],["`anyangle`",{"2":{"44":1,"82":1,"125":1}}],["`bool`",{"2":{"43":1,"50":1,"51":1,"52":1,"53":1,"54":1,"58":1,"81":1,"87":1,"96":1,"101":1,"105":1,"117":1,"118":1,"119":1,"124":1,"127":1,"128":1,"137":1}}],["`float`",{"2":{"43":1,"45":1,"50":1,"80":4,"83":1,"100":3,"101":1,"111":4,"117":3,"118":1,"119":1,"123":3,"124":1,"127":1,"131":1,"145":1,"147":1}}],["`line3`",{"2":{"43":1,"44":1,"45":1,"46":1,"47":1,"50":1,"51":1,"52":1,"54":1,"56":1,"57":2,"58":1,"82":1,"84":1,"85":1,"91":2,"92":1,"95":2}}],["`valueerror`",{"2":{"46":2,"84":1,"85":1}}],["`var`",{"2":{"38":1}}],["`vector3`",{"2":{"42":1,"88":1,"89":1,"104":1,"106":2,"124":1,"125":1,"126":2,"127":1,"128":1,"132":1,"136":2,"137":1,"141":2,"145":2,"147":1,"149":1}}],["`multivarsfunc`",{"2":{"35":1,"38":1}}],["无效变量类型",{"2":{"35":2}}],["引发",{"2":{"35":1,"45":1,"46":1,"82":1,"83":1,"84":1,"85":1,"95":1}}],["偏导函数",{"2":{"35":2}}],["偏移量",{"2":{"35":2,"37":2}}],["高阶偏导数值",{"2":{"35":1}}],["高阶偏导",{"2":{"35":2}}],["可直接从mbcp",{"2":{"39":1,"59":1}}],["可参考",{"2":{"38":1}}],["可参考函数式编程",{"2":{"38":1}}],["可为整数",{"2":{"35":2}}],["可导入",{"2":{"0":1,"1":1}}],["因此该函数的稳定性有待提升",{"2":{"35":2}}],["目前数学界对于一个函数的导函数并没有通解的说法",{"2":{"35":2}}],["目标点",{"2":{"34":2}}],["warning",{"2":{"35":2}}],["慎用",{"2":{"35":2}}],["这玩意不太稳定",{"2":{"35":2}}],["num",{"2":{"158":5,"161":5}}],["numpy",{"2":{"130":2}}],["numpy数组",{"2":{"130":2}}],["number=epsilon",{"2":{"35":1}}],["number",{"0":{"35":1,"62":1},"2":{"64":1}}],["ndarray`",{"2":{"130":1}}],["ndarray",{"0":{"130":1},"2":{"130":3}}],["neg",{"0":{"118":1,"119":1},"2":{"118":4,"119":4,"149":1}}],["negative",{"0":{"10":1},"2":{"10":1}}],["ne",{"0":{"116":1},"2":{"116":1}}],["np",{"0":{"130":2},"2":{"84":9,"130":4,"158":9,"161":9}}],["no",{"2":{"84":1}}],["normal",{"0":{"88":1,"89":2},"2":{"82":5,"84":4,"85":1,"86":2,"87":2,"88":1,"89":7,"90":3,"91":1,"92":1,"95":3}}],["normalize",{"0":{"129":1},"2":{"55":1,"129":1}}],["none",{"0":{"57":1,"93":1,"94":1},"2":{"57":4,"93":1,"94":1,"95":4}}],["not",{"2":{"45":1,"46":4,"57":1,"116":1,"118":1,"119":1}}],["nabla",{"2":{"37":1}}],["n元函数",{"2":{"35":2}}],["|",{"0":{"34":1,"35":1,"45":1,"57":2,"82":1,"83":1,"93":1,"94":1,"145":2},"2":{"34":1,"35":1,"45":3,"57":6,"61":1,"62":1,"65":1,"68":1,"71":1,"74":1,"77":1,"82":3,"83":3,"93":1,"94":1,"95":6,"104":2,"136":4,"141":4,"145":4}}],["曲线方程",{"2":{"33":2,"39":1,"59":1}}],["z轴单位向量",{"2":{"153":1}}],["z轴分量",{"2":{"123":2}}],["z2``",{"2":{"126":1}}],["z1``",{"2":{"126":1}}],["zero",{"0":{"150":1},"2":{"91":1,"128":1}}],["z系数",{"2":{"80":2}}],["zhihu",{"2":{"38":1}}],["zhuanlan",{"2":{"38":1}}],["z0",{"2":{"37":2}}],["zip",{"2":{"34":1}}],["z函数",{"2":{"33":2}}],["z",{"0":{"33":1,"100":1,"123":1,"153":1},"2":{"33":5,"34":4,"37":11,"49":2,"55":4,"83":1,"84":4,"85":4,"89":2,"100":7,"101":2,"104":2,"105":2,"106":2,"109":2,"114":2,"123":5,"124":2,"126":4,"129":1,"130":1,"131":1,"136":4,"137":2,"138":2,"141":4,"142":2,"145":3,"147":2,"148":1,"149":1,"158":2,"161":2}}],["y轴单位向量",{"2":{"152":1}}],["y轴分量",{"2":{"123":2}}],["y2",{"2":{"126":1}}],["y1",{"2":{"126":1}}],["y系数",{"2":{"80":2}}],["y0",{"2":{"37":2}}],["y函数",{"2":{"33":2}}],["y",{"0":{"33":1,"100":1,"117":1,"123":1,"152":1},"2":{"33":5,"34":4,"37":11,"49":2,"55":4,"83":1,"84":4,"85":4,"89":2,"100":7,"101":2,"104":2,"105":2,"106":2,"109":2,"114":2,"117":4,"123":5,"124":2,"126":4,"129":1,"130":1,"131":1,"136":4,"137":2,"138":2,"141":4,"142":2,"145":3,"147":2,"148":1,"149":1,"158":2,"161":2}}],["x轴单位向量",{"2":{"151":1}}],["x轴分量",{"2":{"123":2}}],["x3c",{"2":{"101":3,"114":1,"117":1,"118":1,"119":1,"124":3,"127":1}}],["x26",{"2":{"95":1}}],["x系数",{"2":{"80":2}}],["x0",{"2":{"37":2}}],["x函数",{"2":{"33":2}}],["x",{"0":{"33":1,"100":1,"111":1,"117":1,"118":1,"119":1,"123":1,"151":1},"2":{"33":5,"34":4,"37":11,"49":2,"55":2,"83":1,"84":4,"85":4,"89":2,"100":7,"101":2,"104":2,"105":2,"106":2,"109":2,"111":4,"114":2,"117":4,"118":5,"119":8,"123":5,"124":2,"126":4,"129":1,"130":1,"131":1,"136":4,"137":2,"138":2,"141":4,"142":2,"145":3,"147":2,"148":1,"149":1,"158":2,"161":2}}],["约等于判定误差",{"2":{"30":1}}],["精度误差",{"2":{"29":1}}],["06",{"0":{"50":1},"2":{"50":1}}],["001",{"2":{"30":1}}],["0001",{"2":{"29":1}}],["0",{"0":{"117":2},"2":{"28":1,"29":1,"30":1,"34":3,"37":6,"45":2,"54":1,"55":8,"80":2,"81":3,"83":2,"84":9,"85":1,"95":1,"117":1,"118":2,"119":4,"150":3,"151":2,"152":2,"153":2,"158":2,"161":2}}],["欧拉常数",{"2":{"28":1}}],["5772156649015329",{"2":{"28":1}}],["5",{"2":{"27":1,"83":1}}],["黄金分割比",{"2":{"27":1}}],["geometricmodels",{"0":{"157":1,"160":1},"1":{"158":1,"161":1}}],["generated",{"2":{"130":1}}],["get",{"0":{"35":1,"48":1,"49":1},"2":{"35":2,"48":1,"49":1,"85":1,"91":1}}],["gradient",{"0":{"37":1},"2":{"37":1}}],["gamma",{"0":{"28":1}}],["golden",{"0":{"27":1}}],["gt",{"0":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"19":1,"20":1,"21":1,"22":1,"34":1,"35":1,"37":1,"38":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"96":1,"97":1,"101":1,"102":1,"103":1,"106":1,"111":1,"117":1,"118":1,"119":1,"124":1,"125":1,"126":1,"127":1,"128":1,"130":1,"131":1,"132":1,"134":1,"135":1,"138":1,"139":1,"140":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1},"2":{"104":2,"106":2,"119":3,"126":1,"136":2,"138":1,"141":2,"142":1}}],["默认值",{"2":{"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"150":1,"151":1,"152":1,"153":1}}],["默认为否",{"2":{"5":2}}],["π",{"2":{"25":1}}],["to",{"2":{"169":1}}],["theta",{"2":{"158":3,"161":3}}],["the",{"2":{"85":2,"169":1}}],["three",{"0":{"90":1},"2":{"90":1}}],["threevarsfunc",{"0":{"74":1}}],["threearraysfunc",{"0":{"73":1},"2":{"74":1}}],["threesinglevarsfunc",{"0":{"37":1,"72":1},"2":{"37":3,"74":1}}],["twovarsfunc",{"0":{"71":1}}],["twoarraysfunc",{"0":{"70":1},"2":{"71":1}}],["twosinglevarsfunc",{"0":{"69":1},"2":{"71":1}}],["two",{"0":{"56":1,"91":1},"2":{"56":1,"91":1}}],["tip",{"2":{"37":2,"38":2}}],["typevar",{"2":{"63":1,"64":1}}],["typealias",{"2":{"61":1,"62":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1}}],["typeerror",{"2":{"45":3,"46":1,"82":3,"83":3,"95":3,"115":1,"136":1,"141":1,"142":1,"145":1}}],["type",{"0":{"115":1},"2":{"35":1,"45":1,"82":2,"83":2,"95":2,"114":2,"115":4,"136":2,"141":2,"142":2,"145":2}}],["typing",{"0":{"60":1},"1":{"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1},"2":{"33":3,"35":1,"37":1,"38":2,"48":1,"49":1,"113":1}}],["tuple",{"0":{"34":1,"35":1,"49":1},"2":{"34":2,"35":2,"49":3}}],["t",{"0":{"34":1,"48":1},"2":{"34":10,"48":4,"49":6,"85":4}}],["truediv",{"2":{"21":1,"22":1,"23":1,"148":1}}],["tan",{"0":{"13":1},"2":{"13":2,"14":1}}],["operand",{"2":{"95":1,"136":1,"141":1,"142":1,"145":1}}],["only",{"0":{"118":1,"119":1},"2":{"118":4,"119":4}}],["on",{"0":{"53":1},"2":{"53":1}}],["onearrayfunc",{"0":{"67":1},"2":{"68":1}}],["onesinglevarfunc",{"0":{"49":3,"66":1},"2":{"49":7,"68":1}}],["onevarfunc",{"0":{"33":3,"38":1,"68":1},"2":{"33":9,"38":1}}],["or",{"2":{"57":1,"85":1}}],["org",{"2":{"43":2,"45":2,"46":1,"49":1,"50":2,"51":1,"52":1,"53":1,"54":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":2,"84":1,"85":1,"87":1,"95":2,"96":1,"100":1,"101":2,"105":1,"111":1,"117":2,"118":3,"119":3,"123":1,"124":2,"127":2,"128":1,"130":1,"131":1,"137":1,"145":1,"147":1}}],["order",{"2":{"35":2}}],["overload",{"2":{"20":1,"21":2,"22":1,"92":1,"93":2,"94":1,"101":1,"102":2,"103":1,"133":1,"134":2,"135":1,"138":1,"139":2,"140":1,"142":1,"143":2,"144":1}}],["other",{"0":{"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"43":1,"44":1,"45":1,"46":1,"50":1,"51":1,"52":1,"54":1,"57":1,"58":1,"81":1,"82":1,"83":1,"84":1,"85":1,"87":1,"93":1,"94":1,"95":1,"96":1,"97":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"114":1,"115":1,"116":1,"124":1,"125":1,"126":1,"127":1,"128":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1},"2":{"17":2,"18":2,"19":2,"20":2,"21":1,"22":1,"23":4,"43":5,"44":4,"45":13,"46":9,"50":4,"51":4,"52":5,"54":5,"57":7,"58":5,"81":15,"82":9,"83":9,"84":17,"85":11,"87":4,"93":1,"94":1,"95":10,"96":4,"97":2,"101":6,"102":1,"103":1,"104":6,"105":6,"106":6,"114":9,"115":2,"116":2,"124":6,"125":5,"126":9,"127":4,"128":4,"134":1,"135":1,"136":12,"137":6,"138":6,"139":1,"140":1,"141":12,"142":8,"143":1,"144":1,"145":12,"146":2,"147":6,"148":4}}],["error",{"0":{"115":1},"2":{"114":2,"115":1}}],["exceptions",{"2":{"45":1,"46":1,"82":1,"83":1,"84":1,"85":1,"95":1}}],["examples",{"2":{"38":1}}],["exp",{"2":{"26":1}}],["elif",{"2":{"35":1,"45":3,"57":1,"81":2,"82":1,"83":1,"84":2,"95":1,"114":1,"118":1,"119":1,"136":1,"141":1,"145":1}}],["else",{"2":{"5":1,"34":1,"35":1,"45":2,"57":1,"81":1,"82":1,"83":1,"95":1,"114":2,"118":2,"119":2,"136":1,"141":1,"142":1,"145":1}}],["epsilon",{"0":{"29":1,"35":2,"37":2,"43":1,"50":1,"101":1,"117":1,"124":1,"127":1},"2":{"35":7,"37":12,"43":5,"50":4,"101":6,"117":4,"124":6,"127":4}}],["e",{"0":{"26":1},"2":{"26":1}}],["equations",{"0":{"49":1},"2":{"49":1,"85":1}}],["equation",{"0":{"31":1},"1":{"32":1,"33":1,"34":1,"35":1}}],["eq",{"0":{"18":1,"58":1,"96":1,"105":1,"114":1,"137":1},"2":{"18":1,"58":1,"96":1,"105":1,"114":1,"116":1,"137":1}}],["+1",{"2":{"119":2}}],["+=",{"2":{"35":1}}],["+",{"0":{"17":1,"102":1,"103":1,"104":1,"134":1,"135":1,"136":1,"138":1},"2":{"17":1,"27":1,"37":3,"38":4,"46":1,"48":1,"49":3,"80":6,"83":5,"85":5,"104":7,"109":3,"118":3,"119":3,"131":2,"136":11,"138":5,"147":2,"158":1,"161":1}}],["1e",{"0":{"50":1}}],["1",{"2":{"14":1,"15":1,"16":1,"26":1,"27":1,"34":1,"38":2,"91":1,"119":6,"151":1,"152":1,"153":1,"158":4,"161":4}}],["180",{"2":{"5":1,"8":1}}],["正割值",{"2":{"15":4}}],["正切值",{"2":{"13":4}}],["正弦值",{"2":{"11":4}}],["余割值",{"2":{"16":4}}],["余切值",{"2":{"14":4}}],["余弦值",{"2":{"12":4}}],["余角",{"2":{"6":4}}],["最大值",{"2":{"111":2}}],["最大负角度",{"2":{"10":2}}],["最大负角",{"2":{"10":2}}],["最小值",{"2":{"111":2}}],["最小正角度",{"2":{"9":2}}],["最小正角",{"2":{"9":2}}],["弧度",{"2":{"8":2}}],["角度",{"2":{"8":2}}],["角度或弧度值",{"2":{"5":2}}],["补角",{"2":{"7":4}}],["sphere",{"0":{"158":1,"161":1},"2":{"158":1,"161":1}}],["staticmethod",{"2":{"157":1,"158":1,"160":1,"161":1}}],["stable",{"2":{"130":1}}],["str",{"0":{"118":1,"119":1},"2":{"118":3,"119":3}}],["stdtypes",{"2":{"49":1}}],["s",{"2":{"95":1,"136":1,"141":1,"142":1,"145":1}}],["solve",{"2":{"84":3}}],["sign",{"0":{"118":1,"119":1},"2":{"118":1,"119":1}}],["simplify",{"0":{"55":1},"2":{"55":1}}],["singlevar",{"0":{"63":1},"2":{"63":1,"65":1,"66":2,"69":3,"72":4,"75":1}}],["sin",{"0":{"11":1},"2":{"11":2,"16":1,"158":3,"161":3}}],["sqrt",{"2":{"27":1,"131":1,"158":1,"161":1}}],["sub",{"2":{"19":1,"106":1,"139":1,"140":1,"141":1}}],["supplementary",{"0":{"7":1},"2":{"7":1}}],["segment",{"0":{"107":1},"1":{"108":1,"109":1}}],["segment3",{"0":{"108":1},"1":{"109":1},"2":{"39":1,"59":1}}],["sec",{"0":{"15":1},"2":{"15":1}}],["self",{"0":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"113":1,"114":1,"115":1,"116":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1},"2":{"5":3,"6":2,"7":2,"8":2,"9":2,"10":2,"11":2,"12":2,"13":2,"14":2,"15":2,"16":2,"17":2,"18":2,"19":2,"20":2,"21":1,"22":1,"23":3,"33":4,"34":7,"42":3,"43":4,"44":2,"45":13,"46":8,"47":3,"48":3,"49":7,"50":2,"51":2,"52":4,"53":3,"54":3,"55":8,"57":6,"58":4,"80":5,"81":16,"82":4,"83":8,"84":15,"85":9,"86":2,"87":2,"88":4,"93":1,"94":1,"95":5,"96":2,"97":2,"100":4,"101":4,"102":1,"103":1,"104":4,"105":4,"106":4,"109":15,"113":2,"114":9,"115":2,"116":2,"123":4,"124":4,"125":3,"126":7,"127":2,"128":2,"129":5,"130":4,"131":4,"132":3,"133":2,"134":1,"135":1,"136":7,"137":4,"138":4,"139":1,"140":1,"141":7,"142":4,"143":1,"144":1,"145":7,"146":2,"147":4,"148":4,"149":4}}],["2",{"2":{"6":1,"9":1,"10":1,"27":1,"35":1,"37":3,"38":2,"46":1,"83":3,"109":3,"131":3,"158":2,"161":2}}],["rmul",{"2":{"146":1}}],["rsub",{"2":{"142":1}}],["right",{"2":{"37":1}}],["reference",{"0":{"169":1},"2":{"130":1}}],["realnumber",{"0":{"48":1,"61":1,"113":1,"144":1,"146":1,"147":1,"148":1},"2":{"48":3,"62":1,"113":3,"144":1,"146":1,"147":1,"148":1}}],["result",{"2":{"35":4}}],["return",{"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"23":2,"34":2,"35":4,"37":1,"38":4,"43":1,"44":1,"45":5,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":3,"58":1,"81":4,"82":2,"83":2,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"95":4,"96":1,"97":1,"101":1,"104":1,"105":1,"106":1,"111":1,"114":2,"116":1,"117":1,"118":3,"119":3,"124":1,"125":1,"126":1,"127":1,"128":1,"130":1,"131":1,"132":1,"133":1,"136":2,"137":1,"138":1,"141":2,"142":1,"145":2,"146":1,"147":1,"148":1,"149":1,"158":1,"161":1}}],["returns",{"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"34":1,"35":2,"37":1,"38":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"95":1,"96":1,"101":1,"104":1,"105":1,"106":1,"111":1,"117":1,"118":1,"119":1,"124":1,"125":1,"126":1,"127":1,"128":1,"130":1,"131":1,"132":1,"136":1,"137":1,"138":1,"141":1,"142":1,"145":1,"147":1,"149":1,"158":1,"161":1}}],["range",{"2":{"158":2,"161":2}}],["rand",{"0":{"97":1},"2":{"97":1}}],["radius",{"0":{"158":1,"161":1},"2":{"158":7,"161":7}}],["radian=true",{"2":{"6":1,"7":1,"10":1,"17":1,"19":1,"20":1,"23":1,"82":1,"125":1}}],["radian",{"0":{"5":1},"2":{"5":6,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":2,"18":2,"19":2,"20":1,"23":3}}],["radd",{"2":{"138":1}}],["raise",{"0":{"115":1},"2":{"35":1,"45":1,"46":2,"82":1,"83":1,"84":1,"85":1,"95":1,"114":2,"115":2,"136":1,"141":1,"142":1,"145":1}}],["raises",{"2":{"35":1,"45":1,"46":1,"82":1,"83":1,"84":1,"85":1,"95":1}}],["ratio",{"0":{"27":1}}],[">",{"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"19":1,"20":1,"21":1,"22":1,"34":1,"35":5,"37":3,"38":6,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"96":1,"97":1,"101":1,"102":1,"103":1,"104":2,"106":3,"111":1,"117":1,"118":2,"119":5,"124":1,"125":1,"126":2,"127":1,"128":1,"130":1,"131":1,"132":1,"134":1,"135":1,"136":2,"138":2,"139":1,"140":1,"141":2,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1}}],["返回numpy数组",{"2":{"130":1}}],["返回如下行列式的结果",{"2":{"126":1}}],["返回",{"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"34":1,"35":1,"37":1,"38":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"95":1,"96":1,"101":1,"104":1,"105":1,"106":1,"111":1,"117":1,"118":1,"119":1,"124":1,"125":1,"126":1,"127":1,"128":1,"130":1,"131":1,"132":1,"136":1,"137":1,"138":1,"141":1,"142":1,"145":1,"147":1,"149":1,"158":1,"161":1}}],["cz",{"2":{"80":2}}],["clamp",{"0":{"111":1},"2":{"111":1,"158":1,"161":1}}],["classmethod",{"2":{"55":1,"56":1,"88":1,"89":2,"90":2,"91":2,"92":1}}],["class",{"0":{"3":1,"4":1,"32":1,"41":1,"79":1,"99":1,"108":1,"112":1,"122":1,"157":1,"160":1},"1":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"113":1,"114":1,"115":1,"116":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"158":1,"161":1},"2":{"37":1,"42":2,"43":1,"44":2,"45":2,"46":2,"47":2,"48":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":3,"57":3,"58":1,"81":1,"82":3,"83":2,"84":2,"85":2,"86":2,"87":1,"88":1,"89":3,"90":1,"91":1,"92":2,"95":4,"96":1,"101":1,"104":3,"105":1,"106":3,"109":2,"124":1,"125":2,"126":2,"127":1,"128":1,"132":1,"136":4,"137":1,"138":2,"141":4,"142":2,"145":2,"147":1,"149":1}}],["cls",{"0":{"56":1,"89":1,"90":1,"91":1,"92":1},"2":{"56":2,"89":2,"90":2,"91":2,"92":2}}],["cross",{"0":{"126":1},"2":{"45":4,"46":3,"47":1,"54":1,"84":1,"90":1,"91":1,"126":3,"127":1,"128":1}}],["c",{"0":{"80":1,"167":1},"1":{"168":1},"2":{"38":4,"80":5,"81":7,"83":2,"84":6,"85":2,"88":1,"89":3}}],["curried",{"2":{"38":6}}],["currying",{"2":{"38":2}}],["curry",{"0":{"38":1},"2":{"38":3}}],["curveequation",{"0":{"32":1},"1":{"33":1,"34":1},"2":{"39":1,"59":1}}],["cal",{"0":{"37":1,"44":1,"45":1,"46":1,"47":1,"82":1,"83":1,"84":1,"85":1,"86":1,"125":1},"2":{"37":1,"44":2,"45":1,"46":1,"47":1,"57":1,"82":2,"83":1,"84":1,"85":1,"86":1,"95":2,"97":1,"125":1}}],["callable",{"2":{"66":1,"67":1,"69":1,"70":1,"72":1,"73":1,"75":1,"76":1}}],["call",{"0":{"34":1},"2":{"34":1}}],["csc",{"0":{"16":1},"2":{"16":1}}],["coincident",{"2":{"85":1}}],["collinear",{"0":{"52":1},"2":{"52":1,"57":1}}],["coplanar",{"0":{"54":1},"2":{"45":1,"46":2,"54":1,"57":1}}],["complex",{"2":{"62":1}}],["complementary",{"0":{"6":1},"2":{"6":1,"82":1}}],["com",{"2":{"38":1}}],["constants",{"2":{"57":1,"95":1}}],["const",{"0":{"24":1},"1":{"25":1,"26":1,"27":1,"28":1,"29":1,"30":1}}],["cot",{"0":{"14":1},"2":{"14":1}}],["cos",{"0":{"12":1},"2":{"12":2,"15":1,"158":2,"161":2}}],["all",{"2":{"101":1,"114":1,"124":1}}],["acos",{"2":{"82":1,"125":1}}],["axis",{"0":{"151":1,"152":1,"153":1}}],["ax",{"2":{"80":2}}],["arccos",{"2":{"158":1,"161":1}}],["array",{"0":{"130":1},"2":{"84":6,"130":2,"158":6,"161":6}}],["arrayvar",{"0":{"64":1},"2":{"64":1,"65":1,"67":2,"70":3,"73":4,"76":1}}],["area",{"2":{"158":2,"161":2}}],["are",{"2":{"46":2,"84":1,"85":1}}],["args2",{"2":{"38":2}}],["args",{"0":{"38":1},"2":{"5":1,"33":1,"34":1,"35":14,"37":1,"38":5,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"89":1,"90":1,"91":1,"92":1,"95":1,"96":1,"100":1,"101":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"117":1,"118":1,"119":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"136":1,"137":1,"138":1,"141":1,"142":1,"145":1,"147":1,"158":1,"161":1}}],["abs",{"0":{"133":1},"2":{"45":1,"83":1,"101":3,"114":1,"117":1,"119":1,"124":3,"133":1}}],["a",{"0":{"80":1},"2":{"38":4,"80":5,"81":7,"83":2,"84":12,"85":2,"88":1,"89":3}}],["aaa",{"0":{"165":1},"1":{"166":1},"2":{"36":1}}],["approx",{"0":{"30":1,"43":2,"50":1,"81":1,"101":2,"112":1,"117":2,"124":2,"127":2},"1":{"113":1,"114":1,"115":1,"116":1},"2":{"18":1,"43":3,"50":2,"81":10,"96":1,"101":1,"105":3,"114":4,"117":1,"124":1,"127":1,"128":1,"137":3}}],["add",{"2":{"17":1,"38":8,"102":1,"103":1,"104":1,"134":1,"135":1,"136":1}}],["and",{"0":{"57":1,"89":1,"92":1,"93":1,"94":1,"95":1},"2":{"43":1,"46":2,"52":1,"57":1,"58":1,"81":6,"84":4,"85":1,"86":1,"89":1,"90":1,"91":1,"92":2,"93":1,"94":1,"95":2,"105":2,"115":1,"136":1,"137":2,"141":1,"142":1,"145":1}}],["anyangle",{"0":{"4":1,"6":1,"7":1,"9":1,"10":1,"17":2,"19":2,"20":1,"21":1,"22":1,"44":1,"82":1,"125":1},"1":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1},"2":{"6":2,"7":2,"9":2,"10":2,"17":3,"19":3,"20":2,"21":1,"22":1,"23":2,"39":1,"44":3,"59":1,"82":4,"125":4}}],["angle",{"0":{"2":1,"3":1,"4":1,"44":1,"82":1,"125":1},"1":{"3":1,"4":1,"5":2,"6":2,"7":2,"8":2,"9":2,"10":2,"11":2,"12":2,"13":2,"14":2,"15":2,"16":2,"17":2,"18":2,"19":2,"20":2,"21":2,"22":2,"23":2},"2":{"44":3,"82":3,"125":2}}],["在github上查看",{"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"158":1,"161":1}}],["或包装一个实数",{"2":{"117":2}}],["或整数元组",{"2":{"35":2}}],["或",{"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"158":1,"161":1}}],["源代码",{"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"158":1,"161":1}}],["参数方程",{"2":{"49":2}}],["参数t",{"2":{"48":2}}],["参数",{"2":{"5":1,"33":1,"34":3,"35":2,"37":1,"38":3,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"89":1,"90":1,"91":1,"92":1,"95":1,"96":1,"100":1,"101":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"117":1,"118":1,"119":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"136":1,"137":1,"138":1,"141":1,"142":1,"145":1,"147":1,"158":1,"161":1}}],["任意角度",{"2":{"5":2,"39":1,"59":1}}],["from",{"0":{"56":1,"89":1,"90":1,"91":1,"92":1},"2":{"56":1,"86":1,"89":1,"90":2,"91":2,"92":2,"106":1}}],["frac",{"2":{"37":3}}],["f",{"2":{"37":4,"82":1,"83":1,"95":1,"115":1,"119":3,"136":1,"141":1,"142":1,"145":1}}],["format",{"0":{"119":1},"2":{"119":1}}],["for",{"2":{"34":1,"35":1,"95":1,"136":1,"141":1,"142":1,"145":1,"158":2,"161":2}}],["functions",{"2":{"43":2,"45":1,"50":2,"51":1,"52":1,"53":1,"54":1,"58":1,"80":1,"81":1,"83":1,"87":1,"96":1,"100":1,"101":2,"105":1,"111":1,"117":2,"118":3,"119":3,"123":1,"124":2,"127":2,"128":1,"131":1,"137":1,"145":1,"147":1}}],["function",{"0":{"36":1},"1":{"37":1,"38":1}}],["func",{"0":{"33":3,"35":2,"37":1,"38":1},"2":{"33":15,"34":6,"35":16,"37":9,"38":6}}],["false",{"0":{"5":1,"118":1,"119":1},"2":{"81":1}}],["float=0",{"2":{"117":1}}],["float=1e",{"2":{"50":1}}],["float=approx",{"2":{"43":1,"101":1,"117":1,"124":1,"127":1}}],["float=epsilon",{"2":{"37":1}}],["float",{"0":{"5":1,"8":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"20":1,"21":1,"22":1,"37":1,"43":1,"45":1,"50":1,"80":4,"83":1,"100":3,"101":1,"111":4,"117":3,"118":1,"119":1,"123":3,"124":1,"127":1,"131":1,"145":1,"158":2,"161":2},"2":{"5":1,"8":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"20":1,"21":1,"22":1,"43":2,"45":3,"50":2,"61":1,"80":9,"83":3,"100":7,"101":2,"111":9,"114":2,"117":5,"118":3,"119":3,"123":7,"124":2,"127":2,"131":3,"145":4,"147":2,"158":2,"161":2}}],["==",{"2":{"34":1,"45":1,"54":1,"55":3,"85":1,"91":1,"95":1}}],["=",{"0":{"5":1,"17":1,"19":1,"20":1,"21":1,"22":1,"35":1,"37":1,"43":1,"50":1,"101":1,"102":1,"103":1,"106":1,"117":2,"118":1,"119":1,"124":1,"127":1,"134":1,"135":1,"138":1,"139":1,"140":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1},"2":{"5":2,"33":3,"35":5,"37":5,"38":2,"42":2,"55":3,"56":1,"80":6,"81":6,"84":17,"85":2,"89":2,"90":3,"91":3,"100":3,"109":5,"113":1,"123":3,"129":4,"158":7,"161":7}}],["improve",{"2":{"169":1}}],["import",{"2":{"106":1}}],["i",{"2":{"158":4,"161":4}}],["invalid",{"2":{"35":1}}],["intersect",{"2":{"46":2}}],["intersection",{"0":{"46":1,"84":1,"85":1},"2":{"46":1,"57":1,"84":2,"85":1,"95":2,"97":1}}],["int",{"0":{"35":2,"145":1},"2":{"35":3,"38":8,"61":1,"114":2,"145":2,"158":1,"161":1}}],["in",{"2":{"34":1,"35":1,"158":2,"161":2}}],["init",{"0":{"5":1,"33":1,"42":1,"80":1,"100":1,"109":1,"113":1,"123":1},"2":{"5":1,"33":1,"42":1,"80":1,"100":1,"109":1,"113":1,"123":1}}],["if",{"2":{"5":1,"23":1,"34":1,"35":1,"45":2,"46":2,"55":3,"57":1,"81":1,"82":1,"83":1,"84":2,"85":1,"91":1,"95":3,"114":3,"118":2,"119":2,"136":1,"141":1,"142":1,"145":1}}],["isinstance",{"2":{"23":1,"35":2,"45":2,"82":2,"83":2,"95":2,"114":4,"136":2,"141":2,"142":1,"145":2}}],["is",{"0":{"5":1,"50":1,"51":1,"52":1,"53":1,"54":1,"87":1,"127":1,"128":1},"2":{"5":4,"6":1,"7":1,"10":1,"17":1,"19":1,"20":1,"23":1,"43":2,"45":2,"46":2,"50":2,"51":2,"52":3,"53":2,"54":1,"57":3,"58":2,"82":1,"84":1,"87":2,"95":1,"125":1,"127":1,"128":1}}],["预设",{"2":{"0":1,"1":1}}],["phi",{"2":{"158":5,"161":5}}],["p3",{"0":{"90":1},"2":{"90":4}}],["p2",{"0":{"56":1,"90":1,"109":1},"2":{"56":4,"58":2,"90":4,"109":9}}],["p1",{"0":{"56":1,"90":1,"109":1},"2":{"56":5,"58":2,"90":6,"109":9}}],["perpendicular",{"0":{"47":1},"2":{"47":1}}],["parametric",{"0":{"49":1},"2":{"49":1,"85":1}}],["parallel",{"0":{"50":1,"51":1,"86":1,"87":1,"127":1,"128":1},"2":{"43":2,"45":1,"46":2,"50":2,"51":2,"52":2,"53":1,"57":1,"58":2,"84":2,"85":1,"86":1,"87":2,"95":1,"127":1,"128":1}}],["partial",{"0":{"35":1},"2":{"35":6,"37":6}}],["particle",{"0":{"120":1,"154":1},"2":{"0":1,"1":1}}],["planes",{"2":{"84":1}}],["plane",{"0":{"78":1},"1":{"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1},"2":{"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"89":1,"95":1,"96":1}}],["plane3",{"0":{"79":1,"81":1,"82":1,"83":1,"84":1,"86":2,"87":1,"89":1,"90":1,"91":1,"92":1,"94":1},"1":{"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1},"2":{"39":1,"59":1,"81":3,"82":4,"83":4,"84":3,"86":5,"87":3,"89":3,"90":1,"91":1,"92":1,"94":1,"95":4,"96":2,"114":1}}],["plus",{"2":{"35":3}}],["p",{"0":{"37":1},"2":{"37":21,"38":1,"104":10,"106":8,"136":4,"138":4,"141":4,"142":4}}],["points",{"0":{"56":1,"90":1},"2":{"56":1,"90":1}}],["point",{"0":{"42":1,"47":1,"48":1,"53":2,"86":1,"89":2,"92":2,"98":1},"1":{"99":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1},"2":{"37":1,"42":6,"43":2,"45":6,"46":4,"47":7,"48":3,"49":3,"52":2,"53":7,"54":2,"55":3,"56":2,"57":1,"58":2,"83":1,"85":4,"86":6,"89":8,"90":2,"91":6,"92":7,"95":1,"101":1,"104":2,"105":1,"106":1,"109":2,"136":2,"138":2,"141":2,"142":2}}],["point3",{"0":{"34":2,"37":1,"42":1,"45":1,"46":1,"47":1,"48":1,"53":1,"56":2,"57":1,"83":1,"85":2,"86":1,"89":1,"90":3,"92":1,"93":1,"97":1,"99":1,"101":1,"102":1,"103":2,"106":1,"109":2,"135":2,"138":2,"140":2,"142":1},"1":{"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1},"2":{"34":4,"37":3,"39":1,"42":3,"45":4,"46":3,"47":3,"48":3,"53":3,"56":6,"57":3,"59":1,"83":4,"84":1,"85":5,"86":3,"89":3,"90":7,"92":3,"93":1,"95":3,"97":2,"101":3,"102":1,"103":2,"104":5,"105":2,"106":3,"109":7,"114":1,"135":2,"136":6,"138":7,"140":2,"141":6,"142":7,"158":3,"161":3}}],["positive",{"0":{"9":1},"2":{"6":1,"7":1,"9":1}}],["python",{"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"21":1,"22":1,"43":2,"45":2,"46":1,"49":1,"50":2,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":2,"84":1,"85":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":2,"96":1,"100":1,"101":2,"102":1,"103":1,"105":1,"111":1,"117":2,"118":3,"119":3,"123":1,"124":2,"127":2,"128":1,"130":1,"131":2,"132":1,"134":1,"135":1,"137":1,"139":1,"140":1,"143":1,"144":1,"145":1,"147":1,"158":1,"161":1}}],["pythondef",{"2":{"5":1,"17":1,"18":1,"19":1,"20":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":2,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"95":1,"96":1,"97":1,"100":1,"101":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"133":1,"136":1,"137":1,"138":1,"141":1,"142":1,"145":1,"146":1,"147":1,"148":1,"149":1}}],["property",{"2":{"5":1,"6":2,"7":2,"8":2,"9":2,"10":2,"11":2,"12":2,"13":2,"14":2,"15":2,"16":1,"87":1,"88":1,"129":1,"130":2,"131":2,"132":1}}],["presets",{"0":{"155":1,"156":1,"159":1,"162":1},"1":{"157":1,"158":1,"160":1,"161":1},"2":{"0":1,"1":1}}],["pi",{"0":{"25":1},"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"25":1,"158":2,"161":2}}],["粒子生成工具",{"2":{"0":1,"1":1}}],["model",{"0":{"156":1,"159":1},"1":{"157":1,"158":1,"160":1,"161":1}}],["midpoint",{"2":{"109":1}}],["min",{"0":{"111":1},"2":{"111":5}}],["minus",{"2":{"35":3}}],["minimum",{"0":{"9":1},"2":{"6":1,"7":1,"9":1}}],["multiarraysfunc",{"0":{"76":1},"2":{"77":1}}],["multisinglevarsfunc",{"0":{"75":1},"2":{"77":1}}],["multivarsfunc",{"0":{"35":2,"38":1,"77":1},"2":{"35":4,"38":3}}],["mul",{"2":{"20":1,"143":1,"144":1,"145":1,"146":1}}],["matmul",{"2":{"147":1}}],["math导入使用",{"2":{"39":1,"59":1}}],["math",{"0":{"2":1,"24":1,"31":1,"36":1,"39":1,"40":1,"59":1,"60":2,"78":1,"98":1,"107":1,"110":1,"121":1},"1":{"3":1,"4":1,"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"32":1,"33":1,"34":1,"35":1,"37":1,"38":1,"41":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"61":2,"62":2,"63":2,"64":2,"65":2,"66":2,"67":2,"68":2,"69":2,"70":2,"71":2,"72":2,"73":2,"74":2,"75":2,"76":2,"77":2,"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"99":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"108":1,"109":1,"111":1,"112":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"150":1,"151":1,"152":1,"153":1},"2":{"0":1,"1":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"25":1,"26":1,"27":1,"33":3,"35":1,"37":1,"38":2,"48":1,"49":1,"82":1,"113":1,"125":1,"131":1}}],["max",{"0":{"111":1},"2":{"111":5}}],["maximum",{"0":{"10":1},"2":{"10":1}}],["mp",{"0":{"2":1,"24":1,"31":1,"36":1,"39":1,"40":1,"59":1,"60":2,"78":1,"98":1,"107":1,"110":1,"121":1},"1":{"3":1,"4":1,"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"32":1,"33":1,"34":1,"35":1,"37":1,"38":1,"41":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"61":2,"62":2,"63":2,"64":2,"65":2,"66":2,"67":2,"68":2,"69":2,"70":2,"71":2,"72":2,"73":2,"74":2,"75":2,"76":2,"77":2,"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"99":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"108":1,"109":1,"111":1,"112":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"150":1,"151":1,"152":1,"153":1},"2":{"0":1,"1":1,"33":3,"35":1,"37":1,"38":2,"39":1,"48":1,"49":1,"59":1,"113":1}}],["mbcp",{"0":{"0":1,"1":1,"2":1,"24":1,"31":1,"36":1,"39":1,"40":1,"59":1,"60":1,"78":1,"98":1,"107":1,"110":1,"120":1,"121":1,"154":1,"155":1,"156":1,"159":1,"162":1},"1":{"3":1,"4":1,"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"32":1,"33":1,"34":1,"35":1,"37":1,"38":1,"41":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"99":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"108":1,"109":1,"111":1,"112":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"150":1,"151":1,"152":1,"153":1,"157":1,"158":1,"160":1,"161":1},"2":{"0":3,"1":3}}],["提供了一些工具",{"2":{"0":1,"1":1}}],["说明",{"2":{"0":1,"1":1,"2":1,"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"24":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"31":1,"33":1,"34":1,"35":1,"36":1,"37":1,"38":1,"39":1,"40":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"59":1,"60":1,"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"78":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"95":1,"96":1,"98":1,"100":1,"101":1,"104":1,"105":1,"106":1,"107":1,"109":1,"110":1,"111":1,"113":1,"117":1,"118":1,"119":1,"120":1,"121":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"131":1,"132":1,"136":1,"137":1,"138":1,"141":1,"142":1,"145":1,"147":1,"149":1,"150":1,"151":1,"152":1,"153":1,"154":1,"155":1,"156":1,"158":1,"159":1,"161":1,"162":1}}]],"serializationVersion":2}';export{t as default};
diff --git a/assets/chunks/@localSearchIndexroot.CPmrPyWJ.js b/assets/chunks/@localSearchIndexroot.CPmrPyWJ.js
deleted file mode 100644
index d0cec98..0000000
--- a/assets/chunks/@localSearchIndexroot.CPmrPyWJ.js
+++ /dev/null
@@ -1 +0,0 @@
-const t='{"documentCount":170,"nextId":170,"documentIds":{"0":"/api/api.html#mbcp","1":"/api/#mbcp","2":"/api/mp_math/angle.html#mbcp-mp-math-angle","3":"/api/mp_math/angle.html#class-angle","4":"/api/mp_math/angle.html#class-anyangle-angle","5":"/api/mp_math/angle.html#def-init-self-value-float-is-radian-bool-false","6":"/api/mp_math/angle.html#def-complementary-self-anyangle","7":"/api/mp_math/angle.html#def-supplementary-self-anyangle","8":"/api/mp_math/angle.html#def-degree-self-float","9":"/api/mp_math/angle.html#def-minimum-positive-self-anyangle","10":"/api/mp_math/angle.html#def-maximum-negative-self-anyangle","11":"/api/mp_math/angle.html#def-sin-self-float","12":"/api/mp_math/angle.html#def-cos-self-float","13":"/api/mp_math/angle.html#def-tan-self-float","14":"/api/mp_math/angle.html#def-cot-self-float","15":"/api/mp_math/angle.html#def-sec-self-float","16":"/api/mp_math/angle.html#def-csc-self-float","17":"/api/mp_math/angle.html#def-self-other-anyangle-anyangle","18":"/api/mp_math/angle.html#def-eq-self-other","19":"/api/mp_math/angle.html#def-self-other-anyangle-anyangle-1","20":"/api/mp_math/angle.html#def-self-other-float-anyangle","21":"/api/mp_math/angle.html#def-self-other-float-anyangle-1","22":"/api/mp_math/angle.html#def-self-other-anyangle-float","23":"/api/mp_math/angle.html#def-self-other","24":"/api/mp_math/const.html#mbcp-mp-math-const","25":"/api/mp_math/const.html#var-pi","26":"/api/mp_math/const.html#var-e","27":"/api/mp_math/const.html#var-golden-ratio","28":"/api/mp_math/const.html#var-gamma","29":"/api/mp_math/const.html#var-epsilon","30":"/api/mp_math/const.html#var-approx","31":"/api/mp_math/equation.html#mbcp-mp-math-equation","32":"/api/mp_math/equation.html#class-curveequation","33":"/api/mp_math/equation.html#def-init-self-x-func-onevarfunc-y-func-onevarfunc-z-func-onevarfunc","34":"/api/mp_math/equation.html#def-call-self-t-var-point3-tuple-point3","35":"/api/mp_math/equation.html#def-get-partial-derivative-func-func-multivarsfunc-var-int-tuple-int-epsilon-number-epsilon-multivarsfunc","36":"/api/mp_math/function.html#mbcp-mp-math-function","37":"/api/mp_math/function.html#def-cal-gradient-3vf-func-threesinglevarsfunc-p-point3-epsilon-float-epsilon-vector3","38":"/api/mp_math/function.html#def-curry-func-multivarsfunc-args-var-onevarfunc","39":"/api/mp_math/#mbcp-mp-math","40":"/api/mp_math/line.html#mbcp-mp-math-line","41":"/api/mp_math/line.html#class-line3","42":"/api/mp_math/line.html#def-init-self-point-point3-direction-vector3","43":"/api/mp_math/line.html#def-approx-self-other-line3-epsilon-float-approx-bool","44":"/api/mp_math/line.html#def-cal-angle-self-other-line3-anyangle","45":"/api/mp_math/line.html#def-cal-distance-self-other-line3-point3-float","46":"/api/mp_math/line.html#def-cal-intersection-self-other-line3-point3","47":"/api/mp_math/line.html#def-cal-perpendicular-self-point-point3-line3","48":"/api/mp_math/line.html#def-get-point-self-t-realnumber-point3","49":"/api/mp_math/line.html#def-get-parametric-equations-self-tuple-onesinglevarfunc-onesinglevarfunc-onesinglevarfunc","50":"/api/mp_math/line.html#def-is-approx-parallel-self-other-line3-epsilon-float-1e-06-bool","51":"/api/mp_math/line.html#def-is-parallel-self-other-line3-bool","52":"/api/mp_math/line.html#def-is-collinear-self-other-line3-bool","53":"/api/mp_math/line.html#def-is-point-on-self-point-point3-bool","54":"/api/mp_math/line.html#def-is-coplanar-self-other-line3-bool","55":"/api/mp_math/line.html#def-simplify-self","56":"/api/mp_math/line.html#def-from-two-points-cls-p1-point3-p2-point3-line3","57":"/api/mp_math/line.html#def-and-self-other-line3-line3-point3-none","58":"/api/mp_math/line.html#def-eq-self-other-bool","59":"/api/mp_math/mp_math.html#mbcp-mp-math","60":"/api/mp_math/mp_math_typing.html#mbcp-mp-math-mp-math-typing","61":"/api/mp_math/mp_math_typing.html#var-realnumber","62":"/api/mp_math/mp_math_typing.html#var-number","63":"/api/mp_math/mp_math_typing.html#var-singlevar","64":"/api/mp_math/mp_math_typing.html#var-arrayvar","65":"/api/mp_math/mp_math_typing.html#var-var","66":"/api/mp_math/mp_math_typing.html#var-onesinglevarfunc","67":"/api/mp_math/mp_math_typing.html#var-onearrayfunc","68":"/api/mp_math/mp_math_typing.html#var-onevarfunc","69":"/api/mp_math/mp_math_typing.html#var-twosinglevarsfunc","70":"/api/mp_math/mp_math_typing.html#var-twoarraysfunc","71":"/api/mp_math/mp_math_typing.html#var-twovarsfunc","72":"/api/mp_math/mp_math_typing.html#var-threesinglevarsfunc","73":"/api/mp_math/mp_math_typing.html#var-threearraysfunc","74":"/api/mp_math/mp_math_typing.html#var-threevarsfunc","75":"/api/mp_math/mp_math_typing.html#var-multisinglevarsfunc","76":"/api/mp_math/mp_math_typing.html#var-multiarraysfunc","77":"/api/mp_math/mp_math_typing.html#var-multivarsfunc","78":"/api/mp_math/plane.html#mbcp-mp-math-plane","79":"/api/mp_math/plane.html#class-plane3","80":"/api/mp_math/plane.html#def-init-self-a-float-b-float-c-float-d-float","81":"/api/mp_math/plane.html#def-approx-self-other-plane3-bool","82":"/api/mp_math/plane.html#def-cal-angle-self-other-line3-plane3-anyangle","83":"/api/mp_math/plane.html#def-cal-distance-self-other-plane3-point3-float","84":"/api/mp_math/plane.html#def-cal-intersection-line3-self-other-plane3-line3","85":"/api/mp_math/plane.html#def-cal-intersection-point3-self-other-line3-point3","86":"/api/mp_math/plane.html#def-cal-parallel-plane3-self-point-point3-plane3","87":"/api/mp_math/plane.html#def-is-parallel-self-other-plane3-bool","88":"/api/mp_math/plane.html#def-normal-self-vector3","89":"/api/mp_math/plane.html#def-from-point-and-normal-cls-point-point3-normal-vector3-plane3","90":"/api/mp_math/plane.html#def-from-three-points-cls-p1-point3-p2-point3-p3-point3-plane3","91":"/api/mp_math/plane.html#def-from-two-lines-cls-l1-line3-l2-line3-plane3","92":"/api/mp_math/plane.html#def-from-point-and-line-cls-point-point3-line-line3-plane3","93":"/api/mp_math/plane.html#def-and-self-other-line3-point3-none","94":"/api/mp_math/plane.html#def-and-self-other-plane3-line3-none","95":"/api/mp_math/plane.html#def-and-self-other","96":"/api/mp_math/plane.html#def-eq-self-other-bool","97":"/api/mp_math/plane.html#def-rand-self-other-line3-point3","98":"/api/mp_math/point.html#mbcp-mp-math-point","99":"/api/mp_math/point.html#class-point3","100":"/api/mp_math/point.html#def-init-self-x-float-y-float-z-float","101":"/api/mp_math/point.html#def-approx-self-other-point3-epsilon-float-approx-bool","102":"/api/mp_math/point.html#def-self-other-vector3-point3","103":"/api/mp_math/point.html#def-self-other-point3-point3","104":"/api/mp_math/point.html#def-self-other","105":"/api/mp_math/point.html#def-eq-self-other","106":"/api/mp_math/point.html#def-self-other-point3-vector3","107":"/api/mp_math/segment.html#mbcp-mp-math-segment","108":"/api/mp_math/segment.html#class-segment3","109":"/api/mp_math/segment.html#def-init-self-p1-point3-p2-point3","110":"/api/mp_math/utils.html#mbcp-mp-math-utils","111":"/api/mp_math/utils.html#def-clamp-x-float-min-float-max-float-float","112":"/api/mp_math/utils.html#class-approx","113":"/api/mp_math/utils.html#def-init-self-value-realnumber","114":"/api/mp_math/utils.html#def-eq-self-other","115":"/api/mp_math/utils.html#def-raise-type-error-self-other","116":"/api/mp_math/utils.html#def-ne-self-other","117":"/api/mp_math/utils.html#def-approx-x-float-y-float-0-0-epsilon-float-approx-bool","118":"/api/mp_math/utils.html#def-sign-x-float-only-neg-bool-false-str","119":"/api/mp_math/utils.html#def-sign-format-x-float-only-neg-bool-false-str","120":"/api/mp_math/vector.html#mbcp-mp-math-vector","121":"/api/mp_math/vector.html#class-vector3","122":"/api/mp_math/vector.html#def-init-self-x-float-y-float-z-float","123":"/api/mp_math/vector.html#def-approx-self-other-vector3-epsilon-float-approx-bool","124":"/api/mp_math/vector.html#def-cal-angle-self-other-vector3-anyangle","125":"/api/mp_math/vector.html#def-cross-self-other-vector3-vector3","126":"/api/mp_math/vector.html#def-is-approx-parallel-self-other-vector3-epsilon-float-approx-bool","127":"/api/mp_math/vector.html#def-is-parallel-self-other-vector3-bool","128":"/api/mp_math/vector.html#def-normalize-self","129":"/api/mp_math/vector.html#def-np-array-self-np-ndarray","130":"/api/mp_math/vector.html#def-length-self-float","131":"/api/mp_math/vector.html#def-unit-self-vector3","132":"/api/mp_math/vector.html#def-abs-self","133":"/api/mp_math/vector.html#def-self-other-vector3-vector3","134":"/api/mp_math/vector.html#def-self-other-point3-point3","135":"/api/mp_math/vector.html#def-self-other","136":"/api/mp_math/vector.html#def-eq-self-other","137":"/api/mp_math/vector.html#def-self-other-point3-point3-1","138":"/api/mp_math/vector.html#def-self-other-vector3-vector3-1","139":"/api/mp_math/vector.html#def-self-other-point3-point3-2","140":"/api/mp_math/vector.html#def-self-other-1","141":"/api/mp_math/vector.html#def-self-other-point3","142":"/api/mp_math/vector.html#def-self-other-vector3-vector3-2","143":"/api/mp_math/vector.html#def-self-other-realnumber-vector3","144":"/api/mp_math/vector.html#def-self-other-int-float-vector3-vector3","145":"/api/mp_math/vector.html#def-self-other-realnumber-vector3-1","146":"/api/mp_math/vector.html#def-self-other-vector3-realnumber","147":"/api/mp_math/vector.html#def-self-other-realnumber-vector3-2","148":"/api/mp_math/vector.html#def-self-vector3","149":"/api/mp_math/vector.html#var-zero-vector3","150":"/api/mp_math/vector.html#var-x-axis","151":"/api/mp_math/vector.html#var-y-axis","152":"/api/mp_math/vector.html#var-z-axis","153":"/api/particle/#mbcp-particle","154":"/api/particle/particle.html#mbcp-particle","155":"/api/presets/#mbcp-presets","156":"/api/presets/model/#mbcp-presets-model","157":"/api/presets/model/#class-geometricmodels","158":"/api/presets/model/#def-sphere-radius-float-density-float","159":"/api/presets/model/model.html#mbcp-presets-model","160":"/api/presets/model/model.html#class-geometricmodels","161":"/api/presets/model/model.html#def-sphere-radius-float-density-float","162":"/api/presets/presets.html#mbcp-presets","163":"/demo/#demo","164":"/guide/#开始不了一点","165":"/guide/#aaa","166":"/guide/#bbb","167":"/guide/#c","168":"/guide/#ddd","169":"/refer/#reference"},"fieldIds":{"title":0,"titles":1,"text":2},"fieldLength":{"0":[1,1,13],"1":[1,1,13],"2":[4,1,3],"3":[2,4,1],"4":[4,4,1],"5":[11,8,25],"6":[5,8,24],"7":[5,8,23],"8":[5,8,20],"9":[6,8,21],"10":[6,8,23],"11":[5,8,18],"12":[5,8,18],"13":[5,8,18],"14":[5,8,20],"15":[5,8,20],"16":[5,8,20],"17":[7,8,15],"18":[5,8,11],"19":[6,8,14],"20":[7,8,16],"21":[7,8,13],"22":[7,8,13],"23":[3,8,15],"24":[4,1,3],"25":[2,4,7],"26":[2,4,8],"27":[3,4,10],"28":[2,4,6],"29":[2,4,6],"30":[2,4,6],"31":[4,1,3],"32":[2,4,1],"33":[9,6,26],"34":[10,6,34],"35":[15,4,73],"36":[4,1,3],"37":[14,4,69],"38":[8,4,62],"39":[3,1,21],"40":[4,1,3],"41":[2,4,1],"42":[8,6,25],"43":[11,6,43],"44":[8,6,28],"45":[10,6,63],"46":[8,6,60],"47":[8,6,29],"48":[8,6,35],"49":[9,6,42],"50":[14,6,43],"51":[8,6,36],"52":[8,6,39],"53":[8,6,36],"54":[8,6,42],"55":[4,6,27],"56":[10,6,36],"57":[9,6,52],"58":[6,6,44],"59":[3,1,21],"60":[4,1,3],"61":[2,4,9],"62":[2,4,9],"63":[2,4,7],"64":[2,4,8],"65":[2,4,9],"66":[2,4,8],"67":[2,4,8],"68":[2,4,9],"69":[2,4,8],"70":[2,4,8],"71":[2,4,9],"72":[2,4,8],"73":[2,4,8],"74":[2,4,9],"75":[2,4,8],"76":[2,4,8],"77":[2,4,9],"78":[4,1,3],"79":[2,4,1],"80":[9,6,36],"81":[7,6,45],"82":[10,6,62],"83":[10,6,66],"84":[9,6,71],"85":[9,6,69],"86":[9,6,30],"87":[8,6,37],"88":[5,6,25],"89":[10,6,45],"90":[11,6,39],"91":[10,6,44],"92":[10,6,35],"93":[9,6,15],"94":[9,6,15],"95":[5,6,70],"96":[6,6,35],"97":[7,6,15],"98":[4,1,3],"99":[2,4,1],"100":[8,6,26],"101":[11,6,45],"102":[8,6,13],"103":[7,6,12],"104":[4,6,34],"105":[5,6,37],"106":[7,6,36],"107":[4,1,3],"108":[2,4,1],"109":[7,6,32],"110":[4,1,3],"111":[7,4,31],"112":[2,4,1],"113":[6,6,20],"114":[5,6,31],"115":[7,6,15],"116":[5,6,11],"117":[11,4,40],"118":[11,4,43],"119":[12,4,49],"120":[4,1,4],"121":[2,4,1],"122":[8,6,19],"123":[11,6,27],"124":[8,6,31],"125":[6,6,43],"126":[13,6,43],"127":[8,6,37],"128":[4,6,17],"129":[6,6,31],"130":[5,6,33],"131":[5,6,21],"132":[4,6,10],"133":[7,6,12],"134":[7,6,12],"135":[4,6,46],"136":[5,6,37],"137":[7,6,31],"138":[6,6,12],"139":[6,6,12],"140":[3,6,45],"141":[4,6,42],"142":[6,6,12],"143":[7,6,13],"144":[9,6,55],"145":[7,6,13],"146":[7,6,38],"147":[7,6,15],"148":[5,6,21],"149":[3,4,7],"150":[3,4,8],"151":[3,4,8],"152":[3,4,8],"153":[2,1,3],"154":[2,1,3],"155":[2,1,3],"156":[3,1,3],"157":[2,3,2],"158":[6,5,48],"159":[3,1,3],"160":[2,3,2],"161":[6,5,48],"162":[2,1,3],"163":[1,1,1],"164":[1,1,2],"165":[1,1,1],"166":[1,1,1],"167":[1,1,1],"168":[1,1,1],"169":[1,1,7]},"averageFieldLength":[5.458823529411765,4.84705882352941,21.805882352941182],"storedFields":{"0":{"title":"mbcp","titles":[]},"1":{"title":"mbcp","titles":[]},"2":{"title":"mbcp.mp_math.angle","titles":[]},"3":{"title":"class Angle","titles":["mbcp.mp_math.angle"]},"4":{"title":"class AnyAngle(Angle)","titles":["mbcp.mp_math.angle"]},"5":{"title":"def __init__(self, value: float, is_radian: bool = False)","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"6":{"title":"def complementary(self) -> AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"7":{"title":"def supplementary(self) -> AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"8":{"title":"def degree(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"9":{"title":"def minimum_positive(self) -> AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"10":{"title":"def maximum_negative(self) -> AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"11":{"title":"def sin(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"12":{"title":"def cos(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"13":{"title":"def tan(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"14":{"title":"def cot(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"15":{"title":"def sec(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"16":{"title":"def csc(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"17":{"title":"def self + other: AnyAngle => AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"18":{"title":"def __eq__(self, other)","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"19":{"title":"def self - other: AnyAngle => AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"20":{"title":"def self * other: float => AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"21":{"title":"def self / other: float => AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"22":{"title":"def self / other: AnyAngle => float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"23":{"title":"def self / other","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"24":{"title":"mbcp.mp_math.const","titles":[]},"25":{"title":"var PI","titles":["mbcp.mp_math.const"]},"26":{"title":"var E","titles":["mbcp.mp_math.const"]},"27":{"title":"var GOLDEN_RATIO","titles":["mbcp.mp_math.const"]},"28":{"title":"var GAMMA","titles":["mbcp.mp_math.const"]},"29":{"title":"var EPSILON","titles":["mbcp.mp_math.const"]},"30":{"title":"var APPROX","titles":["mbcp.mp_math.const"]},"31":{"title":"mbcp.mp_math.equation","titles":[]},"32":{"title":"class CurveEquation","titles":["mbcp.mp_math.equation"]},"33":{"title":"def __init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc)","titles":["mbcp.mp_math.equation","class CurveEquation"]},"34":{"title":"def __call__(self, *t: Var) -> Point3 | tuple[Point3, ...]","titles":["mbcp.mp_math.equation","class CurveEquation"]},"35":{"title":"def get_partial_derivative_func(func: MultiVarsFunc, var: int | tuple[int, ...], epsilon: Number = EPSILON) -> MultiVarsFunc","titles":["mbcp.mp_math.equation"]},"36":{"title":"mbcp.mp_math.function","titles":[]},"37":{"title":"def cal_gradient_3vf(func: ThreeSingleVarsFunc, p: Point3, epsilon: float = EPSILON) -> Vector3","titles":["mbcp.mp_math.function"]},"38":{"title":"def curry(func: MultiVarsFunc, *args: Var) -> OneVarFunc","titles":["mbcp.mp_math.function"]},"39":{"title":"mbcp.mp_math","titles":[]},"40":{"title":"mbcp.mp_math.line","titles":[]},"41":{"title":"class Line3","titles":["mbcp.mp_math.line"]},"42":{"title":"def __init__(self, point: Point3, direction: Vector3)","titles":["mbcp.mp_math.line","class Line3"]},"43":{"title":"def approx(self, other: Line3, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"44":{"title":"def cal_angle(self, other: Line3) -> AnyAngle","titles":["mbcp.mp_math.line","class Line3"]},"45":{"title":"def cal_distance(self, other: Line3 | Point3) -> float","titles":["mbcp.mp_math.line","class Line3"]},"46":{"title":"def cal_intersection(self, other: Line3) -> Point3","titles":["mbcp.mp_math.line","class Line3"]},"47":{"title":"def cal_perpendicular(self, point: Point3) -> Line3","titles":["mbcp.mp_math.line","class Line3"]},"48":{"title":"def get_point(self, t: RealNumber) -> Point3","titles":["mbcp.mp_math.line","class Line3"]},"49":{"title":"def get_parametric_equations(self) -> tuple[OneSingleVarFunc, OneSingleVarFunc, OneSingleVarFunc]","titles":["mbcp.mp_math.line","class Line3"]},"50":{"title":"def is_approx_parallel(self, other: Line3, epsilon: float = 1e-06) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"51":{"title":"def is_parallel(self, other: Line3) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"52":{"title":"def is_collinear(self, other: Line3) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"53":{"title":"def is_point_on(self, point: Point3) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"54":{"title":"def is_coplanar(self, other: Line3) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"55":{"title":"def simplify(self)","titles":["mbcp.mp_math.line","class Line3"]},"56":{"title":"def from_two_points(cls, p1: Point3, p2: Point3) -> Line3","titles":["mbcp.mp_math.line","class Line3"]},"57":{"title":"def __and__(self, other: Line3) -> Line3 | Point3 | None","titles":["mbcp.mp_math.line","class Line3"]},"58":{"title":"def __eq__(self, other) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"59":{"title":"mbcp.mp_math","titles":[]},"60":{"title":"mbcp.mp_math.mp_math_typing","titles":[]},"61":{"title":"var RealNumber","titles":["mbcp.mp_math.mp_math_typing"]},"62":{"title":"var Number","titles":["mbcp.mp_math.mp_math_typing"]},"63":{"title":"var SingleVar","titles":["mbcp.mp_math.mp_math_typing"]},"64":{"title":"var ArrayVar","titles":["mbcp.mp_math.mp_math_typing"]},"65":{"title":"var Var","titles":["mbcp.mp_math.mp_math_typing"]},"66":{"title":"var OneSingleVarFunc","titles":["mbcp.mp_math.mp_math_typing"]},"67":{"title":"var OneArrayFunc","titles":["mbcp.mp_math.mp_math_typing"]},"68":{"title":"var OneVarFunc","titles":["mbcp.mp_math.mp_math_typing"]},"69":{"title":"var TwoSingleVarsFunc","titles":["mbcp.mp_math.mp_math_typing"]},"70":{"title":"var TwoArraysFunc","titles":["mbcp.mp_math.mp_math_typing"]},"71":{"title":"var TwoVarsFunc","titles":["mbcp.mp_math.mp_math_typing"]},"72":{"title":"var ThreeSingleVarsFunc","titles":["mbcp.mp_math.mp_math_typing"]},"73":{"title":"var ThreeArraysFunc","titles":["mbcp.mp_math.mp_math_typing"]},"74":{"title":"var ThreeVarsFunc","titles":["mbcp.mp_math.mp_math_typing"]},"75":{"title":"var MultiSingleVarsFunc","titles":["mbcp.mp_math.mp_math_typing"]},"76":{"title":"var MultiArraysFunc","titles":["mbcp.mp_math.mp_math_typing"]},"77":{"title":"var MultiVarsFunc","titles":["mbcp.mp_math.mp_math_typing"]},"78":{"title":"mbcp.mp_math.plane","titles":[]},"79":{"title":"class Plane3","titles":["mbcp.mp_math.plane"]},"80":{"title":"def __init__(self, a: float, b: float, c: float, d: float)","titles":["mbcp.mp_math.plane","class Plane3"]},"81":{"title":"def approx(self, other: Plane3) -> bool","titles":["mbcp.mp_math.plane","class Plane3"]},"82":{"title":"def cal_angle(self, other: Line3 | Plane3) -> AnyAngle","titles":["mbcp.mp_math.plane","class Plane3"]},"83":{"title":"def cal_distance(self, other: Plane3 | Point3) -> float","titles":["mbcp.mp_math.plane","class Plane3"]},"84":{"title":"def cal_intersection_line3(self, other: Plane3) -> Line3","titles":["mbcp.mp_math.plane","class Plane3"]},"85":{"title":"def cal_intersection_point3(self, other: Line3) -> Point3","titles":["mbcp.mp_math.plane","class Plane3"]},"86":{"title":"def cal_parallel_plane3(self, point: Point3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"87":{"title":"def is_parallel(self, other: Plane3) -> bool","titles":["mbcp.mp_math.plane","class Plane3"]},"88":{"title":"def normal(self) -> Vector3","titles":["mbcp.mp_math.plane","class Plane3"]},"89":{"title":"def from_point_and_normal(cls, point: Point3, normal: Vector3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"90":{"title":"def from_three_points(cls, p1: Point3, p2: Point3, p3: Point3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"91":{"title":"def from_two_lines(cls, l1: Line3, l2: Line3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"92":{"title":"def from_point_and_line(cls, point: Point3, line: Line3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"93":{"title":"def __and__(self, other: Line3) -> Point3 | None","titles":["mbcp.mp_math.plane","class Plane3"]},"94":{"title":"def __and__(self, other: Plane3) -> Line3 | None","titles":["mbcp.mp_math.plane","class Plane3"]},"95":{"title":"def __and__(self, other)","titles":["mbcp.mp_math.plane","class Plane3"]},"96":{"title":"def __eq__(self, other) -> bool","titles":["mbcp.mp_math.plane","class Plane3"]},"97":{"title":"def __rand__(self, other: Line3) -> Point3","titles":["mbcp.mp_math.plane","class Plane3"]},"98":{"title":"mbcp.mp_math.point","titles":[]},"99":{"title":"class Point3","titles":["mbcp.mp_math.point"]},"100":{"title":"def __init__(self, x: float, y: float, z: float)","titles":["mbcp.mp_math.point","class Point3"]},"101":{"title":"def approx(self, other: Point3, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.point","class Point3"]},"102":{"title":"def self + other: Vector3 => Point3","titles":["mbcp.mp_math.point","class Point3"]},"103":{"title":"def self + other: Point3 => Point3","titles":["mbcp.mp_math.point","class Point3"]},"104":{"title":"def self + other","titles":["mbcp.mp_math.point","class Point3"]},"105":{"title":"def __eq__(self, other)","titles":["mbcp.mp_math.point","class Point3"]},"106":{"title":"def self - other: Point3 => Vector3","titles":["mbcp.mp_math.point","class Point3"]},"107":{"title":"mbcp.mp_math.segment","titles":[]},"108":{"title":"class Segment3","titles":["mbcp.mp_math.segment"]},"109":{"title":"def __init__(self, p1: Point3, p2: Point3)","titles":["mbcp.mp_math.segment","class Segment3"]},"110":{"title":"mbcp.mp_math.utils","titles":[]},"111":{"title":"def clamp(x: float, min_: float, max_: float) -> float","titles":["mbcp.mp_math.utils"]},"112":{"title":"class Approx","titles":["mbcp.mp_math.utils"]},"113":{"title":"def __init__(self, value: RealNumber)","titles":["mbcp.mp_math.utils","class Approx"]},"114":{"title":"def __eq__(self, other)","titles":["mbcp.mp_math.utils","class Approx"]},"115":{"title":"def raise_type_error(self, other)","titles":["mbcp.mp_math.utils","class Approx"]},"116":{"title":"def __ne__(self, other)","titles":["mbcp.mp_math.utils","class Approx"]},"117":{"title":"def approx(x: float, y: float = 0.0, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.utils"]},"118":{"title":"def sign(x: float, only_neg: bool = False) -> str","titles":["mbcp.mp_math.utils"]},"119":{"title":"def sign_format(x: float, only_neg: bool = False) -> str","titles":["mbcp.mp_math.utils"]},"120":{"title":"mbcp.mp_math.vector","titles":[]},"121":{"title":"class Vector3","titles":["mbcp.mp_math.vector"]},"122":{"title":"def __init__(self, x: float, y: float, z: float)","titles":["mbcp.mp_math.vector","class Vector3"]},"123":{"title":"def approx(self, other: Vector3, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.vector","class Vector3"]},"124":{"title":"def cal_angle(self, other: Vector3) -> AnyAngle","titles":["mbcp.mp_math.vector","class Vector3"]},"125":{"title":"def cross(self, other: Vector3) -> Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"126":{"title":"def is_approx_parallel(self, other: Vector3, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.vector","class Vector3"]},"127":{"title":"def is_parallel(self, other: Vector3) -> bool","titles":["mbcp.mp_math.vector","class Vector3"]},"128":{"title":"def normalize(self)","titles":["mbcp.mp_math.vector","class Vector3"]},"129":{"title":"def np_array(self) -> np.ndarray","titles":["mbcp.mp_math.vector","class Vector3"]},"130":{"title":"def length(self) -> float","titles":["mbcp.mp_math.vector","class Vector3"]},"131":{"title":"def unit(self) -> Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"132":{"title":"def __abs__(self)","titles":["mbcp.mp_math.vector","class Vector3"]},"133":{"title":"def self + other: Vector3 => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"134":{"title":"def self + other: Point3 => Point3","titles":["mbcp.mp_math.vector","class Vector3"]},"135":{"title":"def self + other","titles":["mbcp.mp_math.vector","class Vector3"]},"136":{"title":"def __eq__(self, other)","titles":["mbcp.mp_math.vector","class Vector3"]},"137":{"title":"def self + other: Point3 => Point3","titles":["mbcp.mp_math.vector","class Vector3"]},"138":{"title":"def self - other: Vector3 => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"139":{"title":"def self - other: Point3 => Point3","titles":["mbcp.mp_math.vector","class Vector3"]},"140":{"title":"def self - other","titles":["mbcp.mp_math.vector","class Vector3"]},"141":{"title":"def self - other: Point3","titles":["mbcp.mp_math.vector","class Vector3"]},"142":{"title":"def self * other: Vector3 => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"143":{"title":"def self * other: RealNumber => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"144":{"title":"def self * other: int | float | Vector3 => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"145":{"title":"def self * other: RealNumber => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"146":{"title":"def self @ other: Vector3 => RealNumber","titles":["mbcp.mp_math.vector","class Vector3"]},"147":{"title":"def self / other: RealNumber => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"148":{"title":"def - self => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"149":{"title":"var zero_vector3","titles":["mbcp.mp_math.vector"]},"150":{"title":"var x_axis","titles":["mbcp.mp_math.vector"]},"151":{"title":"var y_axis","titles":["mbcp.mp_math.vector"]},"152":{"title":"var z_axis","titles":["mbcp.mp_math.vector"]},"153":{"title":"mbcp.particle","titles":[]},"154":{"title":"mbcp.particle","titles":[]},"155":{"title":"mbcp.presets","titles":[]},"156":{"title":"mbcp.presets.model","titles":[]},"157":{"title":"class GeometricModels","titles":["mbcp.presets.model"]},"158":{"title":"def sphere(radius: float, density: float)","titles":["mbcp.presets.model","class GeometricModels"]},"159":{"title":"mbcp.presets.model","titles":[]},"160":{"title":"class GeometricModels","titles":["mbcp.presets.model"]},"161":{"title":"def sphere(radius: float, density: float)","titles":["mbcp.presets.model","class GeometricModels"]},"162":{"title":"mbcp.presets","titles":[]},"163":{"title":"demo","titles":[]},"164":{"title":"开始不了一点","titles":[]},"165":{"title":"AAA","titles":[]},"166":{"title":"BBB","titles":["AAA"]},"167":{"title":"C","titles":[]},"168":{"title":"ddd","titles":["C"]},"169":{"title":"Reference","titles":[]}},"dirtCount":0,"index":[["∫12x111",{"2":{"164":1}}],["开始不了一点",{"0":{"164":1}}],["4",{"2":{"158":1,"161":1}}],["球体上的点集",{"2":{"158":2,"161":2}}],["生成球体上的点集",{"2":{"158":2,"161":2}}],["几何模型点集",{"2":{"156":1,"159":1}}],["零向量",{"2":{"149":1}}],["负向量",{"2":{"148":2}}],["取负",{"2":{"148":2}}],["取两平面的交集",{"2":{"95":2}}],["非点乘",{"2":{"144":2}}],["别去点那边实现了",{"2":{"137":2}}],["单位向量",{"2":{"131":2}}],["单变量",{"2":{"63":1}}],["模",{"2":{"130":2}}],["向量的模",{"2":{"130":2}}],["向量积",{"2":{"125":2}}],["将向量归一化",{"2":{"128":2}}],["j",{"2":{"125":1}}],["其余结果的模为平行四边形的面积",{"2":{"125":2}}],["叉乘使用cross",{"2":{"144":2}}],["叉乘结果",{"2":{"125":2}}],["叉乘为0",{"2":{"125":2}}],["叉乘",{"2":{"125":2}}],["以及一些常用的向量",{"2":{"120":1}}],["格式化符号数",{"2":{"119":2}}],["quot",{"2":{"118":2,"119":4}}],["符号",{"2":{"118":2,"119":2}}],["获取该向量的单位向量",{"2":{"131":2}}],["获取数的符号",{"2":{"118":2}}],["获取直线的参数方程",{"2":{"49":2}}],["获取直线上的点",{"2":{"48":2}}],["用于判断是否近似于0",{"2":{"117":2}}],["用于近似比较对象",{"2":{"113":2}}],["限定在区间内的值",{"2":{"111":2}}],["值",{"2":{"111":2}}],["区间限定函数",{"2":{"111":2}}],["us",{"2":{"169":1}}],["unit",{"0":{"131":1},"2":{"131":1}}],["unsupported",{"2":{"45":1,"82":1,"83":1,"95":1,"115":1,"135":1,"140":1,"141":1,"144":1}}],["utils",{"0":{"110":1},"1":{"111":1,"112":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1}}],["中心点",{"2":{"109":1}}],["中实现",{"2":{"106":2}}],["长度",{"2":{"109":1}}],["线段的另一个端点",{"2":{"109":2}}],["线段的一个端点",{"2":{"109":2}}],["新的向量或点",{"2":{"135":2}}],["新的向量",{"2":{"106":2,"140":2}}],["新的点",{"2":{"104":2,"137":2,"141":2}}],["已在",{"2":{"106":2}}],["已知一个函数$f",{"2":{"37":1}}],["已知一个函数f",{"2":{"37":1}}],["坐标",{"2":{"100":6}}],["笛卡尔坐标系中的点",{"2":{"100":2}}],["人话",{"2":{"95":2}}],["法向量",{"2":{"88":2,"89":2}}],["k``",{"2":{"125":1}}],["k",{"2":{"81":12}}],["常数项",{"2":{"80":2}}],["常量",{"2":{"25":1}}],["平面上一点",{"2":{"89":2,"92":2}}],["平面的法向量",{"2":{"88":2}}],["平面",{"2":{"86":2,"89":2,"90":2,"91":2,"92":2}}],["平面与直线平行或重合",{"2":{"85":2}}],["平面平行且无交线",{"2":{"84":2}}],["平面方程",{"2":{"80":2}}],["平行线返回none",{"2":{"57":2}}],["多元函数",{"2":{"77":1}}],["多元数组函数",{"2":{"76":1}}],["多元单变量函数",{"2":{"75":1}}],["二元函数",{"2":{"71":1}}],["二元数组函数",{"2":{"70":1}}],["二元单变量函数",{"2":{"69":1}}],["一元函数",{"2":{"68":1}}],["一元数组函数",{"2":{"67":1}}],["一元单变量函数",{"2":{"66":1}}],["一阶偏导",{"2":{"35":2}}],["变量",{"2":{"65":1}}],["变量位置",{"2":{"35":2}}],["数组运算结果",{"2":{"144":2}}],["数组运算",{"2":{"144":2}}],["数组变量",{"2":{"64":1}}],["数2",{"2":{"117":2}}],["数1",{"2":{"117":2}}],["数",{"2":{"62":1,"118":2,"119":2}}],["数学工具",{"2":{"0":1,"1":1}}],["类型",{"2":{"61":1,"62":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"149":1,"150":1,"151":1,"152":1}}],["实数",{"2":{"61":1,"113":2}}],["∧",{"2":{"58":2}}],["交线",{"2":{"84":2,"95":2}}],["交线返回交点",{"2":{"57":2}}],["交集",{"2":{"57":2,"95":2}}],["交点",{"2":{"46":2,"85":2}}],["重合线返回自身",{"2":{"57":2}}],["由点和直线构造平面",{"2":{"92":2}}],["由点和法向量构造平面",{"2":{"89":2}}],["由两直线构造平面",{"2":{"91":2}}],["由两点构造直线",{"2":{"56":2}}],["由三点构造平面",{"2":{"90":2}}],["由一个点和一个方向向量确定",{"2":{"42":2}}],["工厂函数",{"2":{"56":2,"89":2,"90":2,"91":2,"92":2}}],["并对向量单位化",{"2":{"55":2}}],["处理",{"2":{"55":2}}],["处的梯度向量为",{"2":{"37":1}}],["化",{"2":{"55":2}}],["按照可行性一次对x",{"2":{"55":2}}],["不返回值",{"2":{"55":2,"128":2}}],["不支持的类型",{"2":{"45":2,"82":2,"83":2,"95":2}}],["自体归一化",{"2":{"128":2}}],["自体简化",{"2":{"55":2}}],["自然对数的底",{"2":{"26":1}}],["等价相等",{"2":{"55":2}}],["简化直线方程",{"2":{"55":2}}],["两直线方向向量的叉乘与两直线上任意一点的向量的点积为0",{"2":{"54":2}}],["两角的和为180°",{"2":{"7":2}}],["两角的和为90°",{"2":{"6":2}}],["充要条件",{"2":{"54":2}}],["判断两个向量是否相等",{"2":{"136":2}}],["判断两个向量是否平行",{"2":{"127":2}}],["判断两个向量是否近似平行",{"2":{"126":2}}],["判断两个向量是否近似相等",{"2":{"123":2}}],["判断两个数是否近似相等",{"2":{"117":2}}],["判断两个点是否相等",{"2":{"105":2}}],["判断两个点是否近似相等",{"2":{"101":2}}],["判断两个平面是否等价",{"2":{"96":2}}],["判断两个平面是否平行",{"2":{"87":2}}],["判断两个平面是否近似相等",{"2":{"81":2}}],["判断两条直线是否等价",{"2":{"58":2}}],["判断两条直线是否共面",{"2":{"54":2}}],["判断两条直线是否共线",{"2":{"52":2}}],["判断两条直线是否平行",{"2":{"51":2}}],["判断两条直线是否近似平行",{"2":{"50":2}}],["判断两条直线是否近似相等",{"2":{"43":2}}],["判断点是否在直线上",{"2":{"53":2}}],["另一个向量或数",{"2":{"144":2}}],["另一个向量或点",{"2":{"135":2,"140":2}}],["另一个向量",{"2":{"124":2,"125":2,"126":2,"127":2,"136":2,"146":2}}],["另一个点或向量",{"2":{"104":2}}],["另一个点",{"2":{"101":2,"105":2,"106":2,"137":2,"141":2}}],["另一个平面或点",{"2":{"83":2}}],["另一个平面或直线",{"2":{"82":2,"95":2}}],["另一个平面",{"2":{"81":2,"84":2,"87":2,"96":2}}],["另一",{"2":{"51":2,"52":2,"54":2}}],["另一条直线或点",{"2":{"45":2}}],["另一条直线",{"2":{"43":2,"44":2,"46":2,"50":2,"57":2,"58":2}}],["则两向量平行",{"2":{"125":2}}],["则同一个t对应的点不同",{"2":{"48":2}}],["则其在点$",{"2":{"37":1}}],["则其在点",{"2":{"37":1}}],["但起始点和方向向量不同",{"2":{"48":2}}],["同一条直线",{"2":{"48":2}}],["垂线",{"2":{"47":2}}],["指定点",{"2":{"47":2,"86":2}}],["直线",{"2":{"56":2,"85":2,"91":4,"92":2}}],["直线不共面",{"2":{"46":2}}],["直线平行",{"2":{"46":2}}],["直线上的一点",{"2":{"42":2}}],["距离",{"2":{"45":2,"83":2}}],["夹角",{"2":{"44":2,"82":2,"124":2}}],["是否只返回负数的符号",{"2":{"118":2,"119":2}}],["是否相等",{"2":{"105":2,"136":2}}],["是否等价",{"2":{"58":2,"96":2}}],["是否共面",{"2":{"54":2}}],["是否共线",{"2":{"52":2}}],["是否在直线上",{"2":{"53":2}}],["是否平行",{"2":{"51":2,"87":2,"127":2}}],["是否近似平行",{"2":{"50":2,"126":2}}],["是否近似相等",{"2":{"43":2,"81":2,"101":2,"117":2,"123":2}}],["是否为弧度",{"2":{"5":2}}],["误差",{"2":{"43":2,"50":2,"101":2,"117":2,"126":2}}],["方向向量",{"2":{"42":2,"109":1}}],["三元数组函数",{"2":{"73":1}}],["三元单变量函数",{"2":{"72":1}}],["三元函数",{"2":{"37":2,"74":1}}],["三维空间中的线段",{"2":{"109":2}}],["三维空间中的直线",{"2":{"42":2}}],["三维向量",{"2":{"39":1,"59":1}}],["三维线段",{"2":{"39":1,"59":1}}],["三维点",{"2":{"39":1,"59":1}}],["三维平面",{"2":{"39":1,"59":1}}],["三维直线",{"2":{"39":1,"59":1}}],["导入的类有",{"2":{"39":1,"59":1}}],["本包定义了一些常用的导入",{"2":{"39":1,"59":1}}],["本模块塞了一些预设",{"2":{"155":1,"162":1}}],["本模块用于内部类型提示",{"2":{"60":1}}],["本模块定义了粒子生成相关的工具",{"2":{"153":1,"154":1}}],["本模块定义了3维向量的类vector3",{"2":{"120":1}}],["本模块定义了一些常用的工具函数",{"2":{"110":1}}],["本模块定义了一些常用的常量",{"2":{"24":1}}],["本模块定义了三维空间中点的类",{"2":{"98":1}}],["本模块定义了三维空间中的线段类",{"2":{"107":1}}],["本模块定义了三维空间中的平面类",{"2":{"78":1}}],["本模块定义了三维空间中的直线类",{"2":{"40":1}}],["本模块定义了方程相关的类和函数以及一些常用的数学函数",{"2":{"31":1}}],["本模块定义了角度相关的类",{"2":{"2":1}}],["本模块是主模块",{"2":{"0":1,"1":1}}],["help",{"2":{"169":1}}],["have",{"2":{"84":1}}],["html",{"2":{"43":2,"45":2,"46":1,"49":1,"50":2,"51":1,"52":1,"53":1,"54":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":2,"84":1,"85":1,"87":1,"95":2,"96":1,"100":1,"101":2,"105":1,"111":1,"117":2,"118":3,"119":3,"126":2,"127":1,"129":1,"130":1,"136":1,"144":1,"146":1}}],["https",{"2":{"38":1,"43":2,"45":2,"46":1,"49":1,"50":2,"51":1,"52":1,"53":1,"54":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":2,"84":1,"85":1,"87":1,"95":2,"96":1,"100":1,"101":2,"105":1,"111":1,"117":2,"118":3,"119":3,"126":2,"127":1,"129":1,"130":1,"136":1,"144":1,"146":1}}],["high",{"2":{"35":2}}],["hide",{"2":{"35":2,"38":1}}],["6",{"2":{"38":2}}],["3维向量",{"2":{"122":2}}],["3a",{"2":{"45":2,"46":1,"49":1,"50":2,"51":1,"52":1,"53":1,"54":1,"58":1,"80":1,"82":1,"83":2,"84":1,"85":1,"87":1,"95":2,"96":1,"126":2,"127":1,"129":1,"130":1,"136":1,"144":1,"146":1}}],["355859667",{"2":{"38":1}}],["3",{"2":{"38":2,"43":2,"45":2,"46":1,"49":1,"50":2,"51":1,"52":1,"53":1,"54":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":2,"84":1,"85":1,"87":1,"95":2,"96":1,"100":1,"101":2,"105":1,"111":1,"117":2,"118":3,"119":3,"126":2,"127":1,"130":1,"136":1,"144":1,"146":1}}],["3vf",{"0":{"37":1},"2":{"37":1}}],["bbb",{"0":{"166":1}}],["by",{"2":{"80":2}}],["bound=iterable",{"2":{"64":1}}],["bound=number",{"2":{"63":1}}],["bool=false",{"2":{"5":1,"118":1,"119":1}}],["bool",{"0":{"5":1,"43":1,"50":1,"51":1,"52":1,"53":1,"54":1,"58":1,"81":1,"87":1,"96":1,"101":1,"117":1,"118":1,"119":1,"123":1,"126":1,"127":1},"2":{"43":3,"50":3,"51":3,"52":3,"53":3,"54":3,"58":3,"81":3,"87":3,"96":3,"101":3,"105":2,"117":3,"118":2,"119":2,"123":1,"126":3,"127":3,"136":2}}],["b",{"0":{"80":1},"2":{"38":4,"80":5,"81":7,"83":2,"84":12,"85":2,"88":1,"89":3}}],["示例",{"2":{"38":1}}],["柯里化后的函数",{"2":{"38":2}}],["柯理化",{"2":{"38":2}}],["函数式编程",{"2":{"38":1}}],["函数",{"2":{"38":2}}],["有关函数柯里化",{"2":{"38":2}}],["对多参数函数进行柯里化",{"2":{"38":2}}],["ddd",{"0":{"168":1}}],["d",{"0":{"80":1},"2":{"80":7,"81":6,"83":1,"84":6,"85":1,"89":2}}],["documentation",{"2":{"169":1}}],["doc",{"2":{"129":1}}],["docs",{"2":{"43":2,"45":2,"46":1,"49":1,"50":2,"51":1,"52":1,"53":1,"54":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":2,"84":1,"85":1,"87":1,"95":2,"96":1,"100":1,"101":2,"105":1,"111":1,"117":2,"118":3,"119":3,"126":2,"127":1,"130":1,"136":1,"144":1,"146":1}}],["do",{"2":{"46":2}}],["distance",{"0":{"45":1,"83":1},"2":{"45":1,"83":1}}],["direction",{"0":{"42":1},"2":{"42":5,"43":1,"44":2,"45":8,"46":6,"47":1,"48":1,"49":3,"50":2,"51":2,"52":1,"53":1,"54":2,"55":4,"56":2,"58":3,"82":1,"84":2,"85":4,"91":1,"92":1,"95":1,"109":2}}],["dz",{"2":{"37":2}}],["dy",{"2":{"37":2}}],["dx",{"2":{"37":2}}],["demo",{"0":{"163":1}}],["density",{"0":{"158":1,"161":1},"2":{"158":4,"161":4}}],["derivative",{"0":{"35":1},"2":{"35":6}}],["degree",{"0":{"8":1},"2":{"8":1}}],["def",{"0":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1},"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"21":1,"22":1,"35":2,"38":2,"56":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"102":1,"103":1,"129":1,"130":1,"131":1,"133":1,"134":1,"138":1,"139":1,"142":1,"143":1,"158":1,"161":1}}],["$处的梯度向量为",{"2":{"37":1}}],["$",{"2":{"37":3}}],["梯度",{"2":{"37":2}}],["点乘结果",{"2":{"146":2}}],["点乘",{"2":{"146":2}}],["点乘使用",{"2":{"144":2}}],["点3",{"2":{"90":2}}],["点法式构造",{"2":{"89":2}}],["点2",{"2":{"56":2,"90":2}}],["点1",{"2":{"56":2,"90":2}}],["点",{"2":{"37":2,"48":2,"53":2}}],["∂f∂z",{"2":{"37":1}}],["∂f∂y",{"2":{"37":1}}],["∂f∂x",{"2":{"37":1}}],["∇f",{"2":{"37":1}}],["计算平行于该平面且过指定点的平面",{"2":{"86":2}}],["计算平面与直线的交点",{"2":{"85":2}}],["计算平面与平面或点之间的距离",{"2":{"83":2}}],["计算平面与平面之间的夹角",{"2":{"82":2}}],["计算两个向量之间的夹角",{"2":{"124":2}}],["计算两平面的交线",{"2":{"84":2}}],["计算两条直线点集合的交集",{"2":{"57":2}}],["计算两条直线的交点",{"2":{"46":2}}],["计算直线经过指定点p的垂线",{"2":{"47":2}}],["计算直线和直线或点之间的距离",{"2":{"45":2}}],["计算直线和直线之间的夹角",{"2":{"44":2}}],["计算三元函数在某点的梯度向量",{"2":{"37":2}}],["计算曲线上的点",{"2":{"34":2}}],["v3",{"2":{"125":2}}],["v2",{"2":{"58":2,"90":2,"91":4,"125":2}}],["v1",{"2":{"58":4,"90":2,"91":2,"125":2}}],["vector",{"0":{"120":1},"1":{"121":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"150":1,"151":1,"152":1},"2":{"42":1,"88":1,"89":1,"104":1,"106":3,"144":1}}],["vector3",{"0":{"37":1,"42":1,"88":1,"89":1,"102":1,"106":1,"121":1,"123":1,"124":1,"125":2,"126":1,"127":1,"131":1,"133":2,"138":2,"142":2,"143":1,"144":2,"145":1,"146":1,"147":1,"148":1,"149":1},"1":{"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1},"2":{"37":2,"39":1,"42":3,"59":1,"88":4,"89":3,"91":1,"102":1,"104":2,"106":7,"114":2,"123":1,"124":3,"125":7,"126":3,"127":4,"131":3,"133":2,"135":7,"136":2,"138":2,"140":7,"141":1,"142":2,"143":1,"144":9,"145":1,"146":3,"147":2,"148":4,"149":2,"150":2,"151":2,"152":2}}],["v",{"2":{"35":2,"104":2,"106":4,"135":8,"137":2,"140":8,"141":2}}],["var",{"0":{"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"34":1,"35":1,"38":1,"61":1,"62":1,"63":1,"64":1,"65":2,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"149":1,"150":1,"151":1,"152":1},"2":{"33":3,"34":1,"35":14,"37":1,"38":7,"48":1,"49":1}}],["valueerror",{"2":{"35":3,"46":4,"84":3,"85":3}}],["value",{"0":{"5":1,"113":1},"2":{"5":5,"113":5,"114":6,"115":1}}],["求高阶偏导函数",{"2":{"35":1}}],["求n元函数一阶偏导函数",{"2":{"35":2}}],["l2",{"0":{"91":1},"2":{"91":5}}],["l1",{"0":{"91":1},"2":{"91":7}}],["lambda",{"2":{"49":3}}],["left",{"2":{"37":1}}],["length",{"0":{"130":1},"2":{"45":5,"46":1,"82":2,"109":2,"124":2,"126":1,"128":5,"130":1,"131":1,"132":1}}],["len",{"2":{"34":1}}],["linalg",{"2":{"84":3}}],["lines",{"0":{"91":1},"2":{"46":2,"91":1}}],["line",{"0":{"40":1,"92":2},"1":{"41":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1},"2":{"43":1,"44":1,"45":1,"46":1,"47":1,"50":1,"51":1,"52":1,"54":1,"56":1,"57":2,"58":1,"82":1,"84":1,"85":2,"91":1,"92":6,"95":2}}],["line3",{"0":{"41":1,"43":1,"44":1,"45":1,"46":1,"47":1,"50":1,"51":1,"52":1,"54":1,"56":1,"57":2,"82":1,"84":2,"85":1,"91":2,"92":1,"93":1,"94":1,"97":1},"1":{"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1},"2":{"39":1,"43":3,"44":3,"45":4,"46":3,"47":4,"50":3,"51":3,"52":3,"54":3,"56":3,"57":6,"58":2,"59":1,"82":4,"84":5,"85":3,"91":5,"92":3,"93":1,"94":1,"95":6,"97":1,"114":1}}],["library",{"2":{"43":2,"45":2,"46":1,"49":1,"50":2,"51":1,"52":1,"53":1,"54":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":2,"84":1,"85":1,"87":1,"95":2,"96":1,"100":1,"101":2,"105":1,"111":1,"117":2,"118":3,"119":3,"126":2,"127":1,"130":1,"136":1,"144":1,"146":1}}],["list",{"2":{"35":8,"158":10,"161":10}}],["litedoc",{"2":{"35":2,"38":1}}],["`np",{"2":{"129":1}}],["`none`",{"2":{"57":1,"95":1}}],["``x2",{"2":{"125":1}}],["``x1",{"2":{"125":1}}],["``i",{"2":{"125":1}}],["```",{"2":{"38":1}}],["```python",{"2":{"38":1}}],["`str`",{"2":{"118":1,"119":1}}],["`plane3`",{"2":{"81":1,"82":1,"83":1,"84":1,"86":1,"87":1,"89":1,"95":1,"96":1}}],["`point3`",{"2":{"37":1,"42":1,"45":1,"46":1,"47":1,"48":1,"53":1,"56":2,"57":1,"83":1,"85":1,"86":1,"89":1,"90":3,"92":1,"95":1,"101":1,"104":2,"105":1,"106":1,"109":2,"135":2,"137":2,"140":2,"141":2}}],["`onesinglevarfunc`",{"2":{"49":3}}],["`onevarfunc`",{"2":{"33":3}}],["`realnumber`",{"2":{"48":1,"113":1}}],["`tuple`",{"2":{"49":1}}],["`typeerror`",{"2":{"45":1,"82":1,"83":1,"95":1}}],["`threesinglevarsfunc`",{"2":{"37":1}}],["`anyangle`",{"2":{"44":1,"82":1,"124":1}}],["`bool`",{"2":{"43":1,"50":1,"51":1,"52":1,"53":1,"54":1,"58":1,"81":1,"87":1,"96":1,"101":1,"105":1,"117":1,"118":1,"119":1,"126":1,"127":1,"136":1}}],["`float`",{"2":{"43":1,"45":1,"50":1,"80":4,"83":1,"100":3,"101":1,"111":4,"117":3,"118":1,"119":1,"126":1,"130":1,"144":1,"146":1}}],["`line3`",{"2":{"43":1,"44":1,"45":1,"46":1,"47":1,"50":1,"51":1,"52":1,"54":1,"56":1,"57":2,"58":1,"82":1,"84":1,"85":1,"91":2,"92":1,"95":2}}],["`valueerror`",{"2":{"46":2,"84":1,"85":1}}],["`var`",{"2":{"38":1}}],["`vector3`",{"2":{"42":1,"88":1,"89":1,"104":1,"106":2,"124":1,"125":2,"126":1,"127":1,"131":1,"135":2,"136":1,"140":2,"144":2,"146":1,"148":1}}],["`multivarsfunc`",{"2":{"35":1,"38":1}}],["无效变量类型",{"2":{"35":2}}],["引发",{"2":{"35":1,"45":1,"46":1,"82":1,"83":1,"84":1,"85":1,"95":1}}],["偏导函数",{"2":{"35":2}}],["偏移量",{"2":{"35":2,"37":2}}],["高阶偏导数值",{"2":{"35":1}}],["高阶偏导",{"2":{"35":2}}],["可直接从mbcp",{"2":{"39":1,"59":1}}],["可参考",{"2":{"38":1}}],["可参考函数式编程",{"2":{"38":1}}],["可为整数",{"2":{"35":2}}],["可导入",{"2":{"0":1,"1":1}}],["因此该函数的稳定性有待提升",{"2":{"35":2}}],["目前数学界对于一个函数的导函数并没有通解的说法",{"2":{"35":2}}],["目标点",{"2":{"34":2}}],["warning",{"2":{"35":2}}],["慎用",{"2":{"35":2}}],["这玩意不太稳定",{"2":{"35":2}}],["num",{"2":{"158":5,"161":5}}],["numpy",{"2":{"129":2}}],["numpy数组",{"2":{"129":2}}],["number=epsilon",{"2":{"35":1}}],["number",{"0":{"35":1,"62":1},"2":{"64":1}}],["ndarray`",{"2":{"129":1}}],["ndarray",{"0":{"129":1},"2":{"129":3}}],["neg",{"0":{"118":1,"119":1},"2":{"118":4,"119":4,"148":1}}],["negative",{"0":{"10":1},"2":{"10":1}}],["ne",{"0":{"116":1},"2":{"116":1}}],["np",{"0":{"129":2},"2":{"84":9,"129":4,"158":9,"161":9}}],["no",{"2":{"84":1}}],["normal",{"0":{"88":1,"89":2},"2":{"82":5,"84":4,"85":1,"86":2,"87":2,"88":1,"89":7,"90":3,"91":1,"92":1,"95":3}}],["normalize",{"0":{"128":1},"2":{"55":1,"128":1}}],["none",{"0":{"57":1,"93":1,"94":1},"2":{"57":4,"93":1,"94":1,"95":4}}],["not",{"2":{"45":1,"46":4,"57":1,"116":1,"118":1,"119":1}}],["nabla",{"2":{"37":1}}],["n元函数",{"2":{"35":2}}],["|",{"0":{"34":1,"35":1,"45":1,"57":2,"82":1,"83":1,"93":1,"94":1,"144":2},"2":{"34":1,"35":1,"45":3,"57":6,"61":1,"62":1,"65":1,"68":1,"71":1,"74":1,"77":1,"82":3,"83":3,"93":1,"94":1,"95":6,"104":2,"135":4,"140":4,"144":4}}],["曲线方程",{"2":{"33":2,"39":1,"59":1}}],["z轴单位向量",{"2":{"152":1}}],["z轴分量",{"2":{"122":2}}],["z2``",{"2":{"125":1}}],["z1``",{"2":{"125":1}}],["zero",{"0":{"149":1},"2":{"91":1,"127":1}}],["z系数",{"2":{"80":2}}],["zhihu",{"2":{"38":1}}],["zhuanlan",{"2":{"38":1}}],["z0",{"2":{"37":2}}],["zip",{"2":{"34":1}}],["z函数",{"2":{"33":2}}],["z",{"0":{"33":1,"100":1,"122":1,"152":1},"2":{"33":5,"34":4,"37":11,"49":2,"55":4,"83":1,"84":4,"85":4,"89":2,"100":7,"101":2,"104":2,"105":2,"106":2,"109":2,"114":2,"122":5,"123":2,"125":4,"128":1,"129":1,"130":1,"135":4,"136":2,"137":2,"140":4,"141":2,"144":3,"146":2,"147":1,"148":1,"158":2,"161":2}}],["y轴单位向量",{"2":{"151":1}}],["y轴分量",{"2":{"122":2}}],["y2",{"2":{"125":1}}],["y1",{"2":{"125":1}}],["y系数",{"2":{"80":2}}],["y0",{"2":{"37":2}}],["y函数",{"2":{"33":2}}],["y",{"0":{"33":1,"100":1,"117":1,"122":1,"151":1},"2":{"33":5,"34":4,"37":11,"49":2,"55":4,"83":1,"84":4,"85":4,"89":2,"100":7,"101":2,"104":2,"105":2,"106":2,"109":2,"114":2,"117":4,"122":5,"123":2,"125":4,"128":1,"129":1,"130":1,"135":4,"136":2,"137":2,"140":4,"141":2,"144":3,"146":2,"147":1,"148":1,"158":2,"161":2}}],["x轴单位向量",{"2":{"150":1}}],["x轴分量",{"2":{"122":2}}],["x3c",{"2":{"101":3,"114":1,"117":1,"118":1,"119":1,"123":3,"126":1}}],["x26",{"2":{"95":1}}],["x系数",{"2":{"80":2}}],["x0",{"2":{"37":2}}],["x函数",{"2":{"33":2}}],["x",{"0":{"33":1,"100":1,"111":1,"117":1,"118":1,"119":1,"122":1,"150":1},"2":{"33":5,"34":4,"37":11,"49":2,"55":2,"83":1,"84":4,"85":4,"89":2,"100":7,"101":2,"104":2,"105":2,"106":2,"109":2,"111":4,"114":2,"117":4,"118":5,"119":8,"122":5,"123":2,"125":4,"128":1,"129":1,"130":1,"135":4,"136":2,"137":2,"140":4,"141":2,"144":3,"146":2,"147":1,"148":1,"158":2,"161":2}}],["约等于判定误差",{"2":{"30":1}}],["精度误差",{"2":{"29":1}}],["06",{"0":{"50":1},"2":{"50":1}}],["001",{"2":{"30":1}}],["0001",{"2":{"29":1}}],["0",{"0":{"117":2},"2":{"28":1,"29":1,"30":1,"34":3,"37":6,"45":2,"54":1,"55":8,"80":2,"81":3,"83":2,"84":9,"85":1,"95":1,"117":1,"118":2,"119":4,"149":3,"150":2,"151":2,"152":2,"158":2,"161":2}}],["欧拉常数",{"2":{"28":1}}],["5772156649015329",{"2":{"28":1}}],["5",{"2":{"27":1,"83":1}}],["黄金分割比",{"2":{"27":1}}],["geometricmodels",{"0":{"157":1,"160":1},"1":{"158":1,"161":1}}],["generated",{"2":{"129":1}}],["get",{"0":{"35":1,"48":1,"49":1},"2":{"35":2,"48":1,"49":1,"85":1,"91":1}}],["gradient",{"0":{"37":1},"2":{"37":1}}],["gamma",{"0":{"28":1}}],["golden",{"0":{"27":1}}],["gt",{"0":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"19":1,"20":1,"21":1,"22":1,"34":1,"35":1,"37":1,"38":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"96":1,"97":1,"101":1,"102":1,"103":1,"106":1,"111":1,"117":1,"118":1,"119":1,"123":1,"124":1,"125":1,"126":1,"127":1,"129":1,"130":1,"131":1,"133":1,"134":1,"137":1,"138":1,"139":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1},"2":{"104":2,"106":2,"119":3,"125":1,"135":2,"137":1,"140":2,"141":1}}],["默认值",{"2":{"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"149":1,"150":1,"151":1,"152":1}}],["默认为否",{"2":{"5":2}}],["π",{"2":{"25":1}}],["to",{"2":{"169":1}}],["theta",{"2":{"158":3,"161":3}}],["the",{"2":{"85":2,"169":1}}],["three",{"0":{"90":1},"2":{"90":1}}],["threevarsfunc",{"0":{"74":1}}],["threearraysfunc",{"0":{"73":1},"2":{"74":1}}],["threesinglevarsfunc",{"0":{"37":1,"72":1},"2":{"37":3,"74":1}}],["twovarsfunc",{"0":{"71":1}}],["twoarraysfunc",{"0":{"70":1},"2":{"71":1}}],["twosinglevarsfunc",{"0":{"69":1},"2":{"71":1}}],["two",{"0":{"56":1,"91":1},"2":{"56":1,"91":1}}],["tip",{"2":{"37":2,"38":2}}],["typevar",{"2":{"63":1,"64":1}}],["typealias",{"2":{"61":1,"62":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1}}],["typeerror",{"2":{"45":3,"46":1,"82":3,"83":3,"95":3,"115":1,"135":1,"140":1,"141":1,"144":1}}],["type",{"0":{"115":1},"2":{"35":1,"45":1,"82":2,"83":2,"95":2,"114":2,"115":4,"135":2,"140":2,"141":2,"144":2}}],["typing",{"0":{"60":1},"1":{"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1},"2":{"33":3,"35":1,"37":1,"38":2,"48":1,"49":1,"113":1}}],["tuple",{"0":{"34":1,"35":1,"49":1},"2":{"34":2,"35":2,"49":3}}],["t",{"0":{"34":1,"48":1},"2":{"34":10,"48":4,"49":6,"85":4}}],["truediv",{"2":{"21":1,"22":1,"23":1,"147":1}}],["tan",{"0":{"13":1},"2":{"13":2,"14":1}}],["operand",{"2":{"95":1,"135":1,"140":1,"141":1,"144":1}}],["only",{"0":{"118":1,"119":1},"2":{"118":4,"119":4}}],["on",{"0":{"53":1},"2":{"53":1}}],["onearrayfunc",{"0":{"67":1},"2":{"68":1}}],["onesinglevarfunc",{"0":{"49":3,"66":1},"2":{"49":7,"68":1}}],["onevarfunc",{"0":{"33":3,"38":1,"68":1},"2":{"33":9,"38":1}}],["or",{"2":{"57":1,"85":1}}],["org",{"2":{"43":2,"45":2,"46":1,"49":1,"50":2,"51":1,"52":1,"53":1,"54":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":2,"84":1,"85":1,"87":1,"95":2,"96":1,"100":1,"101":2,"105":1,"111":1,"117":2,"118":3,"119":3,"126":2,"127":1,"129":1,"130":1,"136":1,"144":1,"146":1}}],["order",{"2":{"35":2}}],["overload",{"2":{"20":1,"21":2,"22":1,"92":1,"93":2,"94":1,"101":1,"102":2,"103":1,"132":1,"133":2,"134":1,"137":1,"138":2,"139":1,"141":1,"142":2,"143":1}}],["other",{"0":{"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"43":1,"44":1,"45":1,"46":1,"50":1,"51":1,"52":1,"54":1,"57":1,"58":1,"81":1,"82":1,"83":1,"84":1,"85":1,"87":1,"93":1,"94":1,"95":1,"96":1,"97":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"114":1,"115":1,"116":1,"123":1,"124":1,"125":1,"126":1,"127":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1},"2":{"17":2,"18":2,"19":2,"20":2,"21":1,"22":1,"23":4,"43":5,"44":4,"45":13,"46":9,"50":4,"51":4,"52":5,"54":5,"57":7,"58":5,"81":15,"82":9,"83":9,"84":17,"85":11,"87":4,"93":1,"94":1,"95":10,"96":4,"97":2,"101":6,"102":1,"103":1,"104":6,"105":6,"106":6,"114":9,"115":2,"116":2,"123":6,"124":5,"125":9,"126":4,"127":4,"133":1,"134":1,"135":12,"136":6,"137":6,"138":1,"139":1,"140":12,"141":8,"142":1,"143":1,"144":12,"145":2,"146":6,"147":4}}],["error",{"0":{"115":1},"2":{"114":2,"115":1}}],["exceptions",{"2":{"45":1,"46":1,"82":1,"83":1,"84":1,"85":1,"95":1}}],["examples",{"2":{"38":1}}],["exp",{"2":{"26":1}}],["elif",{"2":{"35":1,"45":3,"57":1,"81":2,"82":1,"83":1,"84":2,"95":1,"114":1,"118":1,"119":1,"135":1,"140":1,"144":1}}],["else",{"2":{"5":1,"34":1,"35":1,"45":2,"57":1,"81":1,"82":1,"83":1,"95":1,"114":2,"118":2,"119":2,"135":1,"140":1,"141":1,"144":1}}],["epsilon",{"0":{"29":1,"35":2,"37":2,"43":1,"50":1,"101":1,"117":1,"123":1,"126":1},"2":{"35":7,"37":12,"43":5,"50":4,"101":6,"117":4,"123":6,"126":4}}],["e",{"0":{"26":1},"2":{"26":1}}],["equations",{"0":{"49":1},"2":{"49":1,"85":1}}],["equation",{"0":{"31":1},"1":{"32":1,"33":1,"34":1,"35":1}}],["eq",{"0":{"18":1,"58":1,"96":1,"105":1,"114":1,"136":1},"2":{"18":1,"58":1,"96":1,"105":1,"114":1,"116":1,"136":1}}],["+1",{"2":{"119":2}}],["+=",{"2":{"35":1}}],["+",{"0":{"17":1,"102":1,"103":1,"104":1,"133":1,"134":1,"135":1,"137":1},"2":{"17":1,"27":1,"37":3,"38":4,"46":1,"48":1,"49":3,"80":6,"83":5,"85":5,"104":7,"109":3,"118":3,"119":3,"130":2,"135":11,"137":5,"146":2,"158":1,"161":1}}],["1e",{"0":{"50":1}}],["1",{"2":{"14":1,"15":1,"16":1,"26":1,"27":1,"34":1,"38":2,"91":1,"119":6,"150":1,"151":1,"152":1,"158":4,"161":4}}],["180",{"2":{"5":1,"8":1}}],["正割值",{"2":{"15":4}}],["正切值",{"2":{"13":4}}],["正弦值",{"2":{"11":4}}],["余割值",{"2":{"16":4}}],["余切值",{"2":{"14":4}}],["余弦值",{"2":{"12":4}}],["余角",{"2":{"6":4}}],["最大值",{"2":{"111":2}}],["最大负角度",{"2":{"10":2}}],["最大负角",{"2":{"10":2}}],["最小值",{"2":{"111":2}}],["最小正角度",{"2":{"9":2}}],["最小正角",{"2":{"9":2}}],["弧度",{"2":{"8":2}}],["角度",{"2":{"8":2}}],["角度或弧度值",{"2":{"5":2}}],["补角",{"2":{"7":4}}],["sphere",{"0":{"158":1,"161":1},"2":{"158":1,"161":1}}],["staticmethod",{"2":{"157":1,"158":1,"160":1,"161":1}}],["stable",{"2":{"129":1}}],["str",{"0":{"118":1,"119":1},"2":{"118":3,"119":3}}],["stdtypes",{"2":{"49":1}}],["s",{"2":{"95":1,"135":1,"140":1,"141":1,"144":1}}],["solve",{"2":{"84":3}}],["sign",{"0":{"118":1,"119":1},"2":{"118":1,"119":1}}],["simplify",{"0":{"55":1},"2":{"55":1}}],["singlevar",{"0":{"63":1},"2":{"63":1,"65":1,"66":2,"69":3,"72":4,"75":1}}],["sin",{"0":{"11":1},"2":{"11":2,"16":1,"158":3,"161":3}}],["sqrt",{"2":{"27":1,"130":1,"158":1,"161":1}}],["sub",{"2":{"19":1,"106":1,"138":1,"139":1,"140":1}}],["supplementary",{"0":{"7":1},"2":{"7":1}}],["segment",{"0":{"107":1},"1":{"108":1,"109":1}}],["segment3",{"0":{"108":1},"1":{"109":1},"2":{"39":1,"59":1}}],["sec",{"0":{"15":1},"2":{"15":1}}],["self",{"0":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"113":1,"114":1,"115":1,"116":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1},"2":{"5":3,"6":2,"7":2,"8":2,"9":2,"10":2,"11":2,"12":2,"13":2,"14":2,"15":2,"16":2,"17":2,"18":2,"19":2,"20":2,"21":1,"22":1,"23":3,"33":4,"34":7,"42":3,"43":4,"44":2,"45":13,"46":8,"47":3,"48":3,"49":7,"50":2,"51":2,"52":4,"53":3,"54":3,"55":8,"57":6,"58":4,"80":5,"81":16,"82":4,"83":8,"84":15,"85":9,"86":2,"87":2,"88":4,"93":1,"94":1,"95":5,"96":2,"97":2,"100":4,"101":4,"102":1,"103":1,"104":4,"105":4,"106":4,"109":15,"113":2,"114":9,"115":2,"116":2,"122":4,"123":4,"124":3,"125":7,"126":2,"127":2,"128":5,"129":4,"130":4,"131":3,"132":2,"133":1,"134":1,"135":7,"136":4,"137":4,"138":1,"139":1,"140":7,"141":4,"142":1,"143":1,"144":7,"145":2,"146":4,"147":4,"148":4}}],["2",{"2":{"6":1,"9":1,"10":1,"27":1,"35":1,"37":3,"38":2,"46":1,"83":3,"109":3,"130":3,"158":2,"161":2}}],["rmul",{"2":{"145":1}}],["rsub",{"2":{"141":1}}],["right",{"2":{"37":1}}],["reference",{"0":{"169":1},"2":{"129":1}}],["realnumber",{"0":{"48":1,"61":1,"113":1,"143":1,"145":1,"146":1,"147":1},"2":{"48":3,"62":1,"113":3,"143":1,"145":1,"146":1,"147":1}}],["result",{"2":{"35":4}}],["return",{"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"23":2,"34":2,"35":4,"37":1,"38":4,"43":1,"44":1,"45":5,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":3,"58":1,"81":4,"82":2,"83":2,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"95":4,"96":1,"97":1,"101":1,"104":1,"105":1,"106":1,"111":1,"114":2,"116":1,"117":1,"118":3,"119":3,"123":1,"124":1,"125":1,"126":1,"127":1,"129":1,"130":1,"131":1,"132":1,"135":2,"136":1,"137":1,"140":2,"141":1,"144":2,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1}}],["returns",{"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"34":1,"35":2,"37":1,"38":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"95":1,"96":1,"101":1,"104":1,"105":1,"106":1,"111":1,"117":1,"118":1,"119":1,"123":1,"124":1,"125":1,"126":1,"127":1,"129":1,"130":1,"131":1,"135":1,"136":1,"137":1,"140":1,"141":1,"144":1,"146":1,"148":1,"158":1,"161":1}}],["range",{"2":{"158":2,"161":2}}],["rand",{"0":{"97":1},"2":{"97":1}}],["radius",{"0":{"158":1,"161":1},"2":{"158":7,"161":7}}],["radian=true",{"2":{"6":1,"7":1,"10":1,"17":1,"19":1,"20":1,"23":1,"82":1,"124":1}}],["radian",{"0":{"5":1},"2":{"5":6,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":2,"18":2,"19":2,"20":1,"23":3}}],["radd",{"2":{"137":1}}],["raise",{"0":{"115":1},"2":{"35":1,"45":1,"46":2,"82":1,"83":1,"84":1,"85":1,"95":1,"114":2,"115":2,"135":1,"140":1,"141":1,"144":1}}],["raises",{"2":{"35":1,"45":1,"46":1,"82":1,"83":1,"84":1,"85":1,"95":1}}],["ratio",{"0":{"27":1}}],[">",{"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"19":1,"20":1,"21":1,"22":1,"34":1,"35":5,"37":3,"38":6,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"96":1,"97":1,"101":1,"102":1,"103":1,"104":2,"106":3,"111":1,"117":1,"118":2,"119":5,"123":1,"124":1,"125":2,"126":1,"127":1,"129":1,"130":1,"131":1,"133":1,"134":1,"135":2,"137":2,"138":1,"139":1,"140":2,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1}}],["返回numpy数组",{"2":{"129":1}}],["返回如下行列式的结果",{"2":{"125":1}}],["返回",{"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"34":1,"35":1,"37":1,"38":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"95":1,"96":1,"101":1,"104":1,"105":1,"106":1,"111":1,"117":1,"118":1,"119":1,"123":1,"124":1,"125":1,"126":1,"127":1,"129":1,"130":1,"131":1,"135":1,"136":1,"137":1,"140":1,"141":1,"144":1,"146":1,"148":1,"158":1,"161":1}}],["cz",{"2":{"80":2}}],["clamp",{"0":{"111":1},"2":{"111":1,"158":1,"161":1}}],["classmethod",{"2":{"55":1,"56":1,"88":1,"89":2,"90":2,"91":2,"92":1}}],["class",{"0":{"3":1,"4":1,"32":1,"41":1,"79":1,"99":1,"108":1,"112":1,"121":1,"157":1,"160":1},"1":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"113":1,"114":1,"115":1,"116":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1},"2":{"37":1,"42":2,"43":1,"44":2,"45":2,"46":2,"47":2,"48":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":3,"57":3,"58":1,"81":1,"82":3,"83":2,"84":2,"85":2,"86":2,"87":1,"88":1,"89":3,"90":1,"91":1,"92":2,"95":4,"96":1,"101":1,"104":3,"105":1,"106":3,"109":2,"124":2,"125":2,"126":1,"127":1,"131":1,"135":4,"136":1,"137":2,"140":4,"141":2,"144":2,"146":1,"148":1}}],["cls",{"0":{"56":1,"89":1,"90":1,"91":1,"92":1},"2":{"56":2,"89":2,"90":2,"91":2,"92":2}}],["cross",{"0":{"125":1},"2":{"45":4,"46":3,"47":1,"54":1,"84":1,"90":1,"91":1,"125":3,"126":1,"127":1}}],["c",{"0":{"80":1,"167":1},"1":{"168":1},"2":{"38":4,"80":5,"81":7,"83":2,"84":6,"85":2,"88":1,"89":3}}],["curried",{"2":{"38":6}}],["currying",{"2":{"38":2}}],["curry",{"0":{"38":1},"2":{"38":3}}],["curveequation",{"0":{"32":1},"1":{"33":1,"34":1},"2":{"39":1,"59":1}}],["cal",{"0":{"37":1,"44":1,"45":1,"46":1,"47":1,"82":1,"83":1,"84":1,"85":1,"86":1,"124":1},"2":{"37":1,"44":2,"45":1,"46":1,"47":1,"57":1,"82":2,"83":1,"84":1,"85":1,"86":1,"95":2,"97":1,"124":1}}],["callable",{"2":{"66":1,"67":1,"69":1,"70":1,"72":1,"73":1,"75":1,"76":1}}],["call",{"0":{"34":1},"2":{"34":1}}],["csc",{"0":{"16":1},"2":{"16":1}}],["coincident",{"2":{"85":1}}],["collinear",{"0":{"52":1},"2":{"52":1,"57":1}}],["coplanar",{"0":{"54":1},"2":{"45":1,"46":2,"54":1,"57":1}}],["complex",{"2":{"62":1}}],["complementary",{"0":{"6":1},"2":{"6":1,"82":1}}],["com",{"2":{"38":1}}],["constants",{"2":{"57":1,"95":1}}],["const",{"0":{"24":1},"1":{"25":1,"26":1,"27":1,"28":1,"29":1,"30":1}}],["cot",{"0":{"14":1},"2":{"14":1}}],["cos",{"0":{"12":1},"2":{"12":2,"15":1,"158":2,"161":2}}],["all",{"2":{"101":1,"114":1,"123":1}}],["acos",{"2":{"82":1,"124":1}}],["axis",{"0":{"150":1,"151":1,"152":1}}],["ax",{"2":{"80":2}}],["arccos",{"2":{"158":1,"161":1}}],["array",{"0":{"129":1},"2":{"84":6,"129":2,"158":6,"161":6}}],["arrayvar",{"0":{"64":1},"2":{"64":1,"65":1,"67":2,"70":3,"73":4,"76":1}}],["area",{"2":{"158":2,"161":2}}],["are",{"2":{"46":2,"84":1,"85":1}}],["args2",{"2":{"38":2}}],["args",{"0":{"38":1},"2":{"5":1,"33":1,"34":1,"35":14,"37":1,"38":5,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"89":1,"90":1,"91":1,"92":1,"95":1,"96":1,"100":1,"101":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"135":1,"136":1,"137":1,"140":1,"141":1,"144":1,"146":1,"158":1,"161":1}}],["abs",{"0":{"132":1},"2":{"45":1,"83":1,"101":3,"114":1,"117":1,"119":1,"123":3,"132":1}}],["a",{"0":{"80":1},"2":{"38":4,"80":5,"81":7,"83":2,"84":12,"85":2,"88":1,"89":3}}],["aaa",{"0":{"165":1},"1":{"166":1},"2":{"36":1}}],["approx",{"0":{"30":1,"43":2,"50":1,"81":1,"101":2,"112":1,"117":2,"123":2,"126":2},"1":{"113":1,"114":1,"115":1,"116":1},"2":{"18":1,"43":3,"50":2,"81":10,"96":1,"101":1,"105":3,"114":4,"117":1,"123":1,"126":1,"127":1,"136":3}}],["add",{"2":{"17":1,"38":8,"102":1,"103":1,"104":1,"133":1,"134":1,"135":1}}],["and",{"0":{"57":1,"89":1,"92":1,"93":1,"94":1,"95":1},"2":{"43":1,"46":2,"52":1,"57":1,"58":1,"81":6,"84":4,"85":1,"86":1,"89":1,"90":1,"91":1,"92":2,"93":1,"94":1,"95":2,"105":2,"115":1,"135":1,"136":2,"140":1,"141":1,"144":1}}],["anyangle",{"0":{"4":1,"6":1,"7":1,"9":1,"10":1,"17":2,"19":2,"20":1,"21":1,"22":1,"44":1,"82":1,"124":1},"1":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1},"2":{"6":2,"7":2,"9":2,"10":2,"17":3,"19":3,"20":2,"21":1,"22":1,"23":2,"39":1,"44":3,"59":1,"82":4,"124":4}}],["angle",{"0":{"2":1,"3":1,"4":1,"44":1,"82":1,"124":1},"1":{"3":1,"4":1,"5":2,"6":2,"7":2,"8":2,"9":2,"10":2,"11":2,"12":2,"13":2,"14":2,"15":2,"16":2,"17":2,"18":2,"19":2,"20":2,"21":2,"22":2,"23":2},"2":{"44":3,"82":3,"124":2}}],["在github上查看",{"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1}}],["或包装一个实数",{"2":{"117":2}}],["或整数元组",{"2":{"35":2}}],["或",{"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1}}],["源代码",{"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1}}],["参数方程",{"2":{"49":2}}],["参数t",{"2":{"48":2}}],["参数",{"2":{"5":1,"33":1,"34":3,"35":2,"37":1,"38":3,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"89":1,"90":1,"91":1,"92":1,"95":1,"96":1,"100":1,"101":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"135":1,"136":1,"137":1,"140":1,"141":1,"144":1,"146":1,"158":1,"161":1}}],["任意角度",{"2":{"5":2,"39":1,"59":1}}],["from",{"0":{"56":1,"89":1,"90":1,"91":1,"92":1},"2":{"56":1,"86":1,"89":1,"90":2,"91":2,"92":2,"106":1}}],["frac",{"2":{"37":3}}],["f",{"2":{"37":4,"82":1,"83":1,"95":1,"115":1,"119":3,"135":1,"140":1,"141":1,"144":1}}],["format",{"0":{"119":1},"2":{"119":1}}],["for",{"2":{"34":1,"35":1,"95":1,"135":1,"140":1,"141":1,"144":1,"158":2,"161":2}}],["functions",{"2":{"43":2,"45":1,"50":2,"51":1,"52":1,"53":1,"54":1,"58":1,"80":1,"81":1,"83":1,"87":1,"96":1,"100":1,"101":2,"105":1,"111":1,"117":2,"118":3,"119":3,"126":2,"127":1,"130":1,"136":1,"144":1,"146":1}}],["function",{"0":{"36":1},"1":{"37":1,"38":1}}],["func",{"0":{"33":3,"35":2,"37":1,"38":1},"2":{"33":15,"34":6,"35":16,"37":9,"38":6}}],["false",{"0":{"5":1,"118":1,"119":1},"2":{"81":1}}],["float=0",{"2":{"117":1}}],["float=1e",{"2":{"50":1}}],["float=approx",{"2":{"43":1,"101":1,"117":1,"123":1,"126":1}}],["float=epsilon",{"2":{"37":1}}],["float",{"0":{"5":1,"8":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"20":1,"21":1,"22":1,"37":1,"43":1,"45":1,"50":1,"80":4,"83":1,"100":3,"101":1,"111":4,"117":3,"118":1,"119":1,"122":3,"123":1,"126":1,"130":1,"144":1,"158":2,"161":2},"2":{"5":1,"8":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"20":1,"21":1,"22":1,"43":2,"45":3,"50":2,"61":1,"80":9,"83":3,"100":7,"101":2,"111":9,"114":2,"117":5,"118":3,"119":3,"122":3,"126":2,"130":3,"144":4,"146":2,"158":2,"161":2}}],["==",{"2":{"34":1,"45":1,"54":1,"55":3,"85":1,"91":1,"95":1}}],["=",{"0":{"5":1,"17":1,"19":1,"20":1,"21":1,"22":1,"35":1,"37":1,"43":1,"50":1,"101":1,"102":1,"103":1,"106":1,"117":2,"118":1,"119":1,"123":1,"126":1,"133":1,"134":1,"137":1,"138":1,"139":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1},"2":{"5":2,"33":3,"35":5,"37":5,"38":2,"42":2,"55":3,"56":1,"80":6,"81":6,"84":17,"85":2,"89":2,"90":3,"91":3,"100":3,"109":5,"113":1,"122":3,"128":4,"158":7,"161":7}}],["improve",{"2":{"169":1}}],["import",{"2":{"106":1}}],["i",{"2":{"158":4,"161":4}}],["invalid",{"2":{"35":1}}],["intersect",{"2":{"46":2}}],["intersection",{"0":{"46":1,"84":1,"85":1},"2":{"46":1,"57":1,"84":2,"85":1,"95":2,"97":1}}],["int",{"0":{"35":2,"144":1},"2":{"35":3,"38":8,"61":1,"114":2,"144":2,"158":1,"161":1}}],["in",{"2":{"34":1,"35":1,"158":2,"161":2}}],["init",{"0":{"5":1,"33":1,"42":1,"80":1,"100":1,"109":1,"113":1,"122":1},"2":{"5":1,"33":1,"42":1,"80":1,"100":1,"109":1,"113":1,"122":1}}],["if",{"2":{"5":1,"23":1,"34":1,"35":1,"45":2,"46":2,"55":3,"57":1,"81":1,"82":1,"83":1,"84":2,"85":1,"91":1,"95":3,"114":3,"118":2,"119":2,"135":1,"140":1,"141":1,"144":1}}],["isinstance",{"2":{"23":1,"35":2,"45":2,"82":2,"83":2,"95":2,"114":4,"135":2,"140":2,"141":1,"144":2}}],["is",{"0":{"5":1,"50":1,"51":1,"52":1,"53":1,"54":1,"87":1,"126":1,"127":1},"2":{"5":4,"6":1,"7":1,"10":1,"17":1,"19":1,"20":1,"23":1,"43":2,"45":2,"46":2,"50":2,"51":2,"52":3,"53":2,"54":1,"57":3,"58":2,"82":1,"84":1,"87":2,"95":1,"124":1,"126":1,"127":1}}],["预设",{"2":{"0":1,"1":1}}],["phi",{"2":{"158":5,"161":5}}],["p3",{"0":{"90":1},"2":{"90":4}}],["p2",{"0":{"56":1,"90":1,"109":1},"2":{"56":4,"58":2,"90":4,"109":9}}],["p1",{"0":{"56":1,"90":1,"109":1},"2":{"56":5,"58":2,"90":6,"109":9}}],["perpendicular",{"0":{"47":1},"2":{"47":1}}],["parametric",{"0":{"49":1},"2":{"49":1,"85":1}}],["parallel",{"0":{"50":1,"51":1,"86":1,"87":1,"126":1,"127":1},"2":{"43":2,"45":1,"46":2,"50":2,"51":2,"52":2,"53":1,"57":1,"58":2,"84":2,"85":1,"86":1,"87":2,"95":1,"126":1,"127":1}}],["partial",{"0":{"35":1},"2":{"35":6,"37":6}}],["particle",{"0":{"153":1,"154":1},"2":{"0":1,"1":1}}],["planes",{"2":{"84":1}}],["plane",{"0":{"78":1},"1":{"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1},"2":{"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"89":1,"95":1,"96":1}}],["plane3",{"0":{"79":1,"81":1,"82":1,"83":1,"84":1,"86":2,"87":1,"89":1,"90":1,"91":1,"92":1,"94":1},"1":{"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1},"2":{"39":1,"59":1,"81":3,"82":4,"83":4,"84":3,"86":5,"87":3,"89":3,"90":1,"91":1,"92":1,"94":1,"95":4,"96":2,"114":1}}],["plus",{"2":{"35":3}}],["p",{"0":{"37":1},"2":{"37":21,"38":1,"104":10,"106":8,"135":4,"137":4,"140":4,"141":4}}],["points",{"0":{"56":1,"90":1},"2":{"56":1,"90":1}}],["point",{"0":{"42":1,"47":1,"48":1,"53":2,"86":1,"89":2,"92":2,"98":1},"1":{"99":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1},"2":{"37":1,"42":6,"43":2,"45":6,"46":4,"47":7,"48":3,"49":3,"52":2,"53":7,"54":2,"55":3,"56":2,"57":1,"58":2,"83":1,"85":4,"86":6,"89":8,"90":2,"91":6,"92":7,"95":1,"101":1,"104":2,"105":1,"106":1,"109":2,"135":2,"137":2,"140":2,"141":2}}],["point3",{"0":{"34":2,"37":1,"42":1,"45":1,"46":1,"47":1,"48":1,"53":1,"56":2,"57":1,"83":1,"85":2,"86":1,"89":1,"90":3,"92":1,"93":1,"97":1,"99":1,"101":1,"102":1,"103":2,"106":1,"109":2,"134":2,"137":2,"139":2,"141":1},"1":{"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1},"2":{"34":4,"37":3,"39":1,"42":3,"45":4,"46":3,"47":3,"48":3,"53":3,"56":6,"57":3,"59":1,"83":4,"84":1,"85":5,"86":3,"89":3,"90":7,"92":3,"93":1,"95":3,"97":2,"101":3,"102":1,"103":2,"104":5,"105":2,"106":3,"109":7,"114":1,"134":2,"135":6,"137":7,"139":2,"140":6,"141":7,"158":3,"161":3}}],["positive",{"0":{"9":1},"2":{"6":1,"7":1,"9":1}}],["python",{"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"21":1,"22":1,"43":2,"45":2,"46":1,"49":1,"50":2,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":2,"84":1,"85":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":2,"96":1,"100":1,"101":2,"102":1,"103":1,"105":1,"111":1,"117":2,"118":3,"119":3,"126":2,"127":1,"129":1,"130":2,"131":1,"133":1,"134":1,"136":1,"138":1,"139":1,"142":1,"143":1,"144":1,"146":1,"158":1,"161":1}}],["pythondef",{"2":{"5":1,"17":1,"18":1,"19":1,"20":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":2,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"95":1,"96":1,"97":1,"100":1,"101":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"132":1,"135":1,"136":1,"137":1,"140":1,"141":1,"144":1,"145":1,"146":1,"147":1,"148":1}}],["property",{"2":{"5":1,"6":2,"7":2,"8":2,"9":2,"10":2,"11":2,"12":2,"13":2,"14":2,"15":2,"16":1,"87":1,"88":1,"128":1,"129":2,"130":2,"131":1}}],["presets",{"0":{"155":1,"156":1,"159":1,"162":1},"1":{"157":1,"158":1,"160":1,"161":1},"2":{"0":1,"1":1}}],["pi",{"0":{"25":1},"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"25":1,"158":2,"161":2}}],["粒子生成工具",{"2":{"0":1,"1":1}}],["model",{"0":{"156":1,"159":1},"1":{"157":1,"158":1,"160":1,"161":1}}],["midpoint",{"2":{"109":1}}],["min",{"0":{"111":1},"2":{"111":5}}],["minus",{"2":{"35":3}}],["minimum",{"0":{"9":1},"2":{"6":1,"7":1,"9":1}}],["multiarraysfunc",{"0":{"76":1},"2":{"77":1}}],["multisinglevarsfunc",{"0":{"75":1},"2":{"77":1}}],["multivarsfunc",{"0":{"35":2,"38":1,"77":1},"2":{"35":4,"38":3}}],["mul",{"2":{"20":1,"142":1,"143":1,"144":1,"145":1}}],["matmul",{"2":{"146":1}}],["math导入使用",{"2":{"39":1,"59":1}}],["math",{"0":{"2":1,"24":1,"31":1,"36":1,"39":1,"40":1,"59":1,"60":2,"78":1,"98":1,"107":1,"110":1,"120":1},"1":{"3":1,"4":1,"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"32":1,"33":1,"34":1,"35":1,"37":1,"38":1,"41":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"61":2,"62":2,"63":2,"64":2,"65":2,"66":2,"67":2,"68":2,"69":2,"70":2,"71":2,"72":2,"73":2,"74":2,"75":2,"76":2,"77":2,"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"99":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"108":1,"109":1,"111":1,"112":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"121":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"150":1,"151":1,"152":1},"2":{"0":1,"1":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"25":1,"26":1,"27":1,"33":3,"35":1,"37":1,"38":2,"48":1,"49":1,"82":1,"113":1,"124":1,"130":1}}],["max",{"0":{"111":1},"2":{"111":5}}],["maximum",{"0":{"10":1},"2":{"10":1}}],["mp",{"0":{"2":1,"24":1,"31":1,"36":1,"39":1,"40":1,"59":1,"60":2,"78":1,"98":1,"107":1,"110":1,"120":1},"1":{"3":1,"4":1,"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"32":1,"33":1,"34":1,"35":1,"37":1,"38":1,"41":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"61":2,"62":2,"63":2,"64":2,"65":2,"66":2,"67":2,"68":2,"69":2,"70":2,"71":2,"72":2,"73":2,"74":2,"75":2,"76":2,"77":2,"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"99":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"108":1,"109":1,"111":1,"112":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"121":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"150":1,"151":1,"152":1},"2":{"0":1,"1":1,"33":3,"35":1,"37":1,"38":2,"39":1,"48":1,"49":1,"59":1,"113":1}}],["mbcp",{"0":{"0":1,"1":1,"2":1,"24":1,"31":1,"36":1,"39":1,"40":1,"59":1,"60":1,"78":1,"98":1,"107":1,"110":1,"120":1,"153":1,"154":1,"155":1,"156":1,"159":1,"162":1},"1":{"3":1,"4":1,"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"32":1,"33":1,"34":1,"35":1,"37":1,"38":1,"41":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"99":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"108":1,"109":1,"111":1,"112":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"121":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"150":1,"151":1,"152":1,"157":1,"158":1,"160":1,"161":1},"2":{"0":3,"1":3}}],["提供了一些工具",{"2":{"0":1,"1":1}}],["说明",{"2":{"0":1,"1":1,"2":1,"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"24":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"31":1,"33":1,"34":1,"35":1,"36":1,"37":1,"38":1,"39":1,"40":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"59":1,"60":1,"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"78":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"95":1,"96":1,"98":1,"100":1,"101":1,"104":1,"105":1,"106":1,"107":1,"109":1,"110":1,"111":1,"113":1,"117":1,"118":1,"119":1,"120":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"130":1,"131":1,"135":1,"136":1,"137":1,"140":1,"141":1,"144":1,"146":1,"148":1,"149":1,"150":1,"151":1,"152":1,"153":1,"154":1,"155":1,"156":1,"158":1,"159":1,"161":1,"162":1}}]],"serializationVersion":2}';export{t as default};
diff --git a/assets/chunks/@localSearchIndexzht.Bx7DiuMe.js b/assets/chunks/@localSearchIndexzht.Bx7DiuMe.js
deleted file mode 100644
index c489b6a..0000000
--- a/assets/chunks/@localSearchIndexzht.Bx7DiuMe.js
+++ /dev/null
@@ -1 +0,0 @@
-const t='{"documentCount":165,"nextId":165,"documentIds":{"0":"/zht/api/api.html#mbcp","1":"/zht/api/#mbcp","2":"/zht/api/mp_math/angle.html#mbcp-mp-math-angle","3":"/zht/api/mp_math/angle.html#class-angle","4":"/zht/api/mp_math/angle.html#class-anyangle-angle","5":"/zht/api/mp_math/angle.html#def-init-self-value-float-is-radian-bool-false","6":"/zht/api/mp_math/angle.html#def-complementary-self-anyangle","7":"/zht/api/mp_math/angle.html#def-supplementary-self-anyangle","8":"/zht/api/mp_math/angle.html#def-degree-self-float","9":"/zht/api/mp_math/angle.html#def-minimum-positive-self-anyangle","10":"/zht/api/mp_math/angle.html#def-maximum-negative-self-anyangle","11":"/zht/api/mp_math/angle.html#def-sin-self-float","12":"/zht/api/mp_math/angle.html#def-cos-self-float","13":"/zht/api/mp_math/angle.html#def-tan-self-float","14":"/zht/api/mp_math/angle.html#def-cot-self-float","15":"/zht/api/mp_math/angle.html#def-sec-self-float","16":"/zht/api/mp_math/angle.html#def-csc-self-float","17":"/zht/api/mp_math/angle.html#def-self-other-anyangle-anyangle","18":"/zht/api/mp_math/angle.html#def-eq-self-other","19":"/zht/api/mp_math/angle.html#def-self-other-anyangle-anyangle-1","20":"/zht/api/mp_math/angle.html#def-self-other-float-anyangle","21":"/zht/api/mp_math/angle.html#def-self-other-float-anyangle-1","22":"/zht/api/mp_math/angle.html#def-self-other-anyangle-float","23":"/zht/api/mp_math/angle.html#def-self-other","24":"/zht/api/mp_math/const.html#mbcp-mp-math-const","25":"/zht/api/mp_math/const.html#var-pi","26":"/zht/api/mp_math/const.html#var-e","27":"/zht/api/mp_math/const.html#var-golden-ratio","28":"/zht/api/mp_math/const.html#var-gamma","29":"/zht/api/mp_math/const.html#var-epsilon","30":"/zht/api/mp_math/const.html#var-approx","31":"/zht/api/mp_math/equation.html#mbcp-mp-math-equation","32":"/zht/api/mp_math/equation.html#class-curveequation","33":"/zht/api/mp_math/equation.html#def-init-self-x-func-onevarfunc-y-func-onevarfunc-z-func-onevarfunc","34":"/zht/api/mp_math/equation.html#def-call-self-t-var-point3-tuple-point3","35":"/zht/api/mp_math/equation.html#def-get-partial-derivative-func-func-multivarsfunc-var-int-tuple-int-epsilon-number-epsilon-multivarsfunc","36":"/zht/api/mp_math/function.html#mbcp-mp-math-function","37":"/zht/api/mp_math/function.html#def-cal-gradient-3vf-func-threesinglevarsfunc-p-point3-epsilon-float-epsilon-vector3","38":"/zht/api/mp_math/function.html#def-curry-func-multivarsfunc-args-var-onevarfunc","39":"/zht/api/mp_math/#mbcp-mp-math","40":"/zht/api/mp_math/mp_math.html#mbcp-mp-math","41":"/zht/api/mp_math/line.html#mbcp-mp-math-line","42":"/zht/api/mp_math/line.html#class-line3","43":"/zht/api/mp_math/line.html#def-init-self-point-point3-direction-vector3","44":"/zht/api/mp_math/line.html#def-approx-self-other-line3-epsilon-float-approx-bool","45":"/zht/api/mp_math/line.html#def-cal-angle-self-other-line3-anyangle","46":"/zht/api/mp_math/line.html#def-cal-distance-self-other-line3-point3-float","47":"/zht/api/mp_math/line.html#def-cal-intersection-self-other-line3-point3","48":"/zht/api/mp_math/line.html#def-cal-perpendicular-self-point-point3-line3","49":"/zht/api/mp_math/line.html#def-get-point-self-t-realnumber-point3","50":"/zht/api/mp_math/line.html#def-get-parametric-equations-self-tuple-onesinglevarfunc-onesinglevarfunc-onesinglevarfunc","51":"/zht/api/mp_math/line.html#def-is-approx-parallel-self-other-line3-epsilon-float-1e-06-bool","52":"/zht/api/mp_math/line.html#def-is-parallel-self-other-line3-bool","53":"/zht/api/mp_math/line.html#def-is-collinear-self-other-line3-bool","54":"/zht/api/mp_math/line.html#def-is-point-on-self-point-point3-bool","55":"/zht/api/mp_math/line.html#def-is-coplanar-self-other-line3-bool","56":"/zht/api/mp_math/line.html#def-simplify-self","57":"/zht/api/mp_math/line.html#def-from-two-points-cls-p1-point3-p2-point3-line3","58":"/zht/api/mp_math/line.html#def-and-self-other-line3-line3-point3-none","59":"/zht/api/mp_math/line.html#def-eq-self-other-bool","60":"/zht/api/mp_math/mp_math_typing.html#mbcp-mp-math-mp-math-typing","61":"/zht/api/mp_math/mp_math_typing.html#var-realnumber","62":"/zht/api/mp_math/mp_math_typing.html#var-number","63":"/zht/api/mp_math/mp_math_typing.html#var-singlevar","64":"/zht/api/mp_math/mp_math_typing.html#var-arrayvar","65":"/zht/api/mp_math/mp_math_typing.html#var-var","66":"/zht/api/mp_math/mp_math_typing.html#var-onesinglevarfunc","67":"/zht/api/mp_math/mp_math_typing.html#var-onearrayfunc","68":"/zht/api/mp_math/mp_math_typing.html#var-onevarfunc","69":"/zht/api/mp_math/mp_math_typing.html#var-twosinglevarsfunc","70":"/zht/api/mp_math/mp_math_typing.html#var-twoarraysfunc","71":"/zht/api/mp_math/mp_math_typing.html#var-twovarsfunc","72":"/zht/api/mp_math/mp_math_typing.html#var-threesinglevarsfunc","73":"/zht/api/mp_math/mp_math_typing.html#var-threearraysfunc","74":"/zht/api/mp_math/mp_math_typing.html#var-threevarsfunc","75":"/zht/api/mp_math/mp_math_typing.html#var-multisinglevarsfunc","76":"/zht/api/mp_math/mp_math_typing.html#var-multiarraysfunc","77":"/zht/api/mp_math/mp_math_typing.html#var-multivarsfunc","78":"/zht/api/mp_math/plane.html#mbcp-mp-math-plane","79":"/zht/api/mp_math/plane.html#class-plane3","80":"/zht/api/mp_math/plane.html#def-init-self-a-float-b-float-c-float-d-float","81":"/zht/api/mp_math/plane.html#def-approx-self-other-plane3-bool","82":"/zht/api/mp_math/plane.html#def-cal-angle-self-other-line3-plane3-anyangle","83":"/zht/api/mp_math/plane.html#def-cal-distance-self-other-plane3-point3-float","84":"/zht/api/mp_math/plane.html#def-cal-intersection-line3-self-other-plane3-line3","85":"/zht/api/mp_math/plane.html#def-cal-intersection-point3-self-other-line3-point3","86":"/zht/api/mp_math/plane.html#def-cal-parallel-plane3-self-point-point3-plane3","87":"/zht/api/mp_math/plane.html#def-is-parallel-self-other-plane3-bool","88":"/zht/api/mp_math/plane.html#def-normal-self-vector3","89":"/zht/api/mp_math/plane.html#def-from-point-and-normal-cls-point-point3-normal-vector3-plane3","90":"/zht/api/mp_math/plane.html#def-from-three-points-cls-p1-point3-p2-point3-p3-point3-plane3","91":"/zht/api/mp_math/plane.html#def-from-two-lines-cls-l1-line3-l2-line3-plane3","92":"/zht/api/mp_math/plane.html#def-from-point-and-line-cls-point-point3-line-line3-plane3","93":"/zht/api/mp_math/plane.html#def-and-self-other-line3-point3-none","94":"/zht/api/mp_math/plane.html#def-and-self-other-plane3-line3-none","95":"/zht/api/mp_math/plane.html#def-and-self-other","96":"/zht/api/mp_math/plane.html#def-eq-self-other-bool","97":"/zht/api/mp_math/plane.html#def-rand-self-other-line3-point3","98":"/zht/api/mp_math/point.html#mbcp-mp-math-point","99":"/zht/api/mp_math/point.html#class-point3","100":"/zht/api/mp_math/point.html#def-init-self-x-float-y-float-z-float","101":"/zht/api/mp_math/point.html#def-approx-self-other-point3-epsilon-float-approx-bool","102":"/zht/api/mp_math/point.html#def-self-other-vector3-point3","103":"/zht/api/mp_math/point.html#def-self-other-point3-point3","104":"/zht/api/mp_math/point.html#def-self-other","105":"/zht/api/mp_math/point.html#def-eq-self-other","106":"/zht/api/mp_math/point.html#def-self-other-point3-vector3","107":"/zht/api/mp_math/segment.html#mbcp-mp-math-segment","108":"/zht/api/mp_math/segment.html#class-segment3","109":"/zht/api/mp_math/segment.html#def-init-self-p1-point3-p2-point3","110":"/zht/api/mp_math/utils.html#mbcp-mp-math-utils","111":"/zht/api/mp_math/utils.html#def-clamp-x-float-min-float-max-float-float","112":"/zht/api/mp_math/utils.html#class-approx","113":"/zht/api/mp_math/utils.html#def-init-self-value-realnumber","114":"/zht/api/mp_math/utils.html#def-eq-self-other","115":"/zht/api/mp_math/utils.html#def-raise-type-error-self-other","116":"/zht/api/mp_math/utils.html#def-ne-self-other","117":"/zht/api/mp_math/utils.html#def-approx-x-float-y-float-0-0-epsilon-float-approx-bool","118":"/zht/api/mp_math/utils.html#def-sign-x-float-only-neg-bool-false-str","119":"/zht/api/mp_math/utils.html#def-sign-format-x-float-only-neg-bool-false-str","120":"/zht/api/mp_math/vector.html#mbcp-mp-math-vector","121":"/zht/api/mp_math/vector.html#class-vector3","122":"/zht/api/mp_math/vector.html#def-init-self-x-float-y-float-z-float","123":"/zht/api/mp_math/vector.html#def-approx-self-other-vector3-epsilon-float-approx-bool","124":"/zht/api/mp_math/vector.html#def-cal-angle-self-other-vector3-anyangle","125":"/zht/api/mp_math/vector.html#def-cross-self-other-vector3-vector3","126":"/zht/api/mp_math/vector.html#def-is-approx-parallel-self-other-vector3-epsilon-float-approx-bool","127":"/zht/api/mp_math/vector.html#def-is-parallel-self-other-vector3-bool","128":"/zht/api/mp_math/vector.html#def-normalize-self","129":"/zht/api/mp_math/vector.html#def-np-array-self-np-ndarray","130":"/zht/api/mp_math/vector.html#def-length-self-float","131":"/zht/api/mp_math/vector.html#def-unit-self-vector3","132":"/zht/api/mp_math/vector.html#def-abs-self","133":"/zht/api/mp_math/vector.html#def-self-other-vector3-vector3","134":"/zht/api/mp_math/vector.html#def-self-other-point3-point3","135":"/zht/api/mp_math/vector.html#def-self-other","136":"/zht/api/mp_math/vector.html#def-eq-self-other","137":"/zht/api/mp_math/vector.html#def-self-other-point3-point3-1","138":"/zht/api/mp_math/vector.html#def-self-other-vector3-vector3-1","139":"/zht/api/mp_math/vector.html#def-self-other-point3-point3-2","140":"/zht/api/mp_math/vector.html#def-self-other-1","141":"/zht/api/mp_math/vector.html#def-self-other-point3","142":"/zht/api/mp_math/vector.html#def-self-other-vector3-vector3-2","143":"/zht/api/mp_math/vector.html#def-self-other-realnumber-vector3","144":"/zht/api/mp_math/vector.html#def-self-other-int-float-vector3-vector3","145":"/zht/api/mp_math/vector.html#def-self-other-realnumber-vector3-1","146":"/zht/api/mp_math/vector.html#def-self-other-vector3-realnumber","147":"/zht/api/mp_math/vector.html#def-self-other-realnumber-vector3-2","148":"/zht/api/mp_math/vector.html#def-self-vector3","149":"/zht/api/mp_math/vector.html#var-zero-vector3","150":"/zht/api/mp_math/vector.html#var-x-axis","151":"/zht/api/mp_math/vector.html#var-y-axis","152":"/zht/api/mp_math/vector.html#var-z-axis","153":"/zht/api/particle/#mbcp-particle","154":"/zht/api/particle/particle.html#mbcp-particle","155":"/zht/api/presets/#mbcp-presets","156":"/zht/api/presets/model/#mbcp-presets-model","157":"/zht/api/presets/model/#class-geometricmodels","158":"/zht/api/presets/model/#def-sphere-radius-float-density-float","159":"/zht/api/presets/model/model.html#mbcp-presets-model","160":"/zht/api/presets/model/model.html#class-geometricmodels","161":"/zht/api/presets/model/model.html#def-sphere-radius-float-density-float","162":"/zht/api/presets/presets.html#mbcp-presets","163":"/zht/guide/#开始不了一点","164":"/zht/refer/#reference"},"fieldIds":{"title":0,"titles":1,"text":2},"fieldLength":{"0":[1,1,13],"1":[1,1,13],"2":[4,1,3],"3":[2,4,1],"4":[4,4,1],"5":[11,8,25],"6":[5,8,24],"7":[5,8,23],"8":[5,8,20],"9":[6,8,21],"10":[6,8,23],"11":[5,8,18],"12":[5,8,18],"13":[5,8,18],"14":[5,8,20],"15":[5,8,20],"16":[5,8,20],"17":[7,8,15],"18":[5,8,11],"19":[6,8,14],"20":[7,8,16],"21":[7,8,13],"22":[7,8,13],"23":[3,8,15],"24":[4,1,3],"25":[2,4,7],"26":[2,4,8],"27":[3,4,10],"28":[2,4,6],"29":[2,4,6],"30":[2,4,6],"31":[4,1,3],"32":[2,4,1],"33":[9,6,26],"34":[10,6,35],"35":[15,4,74],"36":[4,1,3],"37":[14,4,69],"38":[8,4,63],"39":[3,1,21],"40":[3,1,21],"41":[4,1,3],"42":[2,4,1],"43":[8,6,25],"44":[11,6,43],"45":[8,6,28],"46":[10,6,63],"47":[8,6,60],"48":[8,6,29],"49":[8,6,35],"50":[9,6,42],"51":[14,6,43],"52":[8,6,36],"53":[8,6,39],"54":[8,6,36],"55":[8,6,42],"56":[4,6,27],"57":[10,6,36],"58":[9,6,52],"59":[6,6,44],"60":[4,1,3],"61":[2,4,9],"62":[2,4,9],"63":[2,4,7],"64":[2,4,8],"65":[2,4,9],"66":[2,4,8],"67":[2,4,8],"68":[2,4,9],"69":[2,4,8],"70":[2,4,8],"71":[2,4,9],"72":[2,4,8],"73":[2,4,8],"74":[2,4,9],"75":[2,4,8],"76":[2,4,8],"77":[2,4,9],"78":[4,1,3],"79":[2,4,1],"80":[9,6,36],"81":[7,6,45],"82":[10,6,62],"83":[10,6,66],"84":[9,6,71],"85":[9,6,69],"86":[9,6,30],"87":[8,6,37],"88":[5,6,25],"89":[10,6,45],"90":[11,6,39],"91":[10,6,44],"92":[10,6,35],"93":[9,6,15],"94":[9,6,15],"95":[5,6,70],"96":[6,6,35],"97":[7,6,15],"98":[4,1,3],"99":[2,4,1],"100":[8,6,26],"101":[11,6,45],"102":[8,6,13],"103":[7,6,12],"104":[4,6,34],"105":[5,6,37],"106":[7,6,36],"107":[4,1,3],"108":[2,4,1],"109":[7,6,32],"110":[4,1,3],"111":[7,4,31],"112":[2,4,1],"113":[6,6,20],"114":[5,6,31],"115":[7,6,15],"116":[5,6,11],"117":[11,4,40],"118":[11,4,43],"119":[12,4,49],"120":[4,1,4],"121":[2,4,1],"122":[8,6,19],"123":[11,6,27],"124":[8,6,31],"125":[6,6,43],"126":[13,6,43],"127":[8,6,37],"128":[4,6,17],"129":[6,6,31],"130":[5,6,33],"131":[5,6,21],"132":[4,6,10],"133":[7,6,12],"134":[7,6,12],"135":[4,6,46],"136":[5,6,37],"137":[7,6,31],"138":[6,6,12],"139":[6,6,12],"140":[3,6,45],"141":[4,6,42],"142":[6,6,12],"143":[7,6,13],"144":[9,6,55],"145":[7,6,13],"146":[7,6,38],"147":[7,6,15],"148":[5,6,21],"149":[3,4,7],"150":[3,4,8],"151":[3,4,8],"152":[3,4,8],"153":[2,1,3],"154":[2,1,3],"155":[2,1,3],"156":[3,1,3],"157":[2,3,2],"158":[6,5,48],"159":[3,1,3],"160":[2,3,2],"161":[6,5,48],"162":[2,1,3],"163":[1,1,2],"164":[1,1,7]},"averageFieldLength":[5.593939393939395,4.963636363636361,22.454545454545457],"storedFields":{"0":{"title":"mbcp","titles":[]},"1":{"title":"mbcp","titles":[]},"2":{"title":"mbcp.mp_math.angle","titles":[]},"3":{"title":"class Angle","titles":["mbcp.mp_math.angle"]},"4":{"title":"class AnyAngle(Angle)","titles":["mbcp.mp_math.angle"]},"5":{"title":"def __init__(self, value: float, is_radian: bool = False)","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"6":{"title":"def complementary(self) -> AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"7":{"title":"def supplementary(self) -> AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"8":{"title":"def degree(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"9":{"title":"def minimum_positive(self) -> AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"10":{"title":"def maximum_negative(self) -> AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"11":{"title":"def sin(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"12":{"title":"def cos(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"13":{"title":"def tan(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"14":{"title":"def cot(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"15":{"title":"def sec(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"16":{"title":"def csc(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"17":{"title":"def self + other: AnyAngle => AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"18":{"title":"def __eq__(self, other)","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"19":{"title":"def self - other: AnyAngle => AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"20":{"title":"def self * other: float => AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"21":{"title":"def self / other: float => AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"22":{"title":"def self / other: AnyAngle => float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"23":{"title":"def self / other","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"24":{"title":"mbcp.mp_math.const","titles":[]},"25":{"title":"var PI","titles":["mbcp.mp_math.const"]},"26":{"title":"var E","titles":["mbcp.mp_math.const"]},"27":{"title":"var GOLDEN_RATIO","titles":["mbcp.mp_math.const"]},"28":{"title":"var GAMMA","titles":["mbcp.mp_math.const"]},"29":{"title":"var EPSILON","titles":["mbcp.mp_math.const"]},"30":{"title":"var APPROX","titles":["mbcp.mp_math.const"]},"31":{"title":"mbcp.mp_math.equation","titles":[]},"32":{"title":"class CurveEquation","titles":["mbcp.mp_math.equation"]},"33":{"title":"def __init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc)","titles":["mbcp.mp_math.equation","class CurveEquation"]},"34":{"title":"def __call__(self, *t: Var) -> Point3 | tuple[Point3, ...]","titles":["mbcp.mp_math.equation","class CurveEquation"]},"35":{"title":"def get_partial_derivative_func(func: MultiVarsFunc, var: int | tuple[int, ...], epsilon: Number = EPSILON) -> MultiVarsFunc","titles":["mbcp.mp_math.equation"]},"36":{"title":"mbcp.mp_math.function","titles":[]},"37":{"title":"def cal_gradient_3vf(func: ThreeSingleVarsFunc, p: Point3, epsilon: float = EPSILON) -> Vector3","titles":["mbcp.mp_math.function"]},"38":{"title":"def curry(func: MultiVarsFunc, *args: Var) -> OneVarFunc","titles":["mbcp.mp_math.function"]},"39":{"title":"mbcp.mp_math","titles":[]},"40":{"title":"mbcp.mp_math","titles":[]},"41":{"title":"mbcp.mp_math.line","titles":[]},"42":{"title":"class Line3","titles":["mbcp.mp_math.line"]},"43":{"title":"def __init__(self, point: Point3, direction: Vector3)","titles":["mbcp.mp_math.line","class Line3"]},"44":{"title":"def approx(self, other: Line3, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"45":{"title":"def cal_angle(self, other: Line3) -> AnyAngle","titles":["mbcp.mp_math.line","class Line3"]},"46":{"title":"def cal_distance(self, other: Line3 | Point3) -> float","titles":["mbcp.mp_math.line","class Line3"]},"47":{"title":"def cal_intersection(self, other: Line3) -> Point3","titles":["mbcp.mp_math.line","class Line3"]},"48":{"title":"def cal_perpendicular(self, point: Point3) -> Line3","titles":["mbcp.mp_math.line","class Line3"]},"49":{"title":"def get_point(self, t: RealNumber) -> Point3","titles":["mbcp.mp_math.line","class Line3"]},"50":{"title":"def get_parametric_equations(self) -> tuple[OneSingleVarFunc, OneSingleVarFunc, OneSingleVarFunc]","titles":["mbcp.mp_math.line","class Line3"]},"51":{"title":"def is_approx_parallel(self, other: Line3, epsilon: float = 1e-06) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"52":{"title":"def is_parallel(self, other: Line3) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"53":{"title":"def is_collinear(self, other: Line3) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"54":{"title":"def is_point_on(self, point: Point3) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"55":{"title":"def is_coplanar(self, other: Line3) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"56":{"title":"def simplify(self)","titles":["mbcp.mp_math.line","class Line3"]},"57":{"title":"def from_two_points(cls, p1: Point3, p2: Point3) -> Line3","titles":["mbcp.mp_math.line","class Line3"]},"58":{"title":"def __and__(self, other: Line3) -> Line3 | Point3 | None","titles":["mbcp.mp_math.line","class Line3"]},"59":{"title":"def __eq__(self, other) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"60":{"title":"mbcp.mp_math.mp_math_typing","titles":[]},"61":{"title":"var RealNumber","titles":["mbcp.mp_math.mp_math_typing"]},"62":{"title":"var Number","titles":["mbcp.mp_math.mp_math_typing"]},"63":{"title":"var SingleVar","titles":["mbcp.mp_math.mp_math_typing"]},"64":{"title":"var ArrayVar","titles":["mbcp.mp_math.mp_math_typing"]},"65":{"title":"var Var","titles":["mbcp.mp_math.mp_math_typing"]},"66":{"title":"var OneSingleVarFunc","titles":["mbcp.mp_math.mp_math_typing"]},"67":{"title":"var OneArrayFunc","titles":["mbcp.mp_math.mp_math_typing"]},"68":{"title":"var OneVarFunc","titles":["mbcp.mp_math.mp_math_typing"]},"69":{"title":"var TwoSingleVarsFunc","titles":["mbcp.mp_math.mp_math_typing"]},"70":{"title":"var TwoArraysFunc","titles":["mbcp.mp_math.mp_math_typing"]},"71":{"title":"var TwoVarsFunc","titles":["mbcp.mp_math.mp_math_typing"]},"72":{"title":"var ThreeSingleVarsFunc","titles":["mbcp.mp_math.mp_math_typing"]},"73":{"title":"var ThreeArraysFunc","titles":["mbcp.mp_math.mp_math_typing"]},"74":{"title":"var ThreeVarsFunc","titles":["mbcp.mp_math.mp_math_typing"]},"75":{"title":"var MultiSingleVarsFunc","titles":["mbcp.mp_math.mp_math_typing"]},"76":{"title":"var MultiArraysFunc","titles":["mbcp.mp_math.mp_math_typing"]},"77":{"title":"var MultiVarsFunc","titles":["mbcp.mp_math.mp_math_typing"]},"78":{"title":"mbcp.mp_math.plane","titles":[]},"79":{"title":"class Plane3","titles":["mbcp.mp_math.plane"]},"80":{"title":"def __init__(self, a: float, b: float, c: float, d: float)","titles":["mbcp.mp_math.plane","class Plane3"]},"81":{"title":"def approx(self, other: Plane3) -> bool","titles":["mbcp.mp_math.plane","class Plane3"]},"82":{"title":"def cal_angle(self, other: Line3 | Plane3) -> AnyAngle","titles":["mbcp.mp_math.plane","class Plane3"]},"83":{"title":"def cal_distance(self, other: Plane3 | Point3) -> float","titles":["mbcp.mp_math.plane","class Plane3"]},"84":{"title":"def cal_intersection_line3(self, other: Plane3) -> Line3","titles":["mbcp.mp_math.plane","class Plane3"]},"85":{"title":"def cal_intersection_point3(self, other: Line3) -> Point3","titles":["mbcp.mp_math.plane","class Plane3"]},"86":{"title":"def cal_parallel_plane3(self, point: Point3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"87":{"title":"def is_parallel(self, other: Plane3) -> bool","titles":["mbcp.mp_math.plane","class Plane3"]},"88":{"title":"def normal(self) -> Vector3","titles":["mbcp.mp_math.plane","class Plane3"]},"89":{"title":"def from_point_and_normal(cls, point: Point3, normal: Vector3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"90":{"title":"def from_three_points(cls, p1: Point3, p2: Point3, p3: Point3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"91":{"title":"def from_two_lines(cls, l1: Line3, l2: Line3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"92":{"title":"def from_point_and_line(cls, point: Point3, line: Line3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"93":{"title":"def __and__(self, other: Line3) -> Point3 | None","titles":["mbcp.mp_math.plane","class Plane3"]},"94":{"title":"def __and__(self, other: Plane3) -> Line3 | None","titles":["mbcp.mp_math.plane","class Plane3"]},"95":{"title":"def __and__(self, other)","titles":["mbcp.mp_math.plane","class Plane3"]},"96":{"title":"def __eq__(self, other) -> bool","titles":["mbcp.mp_math.plane","class Plane3"]},"97":{"title":"def __rand__(self, other: Line3) -> Point3","titles":["mbcp.mp_math.plane","class Plane3"]},"98":{"title":"mbcp.mp_math.point","titles":[]},"99":{"title":"class Point3","titles":["mbcp.mp_math.point"]},"100":{"title":"def __init__(self, x: float, y: float, z: float)","titles":["mbcp.mp_math.point","class Point3"]},"101":{"title":"def approx(self, other: Point3, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.point","class Point3"]},"102":{"title":"def self + other: Vector3 => Point3","titles":["mbcp.mp_math.point","class Point3"]},"103":{"title":"def self + other: Point3 => Point3","titles":["mbcp.mp_math.point","class Point3"]},"104":{"title":"def self + other","titles":["mbcp.mp_math.point","class Point3"]},"105":{"title":"def __eq__(self, other)","titles":["mbcp.mp_math.point","class Point3"]},"106":{"title":"def self - other: Point3 => Vector3","titles":["mbcp.mp_math.point","class Point3"]},"107":{"title":"mbcp.mp_math.segment","titles":[]},"108":{"title":"class Segment3","titles":["mbcp.mp_math.segment"]},"109":{"title":"def __init__(self, p1: Point3, p2: Point3)","titles":["mbcp.mp_math.segment","class Segment3"]},"110":{"title":"mbcp.mp_math.utils","titles":[]},"111":{"title":"def clamp(x: float, min_: float, max_: float) -> float","titles":["mbcp.mp_math.utils"]},"112":{"title":"class Approx","titles":["mbcp.mp_math.utils"]},"113":{"title":"def __init__(self, value: RealNumber)","titles":["mbcp.mp_math.utils","class Approx"]},"114":{"title":"def __eq__(self, other)","titles":["mbcp.mp_math.utils","class Approx"]},"115":{"title":"def raise_type_error(self, other)","titles":["mbcp.mp_math.utils","class Approx"]},"116":{"title":"def __ne__(self, other)","titles":["mbcp.mp_math.utils","class Approx"]},"117":{"title":"def approx(x: float, y: float = 0.0, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.utils"]},"118":{"title":"def sign(x: float, only_neg: bool = False) -> str","titles":["mbcp.mp_math.utils"]},"119":{"title":"def sign_format(x: float, only_neg: bool = False) -> str","titles":["mbcp.mp_math.utils"]},"120":{"title":"mbcp.mp_math.vector","titles":[]},"121":{"title":"class Vector3","titles":["mbcp.mp_math.vector"]},"122":{"title":"def __init__(self, x: float, y: float, z: float)","titles":["mbcp.mp_math.vector","class Vector3"]},"123":{"title":"def approx(self, other: Vector3, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.vector","class Vector3"]},"124":{"title":"def cal_angle(self, other: Vector3) -> AnyAngle","titles":["mbcp.mp_math.vector","class Vector3"]},"125":{"title":"def cross(self, other: Vector3) -> Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"126":{"title":"def is_approx_parallel(self, other: Vector3, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.vector","class Vector3"]},"127":{"title":"def is_parallel(self, other: Vector3) -> bool","titles":["mbcp.mp_math.vector","class Vector3"]},"128":{"title":"def normalize(self)","titles":["mbcp.mp_math.vector","class Vector3"]},"129":{"title":"def np_array(self) -> np.ndarray","titles":["mbcp.mp_math.vector","class Vector3"]},"130":{"title":"def length(self) -> float","titles":["mbcp.mp_math.vector","class Vector3"]},"131":{"title":"def unit(self) -> Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"132":{"title":"def __abs__(self)","titles":["mbcp.mp_math.vector","class Vector3"]},"133":{"title":"def self + other: Vector3 => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"134":{"title":"def self + other: Point3 => Point3","titles":["mbcp.mp_math.vector","class Vector3"]},"135":{"title":"def self + other","titles":["mbcp.mp_math.vector","class Vector3"]},"136":{"title":"def __eq__(self, other)","titles":["mbcp.mp_math.vector","class Vector3"]},"137":{"title":"def self + other: Point3 => Point3","titles":["mbcp.mp_math.vector","class Vector3"]},"138":{"title":"def self - other: Vector3 => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"139":{"title":"def self - other: Point3 => Point3","titles":["mbcp.mp_math.vector","class Vector3"]},"140":{"title":"def self - other","titles":["mbcp.mp_math.vector","class Vector3"]},"141":{"title":"def self - other: Point3","titles":["mbcp.mp_math.vector","class Vector3"]},"142":{"title":"def self * other: Vector3 => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"143":{"title":"def self * other: RealNumber => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"144":{"title":"def self * other: int | float | Vector3 => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"145":{"title":"def self * other: RealNumber => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"146":{"title":"def self @ other: Vector3 => RealNumber","titles":["mbcp.mp_math.vector","class Vector3"]},"147":{"title":"def self / other: RealNumber => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"148":{"title":"def - self => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"149":{"title":"var zero_vector3","titles":["mbcp.mp_math.vector"]},"150":{"title":"var x_axis","titles":["mbcp.mp_math.vector"]},"151":{"title":"var y_axis","titles":["mbcp.mp_math.vector"]},"152":{"title":"var z_axis","titles":["mbcp.mp_math.vector"]},"153":{"title":"mbcp.particle","titles":[]},"154":{"title":"mbcp.particle","titles":[]},"155":{"title":"mbcp.presets","titles":[]},"156":{"title":"mbcp.presets.model","titles":[]},"157":{"title":"class GeometricModels","titles":["mbcp.presets.model"]},"158":{"title":"def sphere(radius: float, density: float)","titles":["mbcp.presets.model","class GeometricModels"]},"159":{"title":"mbcp.presets.model","titles":[]},"160":{"title":"class GeometricModels","titles":["mbcp.presets.model"]},"161":{"title":"def sphere(radius: float, density: float)","titles":["mbcp.presets.model","class GeometricModels"]},"162":{"title":"mbcp.presets","titles":[]},"163":{"title":"开始不了一点","titles":[]},"164":{"title":"Reference","titles":[]}},"dirtCount":0,"index":[["∫12x111",{"2":{"163":1}}],["开始不了一点",{"0":{"163":1}}],["4",{"2":{"158":1,"161":1}}],["球体上的点集",{"2":{"158":2,"161":2}}],["生成球体上的点集",{"2":{"158":2,"161":2}}],["几何模型点集",{"2":{"156":1,"159":1}}],["零向量",{"2":{"149":1}}],["负向量",{"2":{"148":2}}],["取负",{"2":{"148":2}}],["取两平面的交集",{"2":{"95":2}}],["非点乘",{"2":{"144":2}}],["别去点那边实现了",{"2":{"137":2}}],["单位向量",{"2":{"131":2}}],["单变量",{"2":{"63":1}}],["模",{"2":{"130":2}}],["向量的模",{"2":{"130":2}}],["向量积",{"2":{"125":2}}],["将向量归一化",{"2":{"128":2}}],["j",{"2":{"125":1}}],["其余结果的模为平行四边形的面积",{"2":{"125":2}}],["叉乘使用cross",{"2":{"144":2}}],["叉乘结果",{"2":{"125":2}}],["叉乘为0",{"2":{"125":2}}],["叉乘",{"2":{"125":2}}],["以及一些常用的向量",{"2":{"120":1}}],["格式化符号数",{"2":{"119":2}}],["quot",{"2":{"118":2,"119":4}}],["符号",{"2":{"118":2,"119":2}}],["获取该向量的单位向量",{"2":{"131":2}}],["获取数的符号",{"2":{"118":2}}],["获取直线的参数方程",{"2":{"50":2}}],["获取直线上的点",{"2":{"49":2}}],["用于判断是否近似于0",{"2":{"117":2}}],["用于近似比较对象",{"2":{"113":2}}],["限定在区间内的值",{"2":{"111":2}}],["值",{"2":{"111":2}}],["区间限定函数",{"2":{"111":2}}],["us",{"2":{"164":1}}],["unit",{"0":{"131":1},"2":{"131":1}}],["unsupported",{"2":{"46":1,"82":1,"83":1,"95":1,"115":1,"135":1,"140":1,"141":1,"144":1}}],["utils",{"0":{"110":1},"1":{"111":1,"112":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1}}],["中心点",{"2":{"109":1}}],["中实现",{"2":{"106":2}}],["长度",{"2":{"109":1}}],["线段的另一个端点",{"2":{"109":2}}],["线段的一个端点",{"2":{"109":2}}],["新的向量或点",{"2":{"135":2}}],["新的向量",{"2":{"106":2,"140":2}}],["新的点",{"2":{"104":2,"137":2,"141":2}}],["已在",{"2":{"106":2}}],["已知一个函数$f",{"2":{"37":1}}],["已知一个函数f",{"2":{"37":1}}],["坐标",{"2":{"100":6}}],["笛卡尔坐标系中的点",{"2":{"100":2}}],["人话",{"2":{"95":2}}],["法向量",{"2":{"88":2,"89":2}}],["k``",{"2":{"125":1}}],["k",{"2":{"81":12}}],["常数项",{"2":{"80":2}}],["常量",{"2":{"25":1}}],["平面上一点",{"2":{"89":2,"92":2}}],["平面的法向量",{"2":{"88":2}}],["平面",{"2":{"86":2,"89":2,"90":2,"91":2,"92":2}}],["平面与直线平行或重合",{"2":{"85":2}}],["平面平行且无交线",{"2":{"84":2}}],["平面方程",{"2":{"80":2}}],["平行线返回none",{"2":{"58":2}}],["多元函数",{"2":{"77":1}}],["多元数组函数",{"2":{"76":1}}],["多元单变量函数",{"2":{"75":1}}],["二元函数",{"2":{"71":1}}],["二元数组函数",{"2":{"70":1}}],["二元单变量函数",{"2":{"69":1}}],["一元函数",{"2":{"68":1}}],["一元数组函数",{"2":{"67":1}}],["一元单变量函数",{"2":{"66":1}}],["一阶偏导",{"2":{"35":2}}],["变量",{"2":{"65":1}}],["变量位置",{"2":{"35":2}}],["数组运算结果",{"2":{"144":2}}],["数组运算",{"2":{"144":2}}],["数组变量",{"2":{"64":1}}],["数2",{"2":{"117":2}}],["数1",{"2":{"117":2}}],["数",{"2":{"62":1,"118":2,"119":2}}],["数学工具",{"2":{"0":1,"1":1}}],["類型",{"2":{"61":1,"62":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"149":1,"150":1,"151":1,"152":1}}],["实数",{"2":{"61":1,"113":2}}],["∧",{"2":{"59":2}}],["交线",{"2":{"84":2,"95":2}}],["交线返回交点",{"2":{"58":2}}],["交集",{"2":{"58":2,"95":2}}],["交点",{"2":{"47":2,"85":2}}],["重合线返回自身",{"2":{"58":2}}],["由点和直线构造平面",{"2":{"92":2}}],["由点和法向量构造平面",{"2":{"89":2}}],["由两直线构造平面",{"2":{"91":2}}],["由两点构造直线",{"2":{"57":2}}],["由三点构造平面",{"2":{"90":2}}],["由一个点和一个方向向量确定",{"2":{"43":2}}],["工厂函数",{"2":{"57":2,"89":2,"90":2,"91":2,"92":2}}],["并对向量单位化",{"2":{"56":2}}],["处理",{"2":{"56":2}}],["处的梯度向量为",{"2":{"37":1}}],["化",{"2":{"56":2}}],["按照可行性一次对x",{"2":{"56":2}}],["不返回值",{"2":{"56":2,"128":2}}],["不支持的类型",{"2":{"46":2,"82":2,"83":2,"95":2}}],["自体归一化",{"2":{"128":2}}],["自体简化",{"2":{"56":2}}],["自然对数的底",{"2":{"26":1}}],["等价相等",{"2":{"56":2}}],["简化直线方程",{"2":{"56":2}}],["两直线方向向量的叉乘与两直线上任意一点的向量的点积为0",{"2":{"55":2}}],["两角的和为180°",{"2":{"7":2}}],["两角的和为90°",{"2":{"6":2}}],["充要条件",{"2":{"55":2}}],["判断两个向量是否相等",{"2":{"136":2}}],["判断两个向量是否平行",{"2":{"127":2}}],["判断两个向量是否近似平行",{"2":{"126":2}}],["判断两个向量是否近似相等",{"2":{"123":2}}],["判断两个数是否近似相等",{"2":{"117":2}}],["判断两个点是否相等",{"2":{"105":2}}],["判断两个点是否近似相等",{"2":{"101":2}}],["判断两个平面是否等价",{"2":{"96":2}}],["判断两个平面是否平行",{"2":{"87":2}}],["判断两个平面是否近似相等",{"2":{"81":2}}],["判断两条直线是否等价",{"2":{"59":2}}],["判断两条直线是否共面",{"2":{"55":2}}],["判断两条直线是否共线",{"2":{"53":2}}],["判断两条直线是否平行",{"2":{"52":2}}],["判断两条直线是否近似平行",{"2":{"51":2}}],["判断两条直线是否近似相等",{"2":{"44":2}}],["判断点是否在直线上",{"2":{"54":2}}],["另一个向量或数",{"2":{"144":2}}],["另一个向量或点",{"2":{"135":2,"140":2}}],["另一个向量",{"2":{"124":2,"125":2,"126":2,"127":2,"136":2,"146":2}}],["另一个点或向量",{"2":{"104":2}}],["另一个点",{"2":{"101":2,"105":2,"106":2,"137":2,"141":2}}],["另一个平面或点",{"2":{"83":2}}],["另一个平面或直线",{"2":{"82":2,"95":2}}],["另一个平面",{"2":{"81":2,"84":2,"87":2,"96":2}}],["另一",{"2":{"52":2,"53":2,"55":2}}],["另一条直线或点",{"2":{"46":2}}],["另一条直线",{"2":{"44":2,"45":2,"47":2,"51":2,"58":2,"59":2}}],["则两向量平行",{"2":{"125":2}}],["则同一个t对应的点不同",{"2":{"49":2}}],["则其在点$",{"2":{"37":1}}],["则其在点",{"2":{"37":1}}],["但起始点和方向向量不同",{"2":{"49":2}}],["同一条直线",{"2":{"49":2}}],["垂线",{"2":{"48":2}}],["指定点",{"2":{"48":2,"86":2}}],["直线",{"2":{"57":2,"85":2,"91":4,"92":2}}],["直线不共面",{"2":{"47":2}}],["直线平行",{"2":{"47":2}}],["直线上的一点",{"2":{"43":2}}],["距离",{"2":{"46":2,"83":2}}],["夹角",{"2":{"45":2,"82":2,"124":2}}],["是否只返回负数的符号",{"2":{"118":2,"119":2}}],["是否相等",{"2":{"105":2,"136":2}}],["是否等价",{"2":{"59":2,"96":2}}],["是否共面",{"2":{"55":2}}],["是否共线",{"2":{"53":2}}],["是否在直线上",{"2":{"54":2}}],["是否平行",{"2":{"52":2,"87":2,"127":2}}],["是否近似平行",{"2":{"51":2,"126":2}}],["是否近似相等",{"2":{"44":2,"81":2,"101":2,"117":2,"123":2}}],["是否为弧度",{"2":{"5":2}}],["误差",{"2":{"44":2,"51":2,"101":2,"117":2,"126":2}}],["方向向量",{"2":{"43":2,"109":1}}],["三元数组函数",{"2":{"73":1}}],["三元单变量函数",{"2":{"72":1}}],["三元函数",{"2":{"37":2,"74":1}}],["三维空间中的线段",{"2":{"109":2}}],["三维空间中的直线",{"2":{"43":2}}],["三维向量",{"2":{"39":1,"40":1}}],["三维线段",{"2":{"39":1,"40":1}}],["三维点",{"2":{"39":1,"40":1}}],["三维平面",{"2":{"39":1,"40":1}}],["三维直线",{"2":{"39":1,"40":1}}],["导入的类有",{"2":{"39":1,"40":1}}],["本包定义了一些常用的导入",{"2":{"39":1,"40":1}}],["本模块塞了一些预设",{"2":{"155":1,"162":1}}],["本模块用于内部类型提示",{"2":{"60":1}}],["本模块定义了粒子生成相关的工具",{"2":{"153":1,"154":1}}],["本模块定义了3维向量的类vector3",{"2":{"120":1}}],["本模块定义了一些常用的工具函数",{"2":{"110":1}}],["本模块定义了一些常用的常量",{"2":{"24":1}}],["本模块定义了三维空间中点的类",{"2":{"98":1}}],["本模块定义了三维空间中的线段类",{"2":{"107":1}}],["本模块定义了三维空间中的平面类",{"2":{"78":1}}],["本模块定义了三维空间中的直线类",{"2":{"41":1}}],["本模块定义了方程相关的类和函数以及一些常用的数学函数",{"2":{"31":1}}],["本模块定义了角度相关的类",{"2":{"2":1}}],["本模块是主模块",{"2":{"0":1,"1":1}}],["help",{"2":{"164":1}}],["have",{"2":{"84":1}}],["html",{"2":{"44":2,"46":2,"47":1,"50":1,"51":2,"52":1,"53":1,"54":1,"55":1,"58":1,"59":1,"80":1,"81":1,"82":1,"83":2,"84":1,"85":1,"87":1,"95":2,"96":1,"100":1,"101":2,"105":1,"111":1,"117":2,"118":3,"119":3,"126":2,"127":1,"129":1,"130":1,"136":1,"144":1,"146":1}}],["https",{"2":{"38":1,"44":2,"46":2,"47":1,"50":1,"51":2,"52":1,"53":1,"54":1,"55":1,"58":1,"59":1,"80":1,"81":1,"82":1,"83":2,"84":1,"85":1,"87":1,"95":2,"96":1,"100":1,"101":2,"105":1,"111":1,"117":2,"118":3,"119":3,"126":2,"127":1,"129":1,"130":1,"136":1,"144":1,"146":1}}],["high",{"2":{"35":2}}],["hide",{"2":{"35":2,"38":1}}],["6",{"2":{"38":2}}],["3维向量",{"2":{"122":2}}],["3a",{"2":{"46":2,"47":1,"50":1,"51":2,"52":1,"53":1,"54":1,"55":1,"59":1,"80":1,"82":1,"83":2,"84":1,"85":1,"87":1,"95":2,"96":1,"126":2,"127":1,"129":1,"130":1,"136":1,"144":1,"146":1}}],["355859667",{"2":{"38":1}}],["3",{"2":{"38":2,"44":2,"46":2,"47":1,"50":1,"51":2,"52":1,"53":1,"54":1,"55":1,"58":1,"59":1,"80":1,"81":1,"82":1,"83":2,"84":1,"85":1,"87":1,"95":2,"96":1,"100":1,"101":2,"105":1,"111":1,"117":2,"118":3,"119":3,"126":2,"127":1,"130":1,"136":1,"144":1,"146":1}}],["3vf",{"0":{"37":1},"2":{"37":1}}],["by",{"2":{"80":2}}],["bound=iterable",{"2":{"64":1}}],["bound=number",{"2":{"63":1}}],["bool=false",{"2":{"5":1,"118":1,"119":1}}],["bool",{"0":{"5":1,"44":1,"51":1,"52":1,"53":1,"54":1,"55":1,"59":1,"81":1,"87":1,"96":1,"101":1,"117":1,"118":1,"119":1,"123":1,"126":1,"127":1},"2":{"44":3,"51":3,"52":3,"53":3,"54":3,"55":3,"59":3,"81":3,"87":3,"96":3,"101":3,"105":2,"117":3,"118":2,"119":2,"123":1,"126":3,"127":3,"136":2}}],["b",{"0":{"80":1},"2":{"38":4,"80":5,"81":7,"83":2,"84":12,"85":2,"88":1,"89":3}}],["範例",{"2":{"38":1}}],["柯里化后的函数",{"2":{"38":2}}],["柯理化",{"2":{"38":2}}],["函数式编程",{"2":{"38":1}}],["函数",{"2":{"38":2}}],["有关函数柯里化",{"2":{"38":2}}],["对多参数函数进行柯里化",{"2":{"38":2}}],["d",{"0":{"80":1},"2":{"80":7,"81":6,"83":1,"84":6,"85":1,"89":2}}],["documentation",{"2":{"164":1}}],["doc",{"2":{"129":1}}],["docs",{"2":{"44":2,"46":2,"47":1,"50":1,"51":2,"52":1,"53":1,"54":1,"55":1,"58":1,"59":1,"80":1,"81":1,"82":1,"83":2,"84":1,"85":1,"87":1,"95":2,"96":1,"100":1,"101":2,"105":1,"111":1,"117":2,"118":3,"119":3,"126":2,"127":1,"130":1,"136":1,"144":1,"146":1}}],["do",{"2":{"47":2}}],["distance",{"0":{"46":1,"83":1},"2":{"46":1,"83":1}}],["direction",{"0":{"43":1},"2":{"43":5,"44":1,"45":2,"46":8,"47":6,"48":1,"49":1,"50":3,"51":2,"52":2,"53":1,"54":1,"55":2,"56":4,"57":2,"59":3,"82":1,"84":2,"85":4,"91":1,"92":1,"95":1,"109":2}}],["dz",{"2":{"37":2}}],["dy",{"2":{"37":2}}],["dx",{"2":{"37":2}}],["density",{"0":{"158":1,"161":1},"2":{"158":4,"161":4}}],["derivative",{"0":{"35":1},"2":{"35":6}}],["degree",{"0":{"8":1},"2":{"8":1}}],["def",{"0":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"59":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1},"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"21":1,"22":1,"35":2,"38":2,"57":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"102":1,"103":1,"129":1,"130":1,"131":1,"133":1,"134":1,"138":1,"139":1,"142":1,"143":1,"158":1,"161":1}}],["$处的梯度向量为",{"2":{"37":1}}],["$",{"2":{"37":3}}],["梯度",{"2":{"37":2}}],["点乘结果",{"2":{"146":2}}],["点乘",{"2":{"146":2}}],["点乘使用",{"2":{"144":2}}],["点3",{"2":{"90":2}}],["点法式构造",{"2":{"89":2}}],["点2",{"2":{"57":2,"90":2}}],["点1",{"2":{"57":2,"90":2}}],["点",{"2":{"37":2,"49":2,"54":2}}],["∂f∂z",{"2":{"37":1}}],["∂f∂y",{"2":{"37":1}}],["∂f∂x",{"2":{"37":1}}],["∇f",{"2":{"37":1}}],["计算平行于该平面且过指定点的平面",{"2":{"86":2}}],["计算平面与直线的交点",{"2":{"85":2}}],["计算平面与平面或点之间的距离",{"2":{"83":2}}],["计算平面与平面之间的夹角",{"2":{"82":2}}],["计算两个向量之间的夹角",{"2":{"124":2}}],["计算两平面的交线",{"2":{"84":2}}],["计算两条直线点集合的交集",{"2":{"58":2}}],["计算两条直线的交点",{"2":{"47":2}}],["计算直线经过指定点p的垂线",{"2":{"48":2}}],["计算直线和直线或点之间的距离",{"2":{"46":2}}],["计算直线和直线之间的夹角",{"2":{"45":2}}],["计算三元函数在某点的梯度向量",{"2":{"37":2}}],["计算曲线上的点",{"2":{"34":2}}],["v3",{"2":{"125":2}}],["v2",{"2":{"59":2,"90":2,"91":4,"125":2}}],["v1",{"2":{"59":4,"90":2,"91":2,"125":2}}],["vector",{"0":{"120":1},"1":{"121":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"150":1,"151":1,"152":1},"2":{"43":1,"88":1,"89":1,"104":1,"106":3,"144":1}}],["vector3",{"0":{"37":1,"43":1,"88":1,"89":1,"102":1,"106":1,"121":1,"123":1,"124":1,"125":2,"126":1,"127":1,"131":1,"133":2,"138":2,"142":2,"143":1,"144":2,"145":1,"146":1,"147":1,"148":1,"149":1},"1":{"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1},"2":{"37":2,"39":1,"40":1,"43":3,"88":4,"89":3,"91":1,"102":1,"104":2,"106":7,"114":2,"123":1,"124":3,"125":7,"126":3,"127":4,"131":3,"133":2,"135":7,"136":2,"138":2,"140":7,"141":1,"142":2,"143":1,"144":9,"145":1,"146":3,"147":2,"148":4,"149":2,"150":2,"151":2,"152":2}}],["v",{"2":{"35":2,"104":2,"106":4,"135":8,"137":2,"140":8,"141":2}}],["var",{"0":{"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"34":1,"35":1,"38":1,"61":1,"62":1,"63":1,"64":1,"65":2,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"149":1,"150":1,"151":1,"152":1},"2":{"33":3,"34":1,"35":14,"37":1,"38":7,"49":1,"50":1}}],["valueerror",{"2":{"35":3,"47":4,"84":3,"85":3}}],["value",{"0":{"5":1,"113":1},"2":{"5":5,"113":5,"114":6,"115":1}}],["求高阶偏导函数",{"2":{"35":1}}],["求n元函数一阶偏导函数",{"2":{"35":2}}],["l2",{"0":{"91":1},"2":{"91":5}}],["l1",{"0":{"91":1},"2":{"91":7}}],["lambda",{"2":{"50":3}}],["left",{"2":{"37":1}}],["length",{"0":{"130":1},"2":{"46":5,"47":1,"82":2,"109":2,"124":2,"126":1,"128":5,"130":1,"131":1,"132":1}}],["len",{"2":{"34":1}}],["linalg",{"2":{"84":3}}],["lines",{"0":{"91":1},"2":{"47":2,"91":1}}],["line",{"0":{"41":1,"92":2},"1":{"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"59":1},"2":{"44":1,"45":1,"46":1,"47":1,"48":1,"51":1,"52":1,"53":1,"55":1,"57":1,"58":2,"59":1,"82":1,"84":1,"85":2,"91":1,"92":6,"95":2}}],["line3",{"0":{"42":1,"44":1,"45":1,"46":1,"47":1,"48":1,"51":1,"52":1,"53":1,"55":1,"57":1,"58":2,"82":1,"84":2,"85":1,"91":2,"92":1,"93":1,"94":1,"97":1},"1":{"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"59":1},"2":{"39":1,"40":1,"44":3,"45":3,"46":4,"47":3,"48":4,"51":3,"52":3,"53":3,"55":3,"57":3,"58":6,"59":2,"82":4,"84":5,"85":3,"91":5,"92":3,"93":1,"94":1,"95":6,"97":1,"114":1}}],["library",{"2":{"44":2,"46":2,"47":1,"50":1,"51":2,"52":1,"53":1,"54":1,"55":1,"58":1,"59":1,"80":1,"81":1,"82":1,"83":2,"84":1,"85":1,"87":1,"95":2,"96":1,"100":1,"101":2,"105":1,"111":1,"117":2,"118":3,"119":3,"126":2,"127":1,"130":1,"136":1,"144":1,"146":1}}],["list",{"2":{"35":8,"158":10,"161":10}}],["litedoc",{"2":{"35":2,"38":1}}],["`np",{"2":{"129":1}}],["`none`",{"2":{"58":1,"95":1}}],["``x2",{"2":{"125":1}}],["``x1",{"2":{"125":1}}],["``i",{"2":{"125":1}}],["```",{"2":{"38":1}}],["```python",{"2":{"38":1}}],["`str`",{"2":{"118":1,"119":1}}],["`plane3`",{"2":{"81":1,"82":1,"83":1,"84":1,"86":1,"87":1,"89":1,"95":1,"96":1}}],["`point3`",{"2":{"37":1,"43":1,"46":1,"47":1,"48":1,"49":1,"54":1,"57":2,"58":1,"83":1,"85":1,"86":1,"89":1,"90":3,"92":1,"95":1,"101":1,"104":2,"105":1,"106":1,"109":2,"135":2,"137":2,"140":2,"141":2}}],["`onesinglevarfunc`",{"2":{"50":3}}],["`onevarfunc`",{"2":{"33":3}}],["`realnumber`",{"2":{"49":1,"113":1}}],["`tuple`",{"2":{"50":1}}],["`typeerror`",{"2":{"46":1,"82":1,"83":1,"95":1}}],["`threesinglevarsfunc`",{"2":{"37":1}}],["`anyangle`",{"2":{"45":1,"82":1,"124":1}}],["`bool`",{"2":{"44":1,"51":1,"52":1,"53":1,"54":1,"55":1,"59":1,"81":1,"87":1,"96":1,"101":1,"105":1,"117":1,"118":1,"119":1,"126":1,"127":1,"136":1}}],["`float`",{"2":{"44":1,"46":1,"51":1,"80":4,"83":1,"100":3,"101":1,"111":4,"117":3,"118":1,"119":1,"126":1,"130":1,"144":1,"146":1}}],["`line3`",{"2":{"44":1,"45":1,"46":1,"47":1,"48":1,"51":1,"52":1,"53":1,"55":1,"57":1,"58":2,"59":1,"82":1,"84":1,"85":1,"91":2,"92":1,"95":2}}],["`valueerror`",{"2":{"47":2,"84":1,"85":1}}],["`var`",{"2":{"38":1}}],["`vector3`",{"2":{"43":1,"88":1,"89":1,"104":1,"106":2,"124":1,"125":2,"126":1,"127":1,"131":1,"135":2,"136":1,"140":2,"144":2,"146":1,"148":1}}],["`multivarsfunc`",{"2":{"35":1,"38":1}}],["无效变量类型",{"2":{"35":2}}],["抛出",{"2":{"35":1,"46":1,"47":1,"82":1,"83":1,"84":1,"85":1,"95":1}}],["偏导函数",{"2":{"35":2}}],["偏移量",{"2":{"35":2,"37":2}}],["高阶偏导数值",{"2":{"35":1}}],["高阶偏导",{"2":{"35":2}}],["可直接从mbcp",{"2":{"39":1,"40":1}}],["可参考",{"2":{"38":1}}],["可参考函数式编程",{"2":{"38":1}}],["可为整数",{"2":{"35":2}}],["可导入",{"2":{"0":1,"1":1}}],["因此该函数的稳定性有待提升",{"2":{"35":2}}],["目前数学界对于一个函数的导函数并没有通解的说法",{"2":{"35":2}}],["目标点",{"2":{"34":2}}],["warning",{"2":{"35":2}}],["慎用",{"2":{"35":2}}],["这玩意不太稳定",{"2":{"35":2}}],["num",{"2":{"158":5,"161":5}}],["numpy",{"2":{"129":2}}],["numpy数组",{"2":{"129":2}}],["number=epsilon",{"2":{"35":1}}],["number",{"0":{"35":1,"62":1},"2":{"64":1}}],["ndarray`",{"2":{"129":1}}],["ndarray",{"0":{"129":1},"2":{"129":3}}],["neg",{"0":{"118":1,"119":1},"2":{"118":4,"119":4,"148":1}}],["negative",{"0":{"10":1},"2":{"10":1}}],["ne",{"0":{"116":1},"2":{"116":1}}],["np",{"0":{"129":2},"2":{"84":9,"129":4,"158":9,"161":9}}],["no",{"2":{"84":1}}],["normal",{"0":{"88":1,"89":2},"2":{"82":5,"84":4,"85":1,"86":2,"87":2,"88":1,"89":7,"90":3,"91":1,"92":1,"95":3}}],["normalize",{"0":{"128":1},"2":{"56":1,"128":1}}],["none",{"0":{"58":1,"93":1,"94":1},"2":{"58":4,"93":1,"94":1,"95":4}}],["not",{"2":{"46":1,"47":4,"58":1,"116":1,"118":1,"119":1}}],["nabla",{"2":{"37":1}}],["n元函数",{"2":{"35":2}}],["参数方程",{"2":{"50":2}}],["参数t",{"2":{"49":2}}],["参数",{"2":{"34":2,"35":1,"38":2}}],["|",{"0":{"34":1,"35":1,"46":1,"58":2,"82":1,"83":1,"93":1,"94":1,"144":2},"2":{"34":1,"35":1,"46":3,"58":6,"61":1,"62":1,"65":1,"68":1,"71":1,"74":1,"77":1,"82":3,"83":3,"93":1,"94":1,"95":6,"104":2,"135":4,"140":4,"144":4}}],["曲线方程",{"2":{"33":2,"39":1,"40":1}}],["z轴单位向量",{"2":{"152":1}}],["z轴分量",{"2":{"122":2}}],["z2``",{"2":{"125":1}}],["z1``",{"2":{"125":1}}],["zero",{"0":{"149":1},"2":{"91":1,"127":1}}],["z系数",{"2":{"80":2}}],["zhihu",{"2":{"38":1}}],["zhuanlan",{"2":{"38":1}}],["z0",{"2":{"37":2}}],["zip",{"2":{"34":1}}],["z函数",{"2":{"33":2}}],["z",{"0":{"33":1,"100":1,"122":1,"152":1},"2":{"33":5,"34":4,"37":11,"50":2,"56":4,"83":1,"84":4,"85":4,"89":2,"100":7,"101":2,"104":2,"105":2,"106":2,"109":2,"114":2,"122":5,"123":2,"125":4,"128":1,"129":1,"130":1,"135":4,"136":2,"137":2,"140":4,"141":2,"144":3,"146":2,"147":1,"148":1,"158":2,"161":2}}],["y轴单位向量",{"2":{"151":1}}],["y轴分量",{"2":{"122":2}}],["y2",{"2":{"125":1}}],["y1",{"2":{"125":1}}],["y系数",{"2":{"80":2}}],["y0",{"2":{"37":2}}],["y函数",{"2":{"33":2}}],["y",{"0":{"33":1,"100":1,"117":1,"122":1,"151":1},"2":{"33":5,"34":4,"37":11,"50":2,"56":4,"83":1,"84":4,"85":4,"89":2,"100":7,"101":2,"104":2,"105":2,"106":2,"109":2,"114":2,"117":4,"122":5,"123":2,"125":4,"128":1,"129":1,"130":1,"135":4,"136":2,"137":2,"140":4,"141":2,"144":3,"146":2,"147":1,"148":1,"158":2,"161":2}}],["x轴单位向量",{"2":{"150":1}}],["x轴分量",{"2":{"122":2}}],["x3c",{"2":{"101":3,"114":1,"117":1,"118":1,"119":1,"123":3,"126":1}}],["x26",{"2":{"95":1}}],["x系数",{"2":{"80":2}}],["x0",{"2":{"37":2}}],["x函数",{"2":{"33":2}}],["x",{"0":{"33":1,"100":1,"111":1,"117":1,"118":1,"119":1,"122":1,"150":1},"2":{"33":5,"34":4,"37":11,"50":2,"56":2,"83":1,"84":4,"85":4,"89":2,"100":7,"101":2,"104":2,"105":2,"106":2,"109":2,"111":4,"114":2,"117":4,"118":5,"119":8,"122":5,"123":2,"125":4,"128":1,"129":1,"130":1,"135":4,"136":2,"137":2,"140":4,"141":2,"144":3,"146":2,"147":1,"148":1,"158":2,"161":2}}],["约等于判定误差",{"2":{"30":1}}],["精度误差",{"2":{"29":1}}],["06",{"0":{"51":1},"2":{"51":1}}],["001",{"2":{"30":1}}],["0001",{"2":{"29":1}}],["0",{"0":{"117":2},"2":{"28":1,"29":1,"30":1,"34":3,"37":6,"46":2,"55":1,"56":8,"80":2,"81":3,"83":2,"84":9,"85":1,"95":1,"117":1,"118":2,"119":4,"149":3,"150":2,"151":2,"152":2,"158":2,"161":2}}],["欧拉常数",{"2":{"28":1}}],["5772156649015329",{"2":{"28":1}}],["5",{"2":{"27":1,"83":1}}],["黄金分割比",{"2":{"27":1}}],["geometricmodels",{"0":{"157":1,"160":1},"1":{"158":1,"161":1}}],["generated",{"2":{"129":1}}],["get",{"0":{"35":1,"49":1,"50":1},"2":{"35":2,"49":1,"50":1,"85":1,"91":1}}],["gradient",{"0":{"37":1},"2":{"37":1}}],["gamma",{"0":{"28":1}}],["golden",{"0":{"27":1}}],["gt",{"0":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"19":1,"20":1,"21":1,"22":1,"34":1,"35":1,"37":1,"38":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"57":1,"58":1,"59":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"96":1,"97":1,"101":1,"102":1,"103":1,"106":1,"111":1,"117":1,"118":1,"119":1,"123":1,"124":1,"125":1,"126":1,"127":1,"129":1,"130":1,"131":1,"133":1,"134":1,"137":1,"138":1,"139":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1},"2":{"104":2,"106":2,"119":3,"125":1,"135":2,"137":1,"140":2,"141":1}}],["默認值",{"2":{"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"149":1,"150":1,"151":1,"152":1}}],["默认为否",{"2":{"5":2}}],["π",{"2":{"25":1}}],["to",{"2":{"164":1}}],["theta",{"2":{"158":3,"161":3}}],["the",{"2":{"85":2,"164":1}}],["three",{"0":{"90":1},"2":{"90":1}}],["threevarsfunc",{"0":{"74":1}}],["threearraysfunc",{"0":{"73":1},"2":{"74":1}}],["threesinglevarsfunc",{"0":{"37":1,"72":1},"2":{"37":3,"74":1}}],["twovarsfunc",{"0":{"71":1}}],["twoarraysfunc",{"0":{"70":1},"2":{"71":1}}],["twosinglevarsfunc",{"0":{"69":1},"2":{"71":1}}],["two",{"0":{"57":1,"91":1},"2":{"57":1,"91":1}}],["tip",{"2":{"37":2,"38":2}}],["typevar",{"2":{"63":1,"64":1}}],["typealias",{"2":{"61":1,"62":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1}}],["typeerror",{"2":{"46":3,"47":1,"82":3,"83":3,"95":3,"115":1,"135":1,"140":1,"141":1,"144":1}}],["type",{"0":{"115":1},"2":{"35":1,"46":1,"82":2,"83":2,"95":2,"114":2,"115":4,"135":2,"140":2,"141":2,"144":2}}],["typing",{"0":{"60":1},"1":{"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1},"2":{"33":3,"35":1,"37":1,"38":2,"49":1,"50":1,"113":1}}],["tuple",{"0":{"34":1,"35":1,"50":1},"2":{"34":2,"35":2,"50":3}}],["t",{"0":{"34":1,"49":1},"2":{"34":10,"49":4,"50":6,"85":4}}],["truediv",{"2":{"21":1,"22":1,"23":1,"147":1}}],["tan",{"0":{"13":1},"2":{"13":2,"14":1}}],["operand",{"2":{"95":1,"135":1,"140":1,"141":1,"144":1}}],["only",{"0":{"118":1,"119":1},"2":{"118":4,"119":4}}],["on",{"0":{"54":1},"2":{"54":1}}],["onearrayfunc",{"0":{"67":1},"2":{"68":1}}],["onesinglevarfunc",{"0":{"50":3,"66":1},"2":{"50":7,"68":1}}],["onevarfunc",{"0":{"33":3,"38":1,"68":1},"2":{"33":9,"38":1}}],["or",{"2":{"58":1,"85":1}}],["org",{"2":{"44":2,"46":2,"47":1,"50":1,"51":2,"52":1,"53":1,"54":1,"55":1,"58":1,"59":1,"80":1,"81":1,"82":1,"83":2,"84":1,"85":1,"87":1,"95":2,"96":1,"100":1,"101":2,"105":1,"111":1,"117":2,"118":3,"119":3,"126":2,"127":1,"129":1,"130":1,"136":1,"144":1,"146":1}}],["order",{"2":{"35":2}}],["overload",{"2":{"20":1,"21":2,"22":1,"92":1,"93":2,"94":1,"101":1,"102":2,"103":1,"132":1,"133":2,"134":1,"137":1,"138":2,"139":1,"141":1,"142":2,"143":1}}],["other",{"0":{"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"44":1,"45":1,"46":1,"47":1,"51":1,"52":1,"53":1,"55":1,"58":1,"59":1,"81":1,"82":1,"83":1,"84":1,"85":1,"87":1,"93":1,"94":1,"95":1,"96":1,"97":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"114":1,"115":1,"116":1,"123":1,"124":1,"125":1,"126":1,"127":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1},"2":{"17":2,"18":2,"19":2,"20":2,"21":1,"22":1,"23":4,"44":5,"45":4,"46":13,"47":9,"51":4,"52":4,"53":5,"55":5,"58":7,"59":5,"81":15,"82":9,"83":9,"84":17,"85":11,"87":4,"93":1,"94":1,"95":10,"96":4,"97":2,"101":6,"102":1,"103":1,"104":6,"105":6,"106":6,"114":9,"115":2,"116":2,"123":6,"124":5,"125":9,"126":4,"127":4,"133":1,"134":1,"135":12,"136":6,"137":6,"138":1,"139":1,"140":12,"141":8,"142":1,"143":1,"144":12,"145":2,"146":6,"147":4}}],["error",{"0":{"115":1},"2":{"114":2,"115":1}}],["exceptions",{"2":{"46":1,"47":1,"82":1,"83":1,"84":1,"85":1,"95":1}}],["examples",{"2":{"38":1}}],["exp",{"2":{"26":1}}],["elif",{"2":{"35":1,"46":3,"58":1,"81":2,"82":1,"83":1,"84":2,"95":1,"114":1,"118":1,"119":1,"135":1,"140":1,"144":1}}],["else",{"2":{"5":1,"34":1,"35":1,"46":2,"58":1,"81":1,"82":1,"83":1,"95":1,"114":2,"118":2,"119":2,"135":1,"140":1,"141":1,"144":1}}],["epsilon",{"0":{"29":1,"35":2,"37":2,"44":1,"51":1,"101":1,"117":1,"123":1,"126":1},"2":{"35":7,"37":12,"44":5,"51":4,"101":6,"117":4,"123":6,"126":4}}],["e",{"0":{"26":1},"2":{"26":1}}],["equations",{"0":{"50":1},"2":{"50":1,"85":1}}],["equation",{"0":{"31":1},"1":{"32":1,"33":1,"34":1,"35":1}}],["eq",{"0":{"18":1,"59":1,"96":1,"105":1,"114":1,"136":1},"2":{"18":1,"59":1,"96":1,"105":1,"114":1,"116":1,"136":1}}],["+1",{"2":{"119":2}}],["+=",{"2":{"35":1}}],["+",{"0":{"17":1,"102":1,"103":1,"104":1,"133":1,"134":1,"135":1,"137":1},"2":{"17":1,"27":1,"37":3,"38":4,"47":1,"49":1,"50":3,"80":6,"83":5,"85":5,"104":7,"109":3,"118":3,"119":3,"130":2,"135":11,"137":5,"146":2,"158":1,"161":1}}],["1e",{"0":{"51":1}}],["1",{"2":{"14":1,"15":1,"16":1,"26":1,"27":1,"34":1,"38":2,"91":1,"119":6,"150":1,"151":1,"152":1,"158":4,"161":4}}],["180",{"2":{"5":1,"8":1}}],["正割值",{"2":{"15":4}}],["正切值",{"2":{"13":4}}],["正弦值",{"2":{"11":4}}],["余割值",{"2":{"16":4}}],["余切值",{"2":{"14":4}}],["余弦值",{"2":{"12":4}}],["余角",{"2":{"6":4}}],["最大值",{"2":{"111":2}}],["最大负角度",{"2":{"10":2}}],["最大负角",{"2":{"10":2}}],["最小值",{"2":{"111":2}}],["最小正角度",{"2":{"9":2}}],["最小正角",{"2":{"9":2}}],["弧度",{"2":{"8":2}}],["角度",{"2":{"8":2}}],["角度或弧度值",{"2":{"5":2}}],["补角",{"2":{"7":4}}],["sphere",{"0":{"158":1,"161":1},"2":{"158":1,"161":1}}],["staticmethod",{"2":{"157":1,"158":1,"160":1,"161":1}}],["stable",{"2":{"129":1}}],["str",{"0":{"118":1,"119":1},"2":{"118":3,"119":3}}],["stdtypes",{"2":{"50":1}}],["s",{"2":{"95":1,"135":1,"140":1,"141":1,"144":1}}],["solve",{"2":{"84":3}}],["sign",{"0":{"118":1,"119":1},"2":{"118":1,"119":1}}],["simplify",{"0":{"56":1},"2":{"56":1}}],["singlevar",{"0":{"63":1},"2":{"63":1,"65":1,"66":2,"69":3,"72":4,"75":1}}],["sin",{"0":{"11":1},"2":{"11":2,"16":1,"158":3,"161":3}}],["sqrt",{"2":{"27":1,"130":1,"158":1,"161":1}}],["sub",{"2":{"19":1,"106":1,"138":1,"139":1,"140":1}}],["supplementary",{"0":{"7":1},"2":{"7":1}}],["segment",{"0":{"107":1},"1":{"108":1,"109":1}}],["segment3",{"0":{"108":1},"1":{"109":1},"2":{"39":1,"40":1}}],["sec",{"0":{"15":1},"2":{"15":1}}],["self",{"0":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"58":1,"59":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"113":1,"114":1,"115":1,"116":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1},"2":{"5":3,"6":2,"7":2,"8":2,"9":2,"10":2,"11":2,"12":2,"13":2,"14":2,"15":2,"16":2,"17":2,"18":2,"19":2,"20":2,"21":1,"22":1,"23":3,"33":4,"34":7,"43":3,"44":4,"45":2,"46":13,"47":8,"48":3,"49":3,"50":7,"51":2,"52":2,"53":4,"54":3,"55":3,"56":8,"58":6,"59":4,"80":5,"81":16,"82":4,"83":8,"84":15,"85":9,"86":2,"87":2,"88":4,"93":1,"94":1,"95":5,"96":2,"97":2,"100":4,"101":4,"102":1,"103":1,"104":4,"105":4,"106":4,"109":15,"113":2,"114":9,"115":2,"116":2,"122":4,"123":4,"124":3,"125":7,"126":2,"127":2,"128":5,"129":4,"130":4,"131":3,"132":2,"133":1,"134":1,"135":7,"136":4,"137":4,"138":1,"139":1,"140":7,"141":4,"142":1,"143":1,"144":7,"145":2,"146":4,"147":4,"148":4}}],["2",{"2":{"6":1,"9":1,"10":1,"27":1,"35":1,"37":3,"38":2,"47":1,"83":3,"109":3,"130":3,"158":2,"161":2}}],["rmul",{"2":{"145":1}}],["rsub",{"2":{"141":1}}],["right",{"2":{"37":1}}],["reference",{"0":{"164":1},"2":{"129":1}}],["realnumber",{"0":{"49":1,"61":1,"113":1,"143":1,"145":1,"146":1,"147":1},"2":{"49":3,"62":1,"113":3,"143":1,"145":1,"146":1,"147":1}}],["result",{"2":{"35":4}}],["return",{"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"23":2,"34":2,"35":4,"37":1,"38":4,"44":1,"45":1,"46":5,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"57":1,"58":3,"59":1,"81":4,"82":2,"83":2,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"95":4,"96":1,"97":1,"101":1,"104":1,"105":1,"106":1,"111":1,"114":2,"116":1,"117":1,"118":3,"119":3,"123":1,"124":1,"125":1,"126":1,"127":1,"129":1,"130":1,"131":1,"132":1,"135":2,"136":1,"137":1,"140":2,"141":1,"144":2,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1}}],["returns",{"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"34":1,"35":2,"37":1,"38":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"57":1,"58":1,"59":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"95":1,"96":1,"101":1,"104":1,"105":1,"106":1,"111":1,"117":1,"118":1,"119":1,"123":1,"124":1,"125":1,"126":1,"127":1,"129":1,"130":1,"131":1,"135":1,"136":1,"137":1,"140":1,"141":1,"144":1,"146":1,"148":1,"158":1,"161":1}}],["range",{"2":{"158":2,"161":2}}],["rand",{"0":{"97":1},"2":{"97":1}}],["radius",{"0":{"158":1,"161":1},"2":{"158":7,"161":7}}],["radian=true",{"2":{"6":1,"7":1,"10":1,"17":1,"19":1,"20":1,"23":1,"82":1,"124":1}}],["radian",{"0":{"5":1},"2":{"5":6,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":2,"18":2,"19":2,"20":1,"23":3}}],["radd",{"2":{"137":1}}],["raise",{"0":{"115":1},"2":{"35":1,"46":1,"47":2,"82":1,"83":1,"84":1,"85":1,"95":1,"114":2,"115":2,"135":1,"140":1,"141":1,"144":1}}],["raises",{"2":{"35":1,"46":1,"47":1,"82":1,"83":1,"84":1,"85":1,"95":1}}],["ratio",{"0":{"27":1}}],[">",{"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"19":1,"20":1,"21":1,"22":1,"34":1,"35":5,"37":3,"38":6,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"57":1,"58":1,"59":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"96":1,"97":1,"101":1,"102":1,"103":1,"104":2,"106":3,"111":1,"117":1,"118":2,"119":5,"123":1,"124":1,"125":2,"126":1,"127":1,"129":1,"130":1,"131":1,"133":1,"134":1,"135":2,"137":2,"138":1,"139":1,"140":2,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1}}],["返回numpy数组",{"2":{"129":1}}],["返回如下行列式的结果",{"2":{"125":1}}],["返回",{"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"34":1,"35":1,"37":1,"38":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"57":1,"58":1,"59":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"95":1,"96":1,"101":1,"104":1,"105":1,"106":1,"111":1,"117":1,"118":1,"119":1,"123":1,"124":1,"125":1,"126":1,"127":1,"129":1,"130":1,"131":1,"135":1,"136":1,"137":1,"140":1,"141":1,"144":1,"146":1,"148":1,"158":1,"161":1}}],["cz",{"2":{"80":2}}],["clamp",{"0":{"111":1},"2":{"111":1,"158":1,"161":1}}],["classmethod",{"2":{"56":1,"57":1,"88":1,"89":2,"90":2,"91":2,"92":1}}],["class",{"0":{"3":1,"4":1,"32":1,"42":1,"79":1,"99":1,"108":1,"112":1,"121":1,"157":1,"160":1},"1":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"59":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"113":1,"114":1,"115":1,"116":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1},"2":{"37":1,"43":2,"44":1,"45":2,"46":2,"47":2,"48":2,"49":1,"51":1,"52":1,"53":1,"54":1,"55":1,"57":3,"58":3,"59":1,"81":1,"82":3,"83":2,"84":2,"85":2,"86":2,"87":1,"88":1,"89":3,"90":1,"91":1,"92":2,"95":4,"96":1,"101":1,"104":3,"105":1,"106":3,"109":2,"124":2,"125":2,"126":1,"127":1,"131":1,"135":4,"136":1,"137":2,"140":4,"141":2,"144":2,"146":1,"148":1}}],["cls",{"0":{"57":1,"89":1,"90":1,"91":1,"92":1},"2":{"57":2,"89":2,"90":2,"91":2,"92":2}}],["cross",{"0":{"125":1},"2":{"46":4,"47":3,"48":1,"55":1,"84":1,"90":1,"91":1,"125":3,"126":1,"127":1}}],["c",{"0":{"80":1},"2":{"38":4,"80":5,"81":7,"83":2,"84":6,"85":2,"88":1,"89":3}}],["curried",{"2":{"38":6}}],["currying",{"2":{"38":2}}],["curry",{"0":{"38":1},"2":{"38":3}}],["curveequation",{"0":{"32":1},"1":{"33":1,"34":1},"2":{"39":1,"40":1}}],["cal",{"0":{"37":1,"45":1,"46":1,"47":1,"48":1,"82":1,"83":1,"84":1,"85":1,"86":1,"124":1},"2":{"37":1,"45":2,"46":1,"47":1,"48":1,"58":1,"82":2,"83":1,"84":1,"85":1,"86":1,"95":2,"97":1,"124":1}}],["callable",{"2":{"66":1,"67":1,"69":1,"70":1,"72":1,"73":1,"75":1,"76":1}}],["call",{"0":{"34":1},"2":{"34":1}}],["csc",{"0":{"16":1},"2":{"16":1}}],["coincident",{"2":{"85":1}}],["collinear",{"0":{"53":1},"2":{"53":1,"58":1}}],["coplanar",{"0":{"55":1},"2":{"46":1,"47":2,"55":1,"58":1}}],["complex",{"2":{"62":1}}],["complementary",{"0":{"6":1},"2":{"6":1,"82":1}}],["com",{"2":{"38":1}}],["constants",{"2":{"58":1,"95":1}}],["const",{"0":{"24":1},"1":{"25":1,"26":1,"27":1,"28":1,"29":1,"30":1}}],["cot",{"0":{"14":1},"2":{"14":1}}],["cos",{"0":{"12":1},"2":{"12":2,"15":1,"158":2,"161":2}}],["all",{"2":{"101":1,"114":1,"123":1}}],["acos",{"2":{"82":1,"124":1}}],["axis",{"0":{"150":1,"151":1,"152":1}}],["ax",{"2":{"80":2}}],["arccos",{"2":{"158":1,"161":1}}],["array",{"0":{"129":1},"2":{"84":6,"129":2,"158":6,"161":6}}],["arrayvar",{"0":{"64":1},"2":{"64":1,"65":1,"67":2,"70":3,"73":4,"76":1}}],["area",{"2":{"158":2,"161":2}}],["are",{"2":{"47":2,"84":1,"85":1}}],["args2",{"2":{"38":2}}],["args",{"0":{"38":1},"2":{"5":1,"33":1,"34":1,"35":14,"37":1,"38":5,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"51":1,"52":1,"53":1,"54":1,"55":1,"57":1,"58":1,"59":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"89":1,"90":1,"91":1,"92":1,"95":1,"96":1,"100":1,"101":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"135":1,"136":1,"137":1,"140":1,"141":1,"144":1,"146":1,"158":1,"161":1}}],["abs",{"0":{"132":1},"2":{"46":1,"83":1,"101":3,"114":1,"117":1,"119":1,"123":3,"132":1}}],["a",{"0":{"80":1},"2":{"38":4,"80":5,"81":7,"83":2,"84":12,"85":2,"88":1,"89":3}}],["aaa",{"2":{"36":1}}],["approx",{"0":{"30":1,"44":2,"51":1,"81":1,"101":2,"112":1,"117":2,"123":2,"126":2},"1":{"113":1,"114":1,"115":1,"116":1},"2":{"18":1,"44":3,"51":2,"81":10,"96":1,"101":1,"105":3,"114":4,"117":1,"123":1,"126":1,"127":1,"136":3}}],["add",{"2":{"17":1,"38":8,"102":1,"103":1,"104":1,"133":1,"134":1,"135":1}}],["and",{"0":{"58":1,"89":1,"92":1,"93":1,"94":1,"95":1},"2":{"44":1,"47":2,"53":1,"58":1,"59":1,"81":6,"84":4,"85":1,"86":1,"89":1,"90":1,"91":1,"92":2,"93":1,"94":1,"95":2,"105":2,"115":1,"135":1,"136":2,"140":1,"141":1,"144":1}}],["anyangle",{"0":{"4":1,"6":1,"7":1,"9":1,"10":1,"17":2,"19":2,"20":1,"21":1,"22":1,"45":1,"82":1,"124":1},"1":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1},"2":{"6":2,"7":2,"9":2,"10":2,"17":3,"19":3,"20":2,"21":1,"22":1,"23":2,"39":1,"40":1,"45":3,"82":4,"124":4}}],["angle",{"0":{"2":1,"3":1,"4":1,"45":1,"82":1,"124":1},"1":{"3":1,"4":1,"5":2,"6":2,"7":2,"8":2,"9":2,"10":2,"11":2,"12":2,"13":2,"14":2,"15":2,"16":2,"17":2,"18":2,"19":2,"20":2,"21":2,"22":2,"23":2},"2":{"45":3,"82":3,"124":2}}],["於github上查看",{"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"59":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1}}],["或包装一个实数",{"2":{"117":2}}],["或整数元组",{"2":{"35":2}}],["或",{"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"59":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1}}],["源碼",{"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"59":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1}}],["變數説明",{"2":{"5":1,"33":1,"34":1,"35":1,"37":1,"38":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"51":1,"52":1,"53":1,"54":1,"55":1,"57":1,"58":1,"59":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"89":1,"90":1,"91":1,"92":1,"95":1,"96":1,"100":1,"101":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"135":1,"136":1,"137":1,"140":1,"141":1,"144":1,"146":1,"158":1,"161":1}}],["任意角度",{"2":{"5":2,"39":1,"40":1}}],["from",{"0":{"57":1,"89":1,"90":1,"91":1,"92":1},"2":{"57":1,"86":1,"89":1,"90":2,"91":2,"92":2,"106":1}}],["frac",{"2":{"37":3}}],["f",{"2":{"37":4,"82":1,"83":1,"95":1,"115":1,"119":3,"135":1,"140":1,"141":1,"144":1}}],["format",{"0":{"119":1},"2":{"119":1}}],["for",{"2":{"34":1,"35":1,"95":1,"135":1,"140":1,"141":1,"144":1,"158":2,"161":2}}],["functions",{"2":{"44":2,"46":1,"51":2,"52":1,"53":1,"54":1,"55":1,"59":1,"80":1,"81":1,"83":1,"87":1,"96":1,"100":1,"101":2,"105":1,"111":1,"117":2,"118":3,"119":3,"126":2,"127":1,"130":1,"136":1,"144":1,"146":1}}],["function",{"0":{"36":1},"1":{"37":1,"38":1}}],["func",{"0":{"33":3,"35":2,"37":1,"38":1},"2":{"33":15,"34":6,"35":16,"37":9,"38":6}}],["false",{"0":{"5":1,"118":1,"119":1},"2":{"81":1}}],["float=0",{"2":{"117":1}}],["float=1e",{"2":{"51":1}}],["float=approx",{"2":{"44":1,"101":1,"117":1,"123":1,"126":1}}],["float=epsilon",{"2":{"37":1}}],["float",{"0":{"5":1,"8":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"20":1,"21":1,"22":1,"37":1,"44":1,"46":1,"51":1,"80":4,"83":1,"100":3,"101":1,"111":4,"117":3,"118":1,"119":1,"122":3,"123":1,"126":1,"130":1,"144":1,"158":2,"161":2},"2":{"5":1,"8":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"20":1,"21":1,"22":1,"44":2,"46":3,"51":2,"61":1,"80":9,"83":3,"100":7,"101":2,"111":9,"114":2,"117":5,"118":3,"119":3,"122":3,"126":2,"130":3,"144":4,"146":2,"158":2,"161":2}}],["==",{"2":{"34":1,"46":1,"55":1,"56":3,"85":1,"91":1,"95":1}}],["=",{"0":{"5":1,"17":1,"19":1,"20":1,"21":1,"22":1,"35":1,"37":1,"44":1,"51":1,"101":1,"102":1,"103":1,"106":1,"117":2,"118":1,"119":1,"123":1,"126":1,"133":1,"134":1,"137":1,"138":1,"139":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1},"2":{"5":2,"33":3,"35":5,"37":5,"38":2,"43":2,"56":3,"57":1,"80":6,"81":6,"84":17,"85":2,"89":2,"90":3,"91":3,"100":3,"109":5,"113":1,"122":3,"128":4,"158":7,"161":7}}],["improve",{"2":{"164":1}}],["import",{"2":{"106":1}}],["i",{"2":{"158":4,"161":4}}],["invalid",{"2":{"35":1}}],["intersect",{"2":{"47":2}}],["intersection",{"0":{"47":1,"84":1,"85":1},"2":{"47":1,"58":1,"84":2,"85":1,"95":2,"97":1}}],["int",{"0":{"35":2,"144":1},"2":{"35":3,"38":8,"61":1,"114":2,"144":2,"158":1,"161":1}}],["in",{"2":{"34":1,"35":1,"158":2,"161":2}}],["init",{"0":{"5":1,"33":1,"43":1,"80":1,"100":1,"109":1,"113":1,"122":1},"2":{"5":1,"33":1,"43":1,"80":1,"100":1,"109":1,"113":1,"122":1}}],["if",{"2":{"5":1,"23":1,"34":1,"35":1,"46":2,"47":2,"56":3,"58":1,"81":1,"82":1,"83":1,"84":2,"85":1,"91":1,"95":3,"114":3,"118":2,"119":2,"135":1,"140":1,"141":1,"144":1}}],["isinstance",{"2":{"23":1,"35":2,"46":2,"82":2,"83":2,"95":2,"114":4,"135":2,"140":2,"141":1,"144":2}}],["is",{"0":{"5":1,"51":1,"52":1,"53":1,"54":1,"55":1,"87":1,"126":1,"127":1},"2":{"5":4,"6":1,"7":1,"10":1,"17":1,"19":1,"20":1,"23":1,"44":2,"46":2,"47":2,"51":2,"52":2,"53":3,"54":2,"55":1,"58":3,"59":2,"82":1,"84":1,"87":2,"95":1,"124":1,"126":1,"127":1}}],["预设",{"2":{"0":1,"1":1}}],["phi",{"2":{"158":5,"161":5}}],["p3",{"0":{"90":1},"2":{"90":4}}],["p2",{"0":{"57":1,"90":1,"109":1},"2":{"57":4,"59":2,"90":4,"109":9}}],["p1",{"0":{"57":1,"90":1,"109":1},"2":{"57":5,"59":2,"90":6,"109":9}}],["perpendicular",{"0":{"48":1},"2":{"48":1}}],["parametric",{"0":{"50":1},"2":{"50":1,"85":1}}],["parallel",{"0":{"51":1,"52":1,"86":1,"87":1,"126":1,"127":1},"2":{"44":2,"46":1,"47":2,"51":2,"52":2,"53":2,"54":1,"58":1,"59":2,"84":2,"85":1,"86":1,"87":2,"95":1,"126":1,"127":1}}],["partial",{"0":{"35":1},"2":{"35":6,"37":6}}],["particle",{"0":{"153":1,"154":1},"2":{"0":1,"1":1}}],["planes",{"2":{"84":1}}],["plane",{"0":{"78":1},"1":{"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1},"2":{"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"89":1,"95":1,"96":1}}],["plane3",{"0":{"79":1,"81":1,"82":1,"83":1,"84":1,"86":2,"87":1,"89":1,"90":1,"91":1,"92":1,"94":1},"1":{"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1},"2":{"39":1,"40":1,"81":3,"82":4,"83":4,"84":3,"86":5,"87":3,"89":3,"90":1,"91":1,"92":1,"94":1,"95":4,"96":2,"114":1}}],["plus",{"2":{"35":3}}],["p",{"0":{"37":1},"2":{"37":21,"38":1,"104":10,"106":8,"135":4,"137":4,"140":4,"141":4}}],["points",{"0":{"57":1,"90":1},"2":{"57":1,"90":1}}],["point",{"0":{"43":1,"48":1,"49":1,"54":2,"86":1,"89":2,"92":2,"98":1},"1":{"99":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1},"2":{"37":1,"43":6,"44":2,"46":6,"47":4,"48":7,"49":3,"50":3,"53":2,"54":7,"55":2,"56":3,"57":2,"58":1,"59":2,"83":1,"85":4,"86":6,"89":8,"90":2,"91":6,"92":7,"95":1,"101":1,"104":2,"105":1,"106":1,"109":2,"135":2,"137":2,"140":2,"141":2}}],["point3",{"0":{"34":2,"37":1,"43":1,"46":1,"47":1,"48":1,"49":1,"54":1,"57":2,"58":1,"83":1,"85":2,"86":1,"89":1,"90":3,"92":1,"93":1,"97":1,"99":1,"101":1,"102":1,"103":2,"106":1,"109":2,"134":2,"137":2,"139":2,"141":1},"1":{"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1},"2":{"34":4,"37":3,"39":1,"40":1,"43":3,"46":4,"47":3,"48":3,"49":3,"54":3,"57":6,"58":3,"83":4,"84":1,"85":5,"86":3,"89":3,"90":7,"92":3,"93":1,"95":3,"97":2,"101":3,"102":1,"103":2,"104":5,"105":2,"106":3,"109":7,"114":1,"134":2,"135":6,"137":7,"139":2,"140":6,"141":7,"158":3,"161":3}}],["positive",{"0":{"9":1},"2":{"6":1,"7":1,"9":1}}],["python",{"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"21":1,"22":1,"44":2,"46":2,"47":1,"50":1,"51":2,"52":1,"53":1,"54":1,"55":1,"57":1,"58":1,"59":1,"80":1,"81":1,"82":1,"83":2,"84":1,"85":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":2,"96":1,"100":1,"101":2,"102":1,"103":1,"105":1,"111":1,"117":2,"118":3,"119":3,"126":2,"127":1,"129":1,"130":2,"131":1,"133":1,"134":1,"136":1,"138":1,"139":1,"142":1,"143":1,"144":1,"146":1,"158":1,"161":1}}],["pythondef",{"2":{"5":1,"17":1,"18":1,"19":1,"20":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":2,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"58":1,"59":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"95":1,"96":1,"97":1,"100":1,"101":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"132":1,"135":1,"136":1,"137":1,"140":1,"141":1,"144":1,"145":1,"146":1,"147":1,"148":1}}],["property",{"2":{"5":1,"6":2,"7":2,"8":2,"9":2,"10":2,"11":2,"12":2,"13":2,"14":2,"15":2,"16":1,"87":1,"88":1,"128":1,"129":2,"130":2,"131":1}}],["presets",{"0":{"155":1,"156":1,"159":1,"162":1},"1":{"157":1,"158":1,"160":1,"161":1},"2":{"0":1,"1":1}}],["pi",{"0":{"25":1},"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"25":1,"158":2,"161":2}}],["粒子生成工具",{"2":{"0":1,"1":1}}],["model",{"0":{"156":1,"159":1},"1":{"157":1,"158":1,"160":1,"161":1}}],["midpoint",{"2":{"109":1}}],["min",{"0":{"111":1},"2":{"111":5}}],["minus",{"2":{"35":3}}],["minimum",{"0":{"9":1},"2":{"6":1,"7":1,"9":1}}],["multiarraysfunc",{"0":{"76":1},"2":{"77":1}}],["multisinglevarsfunc",{"0":{"75":1},"2":{"77":1}}],["multivarsfunc",{"0":{"35":2,"38":1,"77":1},"2":{"35":4,"38":3}}],["mul",{"2":{"20":1,"142":1,"143":1,"144":1,"145":1}}],["matmul",{"2":{"146":1}}],["math导入使用",{"2":{"39":1,"40":1}}],["math",{"0":{"2":1,"24":1,"31":1,"36":1,"39":1,"40":1,"41":1,"60":2,"78":1,"98":1,"107":1,"110":1,"120":1},"1":{"3":1,"4":1,"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"32":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"59":1,"61":2,"62":2,"63":2,"64":2,"65":2,"66":2,"67":2,"68":2,"69":2,"70":2,"71":2,"72":2,"73":2,"74":2,"75":2,"76":2,"77":2,"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"99":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"108":1,"109":1,"111":1,"112":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"121":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"150":1,"151":1,"152":1},"2":{"0":1,"1":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"25":1,"26":1,"27":1,"33":3,"35":1,"37":1,"38":2,"49":1,"50":1,"82":1,"113":1,"124":1,"130":1}}],["max",{"0":{"111":1},"2":{"111":5}}],["maximum",{"0":{"10":1},"2":{"10":1}}],["mp",{"0":{"2":1,"24":1,"31":1,"36":1,"39":1,"40":1,"41":1,"60":2,"78":1,"98":1,"107":1,"110":1,"120":1},"1":{"3":1,"4":1,"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"32":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"59":1,"61":2,"62":2,"63":2,"64":2,"65":2,"66":2,"67":2,"68":2,"69":2,"70":2,"71":2,"72":2,"73":2,"74":2,"75":2,"76":2,"77":2,"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"99":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"108":1,"109":1,"111":1,"112":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"121":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"150":1,"151":1,"152":1},"2":{"0":1,"1":1,"33":3,"35":1,"37":1,"38":2,"39":1,"40":1,"49":1,"50":1,"113":1}}],["mbcp",{"0":{"0":1,"1":1,"2":1,"24":1,"31":1,"36":1,"39":1,"40":1,"41":1,"60":1,"78":1,"98":1,"107":1,"110":1,"120":1,"153":1,"154":1,"155":1,"156":1,"159":1,"162":1},"1":{"3":1,"4":1,"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"32":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"59":1,"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"99":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"108":1,"109":1,"111":1,"112":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"121":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"150":1,"151":1,"152":1,"157":1,"158":1,"160":1,"161":1},"2":{"0":3,"1":3}}],["提供了一些工具",{"2":{"0":1,"1":1}}],["説明",{"2":{"0":1,"1":1,"2":1,"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"24":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"31":1,"33":1,"34":1,"35":1,"36":1,"37":1,"38":1,"39":1,"40":1,"41":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"59":1,"60":1,"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"78":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"95":1,"96":1,"98":1,"100":1,"101":1,"104":1,"105":1,"106":1,"107":1,"109":1,"110":1,"111":1,"113":1,"117":1,"118":1,"119":1,"120":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"130":1,"131":1,"135":1,"136":1,"137":1,"140":1,"141":1,"144":1,"146":1,"148":1,"149":1,"150":1,"151":1,"152":1,"153":1,"154":1,"155":1,"156":1,"158":1,"159":1,"161":1,"162":1}}]],"serializationVersion":2}';export{t as default};
diff --git a/assets/chunks/@localSearchIndexzht.DtIiriQ9.js b/assets/chunks/@localSearchIndexzht.DtIiriQ9.js
new file mode 100644
index 0000000..6013a10
--- /dev/null
+++ b/assets/chunks/@localSearchIndexzht.DtIiriQ9.js
@@ -0,0 +1 @@
+const t='{"documentCount":165,"nextId":165,"documentIds":{"0":"/zht/api/api.html#mbcp","1":"/zht/api/#mbcp","2":"/zht/api/mp_math/angle.html#mbcp-mp-math-angle","3":"/zht/api/mp_math/angle.html#class-angle","4":"/zht/api/mp_math/angle.html#class-anyangle-angle","5":"/zht/api/mp_math/angle.html#def-init-self-value-float-is-radian-bool-false","6":"/zht/api/mp_math/angle.html#def-complementary-self-anyangle","7":"/zht/api/mp_math/angle.html#def-supplementary-self-anyangle","8":"/zht/api/mp_math/angle.html#def-degree-self-float","9":"/zht/api/mp_math/angle.html#def-minimum-positive-self-anyangle","10":"/zht/api/mp_math/angle.html#def-maximum-negative-self-anyangle","11":"/zht/api/mp_math/angle.html#def-sin-self-float","12":"/zht/api/mp_math/angle.html#def-cos-self-float","13":"/zht/api/mp_math/angle.html#def-tan-self-float","14":"/zht/api/mp_math/angle.html#def-cot-self-float","15":"/zht/api/mp_math/angle.html#def-sec-self-float","16":"/zht/api/mp_math/angle.html#def-csc-self-float","17":"/zht/api/mp_math/angle.html#def-self-other-anyangle-anyangle","18":"/zht/api/mp_math/angle.html#def-eq-self-other","19":"/zht/api/mp_math/angle.html#def-self-other-anyangle-anyangle-1","20":"/zht/api/mp_math/angle.html#def-self-other-float-anyangle","21":"/zht/api/mp_math/angle.html#def-self-other-float-anyangle-1","22":"/zht/api/mp_math/angle.html#def-self-other-anyangle-float","23":"/zht/api/mp_math/angle.html#def-self-other","24":"/zht/api/mp_math/const.html#mbcp-mp-math-const","25":"/zht/api/mp_math/const.html#var-pi","26":"/zht/api/mp_math/const.html#var-e","27":"/zht/api/mp_math/const.html#var-golden-ratio","28":"/zht/api/mp_math/const.html#var-gamma","29":"/zht/api/mp_math/const.html#var-epsilon","30":"/zht/api/mp_math/const.html#var-approx","31":"/zht/api/mp_math/equation.html#mbcp-mp-math-equation","32":"/zht/api/mp_math/equation.html#class-curveequation","33":"/zht/api/mp_math/equation.html#def-init-self-x-func-onevarfunc-y-func-onevarfunc-z-func-onevarfunc","34":"/zht/api/mp_math/equation.html#def-call-self-t-var-point3-tuple-point3","35":"/zht/api/mp_math/equation.html#def-get-partial-derivative-func-func-multivarsfunc-var-int-tuple-int-epsilon-number-epsilon-multivarsfunc","36":"/zht/api/mp_math/function.html#mbcp-mp-math-function","37":"/zht/api/mp_math/function.html#def-cal-gradient-3vf-func-threesinglevarsfunc-p-point3-epsilon-float-epsilon-vector3","38":"/zht/api/mp_math/function.html#def-curry-func-multivarsfunc-args-var-onevarfunc","39":"/zht/api/mp_math/#mbcp-mp-math","40":"/zht/api/mp_math/line.html#mbcp-mp-math-line","41":"/zht/api/mp_math/line.html#class-line3","42":"/zht/api/mp_math/line.html#def-init-self-point-point3-direction-vector3","43":"/zht/api/mp_math/line.html#def-approx-self-other-line3-epsilon-float-approx-bool","44":"/zht/api/mp_math/line.html#def-cal-angle-self-other-line3-anyangle","45":"/zht/api/mp_math/line.html#def-cal-distance-self-other-line3-point3-float","46":"/zht/api/mp_math/line.html#def-cal-intersection-self-other-line3-point3","47":"/zht/api/mp_math/line.html#def-cal-perpendicular-self-point-point3-line3","48":"/zht/api/mp_math/line.html#def-get-point-self-t-realnumber-point3","49":"/zht/api/mp_math/line.html#def-get-parametric-equations-self-tuple-onesinglevarfunc-onesinglevarfunc-onesinglevarfunc","50":"/zht/api/mp_math/line.html#def-is-approx-parallel-self-other-line3-epsilon-float-1e-06-bool","51":"/zht/api/mp_math/line.html#def-is-parallel-self-other-line3-bool","52":"/zht/api/mp_math/line.html#def-is-collinear-self-other-line3-bool","53":"/zht/api/mp_math/line.html#def-is-point-on-self-point-point3-bool","54":"/zht/api/mp_math/line.html#def-is-coplanar-self-other-line3-bool","55":"/zht/api/mp_math/line.html#def-simplify-self","56":"/zht/api/mp_math/line.html#def-from-two-points-cls-p1-point3-p2-point3-line3","57":"/zht/api/mp_math/line.html#def-and-self-other-line3-line3-point3-none","58":"/zht/api/mp_math/line.html#def-eq-self-other-bool","59":"/zht/api/mp_math/mp_math.html#mbcp-mp-math","60":"/zht/api/mp_math/mp_math_typing.html#mbcp-mp-math-mp-math-typing","61":"/zht/api/mp_math/mp_math_typing.html#var-realnumber","62":"/zht/api/mp_math/mp_math_typing.html#var-number","63":"/zht/api/mp_math/mp_math_typing.html#var-singlevar","64":"/zht/api/mp_math/mp_math_typing.html#var-arrayvar","65":"/zht/api/mp_math/mp_math_typing.html#var-var","66":"/zht/api/mp_math/mp_math_typing.html#var-onesinglevarfunc","67":"/zht/api/mp_math/mp_math_typing.html#var-onearrayfunc","68":"/zht/api/mp_math/mp_math_typing.html#var-onevarfunc","69":"/zht/api/mp_math/mp_math_typing.html#var-twosinglevarsfunc","70":"/zht/api/mp_math/mp_math_typing.html#var-twoarraysfunc","71":"/zht/api/mp_math/mp_math_typing.html#var-twovarsfunc","72":"/zht/api/mp_math/mp_math_typing.html#var-threesinglevarsfunc","73":"/zht/api/mp_math/mp_math_typing.html#var-threearraysfunc","74":"/zht/api/mp_math/mp_math_typing.html#var-threevarsfunc","75":"/zht/api/mp_math/mp_math_typing.html#var-multisinglevarsfunc","76":"/zht/api/mp_math/mp_math_typing.html#var-multiarraysfunc","77":"/zht/api/mp_math/mp_math_typing.html#var-multivarsfunc","78":"/zht/api/mp_math/plane.html#mbcp-mp-math-plane","79":"/zht/api/mp_math/plane.html#class-plane3","80":"/zht/api/mp_math/plane.html#def-init-self-a-float-b-float-c-float-d-float","81":"/zht/api/mp_math/plane.html#def-approx-self-other-plane3-bool","82":"/zht/api/mp_math/plane.html#def-cal-angle-self-other-line3-plane3-anyangle","83":"/zht/api/mp_math/plane.html#def-cal-distance-self-other-plane3-point3-float","84":"/zht/api/mp_math/plane.html#def-cal-intersection-line3-self-other-plane3-line3","85":"/zht/api/mp_math/plane.html#def-cal-intersection-point3-self-other-line3-point3","86":"/zht/api/mp_math/plane.html#def-cal-parallel-plane3-self-point-point3-plane3","87":"/zht/api/mp_math/plane.html#def-is-parallel-self-other-plane3-bool","88":"/zht/api/mp_math/plane.html#def-normal-self-vector3","89":"/zht/api/mp_math/plane.html#def-from-point-and-normal-cls-point-point3-normal-vector3-plane3","90":"/zht/api/mp_math/plane.html#def-from-three-points-cls-p1-point3-p2-point3-p3-point3-plane3","91":"/zht/api/mp_math/plane.html#def-from-two-lines-cls-l1-line3-l2-line3-plane3","92":"/zht/api/mp_math/plane.html#def-from-point-and-line-cls-point-point3-line-line3-plane3","93":"/zht/api/mp_math/plane.html#def-and-self-other-line3-point3-none","94":"/zht/api/mp_math/plane.html#def-and-self-other-plane3-line3-none","95":"/zht/api/mp_math/plane.html#def-and-self-other","96":"/zht/api/mp_math/plane.html#def-eq-self-other-bool","97":"/zht/api/mp_math/plane.html#def-rand-self-other-line3-point3","98":"/zht/api/mp_math/point.html#mbcp-mp-math-point","99":"/zht/api/mp_math/point.html#class-point3","100":"/zht/api/mp_math/point.html#def-init-self-x-float-y-float-z-float","101":"/zht/api/mp_math/point.html#def-approx-self-other-point3-epsilon-float-approx-bool","102":"/zht/api/mp_math/point.html#def-self-other-vector3-point3","103":"/zht/api/mp_math/point.html#def-self-other-point3-point3","104":"/zht/api/mp_math/point.html#def-self-other","105":"/zht/api/mp_math/point.html#def-eq-self-other","106":"/zht/api/mp_math/point.html#def-self-other-point3-vector3","107":"/zht/api/mp_math/segment.html#mbcp-mp-math-segment","108":"/zht/api/mp_math/segment.html#class-segment3","109":"/zht/api/mp_math/segment.html#def-init-self-p1-point3-p2-point3","110":"/zht/api/mp_math/utils.html#mbcp-mp-math-utils","111":"/zht/api/mp_math/utils.html#def-clamp-x-float-min-float-max-float-float","112":"/zht/api/mp_math/utils.html#class-approx","113":"/zht/api/mp_math/utils.html#def-init-self-value-realnumber","114":"/zht/api/mp_math/utils.html#def-eq-self-other","115":"/zht/api/mp_math/utils.html#def-raise-type-error-self-other","116":"/zht/api/mp_math/utils.html#def-ne-self-other","117":"/zht/api/mp_math/utils.html#def-approx-x-float-y-float-0-0-epsilon-float-approx-bool","118":"/zht/api/mp_math/utils.html#def-sign-x-float-only-neg-bool-false-str","119":"/zht/api/mp_math/utils.html#def-sign-format-x-float-only-neg-bool-false-str","120":"/zht/api/mp_math/vector.html#mbcp-mp-math-vector","121":"/zht/api/mp_math/vector.html#class-vector3","122":"/zht/api/mp_math/vector.html#def-init-self-x-float-y-float-z-float","123":"/zht/api/mp_math/vector.html#def-approx-self-other-vector3-epsilon-float-approx-bool","124":"/zht/api/mp_math/vector.html#def-cal-angle-self-other-vector3-anyangle","125":"/zht/api/mp_math/vector.html#def-cross-self-other-vector3-vector3","126":"/zht/api/mp_math/vector.html#def-is-approx-parallel-self-other-vector3-epsilon-float-approx-bool","127":"/zht/api/mp_math/vector.html#def-is-parallel-self-other-vector3-bool","128":"/zht/api/mp_math/vector.html#def-normalize-self","129":"/zht/api/mp_math/vector.html#def-np-array-self-np-ndarray","130":"/zht/api/mp_math/vector.html#def-length-self-float","131":"/zht/api/mp_math/vector.html#def-unit-self-vector3","132":"/zht/api/mp_math/vector.html#def-abs-self","133":"/zht/api/mp_math/vector.html#def-self-other-vector3-vector3","134":"/zht/api/mp_math/vector.html#def-self-other-point3-point3","135":"/zht/api/mp_math/vector.html#def-self-other","136":"/zht/api/mp_math/vector.html#def-eq-self-other","137":"/zht/api/mp_math/vector.html#def-self-other-point3-point3-1","138":"/zht/api/mp_math/vector.html#def-self-other-vector3-vector3-1","139":"/zht/api/mp_math/vector.html#def-self-other-point3-point3-2","140":"/zht/api/mp_math/vector.html#def-self-other-1","141":"/zht/api/mp_math/vector.html#def-self-other-point3","142":"/zht/api/mp_math/vector.html#def-self-other-vector3-vector3-2","143":"/zht/api/mp_math/vector.html#def-self-other-realnumber-vector3","144":"/zht/api/mp_math/vector.html#def-self-other-int-float-vector3-vector3","145":"/zht/api/mp_math/vector.html#def-self-other-realnumber-vector3-1","146":"/zht/api/mp_math/vector.html#def-self-other-vector3-realnumber","147":"/zht/api/mp_math/vector.html#def-self-other-realnumber-vector3-2","148":"/zht/api/mp_math/vector.html#def-self-vector3","149":"/zht/api/mp_math/vector.html#var-zero-vector3","150":"/zht/api/mp_math/vector.html#var-x-axis","151":"/zht/api/mp_math/vector.html#var-y-axis","152":"/zht/api/mp_math/vector.html#var-z-axis","153":"/zht/api/particle/#mbcp-particle","154":"/zht/api/particle/particle.html#mbcp-particle","155":"/zht/api/presets/#mbcp-presets","156":"/zht/api/presets/model/#mbcp-presets-model","157":"/zht/api/presets/model/#class-geometricmodels","158":"/zht/api/presets/model/#def-sphere-radius-float-density-float","159":"/zht/api/presets/model/model.html#mbcp-presets-model","160":"/zht/api/presets/model/model.html#class-geometricmodels","161":"/zht/api/presets/model/model.html#def-sphere-radius-float-density-float","162":"/zht/api/presets/presets.html#mbcp-presets","163":"/zht/guide/#开始不了一点","164":"/zht/refer/#reference"},"fieldIds":{"title":0,"titles":1,"text":2},"fieldLength":{"0":[1,1,13],"1":[1,1,13],"2":[4,1,3],"3":[2,4,1],"4":[4,4,1],"5":[11,8,25],"6":[5,8,24],"7":[5,8,23],"8":[5,8,20],"9":[6,8,21],"10":[6,8,23],"11":[5,8,18],"12":[5,8,18],"13":[5,8,18],"14":[5,8,20],"15":[5,8,20],"16":[5,8,20],"17":[7,8,15],"18":[5,8,11],"19":[6,8,14],"20":[7,8,16],"21":[7,8,13],"22":[7,8,13],"23":[3,8,15],"24":[4,1,3],"25":[2,4,7],"26":[2,4,8],"27":[3,4,10],"28":[2,4,6],"29":[2,4,6],"30":[2,4,6],"31":[4,1,3],"32":[2,4,1],"33":[9,6,26],"34":[10,6,35],"35":[15,4,74],"36":[4,1,3],"37":[14,4,69],"38":[8,4,63],"39":[3,1,21],"40":[4,1,3],"41":[2,4,1],"42":[8,6,25],"43":[11,6,43],"44":[8,6,28],"45":[10,6,63],"46":[8,6,60],"47":[8,6,29],"48":[8,6,35],"49":[9,6,42],"50":[14,6,43],"51":[8,6,36],"52":[8,6,39],"53":[8,6,36],"54":[8,6,42],"55":[4,6,27],"56":[10,6,36],"57":[9,6,52],"58":[6,6,44],"59":[3,1,21],"60":[4,1,3],"61":[2,4,9],"62":[2,4,9],"63":[2,4,7],"64":[2,4,8],"65":[2,4,9],"66":[2,4,8],"67":[2,4,8],"68":[2,4,9],"69":[2,4,8],"70":[2,4,8],"71":[2,4,9],"72":[2,4,8],"73":[2,4,8],"74":[2,4,9],"75":[2,4,8],"76":[2,4,8],"77":[2,4,9],"78":[4,1,3],"79":[2,4,1],"80":[9,6,36],"81":[7,6,45],"82":[10,6,62],"83":[10,6,66],"84":[9,6,71],"85":[9,6,69],"86":[9,6,30],"87":[8,6,37],"88":[5,6,25],"89":[10,6,45],"90":[11,6,39],"91":[10,6,44],"92":[10,6,35],"93":[9,6,15],"94":[9,6,15],"95":[5,6,70],"96":[6,6,35],"97":[7,6,15],"98":[4,1,3],"99":[2,4,1],"100":[8,6,26],"101":[11,6,45],"102":[8,6,13],"103":[7,6,12],"104":[4,6,34],"105":[5,6,37],"106":[7,6,36],"107":[4,1,3],"108":[2,4,1],"109":[7,6,32],"110":[4,1,3],"111":[7,4,31],"112":[2,4,1],"113":[6,6,20],"114":[5,6,31],"115":[7,6,15],"116":[5,6,11],"117":[11,4,40],"118":[11,4,43],"119":[12,4,49],"120":[4,1,4],"121":[2,4,1],"122":[8,6,29],"123":[11,6,44],"124":[8,6,31],"125":[6,6,43],"126":[13,6,43],"127":[8,6,37],"128":[4,6,17],"129":[6,6,31],"130":[5,6,33],"131":[5,6,21],"132":[4,6,10],"133":[7,6,12],"134":[7,6,12],"135":[4,6,46],"136":[5,6,37],"137":[7,6,31],"138":[6,6,12],"139":[6,6,12],"140":[3,6,45],"141":[4,6,42],"142":[6,6,12],"143":[7,6,13],"144":[9,6,55],"145":[7,6,13],"146":[7,6,38],"147":[7,6,15],"148":[5,6,21],"149":[3,4,7],"150":[3,4,8],"151":[3,4,8],"152":[3,4,8],"153":[2,1,3],"154":[2,1,3],"155":[2,1,3],"156":[3,1,3],"157":[2,3,2],"158":[6,5,48],"159":[3,1,3],"160":[2,3,2],"161":[6,5,48],"162":[2,1,3],"163":[1,1,2],"164":[1,1,7]},"averageFieldLength":[5.593939393939395,4.963636363636361,22.61818181818181],"storedFields":{"0":{"title":"mbcp","titles":[]},"1":{"title":"mbcp","titles":[]},"2":{"title":"mbcp.mp_math.angle","titles":[]},"3":{"title":"class Angle","titles":["mbcp.mp_math.angle"]},"4":{"title":"class AnyAngle(Angle)","titles":["mbcp.mp_math.angle"]},"5":{"title":"def __init__(self, value: float, is_radian: bool = False)","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"6":{"title":"def complementary(self) -> AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"7":{"title":"def supplementary(self) -> AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"8":{"title":"def degree(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"9":{"title":"def minimum_positive(self) -> AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"10":{"title":"def maximum_negative(self) -> AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"11":{"title":"def sin(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"12":{"title":"def cos(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"13":{"title":"def tan(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"14":{"title":"def cot(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"15":{"title":"def sec(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"16":{"title":"def csc(self) -> float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"17":{"title":"def self + other: AnyAngle => AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"18":{"title":"def __eq__(self, other)","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"19":{"title":"def self - other: AnyAngle => AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"20":{"title":"def self * other: float => AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"21":{"title":"def self / other: float => AnyAngle","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"22":{"title":"def self / other: AnyAngle => float","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"23":{"title":"def self / other","titles":["mbcp.mp_math.angle","class AnyAngle(Angle)"]},"24":{"title":"mbcp.mp_math.const","titles":[]},"25":{"title":"var PI","titles":["mbcp.mp_math.const"]},"26":{"title":"var E","titles":["mbcp.mp_math.const"]},"27":{"title":"var GOLDEN_RATIO","titles":["mbcp.mp_math.const"]},"28":{"title":"var GAMMA","titles":["mbcp.mp_math.const"]},"29":{"title":"var EPSILON","titles":["mbcp.mp_math.const"]},"30":{"title":"var APPROX","titles":["mbcp.mp_math.const"]},"31":{"title":"mbcp.mp_math.equation","titles":[]},"32":{"title":"class CurveEquation","titles":["mbcp.mp_math.equation"]},"33":{"title":"def __init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc)","titles":["mbcp.mp_math.equation","class CurveEquation"]},"34":{"title":"def __call__(self, *t: Var) -> Point3 | tuple[Point3, ...]","titles":["mbcp.mp_math.equation","class CurveEquation"]},"35":{"title":"def get_partial_derivative_func(func: MultiVarsFunc, var: int | tuple[int, ...], epsilon: Number = EPSILON) -> MultiVarsFunc","titles":["mbcp.mp_math.equation"]},"36":{"title":"mbcp.mp_math.function","titles":[]},"37":{"title":"def cal_gradient_3vf(func: ThreeSingleVarsFunc, p: Point3, epsilon: float = EPSILON) -> Vector3","titles":["mbcp.mp_math.function"]},"38":{"title":"def curry(func: MultiVarsFunc, *args: Var) -> OneVarFunc","titles":["mbcp.mp_math.function"]},"39":{"title":"mbcp.mp_math","titles":[]},"40":{"title":"mbcp.mp_math.line","titles":[]},"41":{"title":"class Line3","titles":["mbcp.mp_math.line"]},"42":{"title":"def __init__(self, point: Point3, direction: Vector3)","titles":["mbcp.mp_math.line","class Line3"]},"43":{"title":"def approx(self, other: Line3, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"44":{"title":"def cal_angle(self, other: Line3) -> AnyAngle","titles":["mbcp.mp_math.line","class Line3"]},"45":{"title":"def cal_distance(self, other: Line3 | Point3) -> float","titles":["mbcp.mp_math.line","class Line3"]},"46":{"title":"def cal_intersection(self, other: Line3) -> Point3","titles":["mbcp.mp_math.line","class Line3"]},"47":{"title":"def cal_perpendicular(self, point: Point3) -> Line3","titles":["mbcp.mp_math.line","class Line3"]},"48":{"title":"def get_point(self, t: RealNumber) -> Point3","titles":["mbcp.mp_math.line","class Line3"]},"49":{"title":"def get_parametric_equations(self) -> tuple[OneSingleVarFunc, OneSingleVarFunc, OneSingleVarFunc]","titles":["mbcp.mp_math.line","class Line3"]},"50":{"title":"def is_approx_parallel(self, other: Line3, epsilon: float = 1e-06) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"51":{"title":"def is_parallel(self, other: Line3) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"52":{"title":"def is_collinear(self, other: Line3) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"53":{"title":"def is_point_on(self, point: Point3) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"54":{"title":"def is_coplanar(self, other: Line3) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"55":{"title":"def simplify(self)","titles":["mbcp.mp_math.line","class Line3"]},"56":{"title":"def from_two_points(cls, p1: Point3, p2: Point3) -> Line3","titles":["mbcp.mp_math.line","class Line3"]},"57":{"title":"def __and__(self, other: Line3) -> Line3 | Point3 | None","titles":["mbcp.mp_math.line","class Line3"]},"58":{"title":"def __eq__(self, other) -> bool","titles":["mbcp.mp_math.line","class Line3"]},"59":{"title":"mbcp.mp_math","titles":[]},"60":{"title":"mbcp.mp_math.mp_math_typing","titles":[]},"61":{"title":"var RealNumber","titles":["mbcp.mp_math.mp_math_typing"]},"62":{"title":"var Number","titles":["mbcp.mp_math.mp_math_typing"]},"63":{"title":"var SingleVar","titles":["mbcp.mp_math.mp_math_typing"]},"64":{"title":"var ArrayVar","titles":["mbcp.mp_math.mp_math_typing"]},"65":{"title":"var Var","titles":["mbcp.mp_math.mp_math_typing"]},"66":{"title":"var OneSingleVarFunc","titles":["mbcp.mp_math.mp_math_typing"]},"67":{"title":"var OneArrayFunc","titles":["mbcp.mp_math.mp_math_typing"]},"68":{"title":"var OneVarFunc","titles":["mbcp.mp_math.mp_math_typing"]},"69":{"title":"var TwoSingleVarsFunc","titles":["mbcp.mp_math.mp_math_typing"]},"70":{"title":"var TwoArraysFunc","titles":["mbcp.mp_math.mp_math_typing"]},"71":{"title":"var TwoVarsFunc","titles":["mbcp.mp_math.mp_math_typing"]},"72":{"title":"var ThreeSingleVarsFunc","titles":["mbcp.mp_math.mp_math_typing"]},"73":{"title":"var ThreeArraysFunc","titles":["mbcp.mp_math.mp_math_typing"]},"74":{"title":"var ThreeVarsFunc","titles":["mbcp.mp_math.mp_math_typing"]},"75":{"title":"var MultiSingleVarsFunc","titles":["mbcp.mp_math.mp_math_typing"]},"76":{"title":"var MultiArraysFunc","titles":["mbcp.mp_math.mp_math_typing"]},"77":{"title":"var MultiVarsFunc","titles":["mbcp.mp_math.mp_math_typing"]},"78":{"title":"mbcp.mp_math.plane","titles":[]},"79":{"title":"class Plane3","titles":["mbcp.mp_math.plane"]},"80":{"title":"def __init__(self, a: float, b: float, c: float, d: float)","titles":["mbcp.mp_math.plane","class Plane3"]},"81":{"title":"def approx(self, other: Plane3) -> bool","titles":["mbcp.mp_math.plane","class Plane3"]},"82":{"title":"def cal_angle(self, other: Line3 | Plane3) -> AnyAngle","titles":["mbcp.mp_math.plane","class Plane3"]},"83":{"title":"def cal_distance(self, other: Plane3 | Point3) -> float","titles":["mbcp.mp_math.plane","class Plane3"]},"84":{"title":"def cal_intersection_line3(self, other: Plane3) -> Line3","titles":["mbcp.mp_math.plane","class Plane3"]},"85":{"title":"def cal_intersection_point3(self, other: Line3) -> Point3","titles":["mbcp.mp_math.plane","class Plane3"]},"86":{"title":"def cal_parallel_plane3(self, point: Point3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"87":{"title":"def is_parallel(self, other: Plane3) -> bool","titles":["mbcp.mp_math.plane","class Plane3"]},"88":{"title":"def normal(self) -> Vector3","titles":["mbcp.mp_math.plane","class Plane3"]},"89":{"title":"def from_point_and_normal(cls, point: Point3, normal: Vector3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"90":{"title":"def from_three_points(cls, p1: Point3, p2: Point3, p3: Point3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"91":{"title":"def from_two_lines(cls, l1: Line3, l2: Line3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"92":{"title":"def from_point_and_line(cls, point: Point3, line: Line3) -> Plane3","titles":["mbcp.mp_math.plane","class Plane3"]},"93":{"title":"def __and__(self, other: Line3) -> Point3 | None","titles":["mbcp.mp_math.plane","class Plane3"]},"94":{"title":"def __and__(self, other: Plane3) -> Line3 | None","titles":["mbcp.mp_math.plane","class Plane3"]},"95":{"title":"def __and__(self, other)","titles":["mbcp.mp_math.plane","class Plane3"]},"96":{"title":"def __eq__(self, other) -> bool","titles":["mbcp.mp_math.plane","class Plane3"]},"97":{"title":"def __rand__(self, other: Line3) -> Point3","titles":["mbcp.mp_math.plane","class Plane3"]},"98":{"title":"mbcp.mp_math.point","titles":[]},"99":{"title":"class Point3","titles":["mbcp.mp_math.point"]},"100":{"title":"def __init__(self, x: float, y: float, z: float)","titles":["mbcp.mp_math.point","class Point3"]},"101":{"title":"def approx(self, other: Point3, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.point","class Point3"]},"102":{"title":"def self + other: Vector3 => Point3","titles":["mbcp.mp_math.point","class Point3"]},"103":{"title":"def self + other: Point3 => Point3","titles":["mbcp.mp_math.point","class Point3"]},"104":{"title":"def self + other","titles":["mbcp.mp_math.point","class Point3"]},"105":{"title":"def __eq__(self, other)","titles":["mbcp.mp_math.point","class Point3"]},"106":{"title":"def self - other: Point3 => Vector3","titles":["mbcp.mp_math.point","class Point3"]},"107":{"title":"mbcp.mp_math.segment","titles":[]},"108":{"title":"class Segment3","titles":["mbcp.mp_math.segment"]},"109":{"title":"def __init__(self, p1: Point3, p2: Point3)","titles":["mbcp.mp_math.segment","class Segment3"]},"110":{"title":"mbcp.mp_math.utils","titles":[]},"111":{"title":"def clamp(x: float, min_: float, max_: float) -> float","titles":["mbcp.mp_math.utils"]},"112":{"title":"class Approx","titles":["mbcp.mp_math.utils"]},"113":{"title":"def __init__(self, value: RealNumber)","titles":["mbcp.mp_math.utils","class Approx"]},"114":{"title":"def __eq__(self, other)","titles":["mbcp.mp_math.utils","class Approx"]},"115":{"title":"def raise_type_error(self, other)","titles":["mbcp.mp_math.utils","class Approx"]},"116":{"title":"def __ne__(self, other)","titles":["mbcp.mp_math.utils","class Approx"]},"117":{"title":"def approx(x: float, y: float = 0.0, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.utils"]},"118":{"title":"def sign(x: float, only_neg: bool = False) -> str","titles":["mbcp.mp_math.utils"]},"119":{"title":"def sign_format(x: float, only_neg: bool = False) -> str","titles":["mbcp.mp_math.utils"]},"120":{"title":"mbcp.mp_math.vector","titles":[]},"121":{"title":"class Vector3","titles":["mbcp.mp_math.vector"]},"122":{"title":"def __init__(self, x: float, y: float, z: float)","titles":["mbcp.mp_math.vector","class Vector3"]},"123":{"title":"def approx(self, other: Vector3, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.vector","class Vector3"]},"124":{"title":"def cal_angle(self, other: Vector3) -> AnyAngle","titles":["mbcp.mp_math.vector","class Vector3"]},"125":{"title":"def cross(self, other: Vector3) -> Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"126":{"title":"def is_approx_parallel(self, other: Vector3, epsilon: float = APPROX) -> bool","titles":["mbcp.mp_math.vector","class Vector3"]},"127":{"title":"def is_parallel(self, other: Vector3) -> bool","titles":["mbcp.mp_math.vector","class Vector3"]},"128":{"title":"def normalize(self)","titles":["mbcp.mp_math.vector","class Vector3"]},"129":{"title":"def np_array(self) -> np.ndarray","titles":["mbcp.mp_math.vector","class Vector3"]},"130":{"title":"def length(self) -> float","titles":["mbcp.mp_math.vector","class Vector3"]},"131":{"title":"def unit(self) -> Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"132":{"title":"def __abs__(self)","titles":["mbcp.mp_math.vector","class Vector3"]},"133":{"title":"def self + other: Vector3 => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"134":{"title":"def self + other: Point3 => Point3","titles":["mbcp.mp_math.vector","class Vector3"]},"135":{"title":"def self + other","titles":["mbcp.mp_math.vector","class Vector3"]},"136":{"title":"def __eq__(self, other)","titles":["mbcp.mp_math.vector","class Vector3"]},"137":{"title":"def self + other: Point3 => Point3","titles":["mbcp.mp_math.vector","class Vector3"]},"138":{"title":"def self - other: Vector3 => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"139":{"title":"def self - other: Point3 => Point3","titles":["mbcp.mp_math.vector","class Vector3"]},"140":{"title":"def self - other","titles":["mbcp.mp_math.vector","class Vector3"]},"141":{"title":"def self - other: Point3","titles":["mbcp.mp_math.vector","class Vector3"]},"142":{"title":"def self * other: Vector3 => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"143":{"title":"def self * other: RealNumber => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"144":{"title":"def self * other: int | float | Vector3 => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"145":{"title":"def self * other: RealNumber => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"146":{"title":"def self @ other: Vector3 => RealNumber","titles":["mbcp.mp_math.vector","class Vector3"]},"147":{"title":"def self / other: RealNumber => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"148":{"title":"def - self => Vector3","titles":["mbcp.mp_math.vector","class Vector3"]},"149":{"title":"var zero_vector3","titles":["mbcp.mp_math.vector"]},"150":{"title":"var x_axis","titles":["mbcp.mp_math.vector"]},"151":{"title":"var y_axis","titles":["mbcp.mp_math.vector"]},"152":{"title":"var z_axis","titles":["mbcp.mp_math.vector"]},"153":{"title":"mbcp.particle","titles":[]},"154":{"title":"mbcp.particle","titles":[]},"155":{"title":"mbcp.presets","titles":[]},"156":{"title":"mbcp.presets.model","titles":[]},"157":{"title":"class GeometricModels","titles":["mbcp.presets.model"]},"158":{"title":"def sphere(radius: float, density: float)","titles":["mbcp.presets.model","class GeometricModels"]},"159":{"title":"mbcp.presets.model","titles":[]},"160":{"title":"class GeometricModels","titles":["mbcp.presets.model"]},"161":{"title":"def sphere(radius: float, density: float)","titles":["mbcp.presets.model","class GeometricModels"]},"162":{"title":"mbcp.presets","titles":[]},"163":{"title":"开始不了一点","titles":[]},"164":{"title":"Reference","titles":[]}},"dirtCount":0,"index":[["∫12x111",{"2":{"163":1}}],["开始不了一点",{"0":{"163":1}}],["4",{"2":{"158":1,"161":1}}],["球体上的点集",{"2":{"158":2,"161":2}}],["生成球体上的点集",{"2":{"158":2,"161":2}}],["几何模型点集",{"2":{"156":1,"159":1}}],["零向量",{"2":{"149":1}}],["负向量",{"2":{"148":2}}],["取负",{"2":{"148":2}}],["取两平面的交集",{"2":{"95":2}}],["非点乘",{"2":{"144":2}}],["别去点那边实现了",{"2":{"137":2}}],["单位向量",{"2":{"131":2}}],["单变量",{"2":{"63":1}}],["模",{"2":{"130":2}}],["向量的模",{"2":{"130":2}}],["向量积",{"2":{"125":2}}],["将向量归一化",{"2":{"128":2}}],["j",{"2":{"125":1}}],["其余结果的模为平行四边形的面积",{"2":{"125":2}}],["叉乘使用cross",{"2":{"144":2}}],["叉乘结果",{"2":{"125":2}}],["叉乘为0",{"2":{"125":2}}],["叉乘",{"2":{"125":2}}],["以及一些常用的向量",{"2":{"120":1}}],["格式化符号数",{"2":{"119":2}}],["quot",{"2":{"118":2,"119":4}}],["符号",{"2":{"118":2,"119":2}}],["获取该向量的单位向量",{"2":{"131":2}}],["获取数的符号",{"2":{"118":2}}],["获取直线的参数方程",{"2":{"49":2}}],["获取直线上的点",{"2":{"48":2}}],["用于判断是否近似于0",{"2":{"117":2}}],["用于近似比较对象",{"2":{"113":2}}],["限定在区间内的值",{"2":{"111":2}}],["值",{"2":{"111":2}}],["区间限定函数",{"2":{"111":2}}],["us",{"2":{"164":1}}],["unit",{"0":{"131":1},"2":{"131":1}}],["unsupported",{"2":{"45":1,"82":1,"83":1,"95":1,"115":1,"135":1,"140":1,"141":1,"144":1}}],["utils",{"0":{"110":1},"1":{"111":1,"112":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1}}],["中心点",{"2":{"109":1}}],["中实现",{"2":{"106":2}}],["长度",{"2":{"109":1}}],["线段的另一个端点",{"2":{"109":2}}],["线段的一个端点",{"2":{"109":2}}],["新的向量或点",{"2":{"135":2}}],["新的向量",{"2":{"106":2,"140":2}}],["新的点",{"2":{"104":2,"137":2,"141":2}}],["已在",{"2":{"106":2}}],["已知一个函数$f",{"2":{"37":1}}],["已知一个函数f",{"2":{"37":1}}],["坐标",{"2":{"100":6}}],["笛卡尔坐标系中的点",{"2":{"100":2}}],["人话",{"2":{"95":2}}],["法向量",{"2":{"88":2,"89":2}}],["k``",{"2":{"125":1}}],["k",{"2":{"81":12}}],["常数项",{"2":{"80":2}}],["常量",{"2":{"25":1}}],["平面上一点",{"2":{"89":2,"92":2}}],["平面的法向量",{"2":{"88":2}}],["平面",{"2":{"86":2,"89":2,"90":2,"91":2,"92":2}}],["平面与直线平行或重合",{"2":{"85":2}}],["平面平行且无交线",{"2":{"84":2}}],["平面方程",{"2":{"80":2}}],["平行线返回none",{"2":{"57":2}}],["多元函数",{"2":{"77":1}}],["多元数组函数",{"2":{"76":1}}],["多元单变量函数",{"2":{"75":1}}],["二元函数",{"2":{"71":1}}],["二元数组函数",{"2":{"70":1}}],["二元单变量函数",{"2":{"69":1}}],["一元函数",{"2":{"68":1}}],["一元数组函数",{"2":{"67":1}}],["一元单变量函数",{"2":{"66":1}}],["一阶偏导",{"2":{"35":2}}],["变量",{"2":{"65":1}}],["变量位置",{"2":{"35":2}}],["数组运算结果",{"2":{"144":2}}],["数组运算",{"2":{"144":2}}],["数组变量",{"2":{"64":1}}],["数2",{"2":{"117":2}}],["数1",{"2":{"117":2}}],["数",{"2":{"62":1,"118":2,"119":2}}],["数学工具",{"2":{"0":1,"1":1}}],["類型",{"2":{"61":1,"62":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"149":1,"150":1,"151":1,"152":1}}],["实数",{"2":{"61":1,"113":2}}],["∧",{"2":{"58":2}}],["交线",{"2":{"84":2,"95":2}}],["交线返回交点",{"2":{"57":2}}],["交集",{"2":{"57":2,"95":2}}],["交点",{"2":{"46":2,"85":2}}],["重合线返回自身",{"2":{"57":2}}],["由点和直线构造平面",{"2":{"92":2}}],["由点和法向量构造平面",{"2":{"89":2}}],["由两直线构造平面",{"2":{"91":2}}],["由两点构造直线",{"2":{"56":2}}],["由三点构造平面",{"2":{"90":2}}],["由一个点和一个方向向量确定",{"2":{"42":2}}],["工厂函数",{"2":{"56":2,"89":2,"90":2,"91":2,"92":2}}],["并对向量单位化",{"2":{"55":2}}],["处理",{"2":{"55":2}}],["处的梯度向量为",{"2":{"37":1}}],["化",{"2":{"55":2}}],["按照可行性一次对x",{"2":{"55":2}}],["不返回值",{"2":{"55":2,"128":2}}],["不支持的类型",{"2":{"45":2,"82":2,"83":2,"95":2}}],["自体归一化",{"2":{"128":2}}],["自体简化",{"2":{"55":2}}],["自然对数的底",{"2":{"26":1}}],["等价相等",{"2":{"55":2}}],["简化直线方程",{"2":{"55":2}}],["两直线方向向量的叉乘与两直线上任意一点的向量的点积为0",{"2":{"54":2}}],["两角的和为180°",{"2":{"7":2}}],["两角的和为90°",{"2":{"6":2}}],["充要条件",{"2":{"54":2}}],["判断两个向量是否相等",{"2":{"136":2}}],["判断两个向量是否平行",{"2":{"127":2}}],["判断两个向量是否近似平行",{"2":{"126":2}}],["判断两个向量是否近似相等",{"2":{"123":2}}],["判断两个数是否近似相等",{"2":{"117":2}}],["判断两个点是否相等",{"2":{"105":2}}],["判断两个点是否近似相等",{"2":{"101":2}}],["判断两个平面是否等价",{"2":{"96":2}}],["判断两个平面是否平行",{"2":{"87":2}}],["判断两个平面是否近似相等",{"2":{"81":2}}],["判断两条直线是否等价",{"2":{"58":2}}],["判断两条直线是否共面",{"2":{"54":2}}],["判断两条直线是否共线",{"2":{"52":2}}],["判断两条直线是否平行",{"2":{"51":2}}],["判断两条直线是否近似平行",{"2":{"50":2}}],["判断两条直线是否近似相等",{"2":{"43":2}}],["判断点是否在直线上",{"2":{"53":2}}],["另一个向量或数",{"2":{"144":2}}],["另一个向量或点",{"2":{"135":2,"140":2}}],["另一个向量",{"2":{"123":2,"124":2,"125":2,"126":2,"127":2,"136":2,"146":2}}],["另一个点或向量",{"2":{"104":2}}],["另一个点",{"2":{"101":2,"105":2,"106":2,"137":2,"141":2}}],["另一个平面或点",{"2":{"83":2}}],["另一个平面或直线",{"2":{"82":2,"95":2}}],["另一个平面",{"2":{"81":2,"84":2,"87":2,"96":2}}],["另一",{"2":{"51":2,"52":2,"54":2}}],["另一条直线或点",{"2":{"45":2}}],["另一条直线",{"2":{"43":2,"44":2,"46":2,"50":2,"57":2,"58":2}}],["则两向量平行",{"2":{"125":2}}],["则同一个t对应的点不同",{"2":{"48":2}}],["则其在点$",{"2":{"37":1}}],["则其在点",{"2":{"37":1}}],["但起始点和方向向量不同",{"2":{"48":2}}],["同一条直线",{"2":{"48":2}}],["垂线",{"2":{"47":2}}],["指定点",{"2":{"47":2,"86":2}}],["直线",{"2":{"56":2,"85":2,"91":4,"92":2}}],["直线不共面",{"2":{"46":2}}],["直线平行",{"2":{"46":2}}],["直线上的一点",{"2":{"42":2}}],["距离",{"2":{"45":2,"83":2}}],["夹角",{"2":{"44":2,"82":2,"124":2}}],["是否只返回负数的符号",{"2":{"118":2,"119":2}}],["是否相等",{"2":{"105":2,"136":2}}],["是否等价",{"2":{"58":2,"96":2}}],["是否共面",{"2":{"54":2}}],["是否共线",{"2":{"52":2}}],["是否在直线上",{"2":{"53":2}}],["是否平行",{"2":{"51":2,"87":2,"127":2}}],["是否近似平行",{"2":{"50":2,"126":2}}],["是否近似相等",{"2":{"43":2,"81":2,"101":2,"117":2,"123":2}}],["是否为弧度",{"2":{"5":2}}],["误差",{"2":{"43":2,"50":2,"101":2,"117":2,"123":2,"126":2}}],["方向向量",{"2":{"42":2,"109":1}}],["三元数组函数",{"2":{"73":1}}],["三元单变量函数",{"2":{"72":1}}],["三元函数",{"2":{"37":2,"74":1}}],["三维空间中的线段",{"2":{"109":2}}],["三维空间中的直线",{"2":{"42":2}}],["三维向量",{"2":{"39":1,"59":1}}],["三维线段",{"2":{"39":1,"59":1}}],["三维点",{"2":{"39":1,"59":1}}],["三维平面",{"2":{"39":1,"59":1}}],["三维直线",{"2":{"39":1,"59":1}}],["导入的类有",{"2":{"39":1,"59":1}}],["本包定义了一些常用的导入",{"2":{"39":1,"59":1}}],["本模块塞了一些预设",{"2":{"155":1,"162":1}}],["本模块用于内部类型提示",{"2":{"60":1}}],["本模块定义了粒子生成相关的工具",{"2":{"153":1,"154":1}}],["本模块定义了3维向量的类vector3",{"2":{"120":1}}],["本模块定义了一些常用的工具函数",{"2":{"110":1}}],["本模块定义了一些常用的常量",{"2":{"24":1}}],["本模块定义了三维空间中点的类",{"2":{"98":1}}],["本模块定义了三维空间中的线段类",{"2":{"107":1}}],["本模块定义了三维空间中的平面类",{"2":{"78":1}}],["本模块定义了三维空间中的直线类",{"2":{"40":1}}],["本模块定义了方程相关的类和函数以及一些常用的数学函数",{"2":{"31":1}}],["本模块定义了角度相关的类",{"2":{"2":1}}],["本模块是主模块",{"2":{"0":1,"1":1}}],["help",{"2":{"164":1}}],["have",{"2":{"84":1}}],["html",{"2":{"43":2,"45":2,"46":1,"49":1,"50":2,"51":1,"52":1,"53":1,"54":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":2,"84":1,"85":1,"87":1,"95":2,"96":1,"100":1,"101":2,"105":1,"111":1,"117":2,"118":3,"119":3,"122":1,"123":2,"126":2,"127":1,"129":1,"130":1,"136":1,"144":1,"146":1}}],["https",{"2":{"38":1,"43":2,"45":2,"46":1,"49":1,"50":2,"51":1,"52":1,"53":1,"54":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":2,"84":1,"85":1,"87":1,"95":2,"96":1,"100":1,"101":2,"105":1,"111":1,"117":2,"118":3,"119":3,"122":1,"123":2,"126":2,"127":1,"129":1,"130":1,"136":1,"144":1,"146":1}}],["high",{"2":{"35":2}}],["hide",{"2":{"35":2,"38":1}}],["6",{"2":{"38":2}}],["3维向量",{"2":{"122":2}}],["3a",{"2":{"45":2,"46":1,"49":1,"50":2,"51":1,"52":1,"53":1,"54":1,"58":1,"80":1,"82":1,"83":2,"84":1,"85":1,"87":1,"95":2,"96":1,"122":1,"123":2,"126":2,"127":1,"129":1,"130":1,"136":1,"144":1,"146":1}}],["355859667",{"2":{"38":1}}],["3",{"2":{"38":2,"43":2,"45":2,"46":1,"49":1,"50":2,"51":1,"52":1,"53":1,"54":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":2,"84":1,"85":1,"87":1,"95":2,"96":1,"100":1,"101":2,"105":1,"111":1,"117":2,"118":3,"119":3,"122":1,"123":2,"126":2,"127":1,"130":1,"136":1,"144":1,"146":1}}],["3vf",{"0":{"37":1},"2":{"37":1}}],["by",{"2":{"80":2}}],["bound=iterable",{"2":{"64":1}}],["bound=number",{"2":{"63":1}}],["bool=false",{"2":{"5":1,"118":1,"119":1}}],["bool",{"0":{"5":1,"43":1,"50":1,"51":1,"52":1,"53":1,"54":1,"58":1,"81":1,"87":1,"96":1,"101":1,"117":1,"118":1,"119":1,"123":1,"126":1,"127":1},"2":{"43":3,"50":3,"51":3,"52":3,"53":3,"54":3,"58":3,"81":3,"87":3,"96":3,"101":3,"105":2,"117":3,"118":2,"119":2,"123":3,"126":3,"127":3,"136":2}}],["b",{"0":{"80":1},"2":{"38":4,"80":5,"81":7,"83":2,"84":12,"85":2,"88":1,"89":3}}],["範例",{"2":{"38":1}}],["柯里化后的函数",{"2":{"38":2}}],["柯理化",{"2":{"38":2}}],["函数式编程",{"2":{"38":1}}],["函数",{"2":{"38":2}}],["有关函数柯里化",{"2":{"38":2}}],["对多参数函数进行柯里化",{"2":{"38":2}}],["d",{"0":{"80":1},"2":{"80":7,"81":6,"83":1,"84":6,"85":1,"89":2}}],["documentation",{"2":{"164":1}}],["doc",{"2":{"129":1}}],["docs",{"2":{"43":2,"45":2,"46":1,"49":1,"50":2,"51":1,"52":1,"53":1,"54":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":2,"84":1,"85":1,"87":1,"95":2,"96":1,"100":1,"101":2,"105":1,"111":1,"117":2,"118":3,"119":3,"122":1,"123":2,"126":2,"127":1,"130":1,"136":1,"144":1,"146":1}}],["do",{"2":{"46":2}}],["distance",{"0":{"45":1,"83":1},"2":{"45":1,"83":1}}],["direction",{"0":{"42":1},"2":{"42":5,"43":1,"44":2,"45":8,"46":6,"47":1,"48":1,"49":3,"50":2,"51":2,"52":1,"53":1,"54":2,"55":4,"56":2,"58":3,"82":1,"84":2,"85":4,"91":1,"92":1,"95":1,"109":2}}],["dz",{"2":{"37":2}}],["dy",{"2":{"37":2}}],["dx",{"2":{"37":2}}],["density",{"0":{"158":1,"161":1},"2":{"158":4,"161":4}}],["derivative",{"0":{"35":1},"2":{"35":6}}],["degree",{"0":{"8":1},"2":{"8":1}}],["def",{"0":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1},"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"21":1,"22":1,"35":2,"38":2,"56":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"102":1,"103":1,"129":1,"130":1,"131":1,"133":1,"134":1,"138":1,"139":1,"142":1,"143":1,"158":1,"161":1}}],["$处的梯度向量为",{"2":{"37":1}}],["$",{"2":{"37":3}}],["梯度",{"2":{"37":2}}],["点乘结果",{"2":{"146":2}}],["点乘",{"2":{"146":2}}],["点乘使用",{"2":{"144":2}}],["点3",{"2":{"90":2}}],["点法式构造",{"2":{"89":2}}],["点2",{"2":{"56":2,"90":2}}],["点1",{"2":{"56":2,"90":2}}],["点",{"2":{"37":2,"48":2,"53":2}}],["∂f∂z",{"2":{"37":1}}],["∂f∂y",{"2":{"37":1}}],["∂f∂x",{"2":{"37":1}}],["∇f",{"2":{"37":1}}],["计算平行于该平面且过指定点的平面",{"2":{"86":2}}],["计算平面与直线的交点",{"2":{"85":2}}],["计算平面与平面或点之间的距离",{"2":{"83":2}}],["计算平面与平面之间的夹角",{"2":{"82":2}}],["计算两个向量之间的夹角",{"2":{"124":2}}],["计算两平面的交线",{"2":{"84":2}}],["计算两条直线点集合的交集",{"2":{"57":2}}],["计算两条直线的交点",{"2":{"46":2}}],["计算直线经过指定点p的垂线",{"2":{"47":2}}],["计算直线和直线或点之间的距离",{"2":{"45":2}}],["计算直线和直线之间的夹角",{"2":{"44":2}}],["计算三元函数在某点的梯度向量",{"2":{"37":2}}],["计算曲线上的点",{"2":{"34":2}}],["v3",{"2":{"125":2}}],["v2",{"2":{"58":2,"90":2,"91":4,"125":2}}],["v1",{"2":{"58":4,"90":2,"91":2,"125":2}}],["vector",{"0":{"120":1},"1":{"121":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"150":1,"151":1,"152":1},"2":{"42":1,"88":1,"89":1,"104":1,"106":3,"144":1}}],["vector3",{"0":{"37":1,"42":1,"88":1,"89":1,"102":1,"106":1,"121":1,"123":1,"124":1,"125":2,"126":1,"127":1,"131":1,"133":2,"138":2,"142":2,"143":1,"144":2,"145":1,"146":1,"147":1,"148":1,"149":1},"1":{"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1},"2":{"37":2,"39":1,"42":3,"59":1,"88":4,"89":3,"91":1,"102":1,"104":2,"106":7,"114":2,"123":3,"124":3,"125":7,"126":3,"127":4,"131":3,"133":2,"135":7,"136":2,"138":2,"140":7,"141":1,"142":2,"143":1,"144":9,"145":1,"146":3,"147":2,"148":4,"149":2,"150":2,"151":2,"152":2}}],["v",{"2":{"35":2,"104":2,"106":4,"135":8,"137":2,"140":8,"141":2}}],["var",{"0":{"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"34":1,"35":1,"38":1,"61":1,"62":1,"63":1,"64":1,"65":2,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"149":1,"150":1,"151":1,"152":1},"2":{"33":3,"34":1,"35":14,"37":1,"38":7,"48":1,"49":1}}],["valueerror",{"2":{"35":3,"46":4,"84":3,"85":3}}],["value",{"0":{"5":1,"113":1},"2":{"5":5,"113":5,"114":6,"115":1}}],["求高阶偏导函数",{"2":{"35":1}}],["求n元函数一阶偏导函数",{"2":{"35":2}}],["l2",{"0":{"91":1},"2":{"91":5}}],["l1",{"0":{"91":1},"2":{"91":7}}],["lambda",{"2":{"49":3}}],["left",{"2":{"37":1}}],["length",{"0":{"130":1},"2":{"45":5,"46":1,"82":2,"109":2,"124":2,"126":1,"128":5,"130":1,"131":1,"132":1}}],["len",{"2":{"34":1}}],["linalg",{"2":{"84":3}}],["lines",{"0":{"91":1},"2":{"46":2,"91":1}}],["line",{"0":{"40":1,"92":2},"1":{"41":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1},"2":{"43":1,"44":1,"45":1,"46":1,"47":1,"50":1,"51":1,"52":1,"54":1,"56":1,"57":2,"58":1,"82":1,"84":1,"85":2,"91":1,"92":6,"95":2}}],["line3",{"0":{"41":1,"43":1,"44":1,"45":1,"46":1,"47":1,"50":1,"51":1,"52":1,"54":1,"56":1,"57":2,"82":1,"84":2,"85":1,"91":2,"92":1,"93":1,"94":1,"97":1},"1":{"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1},"2":{"39":1,"43":3,"44":3,"45":4,"46":3,"47":4,"50":3,"51":3,"52":3,"54":3,"56":3,"57":6,"58":2,"59":1,"82":4,"84":5,"85":3,"91":5,"92":3,"93":1,"94":1,"95":6,"97":1,"114":1}}],["library",{"2":{"43":2,"45":2,"46":1,"49":1,"50":2,"51":1,"52":1,"53":1,"54":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":2,"84":1,"85":1,"87":1,"95":2,"96":1,"100":1,"101":2,"105":1,"111":1,"117":2,"118":3,"119":3,"122":1,"123":2,"126":2,"127":1,"130":1,"136":1,"144":1,"146":1}}],["list",{"2":{"35":8,"158":10,"161":10}}],["litedoc",{"2":{"35":2,"38":1}}],["`np",{"2":{"129":1}}],["`none`",{"2":{"57":1,"95":1}}],["``x2",{"2":{"125":1}}],["``x1",{"2":{"125":1}}],["``i",{"2":{"125":1}}],["```",{"2":{"38":1}}],["```python",{"2":{"38":1}}],["`str`",{"2":{"118":1,"119":1}}],["`plane3`",{"2":{"81":1,"82":1,"83":1,"84":1,"86":1,"87":1,"89":1,"95":1,"96":1}}],["`point3`",{"2":{"37":1,"42":1,"45":1,"46":1,"47":1,"48":1,"53":1,"56":2,"57":1,"83":1,"85":1,"86":1,"89":1,"90":3,"92":1,"95":1,"101":1,"104":2,"105":1,"106":1,"109":2,"135":2,"137":2,"140":2,"141":2}}],["`onesinglevarfunc`",{"2":{"49":3}}],["`onevarfunc`",{"2":{"33":3}}],["`realnumber`",{"2":{"48":1,"113":1}}],["`tuple`",{"2":{"49":1}}],["`typeerror`",{"2":{"45":1,"82":1,"83":1,"95":1}}],["`threesinglevarsfunc`",{"2":{"37":1}}],["`anyangle`",{"2":{"44":1,"82":1,"124":1}}],["`bool`",{"2":{"43":1,"50":1,"51":1,"52":1,"53":1,"54":1,"58":1,"81":1,"87":1,"96":1,"101":1,"105":1,"117":1,"118":1,"119":1,"123":1,"126":1,"127":1,"136":1}}],["`float`",{"2":{"43":1,"45":1,"50":1,"80":4,"83":1,"100":3,"101":1,"111":4,"117":3,"118":1,"119":1,"122":3,"123":1,"126":1,"130":1,"144":1,"146":1}}],["`line3`",{"2":{"43":1,"44":1,"45":1,"46":1,"47":1,"50":1,"51":1,"52":1,"54":1,"56":1,"57":2,"58":1,"82":1,"84":1,"85":1,"91":2,"92":1,"95":2}}],["`valueerror`",{"2":{"46":2,"84":1,"85":1}}],["`var`",{"2":{"38":1}}],["`vector3`",{"2":{"42":1,"88":1,"89":1,"104":1,"106":2,"123":1,"124":1,"125":2,"126":1,"127":1,"131":1,"135":2,"136":1,"140":2,"144":2,"146":1,"148":1}}],["`multivarsfunc`",{"2":{"35":1,"38":1}}],["无效变量类型",{"2":{"35":2}}],["抛出",{"2":{"35":1,"45":1,"46":1,"82":1,"83":1,"84":1,"85":1,"95":1}}],["偏导函数",{"2":{"35":2}}],["偏移量",{"2":{"35":2,"37":2}}],["高阶偏导数值",{"2":{"35":1}}],["高阶偏导",{"2":{"35":2}}],["可直接从mbcp",{"2":{"39":1,"59":1}}],["可参考",{"2":{"38":1}}],["可参考函数式编程",{"2":{"38":1}}],["可为整数",{"2":{"35":2}}],["可导入",{"2":{"0":1,"1":1}}],["因此该函数的稳定性有待提升",{"2":{"35":2}}],["目前数学界对于一个函数的导函数并没有通解的说法",{"2":{"35":2}}],["目标点",{"2":{"34":2}}],["warning",{"2":{"35":2}}],["慎用",{"2":{"35":2}}],["这玩意不太稳定",{"2":{"35":2}}],["num",{"2":{"158":5,"161":5}}],["numpy",{"2":{"129":2}}],["numpy数组",{"2":{"129":2}}],["number=epsilon",{"2":{"35":1}}],["number",{"0":{"35":1,"62":1},"2":{"64":1}}],["ndarray`",{"2":{"129":1}}],["ndarray",{"0":{"129":1},"2":{"129":3}}],["neg",{"0":{"118":1,"119":1},"2":{"118":4,"119":4,"148":1}}],["negative",{"0":{"10":1},"2":{"10":1}}],["ne",{"0":{"116":1},"2":{"116":1}}],["np",{"0":{"129":2},"2":{"84":9,"129":4,"158":9,"161":9}}],["no",{"2":{"84":1}}],["normal",{"0":{"88":1,"89":2},"2":{"82":5,"84":4,"85":1,"86":2,"87":2,"88":1,"89":7,"90":3,"91":1,"92":1,"95":3}}],["normalize",{"0":{"128":1},"2":{"55":1,"128":1}}],["none",{"0":{"57":1,"93":1,"94":1},"2":{"57":4,"93":1,"94":1,"95":4}}],["not",{"2":{"45":1,"46":4,"57":1,"116":1,"118":1,"119":1}}],["nabla",{"2":{"37":1}}],["n元函数",{"2":{"35":2}}],["参数方程",{"2":{"49":2}}],["参数t",{"2":{"48":2}}],["参数",{"2":{"34":2,"35":1,"38":2}}],["|",{"0":{"34":1,"35":1,"45":1,"57":2,"82":1,"83":1,"93":1,"94":1,"144":2},"2":{"34":1,"35":1,"45":3,"57":6,"61":1,"62":1,"65":1,"68":1,"71":1,"74":1,"77":1,"82":3,"83":3,"93":1,"94":1,"95":6,"104":2,"135":4,"140":4,"144":4}}],["曲线方程",{"2":{"33":2,"39":1,"59":1}}],["z轴单位向量",{"2":{"152":1}}],["z轴分量",{"2":{"122":2}}],["z2``",{"2":{"125":1}}],["z1``",{"2":{"125":1}}],["zero",{"0":{"149":1},"2":{"91":1,"127":1}}],["z系数",{"2":{"80":2}}],["zhihu",{"2":{"38":1}}],["zhuanlan",{"2":{"38":1}}],["z0",{"2":{"37":2}}],["zip",{"2":{"34":1}}],["z函数",{"2":{"33":2}}],["z",{"0":{"33":1,"100":1,"122":1,"152":1},"2":{"33":5,"34":4,"37":11,"49":2,"55":4,"83":1,"84":4,"85":4,"89":2,"100":7,"101":2,"104":2,"105":2,"106":2,"109":2,"114":2,"122":5,"123":2,"125":4,"128":1,"129":1,"130":1,"135":4,"136":2,"137":2,"140":4,"141":2,"144":3,"146":2,"147":1,"148":1,"158":2,"161":2}}],["y轴单位向量",{"2":{"151":1}}],["y轴分量",{"2":{"122":2}}],["y2",{"2":{"125":1}}],["y1",{"2":{"125":1}}],["y系数",{"2":{"80":2}}],["y0",{"2":{"37":2}}],["y函数",{"2":{"33":2}}],["y",{"0":{"33":1,"100":1,"117":1,"122":1,"151":1},"2":{"33":5,"34":4,"37":11,"49":2,"55":4,"83":1,"84":4,"85":4,"89":2,"100":7,"101":2,"104":2,"105":2,"106":2,"109":2,"114":2,"117":4,"122":5,"123":2,"125":4,"128":1,"129":1,"130":1,"135":4,"136":2,"137":2,"140":4,"141":2,"144":3,"146":2,"147":1,"148":1,"158":2,"161":2}}],["x轴单位向量",{"2":{"150":1}}],["x轴分量",{"2":{"122":2}}],["x3c",{"2":{"101":3,"114":1,"117":1,"118":1,"119":1,"123":3,"126":1}}],["x26",{"2":{"95":1}}],["x系数",{"2":{"80":2}}],["x0",{"2":{"37":2}}],["x函数",{"2":{"33":2}}],["x",{"0":{"33":1,"100":1,"111":1,"117":1,"118":1,"119":1,"122":1,"150":1},"2":{"33":5,"34":4,"37":11,"49":2,"55":2,"83":1,"84":4,"85":4,"89":2,"100":7,"101":2,"104":2,"105":2,"106":2,"109":2,"111":4,"114":2,"117":4,"118":5,"119":8,"122":5,"123":2,"125":4,"128":1,"129":1,"130":1,"135":4,"136":2,"137":2,"140":4,"141":2,"144":3,"146":2,"147":1,"148":1,"158":2,"161":2}}],["约等于判定误差",{"2":{"30":1}}],["精度误差",{"2":{"29":1}}],["06",{"0":{"50":1},"2":{"50":1}}],["001",{"2":{"30":1}}],["0001",{"2":{"29":1}}],["0",{"0":{"117":2},"2":{"28":1,"29":1,"30":1,"34":3,"37":6,"45":2,"54":1,"55":8,"80":2,"81":3,"83":2,"84":9,"85":1,"95":1,"117":1,"118":2,"119":4,"149":3,"150":2,"151":2,"152":2,"158":2,"161":2}}],["欧拉常数",{"2":{"28":1}}],["5772156649015329",{"2":{"28":1}}],["5",{"2":{"27":1,"83":1}}],["黄金分割比",{"2":{"27":1}}],["geometricmodels",{"0":{"157":1,"160":1},"1":{"158":1,"161":1}}],["generated",{"2":{"129":1}}],["get",{"0":{"35":1,"48":1,"49":1},"2":{"35":2,"48":1,"49":1,"85":1,"91":1}}],["gradient",{"0":{"37":1},"2":{"37":1}}],["gamma",{"0":{"28":1}}],["golden",{"0":{"27":1}}],["gt",{"0":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"19":1,"20":1,"21":1,"22":1,"34":1,"35":1,"37":1,"38":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"96":1,"97":1,"101":1,"102":1,"103":1,"106":1,"111":1,"117":1,"118":1,"119":1,"123":1,"124":1,"125":1,"126":1,"127":1,"129":1,"130":1,"131":1,"133":1,"134":1,"137":1,"138":1,"139":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1},"2":{"104":2,"106":2,"119":3,"125":1,"135":2,"137":1,"140":2,"141":1}}],["默認值",{"2":{"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"149":1,"150":1,"151":1,"152":1}}],["默认为否",{"2":{"5":2}}],["π",{"2":{"25":1}}],["to",{"2":{"164":1}}],["theta",{"2":{"158":3,"161":3}}],["the",{"2":{"85":2,"164":1}}],["three",{"0":{"90":1},"2":{"90":1}}],["threevarsfunc",{"0":{"74":1}}],["threearraysfunc",{"0":{"73":1},"2":{"74":1}}],["threesinglevarsfunc",{"0":{"37":1,"72":1},"2":{"37":3,"74":1}}],["twovarsfunc",{"0":{"71":1}}],["twoarraysfunc",{"0":{"70":1},"2":{"71":1}}],["twosinglevarsfunc",{"0":{"69":1},"2":{"71":1}}],["two",{"0":{"56":1,"91":1},"2":{"56":1,"91":1}}],["tip",{"2":{"37":2,"38":2}}],["typevar",{"2":{"63":1,"64":1}}],["typealias",{"2":{"61":1,"62":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1}}],["typeerror",{"2":{"45":3,"46":1,"82":3,"83":3,"95":3,"115":1,"135":1,"140":1,"141":1,"144":1}}],["type",{"0":{"115":1},"2":{"35":1,"45":1,"82":2,"83":2,"95":2,"114":2,"115":4,"135":2,"140":2,"141":2,"144":2}}],["typing",{"0":{"60":1},"1":{"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1},"2":{"33":3,"35":1,"37":1,"38":2,"48":1,"49":1,"113":1}}],["tuple",{"0":{"34":1,"35":1,"49":1},"2":{"34":2,"35":2,"49":3}}],["t",{"0":{"34":1,"48":1},"2":{"34":10,"48":4,"49":6,"85":4}}],["truediv",{"2":{"21":1,"22":1,"23":1,"147":1}}],["tan",{"0":{"13":1},"2":{"13":2,"14":1}}],["operand",{"2":{"95":1,"135":1,"140":1,"141":1,"144":1}}],["only",{"0":{"118":1,"119":1},"2":{"118":4,"119":4}}],["on",{"0":{"53":1},"2":{"53":1}}],["onearrayfunc",{"0":{"67":1},"2":{"68":1}}],["onesinglevarfunc",{"0":{"49":3,"66":1},"2":{"49":7,"68":1}}],["onevarfunc",{"0":{"33":3,"38":1,"68":1},"2":{"33":9,"38":1}}],["or",{"2":{"57":1,"85":1}}],["org",{"2":{"43":2,"45":2,"46":1,"49":1,"50":2,"51":1,"52":1,"53":1,"54":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":2,"84":1,"85":1,"87":1,"95":2,"96":1,"100":1,"101":2,"105":1,"111":1,"117":2,"118":3,"119":3,"122":1,"123":2,"126":2,"127":1,"129":1,"130":1,"136":1,"144":1,"146":1}}],["order",{"2":{"35":2}}],["overload",{"2":{"20":1,"21":2,"22":1,"92":1,"93":2,"94":1,"101":1,"102":2,"103":1,"132":1,"133":2,"134":1,"137":1,"138":2,"139":1,"141":1,"142":2,"143":1}}],["other",{"0":{"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"43":1,"44":1,"45":1,"46":1,"50":1,"51":1,"52":1,"54":1,"57":1,"58":1,"81":1,"82":1,"83":1,"84":1,"85":1,"87":1,"93":1,"94":1,"95":1,"96":1,"97":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"114":1,"115":1,"116":1,"123":1,"124":1,"125":1,"126":1,"127":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1},"2":{"17":2,"18":2,"19":2,"20":2,"21":1,"22":1,"23":4,"43":5,"44":4,"45":13,"46":9,"50":4,"51":4,"52":5,"54":5,"57":7,"58":5,"81":15,"82":9,"83":9,"84":17,"85":11,"87":4,"93":1,"94":1,"95":10,"96":4,"97":2,"101":6,"102":1,"103":1,"104":6,"105":6,"106":6,"114":9,"115":2,"116":2,"123":6,"124":5,"125":9,"126":4,"127":4,"133":1,"134":1,"135":12,"136":6,"137":6,"138":1,"139":1,"140":12,"141":8,"142":1,"143":1,"144":12,"145":2,"146":6,"147":4}}],["error",{"0":{"115":1},"2":{"114":2,"115":1}}],["exceptions",{"2":{"45":1,"46":1,"82":1,"83":1,"84":1,"85":1,"95":1}}],["examples",{"2":{"38":1}}],["exp",{"2":{"26":1}}],["elif",{"2":{"35":1,"45":3,"57":1,"81":2,"82":1,"83":1,"84":2,"95":1,"114":1,"118":1,"119":1,"135":1,"140":1,"144":1}}],["else",{"2":{"5":1,"34":1,"35":1,"45":2,"57":1,"81":1,"82":1,"83":1,"95":1,"114":2,"118":2,"119":2,"135":1,"140":1,"141":1,"144":1}}],["epsilon",{"0":{"29":1,"35":2,"37":2,"43":1,"50":1,"101":1,"117":1,"123":1,"126":1},"2":{"35":7,"37":12,"43":5,"50":4,"101":6,"117":4,"123":6,"126":4}}],["e",{"0":{"26":1},"2":{"26":1}}],["equations",{"0":{"49":1},"2":{"49":1,"85":1}}],["equation",{"0":{"31":1},"1":{"32":1,"33":1,"34":1,"35":1}}],["eq",{"0":{"18":1,"58":1,"96":1,"105":1,"114":1,"136":1},"2":{"18":1,"58":1,"96":1,"105":1,"114":1,"116":1,"136":1}}],["+1",{"2":{"119":2}}],["+=",{"2":{"35":1}}],["+",{"0":{"17":1,"102":1,"103":1,"104":1,"133":1,"134":1,"135":1,"137":1},"2":{"17":1,"27":1,"37":3,"38":4,"46":1,"48":1,"49":3,"80":6,"83":5,"85":5,"104":7,"109":3,"118":3,"119":3,"130":2,"135":11,"137":5,"146":2,"158":1,"161":1}}],["1e",{"0":{"50":1}}],["1",{"2":{"14":1,"15":1,"16":1,"26":1,"27":1,"34":1,"38":2,"91":1,"119":6,"150":1,"151":1,"152":1,"158":4,"161":4}}],["180",{"2":{"5":1,"8":1}}],["正割值",{"2":{"15":4}}],["正切值",{"2":{"13":4}}],["正弦值",{"2":{"11":4}}],["余割值",{"2":{"16":4}}],["余切值",{"2":{"14":4}}],["余弦值",{"2":{"12":4}}],["余角",{"2":{"6":4}}],["最大值",{"2":{"111":2}}],["最大负角度",{"2":{"10":2}}],["最大负角",{"2":{"10":2}}],["最小值",{"2":{"111":2}}],["最小正角度",{"2":{"9":2}}],["最小正角",{"2":{"9":2}}],["弧度",{"2":{"8":2}}],["角度",{"2":{"8":2}}],["角度或弧度值",{"2":{"5":2}}],["补角",{"2":{"7":4}}],["sphere",{"0":{"158":1,"161":1},"2":{"158":1,"161":1}}],["staticmethod",{"2":{"157":1,"158":1,"160":1,"161":1}}],["stable",{"2":{"129":1}}],["str",{"0":{"118":1,"119":1},"2":{"118":3,"119":3}}],["stdtypes",{"2":{"49":1}}],["s",{"2":{"95":1,"135":1,"140":1,"141":1,"144":1}}],["solve",{"2":{"84":3}}],["sign",{"0":{"118":1,"119":1},"2":{"118":1,"119":1}}],["simplify",{"0":{"55":1},"2":{"55":1}}],["singlevar",{"0":{"63":1},"2":{"63":1,"65":1,"66":2,"69":3,"72":4,"75":1}}],["sin",{"0":{"11":1},"2":{"11":2,"16":1,"158":3,"161":3}}],["sqrt",{"2":{"27":1,"130":1,"158":1,"161":1}}],["sub",{"2":{"19":1,"106":1,"138":1,"139":1,"140":1}}],["supplementary",{"0":{"7":1},"2":{"7":1}}],["segment",{"0":{"107":1},"1":{"108":1,"109":1}}],["segment3",{"0":{"108":1},"1":{"109":1},"2":{"39":1,"59":1}}],["sec",{"0":{"15":1},"2":{"15":1}}],["self",{"0":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"113":1,"114":1,"115":1,"116":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1},"2":{"5":3,"6":2,"7":2,"8":2,"9":2,"10":2,"11":2,"12":2,"13":2,"14":2,"15":2,"16":2,"17":2,"18":2,"19":2,"20":2,"21":1,"22":1,"23":3,"33":4,"34":7,"42":3,"43":4,"44":2,"45":13,"46":8,"47":3,"48":3,"49":7,"50":2,"51":2,"52":4,"53":3,"54":3,"55":8,"57":6,"58":4,"80":5,"81":16,"82":4,"83":8,"84":15,"85":9,"86":2,"87":2,"88":4,"93":1,"94":1,"95":5,"96":2,"97":2,"100":4,"101":4,"102":1,"103":1,"104":4,"105":4,"106":4,"109":15,"113":2,"114":9,"115":2,"116":2,"122":4,"123":4,"124":3,"125":7,"126":2,"127":2,"128":5,"129":4,"130":4,"131":3,"132":2,"133":1,"134":1,"135":7,"136":4,"137":4,"138":1,"139":1,"140":7,"141":4,"142":1,"143":1,"144":7,"145":2,"146":4,"147":4,"148":4}}],["2",{"2":{"6":1,"9":1,"10":1,"27":1,"35":1,"37":3,"38":2,"46":1,"83":3,"109":3,"130":3,"158":2,"161":2}}],["rmul",{"2":{"145":1}}],["rsub",{"2":{"141":1}}],["right",{"2":{"37":1}}],["reference",{"0":{"164":1},"2":{"129":1}}],["realnumber",{"0":{"48":1,"61":1,"113":1,"143":1,"145":1,"146":1,"147":1},"2":{"48":3,"62":1,"113":3,"143":1,"145":1,"146":1,"147":1}}],["result",{"2":{"35":4}}],["return",{"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"23":2,"34":2,"35":4,"37":1,"38":4,"43":1,"44":1,"45":5,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":3,"58":1,"81":4,"82":2,"83":2,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"95":4,"96":1,"97":1,"101":1,"104":1,"105":1,"106":1,"111":1,"114":2,"116":1,"117":1,"118":3,"119":3,"123":1,"124":1,"125":1,"126":1,"127":1,"129":1,"130":1,"131":1,"132":1,"135":2,"136":1,"137":1,"140":2,"141":1,"144":2,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1}}],["returns",{"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"34":1,"35":2,"37":1,"38":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"95":1,"96":1,"101":1,"104":1,"105":1,"106":1,"111":1,"117":1,"118":1,"119":1,"123":1,"124":1,"125":1,"126":1,"127":1,"129":1,"130":1,"131":1,"135":1,"136":1,"137":1,"140":1,"141":1,"144":1,"146":1,"148":1,"158":1,"161":1}}],["range",{"2":{"158":2,"161":2}}],["rand",{"0":{"97":1},"2":{"97":1}}],["radius",{"0":{"158":1,"161":1},"2":{"158":7,"161":7}}],["radian=true",{"2":{"6":1,"7":1,"10":1,"17":1,"19":1,"20":1,"23":1,"82":1,"124":1}}],["radian",{"0":{"5":1},"2":{"5":6,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":2,"18":2,"19":2,"20":1,"23":3}}],["radd",{"2":{"137":1}}],["raise",{"0":{"115":1},"2":{"35":1,"45":1,"46":2,"82":1,"83":1,"84":1,"85":1,"95":1,"114":2,"115":2,"135":1,"140":1,"141":1,"144":1}}],["raises",{"2":{"35":1,"45":1,"46":1,"82":1,"83":1,"84":1,"85":1,"95":1}}],["ratio",{"0":{"27":1}}],[">",{"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"19":1,"20":1,"21":1,"22":1,"34":1,"35":5,"37":3,"38":6,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"96":1,"97":1,"101":1,"102":1,"103":1,"104":2,"106":3,"111":1,"117":1,"118":2,"119":5,"123":1,"124":1,"125":2,"126":1,"127":1,"129":1,"130":1,"131":1,"133":1,"134":1,"135":2,"137":2,"138":1,"139":1,"140":2,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1}}],["返回numpy数组",{"2":{"129":1}}],["返回如下行列式的结果",{"2":{"125":1}}],["返回",{"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"34":1,"35":1,"37":1,"38":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"95":1,"96":1,"101":1,"104":1,"105":1,"106":1,"111":1,"117":1,"118":1,"119":1,"123":1,"124":1,"125":1,"126":1,"127":1,"129":1,"130":1,"131":1,"135":1,"136":1,"137":1,"140":1,"141":1,"144":1,"146":1,"148":1,"158":1,"161":1}}],["cz",{"2":{"80":2}}],["clamp",{"0":{"111":1},"2":{"111":1,"158":1,"161":1}}],["classmethod",{"2":{"55":1,"56":1,"88":1,"89":2,"90":2,"91":2,"92":1}}],["class",{"0":{"3":1,"4":1,"32":1,"41":1,"79":1,"99":1,"108":1,"112":1,"121":1,"157":1,"160":1},"1":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"113":1,"114":1,"115":1,"116":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1},"2":{"37":1,"42":2,"43":1,"44":2,"45":2,"46":2,"47":2,"48":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":3,"57":3,"58":1,"81":1,"82":3,"83":2,"84":2,"85":2,"86":2,"87":1,"88":1,"89":3,"90":1,"91":1,"92":2,"95":4,"96":1,"101":1,"104":3,"105":1,"106":3,"109":2,"123":1,"124":2,"125":2,"126":1,"127":1,"131":1,"135":4,"136":1,"137":2,"140":4,"141":2,"144":2,"146":1,"148":1}}],["cls",{"0":{"56":1,"89":1,"90":1,"91":1,"92":1},"2":{"56":2,"89":2,"90":2,"91":2,"92":2}}],["cross",{"0":{"125":1},"2":{"45":4,"46":3,"47":1,"54":1,"84":1,"90":1,"91":1,"125":3,"126":1,"127":1}}],["c",{"0":{"80":1},"2":{"38":4,"80":5,"81":7,"83":2,"84":6,"85":2,"88":1,"89":3}}],["curried",{"2":{"38":6}}],["currying",{"2":{"38":2}}],["curry",{"0":{"38":1},"2":{"38":3}}],["curveequation",{"0":{"32":1},"1":{"33":1,"34":1},"2":{"39":1,"59":1}}],["cal",{"0":{"37":1,"44":1,"45":1,"46":1,"47":1,"82":1,"83":1,"84":1,"85":1,"86":1,"124":1},"2":{"37":1,"44":2,"45":1,"46":1,"47":1,"57":1,"82":2,"83":1,"84":1,"85":1,"86":1,"95":2,"97":1,"124":1}}],["callable",{"2":{"66":1,"67":1,"69":1,"70":1,"72":1,"73":1,"75":1,"76":1}}],["call",{"0":{"34":1},"2":{"34":1}}],["csc",{"0":{"16":1},"2":{"16":1}}],["coincident",{"2":{"85":1}}],["collinear",{"0":{"52":1},"2":{"52":1,"57":1}}],["coplanar",{"0":{"54":1},"2":{"45":1,"46":2,"54":1,"57":1}}],["complex",{"2":{"62":1}}],["complementary",{"0":{"6":1},"2":{"6":1,"82":1}}],["com",{"2":{"38":1}}],["constants",{"2":{"57":1,"95":1}}],["const",{"0":{"24":1},"1":{"25":1,"26":1,"27":1,"28":1,"29":1,"30":1}}],["cot",{"0":{"14":1},"2":{"14":1}}],["cos",{"0":{"12":1},"2":{"12":2,"15":1,"158":2,"161":2}}],["all",{"2":{"101":1,"114":1,"123":1}}],["acos",{"2":{"82":1,"124":1}}],["axis",{"0":{"150":1,"151":1,"152":1}}],["ax",{"2":{"80":2}}],["arccos",{"2":{"158":1,"161":1}}],["array",{"0":{"129":1},"2":{"84":6,"129":2,"158":6,"161":6}}],["arrayvar",{"0":{"64":1},"2":{"64":1,"65":1,"67":2,"70":3,"73":4,"76":1}}],["area",{"2":{"158":2,"161":2}}],["are",{"2":{"46":2,"84":1,"85":1}}],["args2",{"2":{"38":2}}],["args",{"0":{"38":1},"2":{"5":1,"33":1,"34":1,"35":14,"37":1,"38":5,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"89":1,"90":1,"91":1,"92":1,"95":1,"96":1,"100":1,"101":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"135":1,"136":1,"137":1,"140":1,"141":1,"144":1,"146":1,"158":1,"161":1}}],["abs",{"0":{"132":1},"2":{"45":1,"83":1,"101":3,"114":1,"117":1,"119":1,"123":3,"132":1}}],["a",{"0":{"80":1},"2":{"38":4,"80":5,"81":7,"83":2,"84":12,"85":2,"88":1,"89":3}}],["aaa",{"2":{"36":1}}],["approx",{"0":{"30":1,"43":2,"50":1,"81":1,"101":2,"112":1,"117":2,"123":2,"126":2},"1":{"113":1,"114":1,"115":1,"116":1},"2":{"18":1,"43":3,"50":2,"81":10,"96":1,"101":1,"105":3,"114":4,"117":1,"123":1,"126":1,"127":1,"136":3}}],["add",{"2":{"17":1,"38":8,"102":1,"103":1,"104":1,"133":1,"134":1,"135":1}}],["and",{"0":{"57":1,"89":1,"92":1,"93":1,"94":1,"95":1},"2":{"43":1,"46":2,"52":1,"57":1,"58":1,"81":6,"84":4,"85":1,"86":1,"89":1,"90":1,"91":1,"92":2,"93":1,"94":1,"95":2,"105":2,"115":1,"135":1,"136":2,"140":1,"141":1,"144":1}}],["anyangle",{"0":{"4":1,"6":1,"7":1,"9":1,"10":1,"17":2,"19":2,"20":1,"21":1,"22":1,"44":1,"82":1,"124":1},"1":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1},"2":{"6":2,"7":2,"9":2,"10":2,"17":3,"19":3,"20":2,"21":1,"22":1,"23":2,"39":1,"44":3,"59":1,"82":4,"124":4}}],["angle",{"0":{"2":1,"3":1,"4":1,"44":1,"82":1,"124":1},"1":{"3":1,"4":1,"5":2,"6":2,"7":2,"8":2,"9":2,"10":2,"11":2,"12":2,"13":2,"14":2,"15":2,"16":2,"17":2,"18":2,"19":2,"20":2,"21":2,"22":2,"23":2},"2":{"44":3,"82":3,"124":2}}],["於github上查看",{"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1}}],["或包装一个实数",{"2":{"117":2}}],["或整数元组",{"2":{"35":2}}],["或",{"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1}}],["源碼",{"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"158":1,"161":1}}],["變數説明",{"2":{"5":1,"33":1,"34":1,"35":1,"37":1,"38":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"50":1,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"89":1,"90":1,"91":1,"92":1,"95":1,"96":1,"100":1,"101":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"135":1,"136":1,"137":1,"140":1,"141":1,"144":1,"146":1,"158":1,"161":1}}],["任意角度",{"2":{"5":2,"39":1,"59":1}}],["from",{"0":{"56":1,"89":1,"90":1,"91":1,"92":1},"2":{"56":1,"86":1,"89":1,"90":2,"91":2,"92":2,"106":1}}],["frac",{"2":{"37":3}}],["f",{"2":{"37":4,"82":1,"83":1,"95":1,"115":1,"119":3,"135":1,"140":1,"141":1,"144":1}}],["format",{"0":{"119":1},"2":{"119":1}}],["for",{"2":{"34":1,"35":1,"95":1,"135":1,"140":1,"141":1,"144":1,"158":2,"161":2}}],["functions",{"2":{"43":2,"45":1,"50":2,"51":1,"52":1,"53":1,"54":1,"58":1,"80":1,"81":1,"83":1,"87":1,"96":1,"100":1,"101":2,"105":1,"111":1,"117":2,"118":3,"119":3,"122":1,"123":2,"126":2,"127":1,"130":1,"136":1,"144":1,"146":1}}],["function",{"0":{"36":1},"1":{"37":1,"38":1}}],["func",{"0":{"33":3,"35":2,"37":1,"38":1},"2":{"33":15,"34":6,"35":16,"37":9,"38":6}}],["false",{"0":{"5":1,"118":1,"119":1},"2":{"81":1}}],["float=0",{"2":{"117":1}}],["float=1e",{"2":{"50":1}}],["float=approx",{"2":{"43":1,"101":1,"117":1,"123":1,"126":1}}],["float=epsilon",{"2":{"37":1}}],["float",{"0":{"5":1,"8":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"20":1,"21":1,"22":1,"37":1,"43":1,"45":1,"50":1,"80":4,"83":1,"100":3,"101":1,"111":4,"117":3,"118":1,"119":1,"122":3,"123":1,"126":1,"130":1,"144":1,"158":2,"161":2},"2":{"5":1,"8":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"20":1,"21":1,"22":1,"43":2,"45":3,"50":2,"61":1,"80":9,"83":3,"100":7,"101":2,"111":9,"114":2,"117":5,"118":3,"119":3,"122":7,"123":2,"126":2,"130":3,"144":4,"146":2,"158":2,"161":2}}],["==",{"2":{"34":1,"45":1,"54":1,"55":3,"85":1,"91":1,"95":1}}],["=",{"0":{"5":1,"17":1,"19":1,"20":1,"21":1,"22":1,"35":1,"37":1,"43":1,"50":1,"101":1,"102":1,"103":1,"106":1,"117":2,"118":1,"119":1,"123":1,"126":1,"133":1,"134":1,"137":1,"138":1,"139":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1},"2":{"5":2,"33":3,"35":5,"37":5,"38":2,"42":2,"55":3,"56":1,"80":6,"81":6,"84":17,"85":2,"89":2,"90":3,"91":3,"100":3,"109":5,"113":1,"122":3,"128":4,"158":7,"161":7}}],["improve",{"2":{"164":1}}],["import",{"2":{"106":1}}],["i",{"2":{"158":4,"161":4}}],["invalid",{"2":{"35":1}}],["intersect",{"2":{"46":2}}],["intersection",{"0":{"46":1,"84":1,"85":1},"2":{"46":1,"57":1,"84":2,"85":1,"95":2,"97":1}}],["int",{"0":{"35":2,"144":1},"2":{"35":3,"38":8,"61":1,"114":2,"144":2,"158":1,"161":1}}],["in",{"2":{"34":1,"35":1,"158":2,"161":2}}],["init",{"0":{"5":1,"33":1,"42":1,"80":1,"100":1,"109":1,"113":1,"122":1},"2":{"5":1,"33":1,"42":1,"80":1,"100":1,"109":1,"113":1,"122":1}}],["if",{"2":{"5":1,"23":1,"34":1,"35":1,"45":2,"46":2,"55":3,"57":1,"81":1,"82":1,"83":1,"84":2,"85":1,"91":1,"95":3,"114":3,"118":2,"119":2,"135":1,"140":1,"141":1,"144":1}}],["isinstance",{"2":{"23":1,"35":2,"45":2,"82":2,"83":2,"95":2,"114":4,"135":2,"140":2,"141":1,"144":2}}],["is",{"0":{"5":1,"50":1,"51":1,"52":1,"53":1,"54":1,"87":1,"126":1,"127":1},"2":{"5":4,"6":1,"7":1,"10":1,"17":1,"19":1,"20":1,"23":1,"43":2,"45":2,"46":2,"50":2,"51":2,"52":3,"53":2,"54":1,"57":3,"58":2,"82":1,"84":1,"87":2,"95":1,"124":1,"126":1,"127":1}}],["预设",{"2":{"0":1,"1":1}}],["phi",{"2":{"158":5,"161":5}}],["p3",{"0":{"90":1},"2":{"90":4}}],["p2",{"0":{"56":1,"90":1,"109":1},"2":{"56":4,"58":2,"90":4,"109":9}}],["p1",{"0":{"56":1,"90":1,"109":1},"2":{"56":5,"58":2,"90":6,"109":9}}],["perpendicular",{"0":{"47":1},"2":{"47":1}}],["parametric",{"0":{"49":1},"2":{"49":1,"85":1}}],["parallel",{"0":{"50":1,"51":1,"86":1,"87":1,"126":1,"127":1},"2":{"43":2,"45":1,"46":2,"50":2,"51":2,"52":2,"53":1,"57":1,"58":2,"84":2,"85":1,"86":1,"87":2,"95":1,"126":1,"127":1}}],["partial",{"0":{"35":1},"2":{"35":6,"37":6}}],["particle",{"0":{"153":1,"154":1},"2":{"0":1,"1":1}}],["planes",{"2":{"84":1}}],["plane",{"0":{"78":1},"1":{"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1},"2":{"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"89":1,"95":1,"96":1}}],["plane3",{"0":{"79":1,"81":1,"82":1,"83":1,"84":1,"86":2,"87":1,"89":1,"90":1,"91":1,"92":1,"94":1},"1":{"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1},"2":{"39":1,"59":1,"81":3,"82":4,"83":4,"84":3,"86":5,"87":3,"89":3,"90":1,"91":1,"92":1,"94":1,"95":4,"96":2,"114":1}}],["plus",{"2":{"35":3}}],["p",{"0":{"37":1},"2":{"37":21,"38":1,"104":10,"106":8,"135":4,"137":4,"140":4,"141":4}}],["points",{"0":{"56":1,"90":1},"2":{"56":1,"90":1}}],["point",{"0":{"42":1,"47":1,"48":1,"53":2,"86":1,"89":2,"92":2,"98":1},"1":{"99":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1},"2":{"37":1,"42":6,"43":2,"45":6,"46":4,"47":7,"48":3,"49":3,"52":2,"53":7,"54":2,"55":3,"56":2,"57":1,"58":2,"83":1,"85":4,"86":6,"89":8,"90":2,"91":6,"92":7,"95":1,"101":1,"104":2,"105":1,"106":1,"109":2,"135":2,"137":2,"140":2,"141":2}}],["point3",{"0":{"34":2,"37":1,"42":1,"45":1,"46":1,"47":1,"48":1,"53":1,"56":2,"57":1,"83":1,"85":2,"86":1,"89":1,"90":3,"92":1,"93":1,"97":1,"99":1,"101":1,"102":1,"103":2,"106":1,"109":2,"134":2,"137":2,"139":2,"141":1},"1":{"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1},"2":{"34":4,"37":3,"39":1,"42":3,"45":4,"46":3,"47":3,"48":3,"53":3,"56":6,"57":3,"59":1,"83":4,"84":1,"85":5,"86":3,"89":3,"90":7,"92":3,"93":1,"95":3,"97":2,"101":3,"102":1,"103":2,"104":5,"105":2,"106":3,"109":7,"114":1,"134":2,"135":6,"137":7,"139":2,"140":6,"141":7,"158":3,"161":3}}],["positive",{"0":{"9":1},"2":{"6":1,"7":1,"9":1}}],["python",{"2":{"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"21":1,"22":1,"43":2,"45":2,"46":1,"49":1,"50":2,"51":1,"52":1,"53":1,"54":1,"56":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":2,"84":1,"85":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":2,"96":1,"100":1,"101":2,"102":1,"103":1,"105":1,"111":1,"117":2,"118":3,"119":3,"122":1,"123":2,"126":2,"127":1,"129":1,"130":2,"131":1,"133":1,"134":1,"136":1,"138":1,"139":1,"142":1,"143":1,"144":1,"146":1,"158":1,"161":1}}],["pythondef",{"2":{"5":1,"17":1,"18":1,"19":1,"20":1,"23":1,"33":1,"34":1,"35":1,"37":1,"38":2,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"57":1,"58":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"95":1,"96":1,"97":1,"100":1,"101":1,"104":1,"105":1,"106":1,"109":1,"111":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"132":1,"135":1,"136":1,"137":1,"140":1,"141":1,"144":1,"145":1,"146":1,"147":1,"148":1}}],["property",{"2":{"5":1,"6":2,"7":2,"8":2,"9":2,"10":2,"11":2,"12":2,"13":2,"14":2,"15":2,"16":1,"87":1,"88":1,"128":1,"129":2,"130":2,"131":1}}],["presets",{"0":{"155":1,"156":1,"159":1,"162":1},"1":{"157":1,"158":1,"160":1,"161":1},"2":{"0":1,"1":1}}],["pi",{"0":{"25":1},"2":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"25":1,"158":2,"161":2}}],["粒子生成工具",{"2":{"0":1,"1":1}}],["model",{"0":{"156":1,"159":1},"1":{"157":1,"158":1,"160":1,"161":1}}],["midpoint",{"2":{"109":1}}],["min",{"0":{"111":1},"2":{"111":5}}],["minus",{"2":{"35":3}}],["minimum",{"0":{"9":1},"2":{"6":1,"7":1,"9":1}}],["multiarraysfunc",{"0":{"76":1},"2":{"77":1}}],["multisinglevarsfunc",{"0":{"75":1},"2":{"77":1}}],["multivarsfunc",{"0":{"35":2,"38":1,"77":1},"2":{"35":4,"38":3}}],["mul",{"2":{"20":1,"142":1,"143":1,"144":1,"145":1}}],["matmul",{"2":{"146":1}}],["math导入使用",{"2":{"39":1,"59":1}}],["math",{"0":{"2":1,"24":1,"31":1,"36":1,"39":1,"40":1,"59":1,"60":2,"78":1,"98":1,"107":1,"110":1,"120":1},"1":{"3":1,"4":1,"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"32":1,"33":1,"34":1,"35":1,"37":1,"38":1,"41":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"61":2,"62":2,"63":2,"64":2,"65":2,"66":2,"67":2,"68":2,"69":2,"70":2,"71":2,"72":2,"73":2,"74":2,"75":2,"76":2,"77":2,"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"99":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"108":1,"109":1,"111":1,"112":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"121":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"150":1,"151":1,"152":1},"2":{"0":1,"1":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"25":1,"26":1,"27":1,"33":3,"35":1,"37":1,"38":2,"48":1,"49":1,"82":1,"113":1,"124":1,"130":1}}],["max",{"0":{"111":1},"2":{"111":5}}],["maximum",{"0":{"10":1},"2":{"10":1}}],["mp",{"0":{"2":1,"24":1,"31":1,"36":1,"39":1,"40":1,"59":1,"60":2,"78":1,"98":1,"107":1,"110":1,"120":1},"1":{"3":1,"4":1,"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"32":1,"33":1,"34":1,"35":1,"37":1,"38":1,"41":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"61":2,"62":2,"63":2,"64":2,"65":2,"66":2,"67":2,"68":2,"69":2,"70":2,"71":2,"72":2,"73":2,"74":2,"75":2,"76":2,"77":2,"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"99":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"108":1,"109":1,"111":1,"112":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"121":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"150":1,"151":1,"152":1},"2":{"0":1,"1":1,"33":3,"35":1,"37":1,"38":2,"39":1,"48":1,"49":1,"59":1,"113":1}}],["mbcp",{"0":{"0":1,"1":1,"2":1,"24":1,"31":1,"36":1,"39":1,"40":1,"59":1,"60":1,"78":1,"98":1,"107":1,"110":1,"120":1,"153":1,"154":1,"155":1,"156":1,"159":1,"162":1},"1":{"3":1,"4":1,"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"32":1,"33":1,"34":1,"35":1,"37":1,"38":1,"41":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"99":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"108":1,"109":1,"111":1,"112":1,"113":1,"114":1,"115":1,"116":1,"117":1,"118":1,"119":1,"121":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"130":1,"131":1,"132":1,"133":1,"134":1,"135":1,"136":1,"137":1,"138":1,"139":1,"140":1,"141":1,"142":1,"143":1,"144":1,"145":1,"146":1,"147":1,"148":1,"149":1,"150":1,"151":1,"152":1,"157":1,"158":1,"160":1,"161":1},"2":{"0":3,"1":3}}],["提供了一些工具",{"2":{"0":1,"1":1}}],["説明",{"2":{"0":1,"1":1,"2":1,"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"24":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"31":1,"33":1,"34":1,"35":1,"36":1,"37":1,"38":1,"39":1,"40":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"59":1,"60":1,"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"73":1,"74":1,"75":1,"76":1,"77":1,"78":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"95":1,"96":1,"98":1,"100":1,"101":1,"104":1,"105":1,"106":1,"107":1,"109":1,"110":1,"111":1,"113":1,"117":1,"118":1,"119":1,"120":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"130":1,"131":1,"135":1,"136":1,"137":1,"140":1,"141":1,"144":1,"146":1,"148":1,"149":1,"150":1,"151":1,"152":1,"153":1,"154":1,"155":1,"156":1,"158":1,"159":1,"161":1,"162":1}}]],"serializationVersion":2}';export{t as default};
diff --git a/assets/chunks/VPLocalSearchBox.CrFoMufW.js b/assets/chunks/VPLocalSearchBox.CFZy5fa5.js
similarity index 99%
rename from assets/chunks/VPLocalSearchBox.CrFoMufW.js
rename to assets/chunks/VPLocalSearchBox.CFZy5fa5.js
index 3c32210..81dba37 100644
--- a/assets/chunks/VPLocalSearchBox.CrFoMufW.js
+++ b/assets/chunks/VPLocalSearchBox.CFZy5fa5.js
@@ -1,4 +1,4 @@
-var Ot=Object.defineProperty;var Rt=(a,e,t)=>e in a?Ot(a,e,{enumerable:!0,configurable:!0,writable:!0,value:t}):a[e]=t;var Me=(a,e,t)=>Rt(a,typeof e!="symbol"?e+"":e,t);import{X as ye,s as ne,h as ve,aj as tt,ak as Ct,al as Mt,v as $e,am as At,d as Lt,G as we,an as st,ao as Dt,ap as zt,x as Pt,aq as Vt,y as Ae,R as de,Q as _e,ar as jt,as as $t,Y as Bt,U as Wt,a1 as Kt,o as Q,b as Jt,j as x,a2 as Ut,k as D,at as qt,au as Gt,av as Qt,c as Z,n as nt,e as xe,E as it,F as rt,a as he,t as fe,aw as Ht,p as Yt,l as Zt,ax as at,ay as Xt,a8 as es,ae as ts,az as ss,_ as ns}from"./framework.DpC1ZpOZ.js";import{u as is,c as rs}from"./theme.CIlXJY6j.js";const as={en:()=>ye(()=>import("./@localSearchIndexen.BWxkNSWX.js"),[]),ja:()=>ye(()=>import("./@localSearchIndexja.CXXagdCq.js"),[]),root:()=>ye(()=>import("./@localSearchIndexroot.CPmrPyWJ.js"),[]),zht:()=>ye(()=>import("./@localSearchIndexzht.Bx7DiuMe.js"),[])};/*!
+var Ot=Object.defineProperty;var Rt=(a,e,t)=>e in a?Ot(a,e,{enumerable:!0,configurable:!0,writable:!0,value:t}):a[e]=t;var Me=(a,e,t)=>Rt(a,typeof e!="symbol"?e+"":e,t);import{X as ye,s as ne,h as ve,aj as tt,ak as Ct,al as Mt,v as $e,am as At,d as Lt,G as we,an as st,ao as Dt,ap as zt,x as Pt,aq as Vt,y as Ae,R as de,Q as _e,ar as jt,as as $t,Y as Bt,U as Wt,a1 as Kt,o as Q,b as Jt,j as x,a2 as Ut,k as D,at as qt,au as Gt,av as Qt,c as Z,n as nt,e as xe,E as it,F as rt,a as he,t as fe,aw as Ht,p as Yt,l as Zt,ax as at,ay as Xt,a8 as es,ae as ts,az as ss,_ as ns}from"./framework.DpC1ZpOZ.js";import{u as is,c as rs}from"./theme.rqbpMjWI.js";const as={en:()=>ye(()=>import("./@localSearchIndexen.CzNg5TZu.js"),[]),ja:()=>ye(()=>import("./@localSearchIndexja.CH-7cmaD.js"),[]),root:()=>ye(()=>import("./@localSearchIndexroot.BIMNPnzE.js"),[]),zht:()=>ye(()=>import("./@localSearchIndexzht.DtIiriQ9.js"),[])};/*!
 * tabbable 6.2.0
 * @license MIT, https://github.com/focus-trap/tabbable/blob/master/LICENSE
 */var gt=["input:not([inert])","select:not([inert])","textarea:not([inert])","a[href]:not([inert])","button:not([inert])","[tabindex]:not(slot):not([inert])","audio[controls]:not([inert])","video[controls]:not([inert])",'[contenteditable]:not([contenteditable="false"]):not([inert])',"details>summary:first-of-type:not([inert])","details:not([inert])"],Ne=gt.join(","),bt=typeof Element>"u",re=bt?function(){}:Element.prototype.matches||Element.prototype.msMatchesSelector||Element.prototype.webkitMatchesSelector,ke=!bt&&Element.prototype.getRootNode?function(a){var e;return a==null||(e=a.getRootNode)===null||e===void 0?void 0:e.call(a)}:function(a){return a==null?void 0:a.ownerDocument},Fe=function a(e,t){var s;t===void 0&&(t=!0);var n=e==null||(s=e.getAttribute)===null||s===void 0?void 0:s.call(e,"inert"),r=n===""||n==="true",i=r||t&&e&&a(e.parentNode);return i},os=function(e){var t,s=e==null||(t=e.getAttribute)===null||t===void 0?void 0:t.call(e,"contenteditable");return s===""||s==="true"},yt=function(e,t,s){if(Fe(e))return[];var n=Array.prototype.slice.apply(e.querySelectorAll(Ne));return t&&re.call(e,Ne)&&n.unshift(e),n=n.filter(s),n},wt=function a(e,t,s){for(var n=[],r=Array.from(e);r.length;){var i=r.shift();if(!Fe(i,!1))if(i.tagName==="SLOT"){var o=i.assignedElements(),c=o.length?o:i.children,l=a(c,!0,s);s.flatten?n.push.apply(n,l):n.push({scopeParent:i,candidates:l})}else{var h=re.call(i,Ne);h&&s.filter(i)&&(t||!e.includes(i))&&n.push(i);var v=i.shadowRoot||typeof s.getShadowRoot=="function"&&s.getShadowRoot(i),f=!Fe(v,!1)&&(!s.shadowRootFilter||s.shadowRootFilter(i));if(v&&f){var b=a(v===!0?i.children:v.children,!0,s);s.flatten?n.push.apply(n,b):n.push({scopeParent:i,candidates:b})}else r.unshift.apply(r,i.children)}}return n},_t=function(e){return!isNaN(parseInt(e.getAttribute("tabindex"),10))},ie=function(e){if(!e)throw new Error("No node provided");return e.tabIndex<0&&(/^(AUDIO|VIDEO|DETAILS)$/.test(e.tagName)||os(e))&&!_t(e)?0:e.tabIndex},cs=function(e,t){var s=ie(e);return s<0&&t&&!_t(e)?0:s},ls=function(e,t){return e.tabIndex===t.tabIndex?e.documentOrder-t.documentOrder:e.tabIndex-t.tabIndex},xt=function(e){return e.tagName==="INPUT"},us=function(e){return xt(e)&&e.type==="hidden"},ds=function(e){var t=e.tagName==="DETAILS"&&Array.prototype.slice.apply(e.children).some(function(s){return s.tagName==="SUMMARY"});return t},hs=function(e,t){for(var s=0;ssummary:first-of-type"),i=r?e.parentElement:e;if(re.call(i,"details:not([open]) *"))return!0;if(!s||s==="full"||s==="legacy-full"){if(typeof n=="function"){for(var o=e;e;){var c=e.parentElement,l=ke(e);if(c&&!c.shadowRoot&&n(c)===!0)return ot(e);e.assignedSlot?e=e.assignedSlot:!c&&l!==e.ownerDocument?e=l.host:e=c}e=o}if(ms(e))return!e.getClientRects().length;if(s!=="legacy-full")return!0}else if(s==="non-zero-area")return ot(e);return!1},bs=function(e){if(/^(INPUT|BUTTON|SELECT|TEXTAREA)$/.test(e.tagName))for(var t=e.parentElement;t;){if(t.tagName==="FIELDSET"&&t.disabled){for(var s=0;s=0)},ws=function a(e){var t=[],s=[];return e.forEach(function(n,r){var i=!!n.scopeParent,o=i?n.scopeParent:n,c=cs(o,i),l=i?a(n.candidates):o;c===0?i?t.push.apply(t,l):t.push(o):s.push({documentOrder:r,tabIndex:c,item:n,isScope:i,content:l})}),s.sort(ls).reduce(function(n,r){return r.isScope?n.push.apply(n,r.content):n.push(r.content),n},[]).concat(t)},_s=function(e,t){t=t||{};var s;return t.getShadowRoot?s=wt([e],t.includeContainer,{filter:Be.bind(null,t),flatten:!1,getShadowRoot:t.getShadowRoot,shadowRootFilter:ys}):s=yt(e,t.includeContainer,Be.bind(null,t)),ws(s)},xs=function(e,t){t=t||{};var s;return t.getShadowRoot?s=wt([e],t.includeContainer,{filter:Oe.bind(null,t),flatten:!0,getShadowRoot:t.getShadowRoot}):s=yt(e,t.includeContainer,Oe.bind(null,t)),s},ae=function(e,t){if(t=t||{},!e)throw new Error("No node provided");return re.call(e,Ne)===!1?!1:Be(t,e)},Ss=gt.concat("iframe").join(","),Le=function(e,t){if(t=t||{},!e)throw new Error("No node provided");return re.call(e,Ss)===!1?!1:Oe(t,e)};/*!
diff --git a/assets/chunks/theme.CIlXJY6j.js b/assets/chunks/theme.rqbpMjWI.js
similarity index 99%
rename from assets/chunks/theme.CIlXJY6j.js
rename to assets/chunks/theme.rqbpMjWI.js
index 2d31445..d699040 100644
--- a/assets/chunks/theme.CIlXJY6j.js
+++ b/assets/chunks/theme.rqbpMjWI.js
@@ -1,2 +1,2 @@
-const __vite__mapDeps=(i,m=__vite__mapDeps,d=(m.f||(m.f=["assets/chunks/VPLocalSearchBox.CrFoMufW.js","assets/chunks/framework.DpC1ZpOZ.js"])))=>i.map(i=>d[i]);
-import{d as _,o as a,c,r as l,n as N,a as O,t as I,b as k,w as d,e as h,T as ve,_ as $,u as Ge,i as Ue,f as je,g as pe,h as y,j as v,k as r,p as C,l as H,m as K,q as ie,s as w,v as G,x as Z,y as W,z as fe,A as he,B as ze,C as qe,D as R,F as M,E,G as Pe,H as x,I as m,J as F,K as Ve,L as ee,M as q,N as te,O as Ke,P as Le,Q as le,R as We,S as Se,U as oe,V as Re,W as Je,X as Xe,Y as Te,Z as Ie,$ as Ye,a0 as Qe,a1 as Ze,a2 as xe,a3 as et}from"./framework.DpC1ZpOZ.js";const tt=_({__name:"VPBadge",props:{text:{},type:{default:"tip"}},setup(o){return(e,t)=>(a(),c("span",{class:N(["VPBadge",e.type])},[l(e.$slots,"default",{},()=>[O(I(e.text),1)])],2))}}),ot={key:0,class:"VPBackdrop"},nt=_({__name:"VPBackdrop",props:{show:{type:Boolean}},setup(o){return(e,t)=>(a(),k(ve,{name:"fade"},{default:d(()=>[e.show?(a(),c("div",ot)):h("",!0)]),_:1}))}}),st=$(nt,[["__scopeId","data-v-20b1d393"]]),P=Ge;function at(o,e){let t,s=!1;return()=>{t&&clearTimeout(t),s?t=setTimeout(o,e):(o(),(s=!0)&&setTimeout(()=>s=!1,e))}}function ce(o){return/^\//.test(o)?o:`/${o}`}function _e(o){const{pathname:e,search:t,hash:s,protocol:n}=new URL(o,"http://a.com");if(Ue(o)||o.startsWith("#")||!n.startsWith("http")||!je(e))return o;const{site:i}=P(),u=e.endsWith("/")||e.endsWith(".html")?o:o.replace(/(?:(^\.+)\/)?.*$/,`$1${e.replace(/(\.md)?$/,i.value.cleanUrls?"":".html")}${t}${s}`);return pe(u)}function X({correspondingLink:o=!1}={}){const{site:e,localeIndex:t,page:s,theme:n,hash:i}=P(),u=y(()=>{var p,g;return{label:(p=e.value.locales[t.value])==null?void 0:p.label,link:((g=e.value.locales[t.value])==null?void 0:g.link)||(t.value==="root"?"/":`/${t.value}/`)}});return{localeLinks:y(()=>Object.entries(e.value.locales).flatMap(([p,g])=>u.value.label===g.label?[]:{text:g.label,link:rt(g.link||(p==="root"?"/":`/${p}/`),n.value.i18nRouting!==!1&&o,s.value.relativePath.slice(u.value.link.length-1),!e.value.cleanUrls)+i.value})),currentLang:u}}function rt(o,e,t,s){return e?o.replace(/\/$/,"")+ce(t.replace(/(^|\/)index\.md$/,"$1").replace(/\.md$/,s?".html":"")):o}const it=o=>(C("data-v-21980364"),o=o(),H(),o),lt={class:"NotFound"},ct={class:"code"},ut={class:"title"},dt=it(()=>v("div",{class:"divider"},null,-1)),vt={class:"quote"},pt={class:"action"},ft=["href","aria-label"],ht=_({__name:"NotFound",setup(o){const{theme:e}=P(),{currentLang:t}=X();return(s,n)=>{var i,u,f,p,g;return a(),c("div",lt,[v("p",ct,I(((i=r(e).notFound)==null?void 0:i.code)??"404"),1),v("h1",ut,I(((u=r(e).notFound)==null?void 0:u.title)??"PAGE NOT FOUND"),1),dt,v("blockquote",vt,I(((f=r(e).notFound)==null?void 0:f.quote)??"But if you don't change your direction, and if you keep looking, you may end up where you are heading."),1),v("div",pt,[v("a",{class:"link",href:r(pe)(r(t).link),"aria-label":((p=r(e).notFound)==null?void 0:p.linkLabel)??"go to home"},I(((g=r(e).notFound)==null?void 0:g.linkText)??"Take me home"),9,ft)])])}}}),_t=$(ht,[["__scopeId","data-v-21980364"]]);function we(o,e){if(Array.isArray(o))return Y(o);if(o==null)return[];e=ce(e);const t=Object.keys(o).sort((n,i)=>i.split("/").length-n.split("/").length).find(n=>e.startsWith(ce(n))),s=t?o[t]:[];return Array.isArray(s)?Y(s):Y(s.items,s.base)}function mt(o){const e=[];let t=0;for(const s in o){const n=o[s];if(n.items){t=e.push(n);continue}e[t]||e.push({items:[]}),e[t].items.push(n)}return e}function kt(o){const e=[];function t(s){for(const n of s)n.text&&n.link&&e.push({text:n.text,link:n.link,docFooterText:n.docFooterText}),n.items&&t(n.items)}return t(o),e}function ue(o,e){return Array.isArray(e)?e.some(t=>ue(o,t)):K(o,e.link)?!0:e.items?ue(o,e.items):!1}function Y(o,e){return[...o].map(t=>{const s={...t},n=s.base||e;return n&&s.link&&(s.link=n+s.link),s.items&&(s.items=Y(s.items,n)),s})}function U(){const{frontmatter:o,page:e,theme:t}=P(),s=ie("(min-width: 960px)"),n=w(!1),i=y(()=>{const B=t.value.sidebar,S=e.value.relativePath;return B?we(B,S):[]}),u=w(i.value);G(i,(B,S)=>{JSON.stringify(B)!==JSON.stringify(S)&&(u.value=i.value)});const f=y(()=>o.value.sidebar!==!1&&u.value.length>0&&o.value.layout!=="home"),p=y(()=>g?o.value.aside==null?t.value.aside==="left":o.value.aside==="left":!1),g=y(()=>o.value.layout==="home"?!1:o.value.aside!=null?!!o.value.aside:t.value.aside!==!1),L=y(()=>f.value&&s.value),b=y(()=>f.value?mt(u.value):[]);function V(){n.value=!0}function T(){n.value=!1}function A(){n.value?T():V()}return{isOpen:n,sidebar:u,sidebarGroups:b,hasSidebar:f,hasAside:g,leftAside:p,isSidebarEnabled:L,open:V,close:T,toggle:A}}function bt(o,e){let t;Z(()=>{t=o.value?document.activeElement:void 0}),W(()=>{window.addEventListener("keyup",s)}),fe(()=>{window.removeEventListener("keyup",s)});function s(n){n.key==="Escape"&&o.value&&(e(),t==null||t.focus())}}function $t(o){const{page:e,hash:t}=P(),s=w(!1),n=y(()=>o.value.collapsed!=null),i=y(()=>!!o.value.link),u=w(!1),f=()=>{u.value=K(e.value.relativePath,o.value.link)};G([e,o,t],f),W(f);const p=y(()=>u.value?!0:o.value.items?ue(e.value.relativePath,o.value.items):!1),g=y(()=>!!(o.value.items&&o.value.items.length));Z(()=>{s.value=!!(n.value&&o.value.collapsed)}),he(()=>{(u.value||p.value)&&(s.value=!1)});function L(){n.value&&(s.value=!s.value)}return{collapsed:s,collapsible:n,isLink:i,isActiveLink:u,hasActiveLink:p,hasChildren:g,toggle:L}}function gt(){const{hasSidebar:o}=U(),e=ie("(min-width: 960px)"),t=ie("(min-width: 1280px)");return{isAsideEnabled:y(()=>!t.value&&!e.value?!1:o.value?t.value:e.value)}}const de=[];function Ne(o){return typeof o.outline=="object"&&!Array.isArray(o.outline)&&o.outline.label||o.outlineTitle||"On this page"}function me(o){const e=[...document.querySelectorAll(".VPDoc :where(h1,h2,h3,h4,h5,h6)")].filter(t=>t.id&&t.hasChildNodes()).map(t=>{const s=Number(t.tagName[1]);return{element:t,title:yt(t),link:"#"+t.id,level:s}});return Pt(e,o)}function yt(o){let e="";for(const t of o.childNodes)if(t.nodeType===1){if(t.classList.contains("VPBadge")||t.classList.contains("header-anchor")||t.classList.contains("ignore-header"))continue;e+=t.textContent}else t.nodeType===3&&(e+=t.textContent);return e.trim()}function Pt(o,e){if(e===!1)return[];const t=(typeof e=="object"&&!Array.isArray(e)?e.level:e)||2,[s,n]=typeof t=="number"?[t,t]:t==="deep"?[2,6]:t;o=o.filter(u=>u.level>=s&&u.level<=n),de.length=0;for(const{element:u,link:f}of o)de.push({element:u,link:f});const i=[];e:for(let u=0;u=0;p--){const g=o[p];if(g.level{requestAnimationFrame(i),window.addEventListener("scroll",s)}),ze(()=>{u(location.hash)}),fe(()=>{window.removeEventListener("scroll",s)});function i(){if(!t.value)return;const f=window.scrollY,p=window.innerHeight,g=document.body.offsetHeight,L=Math.abs(f+p-g)<1,b=de.map(({element:T,link:A})=>({link:A,top:Lt(T)})).filter(({top:T})=>!Number.isNaN(T)).sort((T,A)=>T.top-A.top);if(!b.length){u(null);return}if(f<1){u(null);return}if(L){u(b[b.length-1].link);return}let V=null;for(const{link:T,top:A}of b){if(A>f+qe()+4)break;V=T}u(V)}function u(f){n&&n.classList.remove("active"),f==null?n=null:n=o.value.querySelector(`a[href="${decodeURIComponent(f)}"]`);const p=n;p?(p.classList.add("active"),e.value.style.top=p.offsetTop+39+"px",e.value.style.opacity="1"):(e.value.style.top="33px",e.value.style.opacity="0")}}function Lt(o){let e=0;for(;o!==document.body;){if(o===null)return NaN;e+=o.offsetTop,o=o.offsetParent}return e}const St=["href","title"],Tt=_({__name:"VPDocOutlineItem",props:{headers:{},root:{type:Boolean}},setup(o){function e({target:t}){const s=t.href.split("#")[1],n=document.getElementById(decodeURIComponent(s));n==null||n.focus({preventScroll:!0})}return(t,s)=>{const n=R("VPDocOutlineItem",!0);return a(),c("ul",{class:N(["VPDocOutlineItem",t.root?"root":"nested"])},[(a(!0),c(M,null,E(t.headers,({children:i,link:u,title:f})=>(a(),c("li",null,[v("a",{class:"outline-link",href:u,onClick:e,title:f},I(f),9,St),i!=null&&i.length?(a(),k(n,{key:0,headers:i},null,8,["headers"])):h("",!0)]))),256))],2)}}}),Me=$(Tt,[["__scopeId","data-v-51c2c770"]]),It={class:"content"},wt={"aria-level":"2",class:"outline-title",id:"doc-outline-aria-label",role:"heading"},Nt=_({__name:"VPDocAsideOutline",setup(o){const{frontmatter:e,theme:t}=P(),s=Pe([]);x(()=>{s.value=me(e.value.outline??t.value.outline)});const n=w(),i=w();return Vt(n,i),(u,f)=>(a(),c("nav",{"aria-labelledby":"doc-outline-aria-label",class:N(["VPDocAsideOutline",{"has-outline":s.value.length>0}]),ref_key:"container",ref:n},[v("div",It,[v("div",{class:"outline-marker",ref_key:"marker",ref:i},null,512),v("div",wt,I(r(Ne)(r(t))),1),m(Me,{headers:s.value,root:!0},null,8,["headers"])])],2))}}),Mt=$(Nt,[["__scopeId","data-v-e7b12e6e"]]),At={class:"VPDocAsideCarbonAds"},Bt=_({__name:"VPDocAsideCarbonAds",props:{carbonAds:{}},setup(o){const e=()=>null;return(t,s)=>(a(),c("div",At,[m(r(e),{"carbon-ads":t.carbonAds},null,8,["carbon-ads"])]))}}),Ct=o=>(C("data-v-0ff3c77f"),o=o(),H(),o),Ht={class:"VPDocAside"},Et=Ct(()=>v("div",{class:"spacer"},null,-1)),Ft=_({__name:"VPDocAside",setup(o){const{theme:e}=P();return(t,s)=>(a(),c("div",Ht,[l(t.$slots,"aside-top",{},void 0,!0),l(t.$slots,"aside-outline-before",{},void 0,!0),m(Mt),l(t.$slots,"aside-outline-after",{},void 0,!0),Et,l(t.$slots,"aside-ads-before",{},void 0,!0),r(e).carbonAds?(a(),k(Bt,{key:0,"carbon-ads":r(e).carbonAds},null,8,["carbon-ads"])):h("",!0),l(t.$slots,"aside-ads-after",{},void 0,!0),l(t.$slots,"aside-bottom",{},void 0,!0)]))}}),Dt=$(Ft,[["__scopeId","data-v-0ff3c77f"]]);function Ot(){const{theme:o,page:e}=P();return y(()=>{const{text:t="Edit this page",pattern:s=""}=o.value.editLink||{};let n;return typeof s=="function"?n=s(e.value):n=s.replace(/:path/g,e.value.filePath),{url:n,text:t}})}function Gt(){const{page:o,theme:e,frontmatter:t}=P();return y(()=>{var g,L,b,V,T,A,B,S;const s=we(e.value.sidebar,o.value.relativePath),n=kt(s),i=Ut(n,j=>j.link.replace(/[?#].*$/,"")),u=i.findIndex(j=>K(o.value.relativePath,j.link)),f=((g=e.value.docFooter)==null?void 0:g.prev)===!1&&!t.value.prev||t.value.prev===!1,p=((L=e.value.docFooter)==null?void 0:L.next)===!1&&!t.value.next||t.value.next===!1;return{prev:f?void 0:{text:(typeof t.value.prev=="string"?t.value.prev:typeof t.value.prev=="object"?t.value.prev.text:void 0)??((b=i[u-1])==null?void 0:b.docFooterText)??((V=i[u-1])==null?void 0:V.text),link:(typeof t.value.prev=="object"?t.value.prev.link:void 0)??((T=i[u-1])==null?void 0:T.link)},next:p?void 0:{text:(typeof t.value.next=="string"?t.value.next:typeof t.value.next=="object"?t.value.next.text:void 0)??((A=i[u+1])==null?void 0:A.docFooterText)??((B=i[u+1])==null?void 0:B.text),link:(typeof t.value.next=="object"?t.value.next.link:void 0)??((S=i[u+1])==null?void 0:S.link)}}})}function Ut(o,e){const t=new Set;return o.filter(s=>{const n=e(s);return t.has(n)?!1:t.add(n)})}const D=_({__name:"VPLink",props:{tag:{},href:{},noIcon:{type:Boolean},target:{},rel:{}},setup(o){const e=o,t=y(()=>e.tag??(e.href?"a":"span")),s=y(()=>e.href&&Ve.test(e.href)||e.target==="_blank");return(n,i)=>(a(),k(F(t.value),{class:N(["VPLink",{link:n.href,"vp-external-link-icon":s.value,"no-icon":n.noIcon}]),href:n.href?r(_e)(n.href):void 0,target:n.target??(s.value?"_blank":void 0),rel:n.rel??(s.value?"noreferrer":void 0)},{default:d(()=>[l(n.$slots,"default")]),_:3},8,["class","href","target","rel"]))}}),jt={class:"VPLastUpdated"},zt=["datetime"],qt=_({__name:"VPDocFooterLastUpdated",setup(o){const{theme:e,page:t,lang:s}=P(),n=y(()=>new Date(t.value.lastUpdated)),i=y(()=>n.value.toISOString()),u=w("");return W(()=>{Z(()=>{var f,p,g;u.value=new Intl.DateTimeFormat((p=(f=e.value.lastUpdated)==null?void 0:f.formatOptions)!=null&&p.forceLocale?s.value:void 0,((g=e.value.lastUpdated)==null?void 0:g.formatOptions)??{dateStyle:"short",timeStyle:"short"}).format(n.value)})}),(f,p)=>{var g;return a(),c("p",jt,[O(I(((g=r(e).lastUpdated)==null?void 0:g.text)||r(e).lastUpdatedText||"Last updated")+": ",1),v("time",{datetime:i.value},I(u.value),9,zt)])}}}),Kt=$(qt,[["__scopeId","data-v-5cebc0fc"]]),Ae=o=>(C("data-v-a4b38bd6"),o=o(),H(),o),Wt={key:0,class:"VPDocFooter"},Rt={key:0,class:"edit-info"},Jt={key:0,class:"edit-link"},Xt=Ae(()=>v("span",{class:"vpi-square-pen edit-link-icon"},null,-1)),Yt={key:1,class:"last-updated"},Qt={key:1,class:"prev-next","aria-labelledby":"doc-footer-aria-label"},Zt=Ae(()=>v("span",{class:"visually-hidden",id:"doc-footer-aria-label"},"Pager",-1)),xt={class:"pager"},eo=["innerHTML"],to=["innerHTML"],oo={class:"pager"},no=["innerHTML"],so=["innerHTML"],ao=_({__name:"VPDocFooter",setup(o){const{theme:e,page:t,frontmatter:s}=P(),n=Ot(),i=Gt(),u=y(()=>e.value.editLink&&s.value.editLink!==!1),f=y(()=>t.value.lastUpdated),p=y(()=>u.value||f.value||i.value.prev||i.value.next);return(g,L)=>{var b,V,T,A;return p.value?(a(),c("footer",Wt,[l(g.$slots,"doc-footer-before",{},void 0,!0),u.value||f.value?(a(),c("div",Rt,[u.value?(a(),c("div",Jt,[m(D,{class:"edit-link-button",href:r(n).url,"no-icon":!0},{default:d(()=>[Xt,O(" "+I(r(n).text),1)]),_:1},8,["href"])])):h("",!0),f.value?(a(),c("div",Yt,[m(Kt)])):h("",!0)])):h("",!0),(b=r(i).prev)!=null&&b.link||(V=r(i).next)!=null&&V.link?(a(),c("nav",Qt,[Zt,v("div",xt,[(T=r(i).prev)!=null&&T.link?(a(),k(D,{key:0,class:"pager-link prev",href:r(i).prev.link},{default:d(()=>{var B;return[v("span",{class:"desc",innerHTML:((B=r(e).docFooter)==null?void 0:B.prev)||"Previous page"},null,8,eo),v("span",{class:"title",innerHTML:r(i).prev.text},null,8,to)]}),_:1},8,["href"])):h("",!0)]),v("div",oo,[(A=r(i).next)!=null&&A.link?(a(),k(D,{key:0,class:"pager-link next",href:r(i).next.link},{default:d(()=>{var B;return[v("span",{class:"desc",innerHTML:((B=r(e).docFooter)==null?void 0:B.next)||"Next page"},null,8,no),v("span",{class:"title",innerHTML:r(i).next.text},null,8,so)]}),_:1},8,["href"])):h("",!0)])])):h("",!0)])):h("",!0)}}}),ro=$(ao,[["__scopeId","data-v-a4b38bd6"]]),io=o=>(C("data-v-40342069"),o=o(),H(),o),lo={class:"container"},co=io(()=>v("div",{class:"aside-curtain"},null,-1)),uo={class:"aside-container"},vo={class:"aside-content"},po={class:"content"},fo={class:"content-container"},ho={class:"main"},_o=_({__name:"VPDoc",setup(o){const{theme:e}=P(),t=ee(),{hasSidebar:s,hasAside:n,leftAside:i}=U(),u=y(()=>t.path.replace(/[./]+/g,"_").replace(/_html$/,""));return(f,p)=>{const g=R("Content");return a(),c("div",{class:N(["VPDoc",{"has-sidebar":r(s),"has-aside":r(n)}])},[l(f.$slots,"doc-top",{},void 0,!0),v("div",lo,[r(n)?(a(),c("div",{key:0,class:N(["aside",{"left-aside":r(i)}])},[co,v("div",uo,[v("div",vo,[m(Dt,null,{"aside-top":d(()=>[l(f.$slots,"aside-top",{},void 0,!0)]),"aside-bottom":d(()=>[l(f.$slots,"aside-bottom",{},void 0,!0)]),"aside-outline-before":d(()=>[l(f.$slots,"aside-outline-before",{},void 0,!0)]),"aside-outline-after":d(()=>[l(f.$slots,"aside-outline-after",{},void 0,!0)]),"aside-ads-before":d(()=>[l(f.$slots,"aside-ads-before",{},void 0,!0)]),"aside-ads-after":d(()=>[l(f.$slots,"aside-ads-after",{},void 0,!0)]),_:3})])])],2)):h("",!0),v("div",po,[v("div",fo,[l(f.$slots,"doc-before",{},void 0,!0),v("main",ho,[m(g,{class:N(["vp-doc",[u.value,r(e).externalLinkIcon&&"external-link-icon-enabled"]])},null,8,["class"])]),m(ro,null,{"doc-footer-before":d(()=>[l(f.$slots,"doc-footer-before",{},void 0,!0)]),_:3}),l(f.$slots,"doc-after",{},void 0,!0)])])]),l(f.$slots,"doc-bottom",{},void 0,!0)],2)}}}),mo=$(_o,[["__scopeId","data-v-40342069"]]),ko=_({__name:"VPButton",props:{tag:{},size:{default:"medium"},theme:{default:"brand"},text:{},href:{},target:{},rel:{}},setup(o){const e=o,t=y(()=>e.href&&Ve.test(e.href)),s=y(()=>e.tag||e.href?"a":"button");return(n,i)=>(a(),k(F(s.value),{class:N(["VPButton",[n.size,n.theme]]),href:n.href?r(_e)(n.href):void 0,target:e.target??(t.value?"_blank":void 0),rel:e.rel??(t.value?"noreferrer":void 0)},{default:d(()=>[O(I(n.text),1)]),_:1},8,["class","href","target","rel"]))}}),bo=$(ko,[["__scopeId","data-v-885c6978"]]),$o=["src","alt"],go=_({inheritAttrs:!1,__name:"VPImage",props:{image:{},alt:{}},setup(o){return(e,t)=>{const s=R("VPImage",!0);return e.image?(a(),c(M,{key:0},[typeof e.image=="string"||"src"in e.image?(a(),c("img",q({key:0,class:"VPImage"},typeof e.image=="string"?e.$attrs:{...e.image,...e.$attrs},{src:r(pe)(typeof e.image=="string"?e.image:e.image.src),alt:e.alt??(typeof e.image=="string"?"":e.image.alt||"")}),null,16,$o)):(a(),c(M,{key:1},[m(s,q({class:"dark",image:e.image.dark,alt:e.image.alt},e.$attrs),null,16,["image","alt"]),m(s,q({class:"light",image:e.image.light,alt:e.image.alt},e.$attrs),null,16,["image","alt"])],64))],64)):h("",!0)}}}),Q=$(go,[["__scopeId","data-v-f925500d"]]),yo=o=>(C("data-v-325add7b"),o=o(),H(),o),Po={class:"container"},Vo={class:"main"},Lo={key:0,class:"name"},So=["innerHTML"],To=["innerHTML"],Io=["innerHTML"],wo={key:0,class:"actions"},No={key:0,class:"image"},Mo={class:"image-container"},Ao=yo(()=>v("div",{class:"image-bg"},null,-1)),Bo=_({__name:"VPHero",props:{name:{},text:{},tagline:{},image:{},actions:{}},setup(o){const e=te("hero-image-slot-exists");return(t,s)=>(a(),c("div",{class:N(["VPHero",{"has-image":t.image||r(e)}])},[v("div",Po,[v("div",Vo,[l(t.$slots,"home-hero-info-before",{},void 0,!0),l(t.$slots,"home-hero-info",{},()=>[t.name?(a(),c("h1",Lo,[v("span",{innerHTML:t.name,class:"clip"},null,8,So)])):h("",!0),t.text?(a(),c("p",{key:1,innerHTML:t.text,class:"text"},null,8,To)):h("",!0),t.tagline?(a(),c("p",{key:2,innerHTML:t.tagline,class:"tagline"},null,8,Io)):h("",!0)],!0),l(t.$slots,"home-hero-info-after",{},void 0,!0),t.actions?(a(),c("div",wo,[(a(!0),c(M,null,E(t.actions,n=>(a(),c("div",{key:n.link,class:"action"},[m(bo,{tag:"a",size:"medium",theme:n.theme,text:n.text,href:n.link,target:n.target,rel:n.rel},null,8,["theme","text","href","target","rel"])]))),128))])):h("",!0),l(t.$slots,"home-hero-actions-after",{},void 0,!0)]),t.image||r(e)?(a(),c("div",No,[v("div",Mo,[Ao,l(t.$slots,"home-hero-image",{},()=>[t.image?(a(),k(Q,{key:0,class:"image-src",image:t.image},null,8,["image"])):h("",!0)],!0)])])):h("",!0)])],2))}}),Co=$(Bo,[["__scopeId","data-v-325add7b"]]),Ho=_({__name:"VPHomeHero",setup(o){const{frontmatter:e}=P();return(t,s)=>r(e).hero?(a(),k(Co,{key:0,class:"VPHomeHero",name:r(e).hero.name,text:r(e).hero.text,tagline:r(e).hero.tagline,image:r(e).hero.image,actions:r(e).hero.actions},{"home-hero-info-before":d(()=>[l(t.$slots,"home-hero-info-before")]),"home-hero-info":d(()=>[l(t.$slots,"home-hero-info")]),"home-hero-info-after":d(()=>[l(t.$slots,"home-hero-info-after")]),"home-hero-actions-after":d(()=>[l(t.$slots,"home-hero-actions-after")]),"home-hero-image":d(()=>[l(t.$slots,"home-hero-image")]),_:3},8,["name","text","tagline","image","actions"])):h("",!0)}}),Eo=o=>(C("data-v-248ed6b6"),o=o(),H(),o),Fo={class:"box"},Do={key:0,class:"icon"},Oo=["innerHTML"],Go=["innerHTML"],Uo=["innerHTML"],jo={key:4,class:"link-text"},zo={class:"link-text-value"},qo=Eo(()=>v("span",{class:"vpi-arrow-right link-text-icon"},null,-1)),Ko=_({__name:"VPFeature",props:{icon:{},title:{},details:{},link:{},linkText:{},rel:{},target:{}},setup(o){return(e,t)=>(a(),k(D,{class:"VPFeature",href:e.link,rel:e.rel,target:e.target,"no-icon":!0,tag:e.link?"a":"div"},{default:d(()=>[v("article",Fo,[typeof e.icon=="object"&&e.icon.wrap?(a(),c("div",Do,[m(Q,{image:e.icon,alt:e.icon.alt,height:e.icon.height||48,width:e.icon.width||48},null,8,["image","alt","height","width"])])):typeof e.icon=="object"?(a(),k(Q,{key:1,image:e.icon,alt:e.icon.alt,height:e.icon.height||48,width:e.icon.width||48},null,8,["image","alt","height","width"])):e.icon?(a(),c("div",{key:2,class:"icon",innerHTML:e.icon},null,8,Oo)):h("",!0),v("h2",{class:"title",innerHTML:e.title},null,8,Go),e.details?(a(),c("p",{key:3,class:"details",innerHTML:e.details},null,8,Uo)):h("",!0),e.linkText?(a(),c("div",jo,[v("p",zo,[O(I(e.linkText)+" ",1),qo])])):h("",!0)])]),_:1},8,["href","rel","target","tag"]))}}),Wo=$(Ko,[["__scopeId","data-v-248ed6b6"]]),Ro={key:0,class:"VPFeatures"},Jo={class:"container"},Xo={class:"items"},Yo=_({__name:"VPFeatures",props:{features:{}},setup(o){const e=o,t=y(()=>{const s=e.features.length;if(s){if(s===2)return"grid-2";if(s===3)return"grid-3";if(s%3===0)return"grid-6";if(s>3)return"grid-4"}else return});return(s,n)=>s.features?(a(),c("div",Ro,[v("div",Jo,[v("div",Xo,[(a(!0),c(M,null,E(s.features,i=>(a(),c("div",{key:i.title,class:N(["item",[t.value]])},[m(Wo,{icon:i.icon,title:i.title,details:i.details,link:i.link,"link-text":i.linkText,rel:i.rel,target:i.target},null,8,["icon","title","details","link","link-text","rel","target"])],2))),128))])])])):h("",!0)}}),Qo=$(Yo,[["__scopeId","data-v-dbb08ed4"]]),Zo=_({__name:"VPHomeFeatures",setup(o){const{frontmatter:e}=P();return(t,s)=>r(e).features?(a(),k(Qo,{key:0,class:"VPHomeFeatures",features:r(e).features},null,8,["features"])):h("",!0)}}),xo=_({__name:"VPHomeContent",setup(o){const{width:e}=Ke({initialWidth:0,includeScrollbar:!1});return(t,s)=>(a(),c("div",{class:"vp-doc container",style:Le(r(e)?{"--vp-offset":`calc(50% - ${r(e)/2}px)`}:{})},[l(t.$slots,"default",{},void 0,!0)],4))}}),en=$(xo,[["__scopeId","data-v-bb690f02"]]),tn={class:"VPHome"},on=_({__name:"VPHome",setup(o){const{frontmatter:e}=P();return(t,s)=>{const n=R("Content");return a(),c("div",tn,[l(t.$slots,"home-hero-before",{},void 0,!0),m(Ho,null,{"home-hero-info-before":d(()=>[l(t.$slots,"home-hero-info-before",{},void 0,!0)]),"home-hero-info":d(()=>[l(t.$slots,"home-hero-info",{},void 0,!0)]),"home-hero-info-after":d(()=>[l(t.$slots,"home-hero-info-after",{},void 0,!0)]),"home-hero-actions-after":d(()=>[l(t.$slots,"home-hero-actions-after",{},void 0,!0)]),"home-hero-image":d(()=>[l(t.$slots,"home-hero-image",{},void 0,!0)]),_:3}),l(t.$slots,"home-hero-after",{},void 0,!0),l(t.$slots,"home-features-before",{},void 0,!0),m(Zo),l(t.$slots,"home-features-after",{},void 0,!0),r(e).markdownStyles!==!1?(a(),k(en,{key:0},{default:d(()=>[m(n)]),_:1})):(a(),k(n,{key:1}))])}}}),nn=$(on,[["__scopeId","data-v-972a96f9"]]),sn={},an={class:"VPPage"};function rn(o,e){const t=R("Content");return a(),c("div",an,[l(o.$slots,"page-top"),m(t),l(o.$slots,"page-bottom")])}const ln=$(sn,[["render",rn]]),cn=_({__name:"VPContent",setup(o){const{page:e,frontmatter:t}=P(),{hasSidebar:s}=U();return(n,i)=>(a(),c("div",{class:N(["VPContent",{"has-sidebar":r(s),"is-home":r(t).layout==="home"}]),id:"VPContent"},[r(e).isNotFound?l(n.$slots,"not-found",{key:0},()=>[m(_t)],!0):r(t).layout==="page"?(a(),k(ln,{key:1},{"page-top":d(()=>[l(n.$slots,"page-top",{},void 0,!0)]),"page-bottom":d(()=>[l(n.$slots,"page-bottom",{},void 0,!0)]),_:3})):r(t).layout==="home"?(a(),k(nn,{key:2},{"home-hero-before":d(()=>[l(n.$slots,"home-hero-before",{},void 0,!0)]),"home-hero-info-before":d(()=>[l(n.$slots,"home-hero-info-before",{},void 0,!0)]),"home-hero-info":d(()=>[l(n.$slots,"home-hero-info",{},void 0,!0)]),"home-hero-info-after":d(()=>[l(n.$slots,"home-hero-info-after",{},void 0,!0)]),"home-hero-actions-after":d(()=>[l(n.$slots,"home-hero-actions-after",{},void 0,!0)]),"home-hero-image":d(()=>[l(n.$slots,"home-hero-image",{},void 0,!0)]),"home-hero-after":d(()=>[l(n.$slots,"home-hero-after",{},void 0,!0)]),"home-features-before":d(()=>[l(n.$slots,"home-features-before",{},void 0,!0)]),"home-features-after":d(()=>[l(n.$slots,"home-features-after",{},void 0,!0)]),_:3})):r(t).layout&&r(t).layout!=="doc"?(a(),k(F(r(t).layout),{key:3})):(a(),k(mo,{key:4},{"doc-top":d(()=>[l(n.$slots,"doc-top",{},void 0,!0)]),"doc-bottom":d(()=>[l(n.$slots,"doc-bottom",{},void 0,!0)]),"doc-footer-before":d(()=>[l(n.$slots,"doc-footer-before",{},void 0,!0)]),"doc-before":d(()=>[l(n.$slots,"doc-before",{},void 0,!0)]),"doc-after":d(()=>[l(n.$slots,"doc-after",{},void 0,!0)]),"aside-top":d(()=>[l(n.$slots,"aside-top",{},void 0,!0)]),"aside-outline-before":d(()=>[l(n.$slots,"aside-outline-before",{},void 0,!0)]),"aside-outline-after":d(()=>[l(n.$slots,"aside-outline-after",{},void 0,!0)]),"aside-ads-before":d(()=>[l(n.$slots,"aside-ads-before",{},void 0,!0)]),"aside-ads-after":d(()=>[l(n.$slots,"aside-ads-after",{},void 0,!0)]),"aside-bottom":d(()=>[l(n.$slots,"aside-bottom",{},void 0,!0)]),_:3}))],2))}}),un=$(cn,[["__scopeId","data-v-ec7dbf3e"]]),dn={class:"container"},vn=["innerHTML"],pn=["innerHTML"],fn=_({__name:"VPFooter",setup(o){const{theme:e,frontmatter:t}=P(),{hasSidebar:s}=U();return(n,i)=>r(e).footer&&r(t).footer!==!1?(a(),c("footer",{key:0,class:N(["VPFooter",{"has-sidebar":r(s)}])},[v("div",dn,[r(e).footer.message?(a(),c("p",{key:0,class:"message",innerHTML:r(e).footer.message},null,8,vn)):h("",!0),r(e).footer.copyright?(a(),c("p",{key:1,class:"copyright",innerHTML:r(e).footer.copyright},null,8,pn)):h("",!0)])],2)):h("",!0)}}),hn=$(fn,[["__scopeId","data-v-e3ca6860"]]);function _n(){const{theme:o,frontmatter:e}=P(),t=Pe([]),s=y(()=>t.value.length>0);return x(()=>{t.value=me(e.value.outline??o.value.outline)}),{headers:t,hasLocalNav:s}}const mn=o=>(C("data-v-b418bf42"),o=o(),H(),o),kn={class:"menu-text"},bn=mn(()=>v("span",{class:"vpi-chevron-right icon"},null,-1)),$n={class:"header"},gn={class:"outline"},yn=_({__name:"VPLocalNavOutlineDropdown",props:{headers:{},navHeight:{}},setup(o){const e=o,{theme:t}=P(),s=w(!1),n=w(0),i=w(),u=w();function f(b){var V;(V=i.value)!=null&&V.contains(b.target)||(s.value=!1)}G(s,b=>{if(b){document.addEventListener("click",f);return}document.removeEventListener("click",f)}),le("Escape",()=>{s.value=!1}),x(()=>{s.value=!1});function p(){s.value=!s.value,n.value=window.innerHeight+Math.min(window.scrollY-e.navHeight,0)}function g(b){b.target.classList.contains("outline-link")&&(u.value&&(u.value.style.transition="none"),We(()=>{s.value=!1}))}function L(){s.value=!1,window.scrollTo({top:0,left:0,behavior:"smooth"})}return(b,V)=>(a(),c("div",{class:"VPLocalNavOutlineDropdown",style:Le({"--vp-vh":n.value+"px"}),ref_key:"main",ref:i},[b.headers.length>0?(a(),c("button",{key:0,onClick:p,class:N({open:s.value})},[v("span",kn,I(r(Ne)(r(t))),1),bn],2)):(a(),c("button",{key:1,onClick:L},I(r(t).returnToTopLabel||"Return to top"),1)),m(ve,{name:"flyout"},{default:d(()=>[s.value?(a(),c("div",{key:0,ref_key:"items",ref:u,class:"items",onClick:g},[v("div",$n,[v("a",{class:"top-link",href:"#",onClick:L},I(r(t).returnToTopLabel||"Return to top"),1)]),v("div",gn,[m(Me,{headers:b.headers},null,8,["headers"])])],512)):h("",!0)]),_:1})],4))}}),Pn=$(yn,[["__scopeId","data-v-b418bf42"]]),Vn=o=>(C("data-v-8af612ea"),o=o(),H(),o),Ln={class:"container"},Sn=["aria-expanded"],Tn=Vn(()=>v("span",{class:"vpi-align-left menu-icon"},null,-1)),In={class:"menu-text"},wn=_({__name:"VPLocalNav",props:{open:{type:Boolean}},emits:["open-menu"],setup(o){const{theme:e,frontmatter:t}=P(),{hasSidebar:s}=U(),{headers:n}=_n(),{y:i}=Se(),u=w(0);W(()=>{u.value=parseInt(getComputedStyle(document.documentElement).getPropertyValue("--vp-nav-height"))}),x(()=>{n.value=me(t.value.outline??e.value.outline)});const f=y(()=>n.value.length===0),p=y(()=>f.value&&!s.value),g=y(()=>({VPLocalNav:!0,"has-sidebar":s.value,empty:f.value,fixed:p.value}));return(L,b)=>r(t).layout!=="home"&&(!p.value||r(i)>=u.value)?(a(),c("div",{key:0,class:N(g.value)},[v("div",Ln,[r(s)?(a(),c("button",{key:0,class:"menu","aria-expanded":L.open,"aria-controls":"VPSidebarNav",onClick:b[0]||(b[0]=V=>L.$emit("open-menu"))},[Tn,v("span",In,I(r(e).sidebarMenuLabel||"Menu"),1)],8,Sn)):h("",!0),m(Pn,{headers:r(n),navHeight:u.value},null,8,["headers","navHeight"])])],2)):h("",!0)}}),Nn=$(wn,[["__scopeId","data-v-8af612ea"]]);function Mn(){const o=w(!1);function e(){o.value=!0,window.addEventListener("resize",n)}function t(){o.value=!1,window.removeEventListener("resize",n)}function s(){o.value?t():e()}function n(){window.outerWidth>=768&&t()}const i=ee();return G(()=>i.path,t),{isScreenOpen:o,openScreen:e,closeScreen:t,toggleScreen:s}}const An={},Bn={class:"VPSwitch",type:"button",role:"switch"},Cn={class:"check"},Hn={key:0,class:"icon"};function En(o,e){return a(),c("button",Bn,[v("span",Cn,[o.$slots.default?(a(),c("span",Hn,[l(o.$slots,"default",{},void 0,!0)])):h("",!0)])])}const Fn=$(An,[["render",En],["__scopeId","data-v-d82e607b"]]),Be=o=>(C("data-v-3a50aa5c"),o=o(),H(),o),Dn=Be(()=>v("span",{class:"vpi-sun sun"},null,-1)),On=Be(()=>v("span",{class:"vpi-moon moon"},null,-1)),Gn=_({__name:"VPSwitchAppearance",setup(o){const{isDark:e,theme:t}=P(),s=te("toggle-appearance",()=>{e.value=!e.value}),n=w("");return he(()=>{n.value=e.value?t.value.lightModeSwitchTitle||"Switch to light theme":t.value.darkModeSwitchTitle||"Switch to dark theme"}),(i,u)=>(a(),k(Fn,{title:n.value,class:"VPSwitchAppearance","aria-checked":r(e),onClick:r(s)},{default:d(()=>[Dn,On]),_:1},8,["title","aria-checked","onClick"]))}}),ke=$(Gn,[["__scopeId","data-v-3a50aa5c"]]),Un={key:0,class:"VPNavBarAppearance"},jn=_({__name:"VPNavBarAppearance",setup(o){const{site:e}=P();return(t,s)=>r(e).appearance&&r(e).appearance!=="force-dark"&&r(e).appearance!=="force-auto"?(a(),c("div",Un,[m(ke)])):h("",!0)}}),zn=$(jn,[["__scopeId","data-v-2a6692f8"]]),be=w();let Ce=!1,re=0;function qn(o){const e=w(!1);if(oe){!Ce&&Kn(),re++;const t=G(be,s=>{var n,i,u;s===o.el.value||(n=o.el.value)!=null&&n.contains(s)?(e.value=!0,(i=o.onFocus)==null||i.call(o)):(e.value=!1,(u=o.onBlur)==null||u.call(o))});fe(()=>{t(),re--,re||Wn()})}return Re(e)}function Kn(){document.addEventListener("focusin",He),Ce=!0,be.value=document.activeElement}function Wn(){document.removeEventListener("focusin",He)}function He(){be.value=document.activeElement}const Rn={class:"VPMenuLink"},Jn=_({__name:"VPMenuLink",props:{item:{}},setup(o){const{page:e}=P();return(t,s)=>(a(),c("div",Rn,[m(D,{class:N({active:r(K)(r(e).relativePath,t.item.activeMatch||t.item.link,!!t.item.activeMatch)}),href:t.item.link,target:t.item.target,rel:t.item.rel},{default:d(()=>[O(I(t.item.text),1)]),_:1},8,["class","href","target","rel"])]))}}),ne=$(Jn,[["__scopeId","data-v-79776a7a"]]),Xn={class:"VPMenuGroup"},Yn={key:0,class:"title"},Qn=_({__name:"VPMenuGroup",props:{text:{},items:{}},setup(o){return(e,t)=>(a(),c("div",Xn,[e.text?(a(),c("p",Yn,I(e.text),1)):h("",!0),(a(!0),c(M,null,E(e.items,s=>(a(),c(M,null,["link"in s?(a(),k(ne,{key:0,item:s},null,8,["item"])):h("",!0)],64))),256))]))}}),Zn=$(Qn,[["__scopeId","data-v-fbf15ead"]]),xn={class:"VPMenu"},es={key:0,class:"items"},ts=_({__name:"VPMenu",props:{items:{}},setup(o){return(e,t)=>(a(),c("div",xn,[e.items?(a(),c("div",es,[(a(!0),c(M,null,E(e.items,s=>(a(),c(M,{key:JSON.stringify(s)},["link"in s?(a(),k(ne,{key:0,item:s},null,8,["item"])):"component"in s?(a(),k(F(s.component),q({key:1,ref_for:!0},s.props),null,16)):(a(),k(Zn,{key:2,text:s.text,items:s.items},null,8,["text","items"]))],64))),128))])):h("",!0),l(e.$slots,"default",{},void 0,!0)]))}}),os=$(ts,[["__scopeId","data-v-9990563e"]]),ns=o=>(C("data-v-ec8c49bc"),o=o(),H(),o),ss=["aria-expanded","aria-label"],as={key:0,class:"text"},rs=["innerHTML"],is=ns(()=>v("span",{class:"vpi-chevron-down text-icon"},null,-1)),ls={key:1,class:"vpi-more-horizontal icon"},cs={class:"menu"},us=_({__name:"VPFlyout",props:{icon:{},button:{},label:{},items:{}},setup(o){const e=w(!1),t=w();qn({el:t,onBlur:s});function s(){e.value=!1}return(n,i)=>(a(),c("div",{class:"VPFlyout",ref_key:"el",ref:t,onMouseenter:i[1]||(i[1]=u=>e.value=!0),onMouseleave:i[2]||(i[2]=u=>e.value=!1)},[v("button",{type:"button",class:"button","aria-haspopup":"true","aria-expanded":e.value,"aria-label":n.label,onClick:i[0]||(i[0]=u=>e.value=!e.value)},[n.button||n.icon?(a(),c("span",as,[n.icon?(a(),c("span",{key:0,class:N([n.icon,"option-icon"])},null,2)):h("",!0),n.button?(a(),c("span",{key:1,innerHTML:n.button},null,8,rs)):h("",!0),is])):(a(),c("span",ls))],8,ss),v("div",cs,[m(os,{items:n.items},{default:d(()=>[l(n.$slots,"default",{},void 0,!0)]),_:3},8,["items"])])],544))}}),$e=$(us,[["__scopeId","data-v-ec8c49bc"]]),ds=["href","aria-label","innerHTML"],vs=_({__name:"VPSocialLink",props:{icon:{},link:{},ariaLabel:{}},setup(o){const e=o,t=y(()=>typeof e.icon=="object"?e.icon.svg:``);return(s,n)=>(a(),c("a",{class:"VPSocialLink no-icon",href:s.link,"aria-label":s.ariaLabel??(typeof s.icon=="string"?s.icon:""),target:"_blank",rel:"noopener",innerHTML:t.value},null,8,ds))}}),ps=$(vs,[["__scopeId","data-v-b0526bd7"]]),fs={class:"VPSocialLinks"},hs=_({__name:"VPSocialLinks",props:{links:{}},setup(o){return(e,t)=>(a(),c("div",fs,[(a(!0),c(M,null,E(e.links,({link:s,icon:n,ariaLabel:i})=>(a(),k(ps,{key:s,icon:n,link:s,ariaLabel:i},null,8,["icon","link","ariaLabel"]))),128))]))}}),ge=$(hs,[["__scopeId","data-v-fa18fe49"]]),_s={key:0,class:"group translations"},ms={class:"trans-title"},ks={key:1,class:"group"},bs={class:"item appearance"},$s={class:"label"},gs={class:"appearance-action"},ys={key:2,class:"group"},Ps={class:"item social-links"},Vs=_({__name:"VPNavBarExtra",setup(o){const{site:e,theme:t}=P(),{localeLinks:s,currentLang:n}=X({correspondingLink:!0}),i=y(()=>s.value.length&&n.value.label||e.value.appearance||t.value.socialLinks);return(u,f)=>i.value?(a(),k($e,{key:0,class:"VPNavBarExtra",label:"extra navigation"},{default:d(()=>[r(s).length&&r(n).label?(a(),c("div",_s,[v("p",ms,I(r(n).label),1),(a(!0),c(M,null,E(r(s),p=>(a(),k(ne,{key:p.link,item:p},null,8,["item"]))),128))])):h("",!0),r(e).appearance&&r(e).appearance!=="force-dark"&&r(e).appearance!=="force-auto"?(a(),c("div",ks,[v("div",bs,[v("p",$s,I(r(t).darkModeSwitchLabel||"Appearance"),1),v("div",gs,[m(ke)])])])):h("",!0),r(t).socialLinks?(a(),c("div",ys,[v("div",Ps,[m(ge,{class:"social-links-list",links:r(t).socialLinks},null,8,["links"])])])):h("",!0)]),_:1})):h("",!0)}}),Ls=$(Vs,[["__scopeId","data-v-2fc967b6"]]),Ss=o=>(C("data-v-be64de2d"),o=o(),H(),o),Ts=["aria-expanded"],Is=Ss(()=>v("span",{class:"container"},[v("span",{class:"top"}),v("span",{class:"middle"}),v("span",{class:"bottom"})],-1)),ws=[Is],Ns=_({__name:"VPNavBarHamburger",props:{active:{type:Boolean}},emits:["click"],setup(o){return(e,t)=>(a(),c("button",{type:"button",class:N(["VPNavBarHamburger",{active:e.active}]),"aria-label":"mobile navigation","aria-expanded":e.active,"aria-controls":"VPNavScreen",onClick:t[0]||(t[0]=s=>e.$emit("click"))},ws,10,Ts))}}),Ms=$(Ns,[["__scopeId","data-v-be64de2d"]]),As=["innerHTML"],Bs=_({__name:"VPNavBarMenuLink",props:{item:{}},setup(o){const{page:e}=P();return(t,s)=>(a(),k(D,{class:N({VPNavBarMenuLink:!0,active:r(K)(r(e).relativePath,t.item.activeMatch||t.item.link,!!t.item.activeMatch)}),href:t.item.link,noIcon:t.item.noIcon,target:t.item.target,rel:t.item.rel,tabindex:"0"},{default:d(()=>[v("span",{innerHTML:t.item.text},null,8,As)]),_:1},8,["class","href","noIcon","target","rel"]))}}),Cs=$(Bs,[["__scopeId","data-v-ad4a8b64"]]),Hs=_({__name:"VPNavBarMenuGroup",props:{item:{}},setup(o){const e=o,{page:t}=P(),s=i=>"component"in i?!1:"link"in i?K(t.value.relativePath,i.link,!!e.item.activeMatch):i.items.some(s),n=y(()=>s(e.item));return(i,u)=>(a(),k($e,{class:N({VPNavBarMenuGroup:!0,active:r(K)(r(t).relativePath,i.item.activeMatch,!!i.item.activeMatch)||n.value}),button:i.item.text,items:i.item.items},null,8,["class","button","items"]))}}),Es=o=>(C("data-v-0fb289c1"),o=o(),H(),o),Fs={key:0,"aria-labelledby":"main-nav-aria-label",class:"VPNavBarMenu"},Ds=Es(()=>v("span",{id:"main-nav-aria-label",class:"visually-hidden"}," Main Navigation ",-1)),Os=_({__name:"VPNavBarMenu",setup(o){const{theme:e}=P();return(t,s)=>r(e).nav?(a(),c("nav",Fs,[Ds,(a(!0),c(M,null,E(r(e).nav,n=>(a(),c(M,{key:JSON.stringify(n)},["link"in n?(a(),k(Cs,{key:0,item:n},null,8,["item"])):"component"in n?(a(),k(F(n.component),q({key:1,ref_for:!0},n.props),null,16)):(a(),k(Hs,{key:2,item:n},null,8,["item"]))],64))),128))])):h("",!0)}}),Gs=$(Os,[["__scopeId","data-v-0fb289c1"]]);function Us(o){const{localeIndex:e,theme:t}=P();function s(n){var A,B,S;const i=n.split("."),u=(A=t.value.search)==null?void 0:A.options,f=u&&typeof u=="object",p=f&&((S=(B=u.locales)==null?void 0:B[e.value])==null?void 0:S.translations)||null,g=f&&u.translations||null;let L=p,b=g,V=o;const T=i.pop();for(const j of i){let z=null;const J=V==null?void 0:V[j];J&&(z=V=J);const se=b==null?void 0:b[j];se&&(z=b=se);const ae=L==null?void 0:L[j];ae&&(z=L=ae),J||(V=z),se||(b=z),ae||(L=z)}return(L==null?void 0:L[T])??(b==null?void 0:b[T])??(V==null?void 0:V[T])??""}return s}const js=["aria-label"],zs={class:"DocSearch-Button-Container"},qs=v("span",{class:"vp-icon DocSearch-Search-Icon"},null,-1),Ks={class:"DocSearch-Button-Placeholder"},Ws=v("span",{class:"DocSearch-Button-Keys"},[v("kbd",{class:"DocSearch-Button-Key"}),v("kbd",{class:"DocSearch-Button-Key"},"K")],-1),ye=_({__name:"VPNavBarSearchButton",setup(o){const t=Us({button:{buttonText:"Search",buttonAriaLabel:"Search"}});return(s,n)=>(a(),c("button",{type:"button",class:"DocSearch DocSearch-Button","aria-label":r(t)("button.buttonAriaLabel")},[v("span",zs,[qs,v("span",Ks,I(r(t)("button.buttonText")),1)]),Ws],8,js))}}),Rs={class:"VPNavBarSearch"},Js={id:"local-search"},Xs={key:1,id:"docsearch"},Ys=_({__name:"VPNavBarSearch",setup(o){const e=Je(()=>Xe(()=>import("./VPLocalSearchBox.CrFoMufW.js"),__vite__mapDeps([0,1]))),t=()=>null,{theme:s}=P(),n=w(!1),i=w(!1);W(()=>{});function u(){n.value||(n.value=!0,setTimeout(f,16))}function f(){const b=new Event("keydown");b.key="k",b.metaKey=!0,window.dispatchEvent(b),setTimeout(()=>{document.querySelector(".DocSearch-Modal")||f()},16)}function p(b){const V=b.target,T=V.tagName;return V.isContentEditable||T==="INPUT"||T==="SELECT"||T==="TEXTAREA"}const g=w(!1);le("k",b=>{(b.ctrlKey||b.metaKey)&&(b.preventDefault(),g.value=!0)}),le("/",b=>{p(b)||(b.preventDefault(),g.value=!0)});const L="local";return(b,V)=>{var T;return a(),c("div",Rs,[r(L)==="local"?(a(),c(M,{key:0},[g.value?(a(),k(r(e),{key:0,onClose:V[0]||(V[0]=A=>g.value=!1)})):h("",!0),v("div",Js,[m(ye,{onClick:V[1]||(V[1]=A=>g.value=!0)})])],64)):r(L)==="algolia"?(a(),c(M,{key:1},[n.value?(a(),k(r(t),{key:0,algolia:((T=r(s).search)==null?void 0:T.options)??r(s).algolia,onVnodeBeforeMount:V[2]||(V[2]=A=>i.value=!0)},null,8,["algolia"])):h("",!0),i.value?h("",!0):(a(),c("div",Xs,[m(ye,{onClick:u})]))],64)):h("",!0)])}}}),Qs=_({__name:"VPNavBarSocialLinks",setup(o){const{theme:e}=P();return(t,s)=>r(e).socialLinks?(a(),k(ge,{key:0,class:"VPNavBarSocialLinks",links:r(e).socialLinks},null,8,["links"])):h("",!0)}}),Zs=$(Qs,[["__scopeId","data-v-f3b91b3a"]]),xs=["href","rel","target"],ea={key:1},ta={key:2},oa=_({__name:"VPNavBarTitle",setup(o){const{site:e,theme:t}=P(),{hasSidebar:s}=U(),{currentLang:n}=X(),i=y(()=>{var p;return typeof t.value.logoLink=="string"?t.value.logoLink:(p=t.value.logoLink)==null?void 0:p.link}),u=y(()=>{var p;return typeof t.value.logoLink=="string"||(p=t.value.logoLink)==null?void 0:p.rel}),f=y(()=>{var p;return typeof t.value.logoLink=="string"||(p=t.value.logoLink)==null?void 0:p.target});return(p,g)=>(a(),c("div",{class:N(["VPNavBarTitle",{"has-sidebar":r(s)}])},[v("a",{class:"title",href:i.value??r(_e)(r(n).link),rel:u.value,target:f.value},[l(p.$slots,"nav-bar-title-before",{},void 0,!0),r(t).logo?(a(),k(Q,{key:0,class:"logo",image:r(t).logo},null,8,["image"])):h("",!0),r(t).siteTitle?(a(),c("span",ea,I(r(t).siteTitle),1)):r(t).siteTitle===void 0?(a(),c("span",ta,I(r(e).title),1)):h("",!0),l(p.$slots,"nav-bar-title-after",{},void 0,!0)],8,xs)],2))}}),na=$(oa,[["__scopeId","data-v-10b95b50"]]),sa={class:"items"},aa={class:"title"},ra=_({__name:"VPNavBarTranslations",setup(o){const{theme:e}=P(),{localeLinks:t,currentLang:s}=X({correspondingLink:!0});return(n,i)=>r(t).length&&r(s).label?(a(),k($e,{key:0,class:"VPNavBarTranslations",icon:"vpi-languages",label:r(e).langMenuLabel||"Change language"},{default:d(()=>[v("div",sa,[v("p",aa,I(r(s).label),1),(a(!0),c(M,null,E(r(t),u=>(a(),k(ne,{key:u.link,item:u},null,8,["item"]))),128))])]),_:1},8,["label"])):h("",!0)}}),ia=$(ra,[["__scopeId","data-v-cd7b67e8"]]),la=o=>(C("data-v-1303e283"),o=o(),H(),o),ca={class:"wrapper"},ua={class:"container"},da={class:"title"},va={class:"content"},pa={class:"content-body"},fa=la(()=>v("div",{class:"divider"},[v("div",{class:"divider-line"})],-1)),ha=_({__name:"VPNavBar",props:{isScreenOpen:{type:Boolean}},emits:["toggle-screen"],setup(o){const e=o,{y:t}=Se(),{hasSidebar:s}=U(),{frontmatter:n}=P(),i=w({});return he(()=>{i.value={"has-sidebar":s.value,home:n.value.layout==="home",top:t.value===0,"screen-open":e.isScreenOpen}}),(u,f)=>(a(),c("div",{class:N(["VPNavBar",i.value])},[v("div",ca,[v("div",ua,[v("div",da,[m(na,null,{"nav-bar-title-before":d(()=>[l(u.$slots,"nav-bar-title-before",{},void 0,!0)]),"nav-bar-title-after":d(()=>[l(u.$slots,"nav-bar-title-after",{},void 0,!0)]),_:3})]),v("div",va,[v("div",pa,[l(u.$slots,"nav-bar-content-before",{},void 0,!0),m(Ys,{class:"search"}),m(Gs,{class:"menu"}),m(ia,{class:"translations"}),m(zn,{class:"appearance"}),m(Zs,{class:"social-links"}),m(Ls,{class:"extra"}),l(u.$slots,"nav-bar-content-after",{},void 0,!0),m(Ms,{class:"hamburger",active:u.isScreenOpen,onClick:f[0]||(f[0]=p=>u.$emit("toggle-screen"))},null,8,["active"])])])])]),fa],2))}}),_a=$(ha,[["__scopeId","data-v-1303e283"]]),ma={key:0,class:"VPNavScreenAppearance"},ka={class:"text"},ba=_({__name:"VPNavScreenAppearance",setup(o){const{site:e,theme:t}=P();return(s,n)=>r(e).appearance&&r(e).appearance!=="force-dark"&&r(e).appearance!=="force-auto"?(a(),c("div",ma,[v("p",ka,I(r(t).darkModeSwitchLabel||"Appearance"),1),m(ke)])):h("",!0)}}),$a=$(ba,[["__scopeId","data-v-79da70de"]]),ga=_({__name:"VPNavScreenMenuLink",props:{item:{}},setup(o){const e=te("close-screen");return(t,s)=>(a(),k(D,{class:"VPNavScreenMenuLink",href:t.item.link,target:t.item.target,rel:t.item.rel,onClick:r(e),innerHTML:t.item.text},null,8,["href","target","rel","onClick","innerHTML"]))}}),ya=$(ga,[["__scopeId","data-v-9a3ef902"]]),Pa=_({__name:"VPNavScreenMenuGroupLink",props:{item:{}},setup(o){const e=te("close-screen");return(t,s)=>(a(),k(D,{class:"VPNavScreenMenuGroupLink",href:t.item.link,target:t.item.target,rel:t.item.rel,onClick:r(e)},{default:d(()=>[O(I(t.item.text),1)]),_:1},8,["href","target","rel","onClick"]))}}),Ee=$(Pa,[["__scopeId","data-v-03f7344f"]]),Va={class:"VPNavScreenMenuGroupSection"},La={key:0,class:"title"},Sa=_({__name:"VPNavScreenMenuGroupSection",props:{text:{},items:{}},setup(o){return(e,t)=>(a(),c("div",Va,[e.text?(a(),c("p",La,I(e.text),1)):h("",!0),(a(!0),c(M,null,E(e.items,s=>(a(),k(Ee,{key:s.text,item:s},null,8,["item"]))),128))]))}}),Ta=$(Sa,[["__scopeId","data-v-3b79ab2a"]]),Ia=o=>(C("data-v-496537ac"),o=o(),H(),o),wa=["aria-controls","aria-expanded"],Na=["innerHTML"],Ma=Ia(()=>v("span",{class:"vpi-plus button-icon"},null,-1)),Aa=["id"],Ba={key:0,class:"item"},Ca={key:1,class:"item"},Ha={key:2,class:"group"},Ea=_({__name:"VPNavScreenMenuGroup",props:{text:{},items:{}},setup(o){const e=o,t=w(!1),s=y(()=>`NavScreenGroup-${e.text.replace(" ","-").toLowerCase()}`);function n(){t.value=!t.value}return(i,u)=>(a(),c("div",{class:N(["VPNavScreenMenuGroup",{open:t.value}])},[v("button",{class:"button","aria-controls":s.value,"aria-expanded":t.value,onClick:n},[v("span",{class:"button-text",innerHTML:i.text},null,8,Na),Ma],8,wa),v("div",{id:s.value,class:"items"},[(a(!0),c(M,null,E(i.items,f=>(a(),c(M,{key:JSON.stringify(f)},["link"in f?(a(),c("div",Ba,[m(Ee,{item:f},null,8,["item"])])):"component"in f?(a(),c("div",Ca,[(a(),k(F(f.component),q({ref_for:!0},f.props,{"screen-menu":""}),null,16))])):(a(),c("div",Ha,[m(Ta,{text:f.text,items:f.items},null,8,["text","items"])]))],64))),128))],8,Aa)],2))}}),Fa=$(Ea,[["__scopeId","data-v-496537ac"]]),Da={key:0,class:"VPNavScreenMenu"},Oa=_({__name:"VPNavScreenMenu",setup(o){const{theme:e}=P();return(t,s)=>r(e).nav?(a(),c("nav",Da,[(a(!0),c(M,null,E(r(e).nav,n=>(a(),c(M,{key:JSON.stringify(n)},["link"in n?(a(),k(ya,{key:0,item:n},null,8,["item"])):"component"in n?(a(),k(F(n.component),q({key:1,ref_for:!0},n.props,{"screen-menu":""}),null,16)):(a(),k(Fa,{key:2,text:n.text||"",items:n.items},null,8,["text","items"]))],64))),128))])):h("",!0)}}),Ga=_({__name:"VPNavScreenSocialLinks",setup(o){const{theme:e}=P();return(t,s)=>r(e).socialLinks?(a(),k(ge,{key:0,class:"VPNavScreenSocialLinks",links:r(e).socialLinks},null,8,["links"])):h("",!0)}}),Fe=o=>(C("data-v-c618ff37"),o=o(),H(),o),Ua=Fe(()=>v("span",{class:"vpi-languages icon lang"},null,-1)),ja=Fe(()=>v("span",{class:"vpi-chevron-down icon chevron"},null,-1)),za={class:"list"},qa=_({__name:"VPNavScreenTranslations",setup(o){const{localeLinks:e,currentLang:t}=X({correspondingLink:!0}),s=w(!1);function n(){s.value=!s.value}return(i,u)=>r(e).length&&r(t).label?(a(),c("div",{key:0,class:N(["VPNavScreenTranslations",{open:s.value}])},[v("button",{class:"title",onClick:n},[Ua,O(" "+I(r(t).label)+" ",1),ja]),v("ul",za,[(a(!0),c(M,null,E(r(e),f=>(a(),c("li",{key:f.link,class:"item"},[m(D,{class:"link",href:f.link},{default:d(()=>[O(I(f.text),1)]),_:2},1032,["href"])]))),128))])],2)):h("",!0)}}),Ka=$(qa,[["__scopeId","data-v-c618ff37"]]),Wa={class:"container"},Ra=_({__name:"VPNavScreen",props:{open:{type:Boolean}},setup(o){const e=w(null),t=Te(oe?document.body:null);return(s,n)=>(a(),k(ve,{name:"fade",onEnter:n[0]||(n[0]=i=>t.value=!0),onAfterLeave:n[1]||(n[1]=i=>t.value=!1)},{default:d(()=>[s.open?(a(),c("div",{key:0,class:"VPNavScreen",ref_key:"screen",ref:e,id:"VPNavScreen"},[v("div",Wa,[l(s.$slots,"nav-screen-content-before",{},void 0,!0),m(Oa,{class:"menu"}),m(Ka,{class:"translations"}),m($a,{class:"appearance"}),m(Ga,{class:"social-links"}),l(s.$slots,"nav-screen-content-after",{},void 0,!0)])],512)):h("",!0)]),_:3}))}}),Ja=$(Ra,[["__scopeId","data-v-c3a48aed"]]),Xa={key:0,class:"VPNav"},Ya=_({__name:"VPNav",setup(o){const{isScreenOpen:e,closeScreen:t,toggleScreen:s}=Mn(),{frontmatter:n}=P(),i=y(()=>n.value.navbar!==!1);return Ie("close-screen",t),Z(()=>{oe&&document.documentElement.classList.toggle("hide-nav",!i.value)}),(u,f)=>i.value?(a(),c("header",Xa,[m(_a,{"is-screen-open":r(e),onToggleScreen:r(s)},{"nav-bar-title-before":d(()=>[l(u.$slots,"nav-bar-title-before",{},void 0,!0)]),"nav-bar-title-after":d(()=>[l(u.$slots,"nav-bar-title-after",{},void 0,!0)]),"nav-bar-content-before":d(()=>[l(u.$slots,"nav-bar-content-before",{},void 0,!0)]),"nav-bar-content-after":d(()=>[l(u.$slots,"nav-bar-content-after",{},void 0,!0)]),_:3},8,["is-screen-open","onToggleScreen"]),m(Ja,{open:r(e)},{"nav-screen-content-before":d(()=>[l(u.$slots,"nav-screen-content-before",{},void 0,!0)]),"nav-screen-content-after":d(()=>[l(u.$slots,"nav-screen-content-after",{},void 0,!0)]),_:3},8,["open"])])):h("",!0)}}),Qa=$(Ya,[["__scopeId","data-v-2a4e514e"]]),De=o=>(C("data-v-9035698b"),o=o(),H(),o),Za=["role","tabindex"],xa=De(()=>v("div",{class:"indicator"},null,-1)),er=De(()=>v("span",{class:"vpi-chevron-right caret-icon"},null,-1)),tr=[er],or={key:1,class:"items"},nr=_({__name:"VPSidebarItem",props:{item:{},depth:{}},setup(o){const e=o,{collapsed:t,collapsible:s,isLink:n,isActiveLink:i,hasActiveLink:u,hasChildren:f,toggle:p}=$t(y(()=>e.item)),g=y(()=>f.value?"section":"div"),L=y(()=>n.value?"a":"div"),b=y(()=>f.value?e.depth+2===7?"p":`h${e.depth+2}`:"p"),V=y(()=>n.value?void 0:"button"),T=y(()=>[[`level-${e.depth}`],{collapsible:s.value},{collapsed:t.value},{"is-link":n.value},{"is-active":i.value},{"has-active":u.value}]);function A(S){"key"in S&&S.key!=="Enter"||!e.item.link&&p()}function B(){e.item.link&&p()}return(S,j)=>{const z=R("VPSidebarItem",!0);return a(),k(F(g.value),{class:N(["VPSidebarItem",T.value])},{default:d(()=>[S.item.text?(a(),c("div",q({key:0,class:"item",role:V.value},Qe(S.item.items?{click:A,keydown:A}:{},!0),{tabindex:S.item.items&&0}),[xa,S.item.link?(a(),k(D,{key:0,tag:L.value,class:"link",href:S.item.link,rel:S.item.rel,target:S.item.target},{default:d(()=>[(a(),k(F(b.value),{class:"text",innerHTML:S.item.text},null,8,["innerHTML"]))]),_:1},8,["tag","href","rel","target"])):(a(),k(F(b.value),{key:1,class:"text",innerHTML:S.item.text},null,8,["innerHTML"])),S.item.collapsed!=null&&S.item.items&&S.item.items.length?(a(),c("div",{key:2,class:"caret",role:"button","aria-label":"toggle section",onClick:B,onKeydown:Ye(B,["enter"]),tabindex:"0"},tr,32)):h("",!0)],16,Za)):h("",!0),S.item.items&&S.item.items.length?(a(),c("div",or,[S.depth<5?(a(!0),c(M,{key:0},E(S.item.items,J=>(a(),k(z,{key:J.text,item:J,depth:S.depth+1},null,8,["item","depth"]))),128)):h("",!0)])):h("",!0)]),_:1},8,["class"])}}}),sr=$(nr,[["__scopeId","data-v-9035698b"]]),ar=_({__name:"VPSidebarGroup",props:{items:{}},setup(o){const e=w(!0);let t=null;return W(()=>{t=setTimeout(()=>{t=null,e.value=!1},300)}),Ze(()=>{t!=null&&(clearTimeout(t),t=null)}),(s,n)=>(a(!0),c(M,null,E(s.items,i=>(a(),c("div",{key:i.text,class:N(["group",{"no-transition":e.value}])},[m(sr,{item:i,depth:0},null,8,["item"])],2))),128))}}),rr=$(ar,[["__scopeId","data-v-c3eaeb1a"]]),Oe=o=>(C("data-v-edd7de80"),o=o(),H(),o),ir=Oe(()=>v("div",{class:"curtain"},null,-1)),lr={class:"nav",id:"VPSidebarNav","aria-labelledby":"sidebar-aria-label",tabindex:"-1"},cr=Oe(()=>v("span",{class:"visually-hidden",id:"sidebar-aria-label"}," Sidebar Navigation ",-1)),ur=_({__name:"VPSidebar",props:{open:{type:Boolean}},setup(o){const{sidebarGroups:e,hasSidebar:t}=U(),s=o,n=w(null),i=Te(oe?document.body:null);G([s,n],()=>{var f;s.open?(i.value=!0,(f=n.value)==null||f.focus()):i.value=!1},{immediate:!0,flush:"post"});const u=w(0);return G(e,()=>{u.value+=1},{deep:!0}),(f,p)=>r(t)?(a(),c("aside",{key:0,class:N(["VPSidebar",{open:f.open}]),ref_key:"navEl",ref:n,onClick:p[0]||(p[0]=xe(()=>{},["stop"]))},[ir,v("nav",lr,[cr,l(f.$slots,"sidebar-nav-before",{},void 0,!0),(a(),k(rr,{items:r(e),key:u.value},null,8,["items"])),l(f.$slots,"sidebar-nav-after",{},void 0,!0)])],2)):h("",!0)}}),dr=$(ur,[["__scopeId","data-v-edd7de80"]]),vr=_({__name:"VPSkipLink",setup(o){const e=ee(),t=w();G(()=>e.path,()=>t.value.focus());function s({target:n}){const i=document.getElementById(decodeURIComponent(n.hash).slice(1));if(i){const u=()=>{i.removeAttribute("tabindex"),i.removeEventListener("blur",u)};i.setAttribute("tabindex","-1"),i.addEventListener("blur",u),i.focus(),window.scrollTo(0,0)}}return(n,i)=>(a(),c(M,null,[v("span",{ref_key:"backToTop",ref:t,tabindex:"-1"},null,512),v("a",{href:"#VPContent",class:"VPSkipLink visually-hidden",onClick:s}," Skip to content ")],64))}}),pr=$(vr,[["__scopeId","data-v-3e86afbf"]]),fr=_({__name:"Layout",setup(o){const{isOpen:e,open:t,close:s}=U(),n=ee();G(()=>n.path,s),bt(e,s);const{frontmatter:i}=P(),u=et(),f=y(()=>!!u["home-hero-image"]);return Ie("hero-image-slot-exists",f),(p,g)=>{const L=R("Content");return r(i).layout!==!1?(a(),c("div",{key:0,class:N(["Layout",r(i).pageClass])},[l(p.$slots,"layout-top",{},void 0,!0),m(pr),m(st,{class:"backdrop",show:r(e),onClick:r(s)},null,8,["show","onClick"]),m(Qa,null,{"nav-bar-title-before":d(()=>[l(p.$slots,"nav-bar-title-before",{},void 0,!0)]),"nav-bar-title-after":d(()=>[l(p.$slots,"nav-bar-title-after",{},void 0,!0)]),"nav-bar-content-before":d(()=>[l(p.$slots,"nav-bar-content-before",{},void 0,!0)]),"nav-bar-content-after":d(()=>[l(p.$slots,"nav-bar-content-after",{},void 0,!0)]),"nav-screen-content-before":d(()=>[l(p.$slots,"nav-screen-content-before",{},void 0,!0)]),"nav-screen-content-after":d(()=>[l(p.$slots,"nav-screen-content-after",{},void 0,!0)]),_:3}),m(Nn,{open:r(e),onOpenMenu:r(t)},null,8,["open","onOpenMenu"]),m(dr,{open:r(e)},{"sidebar-nav-before":d(()=>[l(p.$slots,"sidebar-nav-before",{},void 0,!0)]),"sidebar-nav-after":d(()=>[l(p.$slots,"sidebar-nav-after",{},void 0,!0)]),_:3},8,["open"]),m(un,null,{"page-top":d(()=>[l(p.$slots,"page-top",{},void 0,!0)]),"page-bottom":d(()=>[l(p.$slots,"page-bottom",{},void 0,!0)]),"not-found":d(()=>[l(p.$slots,"not-found",{},void 0,!0)]),"home-hero-before":d(()=>[l(p.$slots,"home-hero-before",{},void 0,!0)]),"home-hero-info-before":d(()=>[l(p.$slots,"home-hero-info-before",{},void 0,!0)]),"home-hero-info":d(()=>[l(p.$slots,"home-hero-info",{},void 0,!0)]),"home-hero-info-after":d(()=>[l(p.$slots,"home-hero-info-after",{},void 0,!0)]),"home-hero-actions-after":d(()=>[l(p.$slots,"home-hero-actions-after",{},void 0,!0)]),"home-hero-image":d(()=>[l(p.$slots,"home-hero-image",{},void 0,!0)]),"home-hero-after":d(()=>[l(p.$slots,"home-hero-after",{},void 0,!0)]),"home-features-before":d(()=>[l(p.$slots,"home-features-before",{},void 0,!0)]),"home-features-after":d(()=>[l(p.$slots,"home-features-after",{},void 0,!0)]),"doc-footer-before":d(()=>[l(p.$slots,"doc-footer-before",{},void 0,!0)]),"doc-before":d(()=>[l(p.$slots,"doc-before",{},void 0,!0)]),"doc-after":d(()=>[l(p.$slots,"doc-after",{},void 0,!0)]),"doc-top":d(()=>[l(p.$slots,"doc-top",{},void 0,!0)]),"doc-bottom":d(()=>[l(p.$slots,"doc-bottom",{},void 0,!0)]),"aside-top":d(()=>[l(p.$slots,"aside-top",{},void 0,!0)]),"aside-bottom":d(()=>[l(p.$slots,"aside-bottom",{},void 0,!0)]),"aside-outline-before":d(()=>[l(p.$slots,"aside-outline-before",{},void 0,!0)]),"aside-outline-after":d(()=>[l(p.$slots,"aside-outline-after",{},void 0,!0)]),"aside-ads-before":d(()=>[l(p.$slots,"aside-ads-before",{},void 0,!0)]),"aside-ads-after":d(()=>[l(p.$slots,"aside-ads-after",{},void 0,!0)]),_:3}),m(hn),l(p.$slots,"layout-bottom",{},void 0,!0)],2)):(a(),k(L,{key:1}))}}}),hr=$(fr,[["__scopeId","data-v-22f859ac"]]),mr={Layout:hr,enhanceApp:({app:o})=>{o.component("Badge",tt)}};export{Us as c,mr as t,P as u};
+const __vite__mapDeps=(i,m=__vite__mapDeps,d=(m.f||(m.f=["assets/chunks/VPLocalSearchBox.CFZy5fa5.js","assets/chunks/framework.DpC1ZpOZ.js"])))=>i.map(i=>d[i]);
+import{d as _,o as a,c,r as l,n as N,a as O,t as I,b as k,w as d,e as h,T as ve,_ as $,u as Ge,i as Ue,f as je,g as pe,h as y,j as v,k as r,p as C,l as H,m as K,q as ie,s as w,v as G,x as Z,y as W,z as fe,A as he,B as ze,C as qe,D as R,F as M,E,G as Pe,H as x,I as m,J as F,K as Ve,L as ee,M as q,N as te,O as Ke,P as Le,Q as le,R as We,S as Se,U as oe,V as Re,W as Je,X as Xe,Y as Te,Z as Ie,$ as Ye,a0 as Qe,a1 as Ze,a2 as xe,a3 as et}from"./framework.DpC1ZpOZ.js";const tt=_({__name:"VPBadge",props:{text:{},type:{default:"tip"}},setup(o){return(e,t)=>(a(),c("span",{class:N(["VPBadge",e.type])},[l(e.$slots,"default",{},()=>[O(I(e.text),1)])],2))}}),ot={key:0,class:"VPBackdrop"},nt=_({__name:"VPBackdrop",props:{show:{type:Boolean}},setup(o){return(e,t)=>(a(),k(ve,{name:"fade"},{default:d(()=>[e.show?(a(),c("div",ot)):h("",!0)]),_:1}))}}),st=$(nt,[["__scopeId","data-v-20b1d393"]]),P=Ge;function at(o,e){let t,s=!1;return()=>{t&&clearTimeout(t),s?t=setTimeout(o,e):(o(),(s=!0)&&setTimeout(()=>s=!1,e))}}function ce(o){return/^\//.test(o)?o:`/${o}`}function _e(o){const{pathname:e,search:t,hash:s,protocol:n}=new URL(o,"http://a.com");if(Ue(o)||o.startsWith("#")||!n.startsWith("http")||!je(e))return o;const{site:i}=P(),u=e.endsWith("/")||e.endsWith(".html")?o:o.replace(/(?:(^\.+)\/)?.*$/,`$1${e.replace(/(\.md)?$/,i.value.cleanUrls?"":".html")}${t}${s}`);return pe(u)}function X({correspondingLink:o=!1}={}){const{site:e,localeIndex:t,page:s,theme:n,hash:i}=P(),u=y(()=>{var p,g;return{label:(p=e.value.locales[t.value])==null?void 0:p.label,link:((g=e.value.locales[t.value])==null?void 0:g.link)||(t.value==="root"?"/":`/${t.value}/`)}});return{localeLinks:y(()=>Object.entries(e.value.locales).flatMap(([p,g])=>u.value.label===g.label?[]:{text:g.label,link:rt(g.link||(p==="root"?"/":`/${p}/`),n.value.i18nRouting!==!1&&o,s.value.relativePath.slice(u.value.link.length-1),!e.value.cleanUrls)+i.value})),currentLang:u}}function rt(o,e,t,s){return e?o.replace(/\/$/,"")+ce(t.replace(/(^|\/)index\.md$/,"$1").replace(/\.md$/,s?".html":"")):o}const it=o=>(C("data-v-21980364"),o=o(),H(),o),lt={class:"NotFound"},ct={class:"code"},ut={class:"title"},dt=it(()=>v("div",{class:"divider"},null,-1)),vt={class:"quote"},pt={class:"action"},ft=["href","aria-label"],ht=_({__name:"NotFound",setup(o){const{theme:e}=P(),{currentLang:t}=X();return(s,n)=>{var i,u,f,p,g;return a(),c("div",lt,[v("p",ct,I(((i=r(e).notFound)==null?void 0:i.code)??"404"),1),v("h1",ut,I(((u=r(e).notFound)==null?void 0:u.title)??"PAGE NOT FOUND"),1),dt,v("blockquote",vt,I(((f=r(e).notFound)==null?void 0:f.quote)??"But if you don't change your direction, and if you keep looking, you may end up where you are heading."),1),v("div",pt,[v("a",{class:"link",href:r(pe)(r(t).link),"aria-label":((p=r(e).notFound)==null?void 0:p.linkLabel)??"go to home"},I(((g=r(e).notFound)==null?void 0:g.linkText)??"Take me home"),9,ft)])])}}}),_t=$(ht,[["__scopeId","data-v-21980364"]]);function we(o,e){if(Array.isArray(o))return Y(o);if(o==null)return[];e=ce(e);const t=Object.keys(o).sort((n,i)=>i.split("/").length-n.split("/").length).find(n=>e.startsWith(ce(n))),s=t?o[t]:[];return Array.isArray(s)?Y(s):Y(s.items,s.base)}function mt(o){const e=[];let t=0;for(const s in o){const n=o[s];if(n.items){t=e.push(n);continue}e[t]||e.push({items:[]}),e[t].items.push(n)}return e}function kt(o){const e=[];function t(s){for(const n of s)n.text&&n.link&&e.push({text:n.text,link:n.link,docFooterText:n.docFooterText}),n.items&&t(n.items)}return t(o),e}function ue(o,e){return Array.isArray(e)?e.some(t=>ue(o,t)):K(o,e.link)?!0:e.items?ue(o,e.items):!1}function Y(o,e){return[...o].map(t=>{const s={...t},n=s.base||e;return n&&s.link&&(s.link=n+s.link),s.items&&(s.items=Y(s.items,n)),s})}function U(){const{frontmatter:o,page:e,theme:t}=P(),s=ie("(min-width: 960px)"),n=w(!1),i=y(()=>{const B=t.value.sidebar,S=e.value.relativePath;return B?we(B,S):[]}),u=w(i.value);G(i,(B,S)=>{JSON.stringify(B)!==JSON.stringify(S)&&(u.value=i.value)});const f=y(()=>o.value.sidebar!==!1&&u.value.length>0&&o.value.layout!=="home"),p=y(()=>g?o.value.aside==null?t.value.aside==="left":o.value.aside==="left":!1),g=y(()=>o.value.layout==="home"?!1:o.value.aside!=null?!!o.value.aside:t.value.aside!==!1),L=y(()=>f.value&&s.value),b=y(()=>f.value?mt(u.value):[]);function V(){n.value=!0}function T(){n.value=!1}function A(){n.value?T():V()}return{isOpen:n,sidebar:u,sidebarGroups:b,hasSidebar:f,hasAside:g,leftAside:p,isSidebarEnabled:L,open:V,close:T,toggle:A}}function bt(o,e){let t;Z(()=>{t=o.value?document.activeElement:void 0}),W(()=>{window.addEventListener("keyup",s)}),fe(()=>{window.removeEventListener("keyup",s)});function s(n){n.key==="Escape"&&o.value&&(e(),t==null||t.focus())}}function $t(o){const{page:e,hash:t}=P(),s=w(!1),n=y(()=>o.value.collapsed!=null),i=y(()=>!!o.value.link),u=w(!1),f=()=>{u.value=K(e.value.relativePath,o.value.link)};G([e,o,t],f),W(f);const p=y(()=>u.value?!0:o.value.items?ue(e.value.relativePath,o.value.items):!1),g=y(()=>!!(o.value.items&&o.value.items.length));Z(()=>{s.value=!!(n.value&&o.value.collapsed)}),he(()=>{(u.value||p.value)&&(s.value=!1)});function L(){n.value&&(s.value=!s.value)}return{collapsed:s,collapsible:n,isLink:i,isActiveLink:u,hasActiveLink:p,hasChildren:g,toggle:L}}function gt(){const{hasSidebar:o}=U(),e=ie("(min-width: 960px)"),t=ie("(min-width: 1280px)");return{isAsideEnabled:y(()=>!t.value&&!e.value?!1:o.value?t.value:e.value)}}const de=[];function Ne(o){return typeof o.outline=="object"&&!Array.isArray(o.outline)&&o.outline.label||o.outlineTitle||"On this page"}function me(o){const e=[...document.querySelectorAll(".VPDoc :where(h1,h2,h3,h4,h5,h6)")].filter(t=>t.id&&t.hasChildNodes()).map(t=>{const s=Number(t.tagName[1]);return{element:t,title:yt(t),link:"#"+t.id,level:s}});return Pt(e,o)}function yt(o){let e="";for(const t of o.childNodes)if(t.nodeType===1){if(t.classList.contains("VPBadge")||t.classList.contains("header-anchor")||t.classList.contains("ignore-header"))continue;e+=t.textContent}else t.nodeType===3&&(e+=t.textContent);return e.trim()}function Pt(o,e){if(e===!1)return[];const t=(typeof e=="object"&&!Array.isArray(e)?e.level:e)||2,[s,n]=typeof t=="number"?[t,t]:t==="deep"?[2,6]:t;o=o.filter(u=>u.level>=s&&u.level<=n),de.length=0;for(const{element:u,link:f}of o)de.push({element:u,link:f});const i=[];e:for(let u=0;u=0;p--){const g=o[p];if(g.level{requestAnimationFrame(i),window.addEventListener("scroll",s)}),ze(()=>{u(location.hash)}),fe(()=>{window.removeEventListener("scroll",s)});function i(){if(!t.value)return;const f=window.scrollY,p=window.innerHeight,g=document.body.offsetHeight,L=Math.abs(f+p-g)<1,b=de.map(({element:T,link:A})=>({link:A,top:Lt(T)})).filter(({top:T})=>!Number.isNaN(T)).sort((T,A)=>T.top-A.top);if(!b.length){u(null);return}if(f<1){u(null);return}if(L){u(b[b.length-1].link);return}let V=null;for(const{link:T,top:A}of b){if(A>f+qe()+4)break;V=T}u(V)}function u(f){n&&n.classList.remove("active"),f==null?n=null:n=o.value.querySelector(`a[href="${decodeURIComponent(f)}"]`);const p=n;p?(p.classList.add("active"),e.value.style.top=p.offsetTop+39+"px",e.value.style.opacity="1"):(e.value.style.top="33px",e.value.style.opacity="0")}}function Lt(o){let e=0;for(;o!==document.body;){if(o===null)return NaN;e+=o.offsetTop,o=o.offsetParent}return e}const St=["href","title"],Tt=_({__name:"VPDocOutlineItem",props:{headers:{},root:{type:Boolean}},setup(o){function e({target:t}){const s=t.href.split("#")[1],n=document.getElementById(decodeURIComponent(s));n==null||n.focus({preventScroll:!0})}return(t,s)=>{const n=R("VPDocOutlineItem",!0);return a(),c("ul",{class:N(["VPDocOutlineItem",t.root?"root":"nested"])},[(a(!0),c(M,null,E(t.headers,({children:i,link:u,title:f})=>(a(),c("li",null,[v("a",{class:"outline-link",href:u,onClick:e,title:f},I(f),9,St),i!=null&&i.length?(a(),k(n,{key:0,headers:i},null,8,["headers"])):h("",!0)]))),256))],2)}}}),Me=$(Tt,[["__scopeId","data-v-51c2c770"]]),It={class:"content"},wt={"aria-level":"2",class:"outline-title",id:"doc-outline-aria-label",role:"heading"},Nt=_({__name:"VPDocAsideOutline",setup(o){const{frontmatter:e,theme:t}=P(),s=Pe([]);x(()=>{s.value=me(e.value.outline??t.value.outline)});const n=w(),i=w();return Vt(n,i),(u,f)=>(a(),c("nav",{"aria-labelledby":"doc-outline-aria-label",class:N(["VPDocAsideOutline",{"has-outline":s.value.length>0}]),ref_key:"container",ref:n},[v("div",It,[v("div",{class:"outline-marker",ref_key:"marker",ref:i},null,512),v("div",wt,I(r(Ne)(r(t))),1),m(Me,{headers:s.value,root:!0},null,8,["headers"])])],2))}}),Mt=$(Nt,[["__scopeId","data-v-e7b12e6e"]]),At={class:"VPDocAsideCarbonAds"},Bt=_({__name:"VPDocAsideCarbonAds",props:{carbonAds:{}},setup(o){const e=()=>null;return(t,s)=>(a(),c("div",At,[m(r(e),{"carbon-ads":t.carbonAds},null,8,["carbon-ads"])]))}}),Ct=o=>(C("data-v-0ff3c77f"),o=o(),H(),o),Ht={class:"VPDocAside"},Et=Ct(()=>v("div",{class:"spacer"},null,-1)),Ft=_({__name:"VPDocAside",setup(o){const{theme:e}=P();return(t,s)=>(a(),c("div",Ht,[l(t.$slots,"aside-top",{},void 0,!0),l(t.$slots,"aside-outline-before",{},void 0,!0),m(Mt),l(t.$slots,"aside-outline-after",{},void 0,!0),Et,l(t.$slots,"aside-ads-before",{},void 0,!0),r(e).carbonAds?(a(),k(Bt,{key:0,"carbon-ads":r(e).carbonAds},null,8,["carbon-ads"])):h("",!0),l(t.$slots,"aside-ads-after",{},void 0,!0),l(t.$slots,"aside-bottom",{},void 0,!0)]))}}),Dt=$(Ft,[["__scopeId","data-v-0ff3c77f"]]);function Ot(){const{theme:o,page:e}=P();return y(()=>{const{text:t="Edit this page",pattern:s=""}=o.value.editLink||{};let n;return typeof s=="function"?n=s(e.value):n=s.replace(/:path/g,e.value.filePath),{url:n,text:t}})}function Gt(){const{page:o,theme:e,frontmatter:t}=P();return y(()=>{var g,L,b,V,T,A,B,S;const s=we(e.value.sidebar,o.value.relativePath),n=kt(s),i=Ut(n,j=>j.link.replace(/[?#].*$/,"")),u=i.findIndex(j=>K(o.value.relativePath,j.link)),f=((g=e.value.docFooter)==null?void 0:g.prev)===!1&&!t.value.prev||t.value.prev===!1,p=((L=e.value.docFooter)==null?void 0:L.next)===!1&&!t.value.next||t.value.next===!1;return{prev:f?void 0:{text:(typeof t.value.prev=="string"?t.value.prev:typeof t.value.prev=="object"?t.value.prev.text:void 0)??((b=i[u-1])==null?void 0:b.docFooterText)??((V=i[u-1])==null?void 0:V.text),link:(typeof t.value.prev=="object"?t.value.prev.link:void 0)??((T=i[u-1])==null?void 0:T.link)},next:p?void 0:{text:(typeof t.value.next=="string"?t.value.next:typeof t.value.next=="object"?t.value.next.text:void 0)??((A=i[u+1])==null?void 0:A.docFooterText)??((B=i[u+1])==null?void 0:B.text),link:(typeof t.value.next=="object"?t.value.next.link:void 0)??((S=i[u+1])==null?void 0:S.link)}}})}function Ut(o,e){const t=new Set;return o.filter(s=>{const n=e(s);return t.has(n)?!1:t.add(n)})}const D=_({__name:"VPLink",props:{tag:{},href:{},noIcon:{type:Boolean},target:{},rel:{}},setup(o){const e=o,t=y(()=>e.tag??(e.href?"a":"span")),s=y(()=>e.href&&Ve.test(e.href)||e.target==="_blank");return(n,i)=>(a(),k(F(t.value),{class:N(["VPLink",{link:n.href,"vp-external-link-icon":s.value,"no-icon":n.noIcon}]),href:n.href?r(_e)(n.href):void 0,target:n.target??(s.value?"_blank":void 0),rel:n.rel??(s.value?"noreferrer":void 0)},{default:d(()=>[l(n.$slots,"default")]),_:3},8,["class","href","target","rel"]))}}),jt={class:"VPLastUpdated"},zt=["datetime"],qt=_({__name:"VPDocFooterLastUpdated",setup(o){const{theme:e,page:t,lang:s}=P(),n=y(()=>new Date(t.value.lastUpdated)),i=y(()=>n.value.toISOString()),u=w("");return W(()=>{Z(()=>{var f,p,g;u.value=new Intl.DateTimeFormat((p=(f=e.value.lastUpdated)==null?void 0:f.formatOptions)!=null&&p.forceLocale?s.value:void 0,((g=e.value.lastUpdated)==null?void 0:g.formatOptions)??{dateStyle:"short",timeStyle:"short"}).format(n.value)})}),(f,p)=>{var g;return a(),c("p",jt,[O(I(((g=r(e).lastUpdated)==null?void 0:g.text)||r(e).lastUpdatedText||"Last updated")+": ",1),v("time",{datetime:i.value},I(u.value),9,zt)])}}}),Kt=$(qt,[["__scopeId","data-v-5cebc0fc"]]),Ae=o=>(C("data-v-a4b38bd6"),o=o(),H(),o),Wt={key:0,class:"VPDocFooter"},Rt={key:0,class:"edit-info"},Jt={key:0,class:"edit-link"},Xt=Ae(()=>v("span",{class:"vpi-square-pen edit-link-icon"},null,-1)),Yt={key:1,class:"last-updated"},Qt={key:1,class:"prev-next","aria-labelledby":"doc-footer-aria-label"},Zt=Ae(()=>v("span",{class:"visually-hidden",id:"doc-footer-aria-label"},"Pager",-1)),xt={class:"pager"},eo=["innerHTML"],to=["innerHTML"],oo={class:"pager"},no=["innerHTML"],so=["innerHTML"],ao=_({__name:"VPDocFooter",setup(o){const{theme:e,page:t,frontmatter:s}=P(),n=Ot(),i=Gt(),u=y(()=>e.value.editLink&&s.value.editLink!==!1),f=y(()=>t.value.lastUpdated),p=y(()=>u.value||f.value||i.value.prev||i.value.next);return(g,L)=>{var b,V,T,A;return p.value?(a(),c("footer",Wt,[l(g.$slots,"doc-footer-before",{},void 0,!0),u.value||f.value?(a(),c("div",Rt,[u.value?(a(),c("div",Jt,[m(D,{class:"edit-link-button",href:r(n).url,"no-icon":!0},{default:d(()=>[Xt,O(" "+I(r(n).text),1)]),_:1},8,["href"])])):h("",!0),f.value?(a(),c("div",Yt,[m(Kt)])):h("",!0)])):h("",!0),(b=r(i).prev)!=null&&b.link||(V=r(i).next)!=null&&V.link?(a(),c("nav",Qt,[Zt,v("div",xt,[(T=r(i).prev)!=null&&T.link?(a(),k(D,{key:0,class:"pager-link prev",href:r(i).prev.link},{default:d(()=>{var B;return[v("span",{class:"desc",innerHTML:((B=r(e).docFooter)==null?void 0:B.prev)||"Previous page"},null,8,eo),v("span",{class:"title",innerHTML:r(i).prev.text},null,8,to)]}),_:1},8,["href"])):h("",!0)]),v("div",oo,[(A=r(i).next)!=null&&A.link?(a(),k(D,{key:0,class:"pager-link next",href:r(i).next.link},{default:d(()=>{var B;return[v("span",{class:"desc",innerHTML:((B=r(e).docFooter)==null?void 0:B.next)||"Next page"},null,8,no),v("span",{class:"title",innerHTML:r(i).next.text},null,8,so)]}),_:1},8,["href"])):h("",!0)])])):h("",!0)])):h("",!0)}}}),ro=$(ao,[["__scopeId","data-v-a4b38bd6"]]),io=o=>(C("data-v-40342069"),o=o(),H(),o),lo={class:"container"},co=io(()=>v("div",{class:"aside-curtain"},null,-1)),uo={class:"aside-container"},vo={class:"aside-content"},po={class:"content"},fo={class:"content-container"},ho={class:"main"},_o=_({__name:"VPDoc",setup(o){const{theme:e}=P(),t=ee(),{hasSidebar:s,hasAside:n,leftAside:i}=U(),u=y(()=>t.path.replace(/[./]+/g,"_").replace(/_html$/,""));return(f,p)=>{const g=R("Content");return a(),c("div",{class:N(["VPDoc",{"has-sidebar":r(s),"has-aside":r(n)}])},[l(f.$slots,"doc-top",{},void 0,!0),v("div",lo,[r(n)?(a(),c("div",{key:0,class:N(["aside",{"left-aside":r(i)}])},[co,v("div",uo,[v("div",vo,[m(Dt,null,{"aside-top":d(()=>[l(f.$slots,"aside-top",{},void 0,!0)]),"aside-bottom":d(()=>[l(f.$slots,"aside-bottom",{},void 0,!0)]),"aside-outline-before":d(()=>[l(f.$slots,"aside-outline-before",{},void 0,!0)]),"aside-outline-after":d(()=>[l(f.$slots,"aside-outline-after",{},void 0,!0)]),"aside-ads-before":d(()=>[l(f.$slots,"aside-ads-before",{},void 0,!0)]),"aside-ads-after":d(()=>[l(f.$slots,"aside-ads-after",{},void 0,!0)]),_:3})])])],2)):h("",!0),v("div",po,[v("div",fo,[l(f.$slots,"doc-before",{},void 0,!0),v("main",ho,[m(g,{class:N(["vp-doc",[u.value,r(e).externalLinkIcon&&"external-link-icon-enabled"]])},null,8,["class"])]),m(ro,null,{"doc-footer-before":d(()=>[l(f.$slots,"doc-footer-before",{},void 0,!0)]),_:3}),l(f.$slots,"doc-after",{},void 0,!0)])])]),l(f.$slots,"doc-bottom",{},void 0,!0)],2)}}}),mo=$(_o,[["__scopeId","data-v-40342069"]]),ko=_({__name:"VPButton",props:{tag:{},size:{default:"medium"},theme:{default:"brand"},text:{},href:{},target:{},rel:{}},setup(o){const e=o,t=y(()=>e.href&&Ve.test(e.href)),s=y(()=>e.tag||e.href?"a":"button");return(n,i)=>(a(),k(F(s.value),{class:N(["VPButton",[n.size,n.theme]]),href:n.href?r(_e)(n.href):void 0,target:e.target??(t.value?"_blank":void 0),rel:e.rel??(t.value?"noreferrer":void 0)},{default:d(()=>[O(I(n.text),1)]),_:1},8,["class","href","target","rel"]))}}),bo=$(ko,[["__scopeId","data-v-885c6978"]]),$o=["src","alt"],go=_({inheritAttrs:!1,__name:"VPImage",props:{image:{},alt:{}},setup(o){return(e,t)=>{const s=R("VPImage",!0);return e.image?(a(),c(M,{key:0},[typeof e.image=="string"||"src"in e.image?(a(),c("img",q({key:0,class:"VPImage"},typeof e.image=="string"?e.$attrs:{...e.image,...e.$attrs},{src:r(pe)(typeof e.image=="string"?e.image:e.image.src),alt:e.alt??(typeof e.image=="string"?"":e.image.alt||"")}),null,16,$o)):(a(),c(M,{key:1},[m(s,q({class:"dark",image:e.image.dark,alt:e.image.alt},e.$attrs),null,16,["image","alt"]),m(s,q({class:"light",image:e.image.light,alt:e.image.alt},e.$attrs),null,16,["image","alt"])],64))],64)):h("",!0)}}}),Q=$(go,[["__scopeId","data-v-f925500d"]]),yo=o=>(C("data-v-325add7b"),o=o(),H(),o),Po={class:"container"},Vo={class:"main"},Lo={key:0,class:"name"},So=["innerHTML"],To=["innerHTML"],Io=["innerHTML"],wo={key:0,class:"actions"},No={key:0,class:"image"},Mo={class:"image-container"},Ao=yo(()=>v("div",{class:"image-bg"},null,-1)),Bo=_({__name:"VPHero",props:{name:{},text:{},tagline:{},image:{},actions:{}},setup(o){const e=te("hero-image-slot-exists");return(t,s)=>(a(),c("div",{class:N(["VPHero",{"has-image":t.image||r(e)}])},[v("div",Po,[v("div",Vo,[l(t.$slots,"home-hero-info-before",{},void 0,!0),l(t.$slots,"home-hero-info",{},()=>[t.name?(a(),c("h1",Lo,[v("span",{innerHTML:t.name,class:"clip"},null,8,So)])):h("",!0),t.text?(a(),c("p",{key:1,innerHTML:t.text,class:"text"},null,8,To)):h("",!0),t.tagline?(a(),c("p",{key:2,innerHTML:t.tagline,class:"tagline"},null,8,Io)):h("",!0)],!0),l(t.$slots,"home-hero-info-after",{},void 0,!0),t.actions?(a(),c("div",wo,[(a(!0),c(M,null,E(t.actions,n=>(a(),c("div",{key:n.link,class:"action"},[m(bo,{tag:"a",size:"medium",theme:n.theme,text:n.text,href:n.link,target:n.target,rel:n.rel},null,8,["theme","text","href","target","rel"])]))),128))])):h("",!0),l(t.$slots,"home-hero-actions-after",{},void 0,!0)]),t.image||r(e)?(a(),c("div",No,[v("div",Mo,[Ao,l(t.$slots,"home-hero-image",{},()=>[t.image?(a(),k(Q,{key:0,class:"image-src",image:t.image},null,8,["image"])):h("",!0)],!0)])])):h("",!0)])],2))}}),Co=$(Bo,[["__scopeId","data-v-325add7b"]]),Ho=_({__name:"VPHomeHero",setup(o){const{frontmatter:e}=P();return(t,s)=>r(e).hero?(a(),k(Co,{key:0,class:"VPHomeHero",name:r(e).hero.name,text:r(e).hero.text,tagline:r(e).hero.tagline,image:r(e).hero.image,actions:r(e).hero.actions},{"home-hero-info-before":d(()=>[l(t.$slots,"home-hero-info-before")]),"home-hero-info":d(()=>[l(t.$slots,"home-hero-info")]),"home-hero-info-after":d(()=>[l(t.$slots,"home-hero-info-after")]),"home-hero-actions-after":d(()=>[l(t.$slots,"home-hero-actions-after")]),"home-hero-image":d(()=>[l(t.$slots,"home-hero-image")]),_:3},8,["name","text","tagline","image","actions"])):h("",!0)}}),Eo=o=>(C("data-v-248ed6b6"),o=o(),H(),o),Fo={class:"box"},Do={key:0,class:"icon"},Oo=["innerHTML"],Go=["innerHTML"],Uo=["innerHTML"],jo={key:4,class:"link-text"},zo={class:"link-text-value"},qo=Eo(()=>v("span",{class:"vpi-arrow-right link-text-icon"},null,-1)),Ko=_({__name:"VPFeature",props:{icon:{},title:{},details:{},link:{},linkText:{},rel:{},target:{}},setup(o){return(e,t)=>(a(),k(D,{class:"VPFeature",href:e.link,rel:e.rel,target:e.target,"no-icon":!0,tag:e.link?"a":"div"},{default:d(()=>[v("article",Fo,[typeof e.icon=="object"&&e.icon.wrap?(a(),c("div",Do,[m(Q,{image:e.icon,alt:e.icon.alt,height:e.icon.height||48,width:e.icon.width||48},null,8,["image","alt","height","width"])])):typeof e.icon=="object"?(a(),k(Q,{key:1,image:e.icon,alt:e.icon.alt,height:e.icon.height||48,width:e.icon.width||48},null,8,["image","alt","height","width"])):e.icon?(a(),c("div",{key:2,class:"icon",innerHTML:e.icon},null,8,Oo)):h("",!0),v("h2",{class:"title",innerHTML:e.title},null,8,Go),e.details?(a(),c("p",{key:3,class:"details",innerHTML:e.details},null,8,Uo)):h("",!0),e.linkText?(a(),c("div",jo,[v("p",zo,[O(I(e.linkText)+" ",1),qo])])):h("",!0)])]),_:1},8,["href","rel","target","tag"]))}}),Wo=$(Ko,[["__scopeId","data-v-248ed6b6"]]),Ro={key:0,class:"VPFeatures"},Jo={class:"container"},Xo={class:"items"},Yo=_({__name:"VPFeatures",props:{features:{}},setup(o){const e=o,t=y(()=>{const s=e.features.length;if(s){if(s===2)return"grid-2";if(s===3)return"grid-3";if(s%3===0)return"grid-6";if(s>3)return"grid-4"}else return});return(s,n)=>s.features?(a(),c("div",Ro,[v("div",Jo,[v("div",Xo,[(a(!0),c(M,null,E(s.features,i=>(a(),c("div",{key:i.title,class:N(["item",[t.value]])},[m(Wo,{icon:i.icon,title:i.title,details:i.details,link:i.link,"link-text":i.linkText,rel:i.rel,target:i.target},null,8,["icon","title","details","link","link-text","rel","target"])],2))),128))])])])):h("",!0)}}),Qo=$(Yo,[["__scopeId","data-v-dbb08ed4"]]),Zo=_({__name:"VPHomeFeatures",setup(o){const{frontmatter:e}=P();return(t,s)=>r(e).features?(a(),k(Qo,{key:0,class:"VPHomeFeatures",features:r(e).features},null,8,["features"])):h("",!0)}}),xo=_({__name:"VPHomeContent",setup(o){const{width:e}=Ke({initialWidth:0,includeScrollbar:!1});return(t,s)=>(a(),c("div",{class:"vp-doc container",style:Le(r(e)?{"--vp-offset":`calc(50% - ${r(e)/2}px)`}:{})},[l(t.$slots,"default",{},void 0,!0)],4))}}),en=$(xo,[["__scopeId","data-v-bb690f02"]]),tn={class:"VPHome"},on=_({__name:"VPHome",setup(o){const{frontmatter:e}=P();return(t,s)=>{const n=R("Content");return a(),c("div",tn,[l(t.$slots,"home-hero-before",{},void 0,!0),m(Ho,null,{"home-hero-info-before":d(()=>[l(t.$slots,"home-hero-info-before",{},void 0,!0)]),"home-hero-info":d(()=>[l(t.$slots,"home-hero-info",{},void 0,!0)]),"home-hero-info-after":d(()=>[l(t.$slots,"home-hero-info-after",{},void 0,!0)]),"home-hero-actions-after":d(()=>[l(t.$slots,"home-hero-actions-after",{},void 0,!0)]),"home-hero-image":d(()=>[l(t.$slots,"home-hero-image",{},void 0,!0)]),_:3}),l(t.$slots,"home-hero-after",{},void 0,!0),l(t.$slots,"home-features-before",{},void 0,!0),m(Zo),l(t.$slots,"home-features-after",{},void 0,!0),r(e).markdownStyles!==!1?(a(),k(en,{key:0},{default:d(()=>[m(n)]),_:1})):(a(),k(n,{key:1}))])}}}),nn=$(on,[["__scopeId","data-v-972a96f9"]]),sn={},an={class:"VPPage"};function rn(o,e){const t=R("Content");return a(),c("div",an,[l(o.$slots,"page-top"),m(t),l(o.$slots,"page-bottom")])}const ln=$(sn,[["render",rn]]),cn=_({__name:"VPContent",setup(o){const{page:e,frontmatter:t}=P(),{hasSidebar:s}=U();return(n,i)=>(a(),c("div",{class:N(["VPContent",{"has-sidebar":r(s),"is-home":r(t).layout==="home"}]),id:"VPContent"},[r(e).isNotFound?l(n.$slots,"not-found",{key:0},()=>[m(_t)],!0):r(t).layout==="page"?(a(),k(ln,{key:1},{"page-top":d(()=>[l(n.$slots,"page-top",{},void 0,!0)]),"page-bottom":d(()=>[l(n.$slots,"page-bottom",{},void 0,!0)]),_:3})):r(t).layout==="home"?(a(),k(nn,{key:2},{"home-hero-before":d(()=>[l(n.$slots,"home-hero-before",{},void 0,!0)]),"home-hero-info-before":d(()=>[l(n.$slots,"home-hero-info-before",{},void 0,!0)]),"home-hero-info":d(()=>[l(n.$slots,"home-hero-info",{},void 0,!0)]),"home-hero-info-after":d(()=>[l(n.$slots,"home-hero-info-after",{},void 0,!0)]),"home-hero-actions-after":d(()=>[l(n.$slots,"home-hero-actions-after",{},void 0,!0)]),"home-hero-image":d(()=>[l(n.$slots,"home-hero-image",{},void 0,!0)]),"home-hero-after":d(()=>[l(n.$slots,"home-hero-after",{},void 0,!0)]),"home-features-before":d(()=>[l(n.$slots,"home-features-before",{},void 0,!0)]),"home-features-after":d(()=>[l(n.$slots,"home-features-after",{},void 0,!0)]),_:3})):r(t).layout&&r(t).layout!=="doc"?(a(),k(F(r(t).layout),{key:3})):(a(),k(mo,{key:4},{"doc-top":d(()=>[l(n.$slots,"doc-top",{},void 0,!0)]),"doc-bottom":d(()=>[l(n.$slots,"doc-bottom",{},void 0,!0)]),"doc-footer-before":d(()=>[l(n.$slots,"doc-footer-before",{},void 0,!0)]),"doc-before":d(()=>[l(n.$slots,"doc-before",{},void 0,!0)]),"doc-after":d(()=>[l(n.$slots,"doc-after",{},void 0,!0)]),"aside-top":d(()=>[l(n.$slots,"aside-top",{},void 0,!0)]),"aside-outline-before":d(()=>[l(n.$slots,"aside-outline-before",{},void 0,!0)]),"aside-outline-after":d(()=>[l(n.$slots,"aside-outline-after",{},void 0,!0)]),"aside-ads-before":d(()=>[l(n.$slots,"aside-ads-before",{},void 0,!0)]),"aside-ads-after":d(()=>[l(n.$slots,"aside-ads-after",{},void 0,!0)]),"aside-bottom":d(()=>[l(n.$slots,"aside-bottom",{},void 0,!0)]),_:3}))],2))}}),un=$(cn,[["__scopeId","data-v-ec7dbf3e"]]),dn={class:"container"},vn=["innerHTML"],pn=["innerHTML"],fn=_({__name:"VPFooter",setup(o){const{theme:e,frontmatter:t}=P(),{hasSidebar:s}=U();return(n,i)=>r(e).footer&&r(t).footer!==!1?(a(),c("footer",{key:0,class:N(["VPFooter",{"has-sidebar":r(s)}])},[v("div",dn,[r(e).footer.message?(a(),c("p",{key:0,class:"message",innerHTML:r(e).footer.message},null,8,vn)):h("",!0),r(e).footer.copyright?(a(),c("p",{key:1,class:"copyright",innerHTML:r(e).footer.copyright},null,8,pn)):h("",!0)])],2)):h("",!0)}}),hn=$(fn,[["__scopeId","data-v-e3ca6860"]]);function _n(){const{theme:o,frontmatter:e}=P(),t=Pe([]),s=y(()=>t.value.length>0);return x(()=>{t.value=me(e.value.outline??o.value.outline)}),{headers:t,hasLocalNav:s}}const mn=o=>(C("data-v-b418bf42"),o=o(),H(),o),kn={class:"menu-text"},bn=mn(()=>v("span",{class:"vpi-chevron-right icon"},null,-1)),$n={class:"header"},gn={class:"outline"},yn=_({__name:"VPLocalNavOutlineDropdown",props:{headers:{},navHeight:{}},setup(o){const e=o,{theme:t}=P(),s=w(!1),n=w(0),i=w(),u=w();function f(b){var V;(V=i.value)!=null&&V.contains(b.target)||(s.value=!1)}G(s,b=>{if(b){document.addEventListener("click",f);return}document.removeEventListener("click",f)}),le("Escape",()=>{s.value=!1}),x(()=>{s.value=!1});function p(){s.value=!s.value,n.value=window.innerHeight+Math.min(window.scrollY-e.navHeight,0)}function g(b){b.target.classList.contains("outline-link")&&(u.value&&(u.value.style.transition="none"),We(()=>{s.value=!1}))}function L(){s.value=!1,window.scrollTo({top:0,left:0,behavior:"smooth"})}return(b,V)=>(a(),c("div",{class:"VPLocalNavOutlineDropdown",style:Le({"--vp-vh":n.value+"px"}),ref_key:"main",ref:i},[b.headers.length>0?(a(),c("button",{key:0,onClick:p,class:N({open:s.value})},[v("span",kn,I(r(Ne)(r(t))),1),bn],2)):(a(),c("button",{key:1,onClick:L},I(r(t).returnToTopLabel||"Return to top"),1)),m(ve,{name:"flyout"},{default:d(()=>[s.value?(a(),c("div",{key:0,ref_key:"items",ref:u,class:"items",onClick:g},[v("div",$n,[v("a",{class:"top-link",href:"#",onClick:L},I(r(t).returnToTopLabel||"Return to top"),1)]),v("div",gn,[m(Me,{headers:b.headers},null,8,["headers"])])],512)):h("",!0)]),_:1})],4))}}),Pn=$(yn,[["__scopeId","data-v-b418bf42"]]),Vn=o=>(C("data-v-8af612ea"),o=o(),H(),o),Ln={class:"container"},Sn=["aria-expanded"],Tn=Vn(()=>v("span",{class:"vpi-align-left menu-icon"},null,-1)),In={class:"menu-text"},wn=_({__name:"VPLocalNav",props:{open:{type:Boolean}},emits:["open-menu"],setup(o){const{theme:e,frontmatter:t}=P(),{hasSidebar:s}=U(),{headers:n}=_n(),{y:i}=Se(),u=w(0);W(()=>{u.value=parseInt(getComputedStyle(document.documentElement).getPropertyValue("--vp-nav-height"))}),x(()=>{n.value=me(t.value.outline??e.value.outline)});const f=y(()=>n.value.length===0),p=y(()=>f.value&&!s.value),g=y(()=>({VPLocalNav:!0,"has-sidebar":s.value,empty:f.value,fixed:p.value}));return(L,b)=>r(t).layout!=="home"&&(!p.value||r(i)>=u.value)?(a(),c("div",{key:0,class:N(g.value)},[v("div",Ln,[r(s)?(a(),c("button",{key:0,class:"menu","aria-expanded":L.open,"aria-controls":"VPSidebarNav",onClick:b[0]||(b[0]=V=>L.$emit("open-menu"))},[Tn,v("span",In,I(r(e).sidebarMenuLabel||"Menu"),1)],8,Sn)):h("",!0),m(Pn,{headers:r(n),navHeight:u.value},null,8,["headers","navHeight"])])],2)):h("",!0)}}),Nn=$(wn,[["__scopeId","data-v-8af612ea"]]);function Mn(){const o=w(!1);function e(){o.value=!0,window.addEventListener("resize",n)}function t(){o.value=!1,window.removeEventListener("resize",n)}function s(){o.value?t():e()}function n(){window.outerWidth>=768&&t()}const i=ee();return G(()=>i.path,t),{isScreenOpen:o,openScreen:e,closeScreen:t,toggleScreen:s}}const An={},Bn={class:"VPSwitch",type:"button",role:"switch"},Cn={class:"check"},Hn={key:0,class:"icon"};function En(o,e){return a(),c("button",Bn,[v("span",Cn,[o.$slots.default?(a(),c("span",Hn,[l(o.$slots,"default",{},void 0,!0)])):h("",!0)])])}const Fn=$(An,[["render",En],["__scopeId","data-v-d82e607b"]]),Be=o=>(C("data-v-3a50aa5c"),o=o(),H(),o),Dn=Be(()=>v("span",{class:"vpi-sun sun"},null,-1)),On=Be(()=>v("span",{class:"vpi-moon moon"},null,-1)),Gn=_({__name:"VPSwitchAppearance",setup(o){const{isDark:e,theme:t}=P(),s=te("toggle-appearance",()=>{e.value=!e.value}),n=w("");return he(()=>{n.value=e.value?t.value.lightModeSwitchTitle||"Switch to light theme":t.value.darkModeSwitchTitle||"Switch to dark theme"}),(i,u)=>(a(),k(Fn,{title:n.value,class:"VPSwitchAppearance","aria-checked":r(e),onClick:r(s)},{default:d(()=>[Dn,On]),_:1},8,["title","aria-checked","onClick"]))}}),ke=$(Gn,[["__scopeId","data-v-3a50aa5c"]]),Un={key:0,class:"VPNavBarAppearance"},jn=_({__name:"VPNavBarAppearance",setup(o){const{site:e}=P();return(t,s)=>r(e).appearance&&r(e).appearance!=="force-dark"&&r(e).appearance!=="force-auto"?(a(),c("div",Un,[m(ke)])):h("",!0)}}),zn=$(jn,[["__scopeId","data-v-2a6692f8"]]),be=w();let Ce=!1,re=0;function qn(o){const e=w(!1);if(oe){!Ce&&Kn(),re++;const t=G(be,s=>{var n,i,u;s===o.el.value||(n=o.el.value)!=null&&n.contains(s)?(e.value=!0,(i=o.onFocus)==null||i.call(o)):(e.value=!1,(u=o.onBlur)==null||u.call(o))});fe(()=>{t(),re--,re||Wn()})}return Re(e)}function Kn(){document.addEventListener("focusin",He),Ce=!0,be.value=document.activeElement}function Wn(){document.removeEventListener("focusin",He)}function He(){be.value=document.activeElement}const Rn={class:"VPMenuLink"},Jn=_({__name:"VPMenuLink",props:{item:{}},setup(o){const{page:e}=P();return(t,s)=>(a(),c("div",Rn,[m(D,{class:N({active:r(K)(r(e).relativePath,t.item.activeMatch||t.item.link,!!t.item.activeMatch)}),href:t.item.link,target:t.item.target,rel:t.item.rel},{default:d(()=>[O(I(t.item.text),1)]),_:1},8,["class","href","target","rel"])]))}}),ne=$(Jn,[["__scopeId","data-v-79776a7a"]]),Xn={class:"VPMenuGroup"},Yn={key:0,class:"title"},Qn=_({__name:"VPMenuGroup",props:{text:{},items:{}},setup(o){return(e,t)=>(a(),c("div",Xn,[e.text?(a(),c("p",Yn,I(e.text),1)):h("",!0),(a(!0),c(M,null,E(e.items,s=>(a(),c(M,null,["link"in s?(a(),k(ne,{key:0,item:s},null,8,["item"])):h("",!0)],64))),256))]))}}),Zn=$(Qn,[["__scopeId","data-v-fbf15ead"]]),xn={class:"VPMenu"},es={key:0,class:"items"},ts=_({__name:"VPMenu",props:{items:{}},setup(o){return(e,t)=>(a(),c("div",xn,[e.items?(a(),c("div",es,[(a(!0),c(M,null,E(e.items,s=>(a(),c(M,{key:JSON.stringify(s)},["link"in s?(a(),k(ne,{key:0,item:s},null,8,["item"])):"component"in s?(a(),k(F(s.component),q({key:1,ref_for:!0},s.props),null,16)):(a(),k(Zn,{key:2,text:s.text,items:s.items},null,8,["text","items"]))],64))),128))])):h("",!0),l(e.$slots,"default",{},void 0,!0)]))}}),os=$(ts,[["__scopeId","data-v-9990563e"]]),ns=o=>(C("data-v-ec8c49bc"),o=o(),H(),o),ss=["aria-expanded","aria-label"],as={key:0,class:"text"},rs=["innerHTML"],is=ns(()=>v("span",{class:"vpi-chevron-down text-icon"},null,-1)),ls={key:1,class:"vpi-more-horizontal icon"},cs={class:"menu"},us=_({__name:"VPFlyout",props:{icon:{},button:{},label:{},items:{}},setup(o){const e=w(!1),t=w();qn({el:t,onBlur:s});function s(){e.value=!1}return(n,i)=>(a(),c("div",{class:"VPFlyout",ref_key:"el",ref:t,onMouseenter:i[1]||(i[1]=u=>e.value=!0),onMouseleave:i[2]||(i[2]=u=>e.value=!1)},[v("button",{type:"button",class:"button","aria-haspopup":"true","aria-expanded":e.value,"aria-label":n.label,onClick:i[0]||(i[0]=u=>e.value=!e.value)},[n.button||n.icon?(a(),c("span",as,[n.icon?(a(),c("span",{key:0,class:N([n.icon,"option-icon"])},null,2)):h("",!0),n.button?(a(),c("span",{key:1,innerHTML:n.button},null,8,rs)):h("",!0),is])):(a(),c("span",ls))],8,ss),v("div",cs,[m(os,{items:n.items},{default:d(()=>[l(n.$slots,"default",{},void 0,!0)]),_:3},8,["items"])])],544))}}),$e=$(us,[["__scopeId","data-v-ec8c49bc"]]),ds=["href","aria-label","innerHTML"],vs=_({__name:"VPSocialLink",props:{icon:{},link:{},ariaLabel:{}},setup(o){const e=o,t=y(()=>typeof e.icon=="object"?e.icon.svg:``);return(s,n)=>(a(),c("a",{class:"VPSocialLink no-icon",href:s.link,"aria-label":s.ariaLabel??(typeof s.icon=="string"?s.icon:""),target:"_blank",rel:"noopener",innerHTML:t.value},null,8,ds))}}),ps=$(vs,[["__scopeId","data-v-b0526bd7"]]),fs={class:"VPSocialLinks"},hs=_({__name:"VPSocialLinks",props:{links:{}},setup(o){return(e,t)=>(a(),c("div",fs,[(a(!0),c(M,null,E(e.links,({link:s,icon:n,ariaLabel:i})=>(a(),k(ps,{key:s,icon:n,link:s,ariaLabel:i},null,8,["icon","link","ariaLabel"]))),128))]))}}),ge=$(hs,[["__scopeId","data-v-fa18fe49"]]),_s={key:0,class:"group translations"},ms={class:"trans-title"},ks={key:1,class:"group"},bs={class:"item appearance"},$s={class:"label"},gs={class:"appearance-action"},ys={key:2,class:"group"},Ps={class:"item social-links"},Vs=_({__name:"VPNavBarExtra",setup(o){const{site:e,theme:t}=P(),{localeLinks:s,currentLang:n}=X({correspondingLink:!0}),i=y(()=>s.value.length&&n.value.label||e.value.appearance||t.value.socialLinks);return(u,f)=>i.value?(a(),k($e,{key:0,class:"VPNavBarExtra",label:"extra navigation"},{default:d(()=>[r(s).length&&r(n).label?(a(),c("div",_s,[v("p",ms,I(r(n).label),1),(a(!0),c(M,null,E(r(s),p=>(a(),k(ne,{key:p.link,item:p},null,8,["item"]))),128))])):h("",!0),r(e).appearance&&r(e).appearance!=="force-dark"&&r(e).appearance!=="force-auto"?(a(),c("div",ks,[v("div",bs,[v("p",$s,I(r(t).darkModeSwitchLabel||"Appearance"),1),v("div",gs,[m(ke)])])])):h("",!0),r(t).socialLinks?(a(),c("div",ys,[v("div",Ps,[m(ge,{class:"social-links-list",links:r(t).socialLinks},null,8,["links"])])])):h("",!0)]),_:1})):h("",!0)}}),Ls=$(Vs,[["__scopeId","data-v-2fc967b6"]]),Ss=o=>(C("data-v-be64de2d"),o=o(),H(),o),Ts=["aria-expanded"],Is=Ss(()=>v("span",{class:"container"},[v("span",{class:"top"}),v("span",{class:"middle"}),v("span",{class:"bottom"})],-1)),ws=[Is],Ns=_({__name:"VPNavBarHamburger",props:{active:{type:Boolean}},emits:["click"],setup(o){return(e,t)=>(a(),c("button",{type:"button",class:N(["VPNavBarHamburger",{active:e.active}]),"aria-label":"mobile navigation","aria-expanded":e.active,"aria-controls":"VPNavScreen",onClick:t[0]||(t[0]=s=>e.$emit("click"))},ws,10,Ts))}}),Ms=$(Ns,[["__scopeId","data-v-be64de2d"]]),As=["innerHTML"],Bs=_({__name:"VPNavBarMenuLink",props:{item:{}},setup(o){const{page:e}=P();return(t,s)=>(a(),k(D,{class:N({VPNavBarMenuLink:!0,active:r(K)(r(e).relativePath,t.item.activeMatch||t.item.link,!!t.item.activeMatch)}),href:t.item.link,noIcon:t.item.noIcon,target:t.item.target,rel:t.item.rel,tabindex:"0"},{default:d(()=>[v("span",{innerHTML:t.item.text},null,8,As)]),_:1},8,["class","href","noIcon","target","rel"]))}}),Cs=$(Bs,[["__scopeId","data-v-ad4a8b64"]]),Hs=_({__name:"VPNavBarMenuGroup",props:{item:{}},setup(o){const e=o,{page:t}=P(),s=i=>"component"in i?!1:"link"in i?K(t.value.relativePath,i.link,!!e.item.activeMatch):i.items.some(s),n=y(()=>s(e.item));return(i,u)=>(a(),k($e,{class:N({VPNavBarMenuGroup:!0,active:r(K)(r(t).relativePath,i.item.activeMatch,!!i.item.activeMatch)||n.value}),button:i.item.text,items:i.item.items},null,8,["class","button","items"]))}}),Es=o=>(C("data-v-0fb289c1"),o=o(),H(),o),Fs={key:0,"aria-labelledby":"main-nav-aria-label",class:"VPNavBarMenu"},Ds=Es(()=>v("span",{id:"main-nav-aria-label",class:"visually-hidden"}," Main Navigation ",-1)),Os=_({__name:"VPNavBarMenu",setup(o){const{theme:e}=P();return(t,s)=>r(e).nav?(a(),c("nav",Fs,[Ds,(a(!0),c(M,null,E(r(e).nav,n=>(a(),c(M,{key:JSON.stringify(n)},["link"in n?(a(),k(Cs,{key:0,item:n},null,8,["item"])):"component"in n?(a(),k(F(n.component),q({key:1,ref_for:!0},n.props),null,16)):(a(),k(Hs,{key:2,item:n},null,8,["item"]))],64))),128))])):h("",!0)}}),Gs=$(Os,[["__scopeId","data-v-0fb289c1"]]);function Us(o){const{localeIndex:e,theme:t}=P();function s(n){var A,B,S;const i=n.split("."),u=(A=t.value.search)==null?void 0:A.options,f=u&&typeof u=="object",p=f&&((S=(B=u.locales)==null?void 0:B[e.value])==null?void 0:S.translations)||null,g=f&&u.translations||null;let L=p,b=g,V=o;const T=i.pop();for(const j of i){let z=null;const J=V==null?void 0:V[j];J&&(z=V=J);const se=b==null?void 0:b[j];se&&(z=b=se);const ae=L==null?void 0:L[j];ae&&(z=L=ae),J||(V=z),se||(b=z),ae||(L=z)}return(L==null?void 0:L[T])??(b==null?void 0:b[T])??(V==null?void 0:V[T])??""}return s}const js=["aria-label"],zs={class:"DocSearch-Button-Container"},qs=v("span",{class:"vp-icon DocSearch-Search-Icon"},null,-1),Ks={class:"DocSearch-Button-Placeholder"},Ws=v("span",{class:"DocSearch-Button-Keys"},[v("kbd",{class:"DocSearch-Button-Key"}),v("kbd",{class:"DocSearch-Button-Key"},"K")],-1),ye=_({__name:"VPNavBarSearchButton",setup(o){const t=Us({button:{buttonText:"Search",buttonAriaLabel:"Search"}});return(s,n)=>(a(),c("button",{type:"button",class:"DocSearch DocSearch-Button","aria-label":r(t)("button.buttonAriaLabel")},[v("span",zs,[qs,v("span",Ks,I(r(t)("button.buttonText")),1)]),Ws],8,js))}}),Rs={class:"VPNavBarSearch"},Js={id:"local-search"},Xs={key:1,id:"docsearch"},Ys=_({__name:"VPNavBarSearch",setup(o){const e=Je(()=>Xe(()=>import("./VPLocalSearchBox.CFZy5fa5.js"),__vite__mapDeps([0,1]))),t=()=>null,{theme:s}=P(),n=w(!1),i=w(!1);W(()=>{});function u(){n.value||(n.value=!0,setTimeout(f,16))}function f(){const b=new Event("keydown");b.key="k",b.metaKey=!0,window.dispatchEvent(b),setTimeout(()=>{document.querySelector(".DocSearch-Modal")||f()},16)}function p(b){const V=b.target,T=V.tagName;return V.isContentEditable||T==="INPUT"||T==="SELECT"||T==="TEXTAREA"}const g=w(!1);le("k",b=>{(b.ctrlKey||b.metaKey)&&(b.preventDefault(),g.value=!0)}),le("/",b=>{p(b)||(b.preventDefault(),g.value=!0)});const L="local";return(b,V)=>{var T;return a(),c("div",Rs,[r(L)==="local"?(a(),c(M,{key:0},[g.value?(a(),k(r(e),{key:0,onClose:V[0]||(V[0]=A=>g.value=!1)})):h("",!0),v("div",Js,[m(ye,{onClick:V[1]||(V[1]=A=>g.value=!0)})])],64)):r(L)==="algolia"?(a(),c(M,{key:1},[n.value?(a(),k(r(t),{key:0,algolia:((T=r(s).search)==null?void 0:T.options)??r(s).algolia,onVnodeBeforeMount:V[2]||(V[2]=A=>i.value=!0)},null,8,["algolia"])):h("",!0),i.value?h("",!0):(a(),c("div",Xs,[m(ye,{onClick:u})]))],64)):h("",!0)])}}}),Qs=_({__name:"VPNavBarSocialLinks",setup(o){const{theme:e}=P();return(t,s)=>r(e).socialLinks?(a(),k(ge,{key:0,class:"VPNavBarSocialLinks",links:r(e).socialLinks},null,8,["links"])):h("",!0)}}),Zs=$(Qs,[["__scopeId","data-v-f3b91b3a"]]),xs=["href","rel","target"],ea={key:1},ta={key:2},oa=_({__name:"VPNavBarTitle",setup(o){const{site:e,theme:t}=P(),{hasSidebar:s}=U(),{currentLang:n}=X(),i=y(()=>{var p;return typeof t.value.logoLink=="string"?t.value.logoLink:(p=t.value.logoLink)==null?void 0:p.link}),u=y(()=>{var p;return typeof t.value.logoLink=="string"||(p=t.value.logoLink)==null?void 0:p.rel}),f=y(()=>{var p;return typeof t.value.logoLink=="string"||(p=t.value.logoLink)==null?void 0:p.target});return(p,g)=>(a(),c("div",{class:N(["VPNavBarTitle",{"has-sidebar":r(s)}])},[v("a",{class:"title",href:i.value??r(_e)(r(n).link),rel:u.value,target:f.value},[l(p.$slots,"nav-bar-title-before",{},void 0,!0),r(t).logo?(a(),k(Q,{key:0,class:"logo",image:r(t).logo},null,8,["image"])):h("",!0),r(t).siteTitle?(a(),c("span",ea,I(r(t).siteTitle),1)):r(t).siteTitle===void 0?(a(),c("span",ta,I(r(e).title),1)):h("",!0),l(p.$slots,"nav-bar-title-after",{},void 0,!0)],8,xs)],2))}}),na=$(oa,[["__scopeId","data-v-10b95b50"]]),sa={class:"items"},aa={class:"title"},ra=_({__name:"VPNavBarTranslations",setup(o){const{theme:e}=P(),{localeLinks:t,currentLang:s}=X({correspondingLink:!0});return(n,i)=>r(t).length&&r(s).label?(a(),k($e,{key:0,class:"VPNavBarTranslations",icon:"vpi-languages",label:r(e).langMenuLabel||"Change language"},{default:d(()=>[v("div",sa,[v("p",aa,I(r(s).label),1),(a(!0),c(M,null,E(r(t),u=>(a(),k(ne,{key:u.link,item:u},null,8,["item"]))),128))])]),_:1},8,["label"])):h("",!0)}}),ia=$(ra,[["__scopeId","data-v-cd7b67e8"]]),la=o=>(C("data-v-1303e283"),o=o(),H(),o),ca={class:"wrapper"},ua={class:"container"},da={class:"title"},va={class:"content"},pa={class:"content-body"},fa=la(()=>v("div",{class:"divider"},[v("div",{class:"divider-line"})],-1)),ha=_({__name:"VPNavBar",props:{isScreenOpen:{type:Boolean}},emits:["toggle-screen"],setup(o){const e=o,{y:t}=Se(),{hasSidebar:s}=U(),{frontmatter:n}=P(),i=w({});return he(()=>{i.value={"has-sidebar":s.value,home:n.value.layout==="home",top:t.value===0,"screen-open":e.isScreenOpen}}),(u,f)=>(a(),c("div",{class:N(["VPNavBar",i.value])},[v("div",ca,[v("div",ua,[v("div",da,[m(na,null,{"nav-bar-title-before":d(()=>[l(u.$slots,"nav-bar-title-before",{},void 0,!0)]),"nav-bar-title-after":d(()=>[l(u.$slots,"nav-bar-title-after",{},void 0,!0)]),_:3})]),v("div",va,[v("div",pa,[l(u.$slots,"nav-bar-content-before",{},void 0,!0),m(Ys,{class:"search"}),m(Gs,{class:"menu"}),m(ia,{class:"translations"}),m(zn,{class:"appearance"}),m(Zs,{class:"social-links"}),m(Ls,{class:"extra"}),l(u.$slots,"nav-bar-content-after",{},void 0,!0),m(Ms,{class:"hamburger",active:u.isScreenOpen,onClick:f[0]||(f[0]=p=>u.$emit("toggle-screen"))},null,8,["active"])])])])]),fa],2))}}),_a=$(ha,[["__scopeId","data-v-1303e283"]]),ma={key:0,class:"VPNavScreenAppearance"},ka={class:"text"},ba=_({__name:"VPNavScreenAppearance",setup(o){const{site:e,theme:t}=P();return(s,n)=>r(e).appearance&&r(e).appearance!=="force-dark"&&r(e).appearance!=="force-auto"?(a(),c("div",ma,[v("p",ka,I(r(t).darkModeSwitchLabel||"Appearance"),1),m(ke)])):h("",!0)}}),$a=$(ba,[["__scopeId","data-v-79da70de"]]),ga=_({__name:"VPNavScreenMenuLink",props:{item:{}},setup(o){const e=te("close-screen");return(t,s)=>(a(),k(D,{class:"VPNavScreenMenuLink",href:t.item.link,target:t.item.target,rel:t.item.rel,onClick:r(e),innerHTML:t.item.text},null,8,["href","target","rel","onClick","innerHTML"]))}}),ya=$(ga,[["__scopeId","data-v-9a3ef902"]]),Pa=_({__name:"VPNavScreenMenuGroupLink",props:{item:{}},setup(o){const e=te("close-screen");return(t,s)=>(a(),k(D,{class:"VPNavScreenMenuGroupLink",href:t.item.link,target:t.item.target,rel:t.item.rel,onClick:r(e)},{default:d(()=>[O(I(t.item.text),1)]),_:1},8,["href","target","rel","onClick"]))}}),Ee=$(Pa,[["__scopeId","data-v-03f7344f"]]),Va={class:"VPNavScreenMenuGroupSection"},La={key:0,class:"title"},Sa=_({__name:"VPNavScreenMenuGroupSection",props:{text:{},items:{}},setup(o){return(e,t)=>(a(),c("div",Va,[e.text?(a(),c("p",La,I(e.text),1)):h("",!0),(a(!0),c(M,null,E(e.items,s=>(a(),k(Ee,{key:s.text,item:s},null,8,["item"]))),128))]))}}),Ta=$(Sa,[["__scopeId","data-v-3b79ab2a"]]),Ia=o=>(C("data-v-496537ac"),o=o(),H(),o),wa=["aria-controls","aria-expanded"],Na=["innerHTML"],Ma=Ia(()=>v("span",{class:"vpi-plus button-icon"},null,-1)),Aa=["id"],Ba={key:0,class:"item"},Ca={key:1,class:"item"},Ha={key:2,class:"group"},Ea=_({__name:"VPNavScreenMenuGroup",props:{text:{},items:{}},setup(o){const e=o,t=w(!1),s=y(()=>`NavScreenGroup-${e.text.replace(" ","-").toLowerCase()}`);function n(){t.value=!t.value}return(i,u)=>(a(),c("div",{class:N(["VPNavScreenMenuGroup",{open:t.value}])},[v("button",{class:"button","aria-controls":s.value,"aria-expanded":t.value,onClick:n},[v("span",{class:"button-text",innerHTML:i.text},null,8,Na),Ma],8,wa),v("div",{id:s.value,class:"items"},[(a(!0),c(M,null,E(i.items,f=>(a(),c(M,{key:JSON.stringify(f)},["link"in f?(a(),c("div",Ba,[m(Ee,{item:f},null,8,["item"])])):"component"in f?(a(),c("div",Ca,[(a(),k(F(f.component),q({ref_for:!0},f.props,{"screen-menu":""}),null,16))])):(a(),c("div",Ha,[m(Ta,{text:f.text,items:f.items},null,8,["text","items"])]))],64))),128))],8,Aa)],2))}}),Fa=$(Ea,[["__scopeId","data-v-496537ac"]]),Da={key:0,class:"VPNavScreenMenu"},Oa=_({__name:"VPNavScreenMenu",setup(o){const{theme:e}=P();return(t,s)=>r(e).nav?(a(),c("nav",Da,[(a(!0),c(M,null,E(r(e).nav,n=>(a(),c(M,{key:JSON.stringify(n)},["link"in n?(a(),k(ya,{key:0,item:n},null,8,["item"])):"component"in n?(a(),k(F(n.component),q({key:1,ref_for:!0},n.props,{"screen-menu":""}),null,16)):(a(),k(Fa,{key:2,text:n.text||"",items:n.items},null,8,["text","items"]))],64))),128))])):h("",!0)}}),Ga=_({__name:"VPNavScreenSocialLinks",setup(o){const{theme:e}=P();return(t,s)=>r(e).socialLinks?(a(),k(ge,{key:0,class:"VPNavScreenSocialLinks",links:r(e).socialLinks},null,8,["links"])):h("",!0)}}),Fe=o=>(C("data-v-c618ff37"),o=o(),H(),o),Ua=Fe(()=>v("span",{class:"vpi-languages icon lang"},null,-1)),ja=Fe(()=>v("span",{class:"vpi-chevron-down icon chevron"},null,-1)),za={class:"list"},qa=_({__name:"VPNavScreenTranslations",setup(o){const{localeLinks:e,currentLang:t}=X({correspondingLink:!0}),s=w(!1);function n(){s.value=!s.value}return(i,u)=>r(e).length&&r(t).label?(a(),c("div",{key:0,class:N(["VPNavScreenTranslations",{open:s.value}])},[v("button",{class:"title",onClick:n},[Ua,O(" "+I(r(t).label)+" ",1),ja]),v("ul",za,[(a(!0),c(M,null,E(r(e),f=>(a(),c("li",{key:f.link,class:"item"},[m(D,{class:"link",href:f.link},{default:d(()=>[O(I(f.text),1)]),_:2},1032,["href"])]))),128))])],2)):h("",!0)}}),Ka=$(qa,[["__scopeId","data-v-c618ff37"]]),Wa={class:"container"},Ra=_({__name:"VPNavScreen",props:{open:{type:Boolean}},setup(o){const e=w(null),t=Te(oe?document.body:null);return(s,n)=>(a(),k(ve,{name:"fade",onEnter:n[0]||(n[0]=i=>t.value=!0),onAfterLeave:n[1]||(n[1]=i=>t.value=!1)},{default:d(()=>[s.open?(a(),c("div",{key:0,class:"VPNavScreen",ref_key:"screen",ref:e,id:"VPNavScreen"},[v("div",Wa,[l(s.$slots,"nav-screen-content-before",{},void 0,!0),m(Oa,{class:"menu"}),m(Ka,{class:"translations"}),m($a,{class:"appearance"}),m(Ga,{class:"social-links"}),l(s.$slots,"nav-screen-content-after",{},void 0,!0)])],512)):h("",!0)]),_:3}))}}),Ja=$(Ra,[["__scopeId","data-v-c3a48aed"]]),Xa={key:0,class:"VPNav"},Ya=_({__name:"VPNav",setup(o){const{isScreenOpen:e,closeScreen:t,toggleScreen:s}=Mn(),{frontmatter:n}=P(),i=y(()=>n.value.navbar!==!1);return Ie("close-screen",t),Z(()=>{oe&&document.documentElement.classList.toggle("hide-nav",!i.value)}),(u,f)=>i.value?(a(),c("header",Xa,[m(_a,{"is-screen-open":r(e),onToggleScreen:r(s)},{"nav-bar-title-before":d(()=>[l(u.$slots,"nav-bar-title-before",{},void 0,!0)]),"nav-bar-title-after":d(()=>[l(u.$slots,"nav-bar-title-after",{},void 0,!0)]),"nav-bar-content-before":d(()=>[l(u.$slots,"nav-bar-content-before",{},void 0,!0)]),"nav-bar-content-after":d(()=>[l(u.$slots,"nav-bar-content-after",{},void 0,!0)]),_:3},8,["is-screen-open","onToggleScreen"]),m(Ja,{open:r(e)},{"nav-screen-content-before":d(()=>[l(u.$slots,"nav-screen-content-before",{},void 0,!0)]),"nav-screen-content-after":d(()=>[l(u.$slots,"nav-screen-content-after",{},void 0,!0)]),_:3},8,["open"])])):h("",!0)}}),Qa=$(Ya,[["__scopeId","data-v-2a4e514e"]]),De=o=>(C("data-v-9035698b"),o=o(),H(),o),Za=["role","tabindex"],xa=De(()=>v("div",{class:"indicator"},null,-1)),er=De(()=>v("span",{class:"vpi-chevron-right caret-icon"},null,-1)),tr=[er],or={key:1,class:"items"},nr=_({__name:"VPSidebarItem",props:{item:{},depth:{}},setup(o){const e=o,{collapsed:t,collapsible:s,isLink:n,isActiveLink:i,hasActiveLink:u,hasChildren:f,toggle:p}=$t(y(()=>e.item)),g=y(()=>f.value?"section":"div"),L=y(()=>n.value?"a":"div"),b=y(()=>f.value?e.depth+2===7?"p":`h${e.depth+2}`:"p"),V=y(()=>n.value?void 0:"button"),T=y(()=>[[`level-${e.depth}`],{collapsible:s.value},{collapsed:t.value},{"is-link":n.value},{"is-active":i.value},{"has-active":u.value}]);function A(S){"key"in S&&S.key!=="Enter"||!e.item.link&&p()}function B(){e.item.link&&p()}return(S,j)=>{const z=R("VPSidebarItem",!0);return a(),k(F(g.value),{class:N(["VPSidebarItem",T.value])},{default:d(()=>[S.item.text?(a(),c("div",q({key:0,class:"item",role:V.value},Qe(S.item.items?{click:A,keydown:A}:{},!0),{tabindex:S.item.items&&0}),[xa,S.item.link?(a(),k(D,{key:0,tag:L.value,class:"link",href:S.item.link,rel:S.item.rel,target:S.item.target},{default:d(()=>[(a(),k(F(b.value),{class:"text",innerHTML:S.item.text},null,8,["innerHTML"]))]),_:1},8,["tag","href","rel","target"])):(a(),k(F(b.value),{key:1,class:"text",innerHTML:S.item.text},null,8,["innerHTML"])),S.item.collapsed!=null&&S.item.items&&S.item.items.length?(a(),c("div",{key:2,class:"caret",role:"button","aria-label":"toggle section",onClick:B,onKeydown:Ye(B,["enter"]),tabindex:"0"},tr,32)):h("",!0)],16,Za)):h("",!0),S.item.items&&S.item.items.length?(a(),c("div",or,[S.depth<5?(a(!0),c(M,{key:0},E(S.item.items,J=>(a(),k(z,{key:J.text,item:J,depth:S.depth+1},null,8,["item","depth"]))),128)):h("",!0)])):h("",!0)]),_:1},8,["class"])}}}),sr=$(nr,[["__scopeId","data-v-9035698b"]]),ar=_({__name:"VPSidebarGroup",props:{items:{}},setup(o){const e=w(!0);let t=null;return W(()=>{t=setTimeout(()=>{t=null,e.value=!1},300)}),Ze(()=>{t!=null&&(clearTimeout(t),t=null)}),(s,n)=>(a(!0),c(M,null,E(s.items,i=>(a(),c("div",{key:i.text,class:N(["group",{"no-transition":e.value}])},[m(sr,{item:i,depth:0},null,8,["item"])],2))),128))}}),rr=$(ar,[["__scopeId","data-v-c3eaeb1a"]]),Oe=o=>(C("data-v-edd7de80"),o=o(),H(),o),ir=Oe(()=>v("div",{class:"curtain"},null,-1)),lr={class:"nav",id:"VPSidebarNav","aria-labelledby":"sidebar-aria-label",tabindex:"-1"},cr=Oe(()=>v("span",{class:"visually-hidden",id:"sidebar-aria-label"}," Sidebar Navigation ",-1)),ur=_({__name:"VPSidebar",props:{open:{type:Boolean}},setup(o){const{sidebarGroups:e,hasSidebar:t}=U(),s=o,n=w(null),i=Te(oe?document.body:null);G([s,n],()=>{var f;s.open?(i.value=!0,(f=n.value)==null||f.focus()):i.value=!1},{immediate:!0,flush:"post"});const u=w(0);return G(e,()=>{u.value+=1},{deep:!0}),(f,p)=>r(t)?(a(),c("aside",{key:0,class:N(["VPSidebar",{open:f.open}]),ref_key:"navEl",ref:n,onClick:p[0]||(p[0]=xe(()=>{},["stop"]))},[ir,v("nav",lr,[cr,l(f.$slots,"sidebar-nav-before",{},void 0,!0),(a(),k(rr,{items:r(e),key:u.value},null,8,["items"])),l(f.$slots,"sidebar-nav-after",{},void 0,!0)])],2)):h("",!0)}}),dr=$(ur,[["__scopeId","data-v-edd7de80"]]),vr=_({__name:"VPSkipLink",setup(o){const e=ee(),t=w();G(()=>e.path,()=>t.value.focus());function s({target:n}){const i=document.getElementById(decodeURIComponent(n.hash).slice(1));if(i){const u=()=>{i.removeAttribute("tabindex"),i.removeEventListener("blur",u)};i.setAttribute("tabindex","-1"),i.addEventListener("blur",u),i.focus(),window.scrollTo(0,0)}}return(n,i)=>(a(),c(M,null,[v("span",{ref_key:"backToTop",ref:t,tabindex:"-1"},null,512),v("a",{href:"#VPContent",class:"VPSkipLink visually-hidden",onClick:s}," Skip to content ")],64))}}),pr=$(vr,[["__scopeId","data-v-3e86afbf"]]),fr=_({__name:"Layout",setup(o){const{isOpen:e,open:t,close:s}=U(),n=ee();G(()=>n.path,s),bt(e,s);const{frontmatter:i}=P(),u=et(),f=y(()=>!!u["home-hero-image"]);return Ie("hero-image-slot-exists",f),(p,g)=>{const L=R("Content");return r(i).layout!==!1?(a(),c("div",{key:0,class:N(["Layout",r(i).pageClass])},[l(p.$slots,"layout-top",{},void 0,!0),m(pr),m(st,{class:"backdrop",show:r(e),onClick:r(s)},null,8,["show","onClick"]),m(Qa,null,{"nav-bar-title-before":d(()=>[l(p.$slots,"nav-bar-title-before",{},void 0,!0)]),"nav-bar-title-after":d(()=>[l(p.$slots,"nav-bar-title-after",{},void 0,!0)]),"nav-bar-content-before":d(()=>[l(p.$slots,"nav-bar-content-before",{},void 0,!0)]),"nav-bar-content-after":d(()=>[l(p.$slots,"nav-bar-content-after",{},void 0,!0)]),"nav-screen-content-before":d(()=>[l(p.$slots,"nav-screen-content-before",{},void 0,!0)]),"nav-screen-content-after":d(()=>[l(p.$slots,"nav-screen-content-after",{},void 0,!0)]),_:3}),m(Nn,{open:r(e),onOpenMenu:r(t)},null,8,["open","onOpenMenu"]),m(dr,{open:r(e)},{"sidebar-nav-before":d(()=>[l(p.$slots,"sidebar-nav-before",{},void 0,!0)]),"sidebar-nav-after":d(()=>[l(p.$slots,"sidebar-nav-after",{},void 0,!0)]),_:3},8,["open"]),m(un,null,{"page-top":d(()=>[l(p.$slots,"page-top",{},void 0,!0)]),"page-bottom":d(()=>[l(p.$slots,"page-bottom",{},void 0,!0)]),"not-found":d(()=>[l(p.$slots,"not-found",{},void 0,!0)]),"home-hero-before":d(()=>[l(p.$slots,"home-hero-before",{},void 0,!0)]),"home-hero-info-before":d(()=>[l(p.$slots,"home-hero-info-before",{},void 0,!0)]),"home-hero-info":d(()=>[l(p.$slots,"home-hero-info",{},void 0,!0)]),"home-hero-info-after":d(()=>[l(p.$slots,"home-hero-info-after",{},void 0,!0)]),"home-hero-actions-after":d(()=>[l(p.$slots,"home-hero-actions-after",{},void 0,!0)]),"home-hero-image":d(()=>[l(p.$slots,"home-hero-image",{},void 0,!0)]),"home-hero-after":d(()=>[l(p.$slots,"home-hero-after",{},void 0,!0)]),"home-features-before":d(()=>[l(p.$slots,"home-features-before",{},void 0,!0)]),"home-features-after":d(()=>[l(p.$slots,"home-features-after",{},void 0,!0)]),"doc-footer-before":d(()=>[l(p.$slots,"doc-footer-before",{},void 0,!0)]),"doc-before":d(()=>[l(p.$slots,"doc-before",{},void 0,!0)]),"doc-after":d(()=>[l(p.$slots,"doc-after",{},void 0,!0)]),"doc-top":d(()=>[l(p.$slots,"doc-top",{},void 0,!0)]),"doc-bottom":d(()=>[l(p.$slots,"doc-bottom",{},void 0,!0)]),"aside-top":d(()=>[l(p.$slots,"aside-top",{},void 0,!0)]),"aside-bottom":d(()=>[l(p.$slots,"aside-bottom",{},void 0,!0)]),"aside-outline-before":d(()=>[l(p.$slots,"aside-outline-before",{},void 0,!0)]),"aside-outline-after":d(()=>[l(p.$slots,"aside-outline-after",{},void 0,!0)]),"aside-ads-before":d(()=>[l(p.$slots,"aside-ads-before",{},void 0,!0)]),"aside-ads-after":d(()=>[l(p.$slots,"aside-ads-after",{},void 0,!0)]),_:3}),m(hn),l(p.$slots,"layout-bottom",{},void 0,!0)],2)):(a(),k(L,{key:1}))}}}),hr=$(fr,[["__scopeId","data-v-22f859ac"]]),mr={Layout:hr,enhanceApp:({app:o})=>{o.component("Badge",tt)}};export{Us as c,mr as t,P as u};
diff --git a/assets/en_api_api.md.6DYwgQwO.lean.js b/assets/en_api_api.md.6DYwgQwO.lean.js
deleted file mode 100644
index 58581d1..0000000
--- a/assets/en_api_api.md.6DYwgQwO.lean.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as e,c as a,o as t,a4 as p}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp","description":"","frontmatter":{"title":"mbcp","lastUpdated":false,"collapsed":true},"headers":[],"relativePath":"en/api/api.md","filePath":"en/api/api.md"}'),c={name:"en/api/api.md"},o=p("",5),s=[o];function r(i,_,n,d,m,l){return t(),a("div",null,s)}const f=e(c,[["render",r]]);export{b as __pageData,f as default};
diff --git a/assets/en_api_api.md.6DYwgQwO.js b/assets/en_api_api.md.D31N0-_j.js
similarity index 51%
rename from assets/en_api_api.md.6DYwgQwO.js
rename to assets/en_api_api.md.D31N0-_j.js
index a3c0427..d881019 100644
--- a/assets/en_api_api.md.6DYwgQwO.js
+++ b/assets/en_api_api.md.D31N0-_j.js
@@ -1 +1 @@
-import{_ as e,c as a,o as t,a4 as p}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp","description":"","frontmatter":{"title":"mbcp","lastUpdated":false,"collapsed":true},"headers":[],"relativePath":"en/api/api.md","filePath":"en/api/api.md"}'),c={name:"en/api/api.md"},o=p('

mbcp

Description: 本模块是主模块,提供了一些工具 可导入

mbcp.mp_math:数学工具

mbcp.particle:粒子生成工具

mbcp.presets:预设

',5),s=[o];function r(i,_,n,d,m,l){return t(),a("div",null,s)}const f=e(c,[["render",r]]);export{b as __pageData,f as default}; +import{_ as e,c as a,o as t,a4 as p}from"./chunks/framework.DpC1ZpOZ.js";const f=JSON.parse('{"title":"mbcp","description":"","frontmatter":{"title":"mbcp","lastUpdated":false,"collapsed":true},"headers":[],"relativePath":"en/api/api.md","filePath":"en/api/api.md"}'),c={name:"en/api/api.md"},o=p('

mbcp

Description: 本模块是主模块,提供了一些工具 可导入

mbcp.mp_math:数学工具

mbcp.particle:粒子生成工具

mbcp.presets:预设

',5),r=[o];function s(i,_,n,d,m,l){return t(),a("div",null,r)}const b=e(c,[["render",s]]);export{f as __pageData,b as default}; diff --git a/assets/en_api_api.md.D31N0-_j.lean.js b/assets/en_api_api.md.D31N0-_j.lean.js new file mode 100644 index 0000000..52b27f0 --- /dev/null +++ b/assets/en_api_api.md.D31N0-_j.lean.js @@ -0,0 +1 @@ +import{_ as e,c as a,o as t,a4 as p}from"./chunks/framework.DpC1ZpOZ.js";const f=JSON.parse('{"title":"mbcp","description":"","frontmatter":{"title":"mbcp","lastUpdated":false,"collapsed":true},"headers":[],"relativePath":"en/api/api.md","filePath":"en/api/api.md"}'),c={name:"en/api/api.md"},o=p("",5),r=[o];function s(i,_,n,d,m,l){return t(),a("div",null,r)}const b=e(c,[["render",s]]);export{f as __pageData,b as default}; diff --git a/assets/en_api_index.md.CpTS_pfZ.js b/assets/en_api_index.md.CpTS_pfZ.js new file mode 100644 index 0000000..d8d723e --- /dev/null +++ b/assets/en_api_index.md.CpTS_pfZ.js @@ -0,0 +1 @@ +import{_ as e,c as a,o as t,a4 as c}from"./chunks/framework.DpC1ZpOZ.js";const f=JSON.parse('{"title":"mbcp","description":"","frontmatter":{"title":"mbcp","lastUpdated":false,"collapsed":true},"headers":[],"relativePath":"en/api/index.md","filePath":"en/api/index.md"}'),p={name:"en/api/index.md"},o=c('

mbcp

Description: 本模块是主模块,提供了一些工具 可导入

mbcp.mp_math:数学工具

mbcp.particle:粒子生成工具

mbcp.presets:预设

',5),r=[o];function s(n,d,i,_,m,l){return t(),a("div",null,r)}const b=e(p,[["render",s]]);export{f as __pageData,b as default}; diff --git a/assets/en_api_index.md.CpTS_pfZ.lean.js b/assets/en_api_index.md.CpTS_pfZ.lean.js new file mode 100644 index 0000000..d925b97 --- /dev/null +++ b/assets/en_api_index.md.CpTS_pfZ.lean.js @@ -0,0 +1 @@ +import{_ as e,c as a,o as t,a4 as c}from"./chunks/framework.DpC1ZpOZ.js";const f=JSON.parse('{"title":"mbcp","description":"","frontmatter":{"title":"mbcp","lastUpdated":false,"collapsed":true},"headers":[],"relativePath":"en/api/index.md","filePath":"en/api/index.md"}'),p={name:"en/api/index.md"},o=c("",5),r=[o];function s(n,d,i,_,m,l){return t(),a("div",null,r)}const b=e(p,[["render",s]]);export{f as __pageData,b as default}; diff --git a/assets/en_api_index.md.D1elhNgk.js b/assets/en_api_index.md.D1elhNgk.js deleted file mode 100644 index 70fc0c7..0000000 --- a/assets/en_api_index.md.D1elhNgk.js +++ /dev/null @@ -1 +0,0 @@ -import{_ as e,c as t,o as a,a4 as c}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp","description":"","frontmatter":{"title":"mbcp","lastUpdated":false,"collapsed":true},"headers":[],"relativePath":"en/api/index.md","filePath":"en/api/index.md"}'),p={name:"en/api/index.md"},o=c('

mbcp

Description: 本模块是主模块,提供了一些工具 可导入

mbcp.mp_math:数学工具

mbcp.particle:粒子生成工具

mbcp.presets:预设

',5),n=[o];function s(r,d,i,_,m,l){return a(),t("div",null,n)}const f=e(p,[["render",s]]);export{b as __pageData,f as default}; diff --git a/assets/en_api_index.md.D1elhNgk.lean.js b/assets/en_api_index.md.D1elhNgk.lean.js deleted file mode 100644 index b68c312..0000000 --- a/assets/en_api_index.md.D1elhNgk.lean.js +++ /dev/null @@ -1 +0,0 @@ -import{_ as e,c as t,o as a,a4 as c}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp","description":"","frontmatter":{"title":"mbcp","lastUpdated":false,"collapsed":true},"headers":[],"relativePath":"en/api/index.md","filePath":"en/api/index.md"}'),p={name:"en/api/index.md"},o=c("",5),n=[o];function s(r,d,i,_,m,l){return a(),t("div",null,n)}const f=e(p,[["render",s]]);export{b as __pageData,f as default}; diff --git a/assets/en_api_mp_math_vector.md.DMwD59YV.js b/assets/en_api_mp_math_vector.md.BEIFYOwe.js similarity index 96% rename from assets/en_api_mp_math_vector.md.DMwD59YV.js rename to assets/en_api_mp_math_vector.md.BEIFYOwe.js index 86d0e2d..cef3097 100644 --- a/assets/en_api_mp_math_vector.md.DMwD59YV.js +++ b/assets/en_api_mp_math_vector.md.BEIFYOwe.js @@ -1,22 +1,22 @@ -import{_ as s,c as i,o as a,a4 as t}from"./chunks/framework.DpC1ZpOZ.js";const E=JSON.parse('{"title":"mbcp.mp_math.vector","description":"","frontmatter":{"title":"mbcp.mp_math.vector","lastUpdated":false},"headers":[],"relativePath":"en/api/mp_math/vector.md","filePath":"en/api/mp_math/vector.md"}'),n={name:"en/api/mp_math/vector.md"},e=t(`

mbcp.mp_math.vector

Description: 本模块定义了3维向量的类Vector3,以及一些常用的向量。

class Vector3

def __init__(self, x: float, y: float, z: float)

Description: 3维向量

Arguments:

  • x: x轴分量
  • y: y轴分量
  • z: z轴分量
Source code or View on GitHub
python
def __init__(self, x: float, y: float, z: float):
+import{_ as s,c as i,o as a,a4 as t}from"./chunks/framework.DpC1ZpOZ.js";const E=JSON.parse('{"title":"mbcp.mp_math.vector","description":"","frontmatter":{"title":"mbcp.mp_math.vector","lastUpdated":false},"headers":[],"relativePath":"en/api/mp_math/vector.md","filePath":"en/api/mp_math/vector.md"}'),n={name:"en/api/mp_math/vector.md"},e=t(`

mbcp.mp_math.vector

Description: 本模块定义了3维向量的类Vector3,以及一些常用的向量。

class Vector3

def __init__(self, x: float, y: float, z: float)

Description: 3维向量

Arguments:

  • x (float): x轴分量
  • y (float): y轴分量
  • z (float): z轴分量
Source code or View on GitHub
python
def __init__(self, x: float, y: float, z: float):
     """
         3维向量
         Args:
-            x: x轴分量
-            y: y轴分量
-            z: z轴分量
+            x ([\`float\`](https%3A//docs.python.org/3/library/functions.html#float)): x轴分量
+            y (\`float\`): y轴分量
+            z (\`float\`): z轴分量
         """
     self.x = x
     self.y = y
-    self.z = z

def approx(self, other: Vector3, epsilon: float = APPROX) -> bool

Description: 判断两个向量是否近似相等。

Arguments:

  • other:
  • epsilon:

Return: 是否近似相等

Source code or View on GitHub
python
def approx(self, other: 'Vector3', epsilon: float=APPROX) -> bool:
+    self.z = z

def approx(self, other: Vector3, epsilon: float = APPROX) -> bool

Description: 判断两个向量是否近似相等。

Arguments:

Return: bool: 是否近似相等

Source code or View on GitHub
python
def approx(self, other: 'Vector3', epsilon: float=APPROX) -> bool:
     """
         判断两个向量是否近似相等。
         Args:
-            other:
-            epsilon:
+            other ([\`Vector3\`](#class-vector3)): 另一个向量
+            epsilon ([\`float\`](https%3A//docs.python.org/3/library/functions.html#float)): 误差
 
         Returns:
-            是否近似相等
+            [\`bool\`](https%3A//docs.python.org/3/library/functions.html#bool): 是否近似相等
         """
     return all([abs(self.x - other.x) < epsilon, abs(self.y - other.y) < epsilon, abs(self.z - other.z) < epsilon])

def cal_angle(self, other: Vector3) -> AnyAngle

Description: 计算两个向量之间的夹角。

Arguments:

Return: AnyAngle: 夹角

Source code or View on GitHub
python
def cal_angle(self, other: 'Vector3') -> 'AnyAngle':
     """
diff --git a/assets/en_api_mp_math_vector.md.DMwD59YV.lean.js b/assets/en_api_mp_math_vector.md.BEIFYOwe.lean.js
similarity index 100%
rename from assets/en_api_mp_math_vector.md.DMwD59YV.lean.js
rename to assets/en_api_mp_math_vector.md.BEIFYOwe.lean.js
diff --git a/assets/ja_api_api.md.DD7b0jH_.js b/assets/ja_api_api.md.DD7b0jH_.js
new file mode 100644
index 0000000..32b5829
--- /dev/null
+++ b/assets/ja_api_api.md.DD7b0jH_.js
@@ -0,0 +1 @@
+import{_ as a,c as e,o as t,a4 as p}from"./chunks/framework.DpC1ZpOZ.js";const f=JSON.parse('{"title":"mbcp","description":"","frontmatter":{"title":"mbcp","lastUpdated":false,"collapsed":true},"headers":[],"relativePath":"ja/api/api.md","filePath":"ja/api/api.md"}'),c={name:"ja/api/api.md"},o=p('

mbcp

説明: 本模块是主模块,提供了一些工具 可导入

mbcp.mp_math:数学工具

mbcp.particle:粒子生成工具

mbcp.presets:预设

',5),r=[o];function s(_,i,d,m,n,l){return t(),e("div",null,r)}const b=a(c,[["render",s]]);export{f as __pageData,b as default}; diff --git a/assets/ja_api_api.md.DD7b0jH_.lean.js b/assets/ja_api_api.md.DD7b0jH_.lean.js new file mode 100644 index 0000000..b3b68cf --- /dev/null +++ b/assets/ja_api_api.md.DD7b0jH_.lean.js @@ -0,0 +1 @@ +import{_ as a,c as e,o as t,a4 as p}from"./chunks/framework.DpC1ZpOZ.js";const f=JSON.parse('{"title":"mbcp","description":"","frontmatter":{"title":"mbcp","lastUpdated":false,"collapsed":true},"headers":[],"relativePath":"ja/api/api.md","filePath":"ja/api/api.md"}'),c={name:"ja/api/api.md"},o=p("",5),r=[o];function s(_,i,d,m,n,l){return t(),e("div",null,r)}const b=a(c,[["render",s]]);export{f as __pageData,b as default}; diff --git a/assets/ja_api_api.md.GOuCj9Bq.js b/assets/ja_api_api.md.GOuCj9Bq.js deleted file mode 100644 index c3832c0..0000000 --- a/assets/ja_api_api.md.GOuCj9Bq.js +++ /dev/null @@ -1 +0,0 @@ -import{_ as e,c as a,o as t,a4 as p}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp","description":"","frontmatter":{"title":"mbcp","lastUpdated":false,"collapsed":true},"headers":[],"relativePath":"ja/api/api.md","filePath":"ja/api/api.md"}'),c={name:"ja/api/api.md"},o=p('

mbcp

説明: 本模块是主模块,提供了一些工具 可导入

mbcp.mp_math:数学工具

mbcp.particle:粒子生成工具

mbcp.presets:预设

',5),s=[o];function r(_,i,d,n,m,l){return t(),a("div",null,s)}const f=e(c,[["render",r]]);export{b as __pageData,f as default}; diff --git a/assets/ja_api_api.md.GOuCj9Bq.lean.js b/assets/ja_api_api.md.GOuCj9Bq.lean.js deleted file mode 100644 index ad52f81..0000000 --- a/assets/ja_api_api.md.GOuCj9Bq.lean.js +++ /dev/null @@ -1 +0,0 @@ -import{_ as e,c as a,o as t,a4 as p}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp","description":"","frontmatter":{"title":"mbcp","lastUpdated":false,"collapsed":true},"headers":[],"relativePath":"ja/api/api.md","filePath":"ja/api/api.md"}'),c={name:"ja/api/api.md"},o=p("",5),s=[o];function r(_,i,d,n,m,l){return t(),a("div",null,s)}const f=e(c,[["render",r]]);export{b as __pageData,f as default}; diff --git a/assets/ja_api_index.md.DcZ9h1gI.js b/assets/ja_api_index.md.3bCCqhm9.js similarity index 51% rename from assets/ja_api_index.md.DcZ9h1gI.js rename to assets/ja_api_index.md.3bCCqhm9.js index dc67d98..b2e76d6 100644 --- a/assets/ja_api_index.md.DcZ9h1gI.js +++ b/assets/ja_api_index.md.3bCCqhm9.js @@ -1 +1 @@ -import{_ as e,c as a,o as t,a4 as c}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp","description":"","frontmatter":{"title":"mbcp","lastUpdated":false,"collapsed":true},"headers":[],"relativePath":"ja/api/index.md","filePath":"ja/api/index.md"}'),p={name:"ja/api/index.md"},o=c('

mbcp

説明: 本模块是主模块,提供了一些工具 可导入

mbcp.mp_math:数学工具

mbcp.particle:粒子生成工具

mbcp.presets:预设

',5),s=[o];function d(r,_,n,i,m,l){return t(),a("div",null,s)}const f=e(p,[["render",d]]);export{b as __pageData,f as default}; +import{_ as e,c as a,o as t,a4 as c}from"./chunks/framework.DpC1ZpOZ.js";const f=JSON.parse('{"title":"mbcp","description":"","frontmatter":{"title":"mbcp","lastUpdated":false,"collapsed":true},"headers":[],"relativePath":"ja/api/index.md","filePath":"ja/api/index.md"}'),p={name:"ja/api/index.md"},o=c('

mbcp

説明: 本模块是主模块,提供了一些工具 可导入

mbcp.mp_math:数学工具

mbcp.particle:粒子生成工具

mbcp.presets:预设

',5),r=[o];function s(d,_,i,n,m,l){return t(),a("div",null,r)}const b=e(p,[["render",s]]);export{f as __pageData,b as default}; diff --git a/assets/ja_api_index.md.3bCCqhm9.lean.js b/assets/ja_api_index.md.3bCCqhm9.lean.js new file mode 100644 index 0000000..b8d3a89 --- /dev/null +++ b/assets/ja_api_index.md.3bCCqhm9.lean.js @@ -0,0 +1 @@ +import{_ as e,c as a,o as t,a4 as c}from"./chunks/framework.DpC1ZpOZ.js";const f=JSON.parse('{"title":"mbcp","description":"","frontmatter":{"title":"mbcp","lastUpdated":false,"collapsed":true},"headers":[],"relativePath":"ja/api/index.md","filePath":"ja/api/index.md"}'),p={name:"ja/api/index.md"},o=c("",5),r=[o];function s(d,_,i,n,m,l){return t(),a("div",null,r)}const b=e(p,[["render",s]]);export{f as __pageData,b as default}; diff --git a/assets/ja_api_index.md.DcZ9h1gI.lean.js b/assets/ja_api_index.md.DcZ9h1gI.lean.js deleted file mode 100644 index b715587..0000000 --- a/assets/ja_api_index.md.DcZ9h1gI.lean.js +++ /dev/null @@ -1 +0,0 @@ -import{_ as e,c as a,o as t,a4 as c}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp","description":"","frontmatter":{"title":"mbcp","lastUpdated":false,"collapsed":true},"headers":[],"relativePath":"ja/api/index.md","filePath":"ja/api/index.md"}'),p={name:"ja/api/index.md"},o=c("",5),s=[o];function d(r,_,n,i,m,l){return t(),a("div",null,s)}const f=e(p,[["render",d]]);export{b as __pageData,f as default}; diff --git a/assets/ja_api_mp_math_vector.md.PFGJik39.js b/assets/ja_api_mp_math_vector.md.mfFeokXv.js similarity index 95% rename from assets/ja_api_mp_math_vector.md.PFGJik39.js rename to assets/ja_api_mp_math_vector.md.mfFeokXv.js index 743c1f2..7a056d3 100644 --- a/assets/ja_api_mp_math_vector.md.PFGJik39.js +++ b/assets/ja_api_mp_math_vector.md.mfFeokXv.js @@ -1,22 +1,22 @@ -import{_ as s,c as i,o as a,a4 as t}from"./chunks/framework.DpC1ZpOZ.js";const E=JSON.parse('{"title":"mbcp.mp_math.vector","description":"","frontmatter":{"title":"mbcp.mp_math.vector","lastUpdated":false},"headers":[],"relativePath":"ja/api/mp_math/vector.md","filePath":"ja/api/mp_math/vector.md"}'),n={name:"ja/api/mp_math/vector.md"},e=t(`

mbcp.mp_math.vector

説明: 本模块定义了3维向量的类Vector3,以及一些常用的向量。

class Vector3

def __init__(self, x: float, y: float, z: float)

説明: 3维向量

引数:

  • x: x轴分量
  • y: y轴分量
  • z: z轴分量
ソースコード または GitHubで表示
python
def __init__(self, x: float, y: float, z: float):
+import{_ as s,c as i,o as a,a4 as t}from"./chunks/framework.DpC1ZpOZ.js";const E=JSON.parse('{"title":"mbcp.mp_math.vector","description":"","frontmatter":{"title":"mbcp.mp_math.vector","lastUpdated":false},"headers":[],"relativePath":"ja/api/mp_math/vector.md","filePath":"ja/api/mp_math/vector.md"}'),n={name:"ja/api/mp_math/vector.md"},e=t(`

mbcp.mp_math.vector

説明: 本模块定义了3维向量的类Vector3,以及一些常用的向量。

class Vector3

def __init__(self, x: float, y: float, z: float)

説明: 3维向量

引数:

  • x (float): x轴分量
  • y (float): y轴分量
  • z (float): z轴分量
ソースコード または GitHubで表示
python
def __init__(self, x: float, y: float, z: float):
     """
         3维向量
         Args:
-            x: x轴分量
-            y: y轴分量
-            z: z轴分量
+            x ([\`float\`](https%3A//docs.python.org/3/library/functions.html#float)): x轴分量
+            y (\`float\`): y轴分量
+            z (\`float\`): z轴分量
         """
     self.x = x
     self.y = y
-    self.z = z

def approx(self, other: Vector3, epsilon: float = APPROX) -> bool

説明: 判断两个向量是否近似相等。

引数:

  • other:
  • epsilon:

戻り値: 是否近似相等

ソースコード または GitHubで表示
python
def approx(self, other: 'Vector3', epsilon: float=APPROX) -> bool:
+    self.z = z

def approx(self, other: Vector3, epsilon: float = APPROX) -> bool

説明: 判断两个向量是否近似相等。

引数:

戻り値: bool: 是否近似相等

ソースコード または GitHubで表示
python
def approx(self, other: 'Vector3', epsilon: float=APPROX) -> bool:
     """
         判断两个向量是否近似相等。
         Args:
-            other:
-            epsilon:
+            other ([\`Vector3\`](#class-vector3)): 另一个向量
+            epsilon ([\`float\`](https%3A//docs.python.org/3/library/functions.html#float)): 误差
 
         Returns:
-            是否近似相等
+            [\`bool\`](https%3A//docs.python.org/3/library/functions.html#bool): 是否近似相等
         """
     return all([abs(self.x - other.x) < epsilon, abs(self.y - other.y) < epsilon, abs(self.z - other.z) < epsilon])

def cal_angle(self, other: Vector3) -> AnyAngle

説明: 计算两个向量之间的夹角。

引数:

戻り値: AnyAngle: 夹角

ソースコード または GitHubで表示
python
def cal_angle(self, other: 'Vector3') -> 'AnyAngle':
     """
diff --git a/assets/ja_api_mp_math_vector.md.PFGJik39.lean.js b/assets/ja_api_mp_math_vector.md.mfFeokXv.lean.js
similarity index 100%
rename from assets/ja_api_mp_math_vector.md.PFGJik39.lean.js
rename to assets/ja_api_mp_math_vector.md.mfFeokXv.lean.js
diff --git a/assets/zht_api_api.md.Ceti9rhA.js b/assets/zht_api_api.md.Ceti9rhA.js
deleted file mode 100644
index 5c6770d..0000000
--- a/assets/zht_api_api.md.Ceti9rhA.js
+++ /dev/null
@@ -1 +0,0 @@
-import{_ as e,c as t,o as a,a4 as p}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp","description":"","frontmatter":{"title":"mbcp","lastUpdated":false,"collapsed":true},"headers":[],"relativePath":"zht/api/api.md","filePath":"zht/api/api.md"}'),c={name:"zht/api/api.md"},o=p('

mbcp

説明: 本模块是主模块,提供了一些工具 可导入

mbcp.mp_math:数学工具

mbcp.particle:粒子生成工具

mbcp.presets:预设

',5),s=[o];function r(_,i,d,n,m,l){return a(),t("div",null,s)}const f=e(c,[["render",r]]);export{b as __pageData,f as default}; diff --git a/assets/zht_api_api.md.Ceti9rhA.lean.js b/assets/zht_api_api.md.Ceti9rhA.lean.js deleted file mode 100644 index 940b16c..0000000 --- a/assets/zht_api_api.md.Ceti9rhA.lean.js +++ /dev/null @@ -1 +0,0 @@ -import{_ as e,c as t,o as a,a4 as p}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp","description":"","frontmatter":{"title":"mbcp","lastUpdated":false,"collapsed":true},"headers":[],"relativePath":"zht/api/api.md","filePath":"zht/api/api.md"}'),c={name:"zht/api/api.md"},o=p("",5),s=[o];function r(_,i,d,n,m,l){return a(),t("div",null,s)}const f=e(c,[["render",r]]);export{b as __pageData,f as default}; diff --git a/assets/zht_api_api.md.DgGLhN7H.js b/assets/zht_api_api.md.DgGLhN7H.js new file mode 100644 index 0000000..95a4367 --- /dev/null +++ b/assets/zht_api_api.md.DgGLhN7H.js @@ -0,0 +1 @@ +import{_ as e,c as a,o as t,a4 as p}from"./chunks/framework.DpC1ZpOZ.js";const f=JSON.parse('{"title":"mbcp","description":"","frontmatter":{"title":"mbcp","lastUpdated":false,"collapsed":true},"headers":[],"relativePath":"zht/api/api.md","filePath":"zht/api/api.md"}'),c={name:"zht/api/api.md"},o=p('

mbcp

説明: 本模块是主模块,提供了一些工具 可导入

mbcp.mp_math:数学工具

mbcp.particle:粒子生成工具

mbcp.presets:预设

',5),r=[o];function s(_,i,d,m,n,l){return t(),a("div",null,r)}const b=e(c,[["render",s]]);export{f as __pageData,b as default}; diff --git a/assets/zht_api_api.md.DgGLhN7H.lean.js b/assets/zht_api_api.md.DgGLhN7H.lean.js new file mode 100644 index 0000000..772aec3 --- /dev/null +++ b/assets/zht_api_api.md.DgGLhN7H.lean.js @@ -0,0 +1 @@ +import{_ as e,c as a,o as t,a4 as p}from"./chunks/framework.DpC1ZpOZ.js";const f=JSON.parse('{"title":"mbcp","description":"","frontmatter":{"title":"mbcp","lastUpdated":false,"collapsed":true},"headers":[],"relativePath":"zht/api/api.md","filePath":"zht/api/api.md"}'),c={name:"zht/api/api.md"},o=p("",5),r=[o];function s(_,i,d,m,n,l){return t(),a("div",null,r)}const b=e(c,[["render",s]]);export{f as __pageData,b as default}; diff --git a/assets/zht_api_index.md.D2vE-hK0.lean.js b/assets/zht_api_index.md.D2vE-hK0.lean.js deleted file mode 100644 index 5545469..0000000 --- a/assets/zht_api_index.md.D2vE-hK0.lean.js +++ /dev/null @@ -1 +0,0 @@ -import{_ as e,c as t,o as a,a4 as c}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp","description":"","frontmatter":{"title":"mbcp","lastUpdated":false,"collapsed":true},"headers":[],"relativePath":"zht/api/index.md","filePath":"zht/api/index.md"}'),p={name:"zht/api/index.md"},o=c("",5),s=[o];function d(r,_,n,i,m,l){return a(),t("div",null,s)}const f=e(p,[["render",d]]);export{b as __pageData,f as default}; diff --git a/assets/zht_api_index.md.D2vE-hK0.js b/assets/zht_api_index.md.DNSdsCcq.js similarity index 51% rename from assets/zht_api_index.md.D2vE-hK0.js rename to assets/zht_api_index.md.DNSdsCcq.js index 965521c..d211cc3 100644 --- a/assets/zht_api_index.md.D2vE-hK0.js +++ b/assets/zht_api_index.md.DNSdsCcq.js @@ -1 +1 @@ -import{_ as e,c as t,o as a,a4 as c}from"./chunks/framework.DpC1ZpOZ.js";const b=JSON.parse('{"title":"mbcp","description":"","frontmatter":{"title":"mbcp","lastUpdated":false,"collapsed":true},"headers":[],"relativePath":"zht/api/index.md","filePath":"zht/api/index.md"}'),p={name:"zht/api/index.md"},o=c('

mbcp

説明: 本模块是主模块,提供了一些工具 可导入

mbcp.mp_math:数学工具

mbcp.particle:粒子生成工具

mbcp.presets:预设

',5),s=[o];function d(r,_,n,i,m,l){return a(),t("div",null,s)}const f=e(p,[["render",d]]);export{b as __pageData,f as default}; +import{_ as e,c as t,o as a,a4 as c}from"./chunks/framework.DpC1ZpOZ.js";const f=JSON.parse('{"title":"mbcp","description":"","frontmatter":{"title":"mbcp","lastUpdated":false,"collapsed":true},"headers":[],"relativePath":"zht/api/index.md","filePath":"zht/api/index.md"}'),p={name:"zht/api/index.md"},o=c('

mbcp

説明: 本模块是主模块,提供了一些工具 可导入

mbcp.mp_math:数学工具

mbcp.particle:粒子生成工具

mbcp.presets:预设

',5),r=[o];function s(d,_,i,n,m,l){return a(),t("div",null,r)}const b=e(p,[["render",s]]);export{f as __pageData,b as default}; diff --git a/assets/zht_api_index.md.DNSdsCcq.lean.js b/assets/zht_api_index.md.DNSdsCcq.lean.js new file mode 100644 index 0000000..2c1fc39 --- /dev/null +++ b/assets/zht_api_index.md.DNSdsCcq.lean.js @@ -0,0 +1 @@ +import{_ as e,c as t,o as a,a4 as c}from"./chunks/framework.DpC1ZpOZ.js";const f=JSON.parse('{"title":"mbcp","description":"","frontmatter":{"title":"mbcp","lastUpdated":false,"collapsed":true},"headers":[],"relativePath":"zht/api/index.md","filePath":"zht/api/index.md"}'),p={name:"zht/api/index.md"},o=c("",5),r=[o];function s(d,_,i,n,m,l){return a(),t("div",null,r)}const b=e(p,[["render",s]]);export{f as __pageData,b as default}; diff --git a/assets/zht_api_mp_math_vector.md.CelHQ_68.js b/assets/zht_api_mp_math_vector.md.vRujd3bN.js similarity index 95% rename from assets/zht_api_mp_math_vector.md.CelHQ_68.js rename to assets/zht_api_mp_math_vector.md.vRujd3bN.js index 4b97b73..f3580dd 100644 --- a/assets/zht_api_mp_math_vector.md.CelHQ_68.js +++ b/assets/zht_api_mp_math_vector.md.vRujd3bN.js @@ -1,22 +1,22 @@ -import{_ as s,c as i,o as a,a4 as t}from"./chunks/framework.DpC1ZpOZ.js";const E=JSON.parse('{"title":"mbcp.mp_math.vector","description":"","frontmatter":{"title":"mbcp.mp_math.vector","lastUpdated":false},"headers":[],"relativePath":"zht/api/mp_math/vector.md","filePath":"zht/api/mp_math/vector.md"}'),n={name:"zht/api/mp_math/vector.md"},e=t(`

mbcp.mp_math.vector

説明: 本模块定义了3维向量的类Vector3,以及一些常用的向量。

class Vector3

def __init__(self, x: float, y: float, z: float)

説明: 3维向量

變數説明:

  • x: x轴分量
  • y: y轴分量
  • z: z轴分量
源碼於GitHub上查看
python
def __init__(self, x: float, y: float, z: float):
+import{_ as s,c as i,o as a,a4 as t}from"./chunks/framework.DpC1ZpOZ.js";const E=JSON.parse('{"title":"mbcp.mp_math.vector","description":"","frontmatter":{"title":"mbcp.mp_math.vector","lastUpdated":false},"headers":[],"relativePath":"zht/api/mp_math/vector.md","filePath":"zht/api/mp_math/vector.md"}'),n={name:"zht/api/mp_math/vector.md"},e=t(`

mbcp.mp_math.vector

説明: 本模块定义了3维向量的类Vector3,以及一些常用的向量。

class Vector3

def __init__(self, x: float, y: float, z: float)

説明: 3维向量

變數説明:

  • x (float): x轴分量
  • y (float): y轴分量
  • z (float): z轴分量
源碼於GitHub上查看
python
def __init__(self, x: float, y: float, z: float):
     """
         3维向量
         Args:
-            x: x轴分量
-            y: y轴分量
-            z: z轴分量
+            x ([\`float\`](https%3A//docs.python.org/3/library/functions.html#float)): x轴分量
+            y (\`float\`): y轴分量
+            z (\`float\`): z轴分量
         """
     self.x = x
     self.y = y
-    self.z = z

def approx(self, other: Vector3, epsilon: float = APPROX) -> bool

説明: 判断两个向量是否近似相等。

變數説明:

  • other:
  • epsilon:

返回: 是否近似相等

源碼於GitHub上查看
python
def approx(self, other: 'Vector3', epsilon: float=APPROX) -> bool:
+    self.z = z

def approx(self, other: Vector3, epsilon: float = APPROX) -> bool

説明: 判断两个向量是否近似相等。

變數説明:

返回: bool: 是否近似相等

源碼於GitHub上查看
python
def approx(self, other: 'Vector3', epsilon: float=APPROX) -> bool:
     """
         判断两个向量是否近似相等。
         Args:
-            other:
-            epsilon:
+            other ([\`Vector3\`](#class-vector3)): 另一个向量
+            epsilon ([\`float\`](https%3A//docs.python.org/3/library/functions.html#float)): 误差
 
         Returns:
-            是否近似相等
+            [\`bool\`](https%3A//docs.python.org/3/library/functions.html#bool): 是否近似相等
         """
     return all([abs(self.x - other.x) < epsilon, abs(self.y - other.y) < epsilon, abs(self.z - other.z) < epsilon])

def cal_angle(self, other: Vector3) -> AnyAngle

説明: 计算两个向量之间的夹角。

變數説明:

返回: AnyAngle: 夹角

源碼於GitHub上查看
python
def cal_angle(self, other: 'Vector3') -> 'AnyAngle':
     """
diff --git a/assets/zht_api_mp_math_vector.md.CelHQ_68.lean.js b/assets/zht_api_mp_math_vector.md.vRujd3bN.lean.js
similarity index 100%
rename from assets/zht_api_mp_math_vector.md.CelHQ_68.lean.js
rename to assets/zht_api_mp_math_vector.md.vRujd3bN.lean.js
diff --git a/demo/index.html b/demo/index.html
index 99cef78..8f49201 100644
--- a/demo/index.html
+++ b/demo/index.html
@@ -8,8 +8,8 @@
     
     
     
-    
-    
+    
+    
     
     
     
@@ -19,7 +19,7 @@
   
   
     
Skip to content

文档由 VitePress 构建 | API引用由 litedoc 生成

- + \ No newline at end of file diff --git a/en/api/api.html b/en/api/api.html index f14fe9c..299a7e6 100644 --- a/en/api/api.html +++ b/en/api/api.html @@ -8,18 +8,18 @@ - - + + - + -
Skip to content

mbcp

Description: 本模块是主模块,提供了一些工具 可导入

mbcp.mp_math:数学工具

mbcp.particle:粒子生成工具

mbcp.presets:预设

Documentation built with VitePress | API references generated by litedoc

- + + \ No newline at end of file diff --git a/en/api/index.html b/en/api/index.html index 4e1f1d0..4cb9c5c 100644 --- a/en/api/index.html +++ b/en/api/index.html @@ -8,18 +8,18 @@ - - + + - + -
Skip to content

mbcp

Description: 本模块是主模块,提供了一些工具 可导入

mbcp.mp_math:数学工具

mbcp.particle:粒子生成工具

mbcp.presets:预设

Documentation built with VitePress | API references generated by litedoc

- + + \ No newline at end of file diff --git a/en/api/mp_math/angle.html b/en/api/mp_math/angle.html index 9185a0b..d452856 100644 --- a/en/api/mp_math/angle.html +++ b/en/api/mp_math/angle.html @@ -8,8 +8,8 @@ - - + + @@ -117,7 +117,7 @@ if isinstance(other, AnyAngle): return self.radian / other.radian return AnyAngle(self.radian / other, is_radian=True)

Documentation built with VitePress | API references generated by litedoc

- + \ No newline at end of file diff --git a/en/api/mp_math/const.html b/en/api/mp_math/const.html index 4566eee..9cc428f 100644 --- a/en/api/mp_math/const.html +++ b/en/api/mp_math/const.html @@ -8,8 +8,8 @@ - - + + @@ -19,7 +19,7 @@
Skip to content

mbcp.mp_math.const

Description: 本模块定义了一些常用的常量

var PI

  • Description: 常量 π

  • Default: math.pi

var E

  • Description: 自然对数的底 exp(1)

  • Default: math.e

var GOLDEN_RATIO

  • Description: 黄金分割比

  • Default: (1 + math.sqrt(5)) / 2

var GAMMA

  • Description: 欧拉常数

  • Default: 0.5772156649015329

var EPSILON

  • Description: 精度误差

  • Default: 0.0001

var APPROX

  • Description: 约等于判定误差

  • Default: 0.001

Documentation built with VitePress | API references generated by litedoc

- + \ No newline at end of file diff --git a/en/api/mp_math/equation.html b/en/api/mp_math/equation.html index 57ef480..387d786 100644 --- a/en/api/mp_math/equation.html +++ b/en/api/mp_math/equation.html @@ -8,8 +8,8 @@ - - + + @@ -83,7 +83,7 @@ return high_order_partial_derivative_func else: raise ValueError('Invalid var type')
- + \ No newline at end of file diff --git a/en/api/mp_math/function.html b/en/api/mp_math/function.html index 6a4c6a5..91132d0 100644 --- a/en/api/mp_math/function.html +++ b/en/api/mp_math/function.html @@ -8,8 +8,8 @@ - - + + @@ -60,7 +60,7 @@ """@litedoc-hide""" return func(*args, *args2) return curried_func - + \ No newline at end of file diff --git a/en/api/mp_math/index.html b/en/api/mp_math/index.html index 61fd3e5..df34185 100644 --- a/en/api/mp_math/index.html +++ b/en/api/mp_math/index.html @@ -8,8 +8,8 @@ - - + + @@ -19,7 +19,7 @@
Skip to content

mbcp.mp_math

Description: 本包定义了一些常用的导入,可直接从mbcp.mp_math导入使用 导入的类有:

Documentation built with VitePress | API references generated by litedoc

- + \ No newline at end of file diff --git a/en/api/mp_math/line.html b/en/api/mp_math/line.html index 65e88ec..b5e026e 100644 --- a/en/api/mp_math/line.html +++ b/en/api/mp_math/line.html @@ -8,8 +8,8 @@ - - + + @@ -192,7 +192,7 @@ [`bool`](https%3A//docs.python.org/3/library/functions.html#bool): 是否等价 """ return self.direction.is_parallel(other.direction) and (self.point - other.point).is_parallel(self.direction) - + \ No newline at end of file diff --git a/en/api/mp_math/mp_math.html b/en/api/mp_math/mp_math.html index b24ee51..66eb559 100644 --- a/en/api/mp_math/mp_math.html +++ b/en/api/mp_math/mp_math.html @@ -8,8 +8,8 @@ - - + + @@ -19,7 +19,7 @@
Skip to content

mbcp.mp_math

Description: 本包定义了一些常用的导入,可直接从mbcp.mp_math导入使用 导入的类有:

Documentation built with VitePress | API references generated by litedoc

- + \ No newline at end of file diff --git a/en/api/mp_math/mp_math_typing.html b/en/api/mp_math/mp_math_typing.html index 4f2edc6..6eea965 100644 --- a/en/api/mp_math/mp_math_typing.html +++ b/en/api/mp_math/mp_math_typing.html @@ -8,8 +8,8 @@ - - + + @@ -19,7 +19,7 @@
Skip to content

mbcp.mp_math.mp_math_typing

Description: 本模块用于内部类型提示

var RealNumber

  • Description: 实数

  • Type: TypeAlias

  • Default: int | float

var Number

  • Description: 数

  • Type: TypeAlias

  • Default: RealNumber | complex

var SingleVar

  • Description: 单变量

  • Default: TypeVar('SingleVar', bound=Number)

var ArrayVar

  • Description: 数组变量

  • Default: TypeVar('ArrayVar', bound=Iterable[Number])

var Var

  • Description: 变量

  • Type: TypeAlias

  • Default: SingleVar | ArrayVar

var OneSingleVarFunc

  • Description: 一元单变量函数

  • Type: TypeAlias

  • Default: Callable[[SingleVar], SingleVar]

var OneArrayFunc

  • Description: 一元数组函数

  • Type: TypeAlias

  • Default: Callable[[ArrayVar], ArrayVar]

var OneVarFunc

  • Description: 一元函数

  • Type: TypeAlias

  • Default: OneSingleVarFunc | OneArrayFunc

var TwoSingleVarsFunc

  • Description: 二元单变量函数

  • Type: TypeAlias

  • Default: Callable[[SingleVar, SingleVar], SingleVar]

var TwoArraysFunc

  • Description: 二元数组函数

  • Type: TypeAlias

  • Default: Callable[[ArrayVar, ArrayVar], ArrayVar]

var TwoVarsFunc

  • Description: 二元函数

  • Type: TypeAlias

  • Default: TwoSingleVarsFunc | TwoArraysFunc

var ThreeSingleVarsFunc

  • Description: 三元单变量函数

  • Type: TypeAlias

  • Default: Callable[[SingleVar, SingleVar, SingleVar], SingleVar]

var ThreeArraysFunc

  • Description: 三元数组函数

  • Type: TypeAlias

  • Default: Callable[[ArrayVar, ArrayVar, ArrayVar], ArrayVar]

var ThreeVarsFunc

  • Description: 三元函数

  • Type: TypeAlias

  • Default: ThreeSingleVarsFunc | ThreeArraysFunc

var MultiSingleVarsFunc

  • Description: 多元单变量函数

  • Type: TypeAlias

  • Default: Callable[..., SingleVar]

var MultiArraysFunc

  • Description: 多元数组函数

  • Type: TypeAlias

  • Default: Callable[..., ArrayVar]

var MultiVarsFunc

  • Description: 多元函数

  • Type: TypeAlias

  • Default: MultiSingleVarsFunc | MultiArraysFunc

Documentation built with VitePress | API references generated by litedoc

- + \ No newline at end of file diff --git a/en/api/mp_math/plane.html b/en/api/mp_math/plane.html index 8fd75f0..79d9e00 100644 --- a/en/api/mp_math/plane.html +++ b/en/api/mp_math/plane.html @@ -8,8 +8,8 @@ - - + + @@ -224,7 +224,7 @@ """ return self.approx(other)

def __rand__(self, other: Line3) -> Point3

Source code or View on GitHub
python
def __rand__(self, other: 'Line3') -> 'Point3':
     return self.cal_intersection_point3(other)
- + \ No newline at end of file diff --git a/en/api/mp_math/point.html b/en/api/mp_math/point.html index 26fd041..4226203 100644 --- a/en/api/mp_math/point.html +++ b/en/api/mp_math/point.html @@ -8,8 +8,8 @@ - - + + @@ -70,7 +70,7 @@ """ from .vector import Vector3 return Vector3(self.x - other.x, self.y - other.y, self.z - other.z) - + \ No newline at end of file diff --git a/en/api/mp_math/segment.html b/en/api/mp_math/segment.html index 937f1ae..0d4aefd 100644 --- a/en/api/mp_math/segment.html +++ b/en/api/mp_math/segment.html @@ -8,8 +8,8 @@ - - + + @@ -33,7 +33,7 @@ self.length = self.direction.length '中心点' self.midpoint = Point3((self.p1.x + self.p2.x) / 2, (self.p1.y + self.p2.y) / 2, (self.p1.z + self.p2.z) / 2) - + \ No newline at end of file diff --git a/en/api/mp_math/utils.html b/en/api/mp_math/utils.html index 9e46b79..00ee7f5 100644 --- a/en/api/mp_math/utils.html +++ b/en/api/mp_math/utils.html @@ -8,8 +8,8 @@ - - + + @@ -87,7 +87,7 @@ return f'-{abs(x)}' else: return '' - + \ No newline at end of file diff --git a/en/api/mp_math/vector.html b/en/api/mp_math/vector.html index 4c7ea94..d3b9a25 100644 --- a/en/api/mp_math/vector.html +++ b/en/api/mp_math/vector.html @@ -8,35 +8,35 @@ - - + + - + -
Skip to content

mbcp.mp_math.vector

Description: 本模块定义了3维向量的类Vector3,以及一些常用的向量。

class Vector3

def __init__(self, x: float, y: float, z: float)

Description: 3维向量

Arguments:

  • x: x轴分量
  • y: y轴分量
  • z: z轴分量
Source code or View on GitHub
python
def __init__(self, x: float, y: float, z: float):
+    
Skip to content

mbcp.mp_math.vector

Description: 本模块定义了3维向量的类Vector3,以及一些常用的向量。

class Vector3

def __init__(self, x: float, y: float, z: float)

Description: 3维向量

Arguments:

  • x (float): x轴分量
  • y (float): y轴分量
  • z (float): z轴分量
Source code or View on GitHub
python
def __init__(self, x: float, y: float, z: float):
     """
         3维向量
         Args:
-            x: x轴分量
-            y: y轴分量
-            z: z轴分量
+            x ([`float`](https%3A//docs.python.org/3/library/functions.html#float)): x轴分量
+            y (`float`): y轴分量
+            z (`float`): z轴分量
         """
     self.x = x
     self.y = y
-    self.z = z

def approx(self, other: Vector3, epsilon: float = APPROX) -> bool

Description: 判断两个向量是否近似相等。

Arguments:

  • other:
  • epsilon:

Return: 是否近似相等

Source code or View on GitHub
python
def approx(self, other: 'Vector3', epsilon: float=APPROX) -> bool:
+    self.z = z

def approx(self, other: Vector3, epsilon: float = APPROX) -> bool

Description: 判断两个向量是否近似相等。

Arguments:

Return: bool: 是否近似相等

Source code or View on GitHub
python
def approx(self, other: 'Vector3', epsilon: float=APPROX) -> bool:
     """
         判断两个向量是否近似相等。
         Args:
-            other:
-            epsilon:
+            other ([`Vector3`](#class-vector3)): 另一个向量
+            epsilon ([`float`](https%3A//docs.python.org/3/library/functions.html#float)): 误差
 
         Returns:
-            是否近似相等
+            [`bool`](https%3A//docs.python.org/3/library/functions.html#bool): 是否近似相等
         """
     return all([abs(self.x - other.x) < epsilon, abs(self.y - other.y) < epsilon, abs(self.z - other.z) < epsilon])

def cal_angle(self, other: Vector3) -> AnyAngle

Description: 计算两个向量之间的夹角。

Arguments:

Return: AnyAngle: 夹角

Source code or View on GitHub
python
def cal_angle(self, other: 'Vector3') -> 'AnyAngle':
     """
@@ -215,7 +215,7 @@
             [`Vector3`](#class-vector3): 负向量
         """
     return Vector3(-self.x, -self.y, -self.z)

var zero_vector3

  • Description: 零向量

  • Type: Vector3

  • Default: Vector3(0, 0, 0)

var x_axis

  • Description: x轴单位向量

  • Type: Vector3

  • Default: Vector3(1, 0, 0)

var y_axis

  • Description: y轴单位向量

  • Type: Vector3

  • Default: Vector3(0, 1, 0)

var z_axis

  • Description: z轴单位向量

  • Type: Vector3

  • Default: Vector3(0, 0, 1)

Documentation built with VitePress | API references generated by litedoc

- + \ No newline at end of file diff --git a/en/api/particle/index.html b/en/api/particle/index.html index ec6677c..5492c3c 100644 --- a/en/api/particle/index.html +++ b/en/api/particle/index.html @@ -8,8 +8,8 @@ - - + + @@ -19,7 +19,7 @@ - + \ No newline at end of file diff --git a/en/api/particle/particle.html b/en/api/particle/particle.html index 40908d7..f773963 100644 --- a/en/api/particle/particle.html +++ b/en/api/particle/particle.html @@ -8,8 +8,8 @@ - - + + @@ -19,7 +19,7 @@ - + \ No newline at end of file diff --git a/en/api/presets/index.html b/en/api/presets/index.html index 251e2be..99dedaa 100644 --- a/en/api/presets/index.html +++ b/en/api/presets/index.html @@ -8,8 +8,8 @@ - - + + @@ -19,7 +19,7 @@ - + \ No newline at end of file diff --git a/en/api/presets/model/index.html b/en/api/presets/model/index.html index c251af1..672cc72 100644 --- a/en/api/presets/model/index.html +++ b/en/api/presets/model/index.html @@ -8,8 +8,8 @@ - - + + @@ -36,7 +36,7 @@ y_array = radius * np.sin(phi_list) * np.sin(theta_list) z_array = radius * np.cos(phi_list) return [Point3(x_array[i], y_array[i], z_array[i]) for i in range(num)]

Documentation built with VitePress | API references generated by litedoc

- + \ No newline at end of file diff --git a/en/api/presets/model/model.html b/en/api/presets/model/model.html index f3e4ee3..3fe5148 100644 --- a/en/api/presets/model/model.html +++ b/en/api/presets/model/model.html @@ -8,8 +8,8 @@ - - + + @@ -36,7 +36,7 @@ y_array = radius * np.sin(phi_list) * np.sin(theta_list) z_array = radius * np.cos(phi_list) return [Point3(x_array[i], y_array[i], z_array[i]) for i in range(num)] - + \ No newline at end of file diff --git a/en/api/presets/presets.html b/en/api/presets/presets.html index 237d2a5..65e6d87 100644 --- a/en/api/presets/presets.html +++ b/en/api/presets/presets.html @@ -8,8 +8,8 @@ - - + + @@ -19,7 +19,7 @@
- + \ No newline at end of file diff --git a/en/guide/index.html b/en/guide/index.html index 45e5bf4..a2deb00 100644 --- a/en/guide/index.html +++ b/en/guide/index.html @@ -8,8 +8,8 @@ - - + + @@ -19,7 +19,7 @@
Skip to content

开始不了一点

12x111

Documentation built with VitePress | API references generated by litedoc

- + \ No newline at end of file diff --git a/en/index.html b/en/index.html index de568a4..e9bdfdc 100644 --- a/en/index.html +++ b/en/index.html @@ -8,8 +8,8 @@ - - + + @@ -19,7 +19,7 @@
Skip to content

MBCP

More basic change particle

A Library for Python to create Minecraft particle effects and geometric figures

MBCP logo

Documentation built with VitePress | API references generated by litedoc

- + \ No newline at end of file diff --git a/en/refer/index.html b/en/refer/index.html index 287415a..c8fccc1 100644 --- a/en/refer/index.html +++ b/en/refer/index.html @@ -8,8 +8,8 @@ - - + + @@ -19,7 +19,7 @@
Skip to content

Reference

help us to improve the documentation

Documentation built with VitePress | API references generated by litedoc

- + \ No newline at end of file diff --git a/guide/index.html b/guide/index.html index b065952..29892ba 100644 --- a/guide/index.html +++ b/guide/index.html @@ -8,8 +8,8 @@ - - + + @@ -19,7 +19,7 @@
Skip to content

开始不了一点

12x111

AAA

BBB

C

ddd

文档由 VitePress 构建 | API引用由 litedoc 生成

- + \ No newline at end of file diff --git a/hashmap.json b/hashmap.json index e59cfa3..fbe1e22 100644 --- a/hashmap.json +++ b/hashmap.json @@ -1 +1 @@ -{"api_api.md":"cuvEYHFe","api_index.md":"9xfR5bUd","api_mp_math_angle.md":"3Na5IaYp","api_mp_math_const.md":"O6cTulwX","api_mp_math_equation.md":"z85zyCZL","api_mp_math_function.md":"BhmJqpOo","api_mp_math_index.md":"DHhPNV6R","api_mp_math_line.md":"Dovi6bdM","api_mp_math_mp_math.md":"mVabZTHd","api_mp_math_mp_math_typing.md":"CEryCREV","api_mp_math_plane.md":"Dv-GWbJg","api_mp_math_point.md":"BvvrKTY8","api_mp_math_segment.md":"_n__ViVt","api_mp_math_utils.md":"kW3A-lG9","api_mp_math_vector.md":"DvJcuPXW","api_particle_index.md":"BxLVuqry","api_particle_particle.md":"CioLG9Ab","api_presets_index.md":"C7sBj6Q8","api_presets_model_index.md":"F2zeh9P2","api_presets_model_model.md":"BoocA59j","api_presets_presets.md":"kIUJtfck","demo_index.md":"CVAdlaFI","en_api_api.md":"6DYwgQwO","en_api_index.md":"D1elhNgk","en_api_mp_math_angle.md":"09R7pxw_","en_api_mp_math_const.md":"DjbxFoGO","en_api_mp_math_equation.md":"DBXwIC0s","en_api_mp_math_function.md":"nJ-E5W5r","en_api_mp_math_index.md":"ypHGEnmb","en_api_mp_math_line.md":"D0AfsxWD","en_api_mp_math_mp_math.md":"5IisTIt3","en_api_mp_math_mp_math_typing.md":"DWjztCj6","en_api_mp_math_plane.md":"3xsZdWoR","en_api_mp_math_point.md":"CxCgy181","en_api_mp_math_segment.md":"BevquOvV","en_api_mp_math_utils.md":"rVP-A71G","en_api_mp_math_vector.md":"DMwD59YV","en_api_particle_index.md":"NezC90nG","en_api_particle_particle.md":"BTk7xB-d","en_api_presets_index.md":"Clhg0YLX","en_api_presets_model_index.md":"_hbR1U40","en_api_presets_model_model.md":"B9FfcMgc","en_api_presets_presets.md":"5pMosEdX","en_guide_index.md":"C3kI8f8A","en_index.md":"D5CddOW-","en_refer_index.md":"Cq6GWi0V","guide_index.md":"BVhQ0kPy","index.md":"DJWBRkUz","ja_api_api.md":"GOuCj9Bq","ja_api_index.md":"DcZ9h1gI","ja_api_mp_math_angle.md":"CAq1hHov","ja_api_mp_math_const.md":"CACmM3Q4","ja_api_mp_math_equation.md":"CwX1EUnA","ja_api_mp_math_function.md":"BpyLWMmS","ja_api_mp_math_index.md":"B_UDRWJp","ja_api_mp_math_line.md":"BzytbSsM","ja_api_mp_math_mp_math.md":"DGl-Yqoj","ja_api_mp_math_mp_math_typing.md":"BANGfx9Q","ja_api_mp_math_plane.md":"Bw6ecTDW","ja_api_mp_math_point.md":"CFCWaCvm","ja_api_mp_math_segment.md":"cuLLXTSO","ja_api_mp_math_utils.md":"CrPKk6ui","ja_api_mp_math_vector.md":"PFGJik39","ja_api_particle_index.md":"SXvJHpqE","ja_api_particle_particle.md":"DpDqAPA7","ja_api_presets_index.md":"DrJ0aeZq","ja_api_presets_model_index.md":"ub3RsBC9","ja_api_presets_model_model.md":"Dw-6mfuk","ja_api_presets_presets.md":"Bm4b0yEm","ja_guide_index.md":"w1Tf2Adm","ja_index.md":"DnsqZi7i","ja_refer_index.md":"DamUscs8","refer_function_curry.md":"D_oqRDd3","refer_function_function.md":"Bi_82lIJ","refer_index.md":"yFZW0kI4","zht_api_api.md":"Ceti9rhA","zht_api_index.md":"D2vE-hK0","zht_api_mp_math_angle.md":"xBQ5jf2w","zht_api_mp_math_const.md":"DhnGo46u","zht_api_mp_math_equation.md":"CNqNdo8e","zht_api_mp_math_function.md":"BYw-sqJL","zht_api_mp_math_index.md":"C-ytwIT_","zht_api_mp_math_line.md":"BKWlVJmv","zht_api_mp_math_mp_math.md":"WAo96wsQ","zht_api_mp_math_mp_math_typing.md":"2475K9x4","zht_api_mp_math_plane.md":"Cbo0QRQD","zht_api_mp_math_point.md":"Ci0RyJlm","zht_api_mp_math_segment.md":"D_xbGo8n","zht_api_mp_math_utils.md":"BsNVdUjt","zht_api_mp_math_vector.md":"CelHQ_68","zht_api_particle_index.md":"C8wv1sGB","zht_api_particle_particle.md":"DLxDzJsb","zht_api_presets_index.md":"CKWpXp08","zht_api_presets_model_index.md":"a46BvX0I","zht_api_presets_model_model.md":"C8PKDM2B","zht_api_presets_presets.md":"nxuS_hT6","zht_guide_index.md":"BNnMViC8","zht_index.md":"CUR8-QXm","zht_refer_index.md":"B7CQS2UW"} +{"api_api.md":"rnPOv6-O","api_index.md":"qnrSd__i","api_mp_math_angle.md":"3Na5IaYp","api_mp_math_const.md":"O6cTulwX","api_mp_math_equation.md":"z85zyCZL","api_mp_math_function.md":"BhmJqpOo","api_mp_math_index.md":"DHhPNV6R","api_mp_math_line.md":"Dovi6bdM","api_mp_math_mp_math.md":"mVabZTHd","api_mp_math_mp_math_typing.md":"CEryCREV","api_mp_math_plane.md":"Dv-GWbJg","api_mp_math_point.md":"BvvrKTY8","api_mp_math_segment.md":"_n__ViVt","api_mp_math_utils.md":"kW3A-lG9","api_mp_math_vector.md":"mCFa4Azm","api_particle_index.md":"BxLVuqry","api_particle_particle.md":"CioLG9Ab","api_presets_index.md":"C7sBj6Q8","api_presets_model_index.md":"F2zeh9P2","api_presets_model_model.md":"BoocA59j","api_presets_presets.md":"kIUJtfck","demo_index.md":"CVAdlaFI","en_api_api.md":"D31N0-_j","en_api_index.md":"CpTS_pfZ","en_api_mp_math_angle.md":"09R7pxw_","en_api_mp_math_const.md":"DjbxFoGO","en_api_mp_math_equation.md":"DBXwIC0s","en_api_mp_math_function.md":"nJ-E5W5r","en_api_mp_math_index.md":"ypHGEnmb","en_api_mp_math_line.md":"D0AfsxWD","en_api_mp_math_mp_math.md":"5IisTIt3","en_api_mp_math_mp_math_typing.md":"DWjztCj6","en_api_mp_math_plane.md":"3xsZdWoR","en_api_mp_math_point.md":"CxCgy181","en_api_mp_math_segment.md":"BevquOvV","en_api_mp_math_utils.md":"rVP-A71G","en_api_mp_math_vector.md":"BEIFYOwe","en_api_particle_index.md":"NezC90nG","en_api_particle_particle.md":"BTk7xB-d","en_api_presets_index.md":"Clhg0YLX","en_api_presets_model_index.md":"_hbR1U40","en_api_presets_model_model.md":"B9FfcMgc","en_api_presets_presets.md":"5pMosEdX","en_guide_index.md":"C3kI8f8A","en_index.md":"D5CddOW-","en_refer_index.md":"Cq6GWi0V","guide_index.md":"BVhQ0kPy","index.md":"DJWBRkUz","ja_api_api.md":"DD7b0jH_","ja_api_index.md":"3bCCqhm9","ja_api_mp_math_angle.md":"CAq1hHov","ja_api_mp_math_const.md":"CACmM3Q4","ja_api_mp_math_equation.md":"CwX1EUnA","ja_api_mp_math_function.md":"BpyLWMmS","ja_api_mp_math_index.md":"B_UDRWJp","ja_api_mp_math_line.md":"BzytbSsM","ja_api_mp_math_mp_math.md":"DGl-Yqoj","ja_api_mp_math_mp_math_typing.md":"BANGfx9Q","ja_api_mp_math_plane.md":"Bw6ecTDW","ja_api_mp_math_point.md":"CFCWaCvm","ja_api_mp_math_segment.md":"cuLLXTSO","ja_api_mp_math_utils.md":"CrPKk6ui","ja_api_mp_math_vector.md":"mfFeokXv","ja_api_particle_index.md":"SXvJHpqE","ja_api_particle_particle.md":"DpDqAPA7","ja_api_presets_index.md":"DrJ0aeZq","ja_api_presets_model_index.md":"ub3RsBC9","ja_api_presets_model_model.md":"Dw-6mfuk","ja_api_presets_presets.md":"Bm4b0yEm","ja_guide_index.md":"w1Tf2Adm","ja_index.md":"DnsqZi7i","ja_refer_index.md":"DamUscs8","refer_function_curry.md":"D_oqRDd3","refer_function_function.md":"Bi_82lIJ","refer_index.md":"yFZW0kI4","zht_api_api.md":"DgGLhN7H","zht_api_index.md":"DNSdsCcq","zht_api_mp_math_angle.md":"xBQ5jf2w","zht_api_mp_math_const.md":"DhnGo46u","zht_api_mp_math_equation.md":"CNqNdo8e","zht_api_mp_math_function.md":"BYw-sqJL","zht_api_mp_math_index.md":"C-ytwIT_","zht_api_mp_math_line.md":"BKWlVJmv","zht_api_mp_math_mp_math.md":"WAo96wsQ","zht_api_mp_math_mp_math_typing.md":"2475K9x4","zht_api_mp_math_plane.md":"Cbo0QRQD","zht_api_mp_math_point.md":"Ci0RyJlm","zht_api_mp_math_segment.md":"D_xbGo8n","zht_api_mp_math_utils.md":"BsNVdUjt","zht_api_mp_math_vector.md":"vRujd3bN","zht_api_particle_index.md":"C8wv1sGB","zht_api_particle_particle.md":"DLxDzJsb","zht_api_presets_index.md":"CKWpXp08","zht_api_presets_model_index.md":"a46BvX0I","zht_api_presets_model_model.md":"C8PKDM2B","zht_api_presets_presets.md":"nxuS_hT6","zht_guide_index.md":"BNnMViC8","zht_index.md":"CUR8-QXm","zht_refer_index.md":"B7CQS2UW"} diff --git a/index.html b/index.html index 08290b1..959d46f 100644 --- a/index.html +++ b/index.html @@ -8,8 +8,8 @@ - - + + @@ -19,7 +19,7 @@
Skip to content

MBCP

更多基础变换粒子

用于几何运算和Minecraft粒子制作的库

MBCP logo

文档由 VitePress 构建 | API引用由 litedoc 生成

- + \ No newline at end of file diff --git a/ja/api/api.html b/ja/api/api.html index dbff35f..fbf9824 100644 --- a/ja/api/api.html +++ b/ja/api/api.html @@ -8,18 +8,18 @@ - - + + - + -
Skip to content

mbcp

説明: 本模块是主模块,提供了一些工具 可导入

mbcp.mp_math:数学工具

mbcp.particle:粒子生成工具

mbcp.presets:预设

VitePress で構築されたドキュメント | litedoc によって生成されたAPIリファレンス

- +
+ \ No newline at end of file diff --git a/ja/api/index.html b/ja/api/index.html index 4c7d715..a2d6196 100644 --- a/ja/api/index.html +++ b/ja/api/index.html @@ -8,18 +8,18 @@ - - + + - + -
Skip to content

mbcp

説明: 本模块是主模块,提供了一些工具 可导入

mbcp.mp_math:数学工具

mbcp.particle:粒子生成工具

mbcp.presets:预设

VitePress で構築されたドキュメント | litedoc によって生成されたAPIリファレンス

- +
+ \ No newline at end of file diff --git a/ja/api/mp_math/angle.html b/ja/api/mp_math/angle.html index 093cb63..ae2e526 100644 --- a/ja/api/mp_math/angle.html +++ b/ja/api/mp_math/angle.html @@ -8,8 +8,8 @@ - - + + @@ -117,7 +117,7 @@ if isinstance(other, AnyAngle): return self.radian / other.radian return AnyAngle(self.radian / other, is_radian=True) - + \ No newline at end of file diff --git a/ja/api/mp_math/const.html b/ja/api/mp_math/const.html index 18f5643..bd77466 100644 --- a/ja/api/mp_math/const.html +++ b/ja/api/mp_math/const.html @@ -8,8 +8,8 @@ - - + + @@ -19,7 +19,7 @@
Skip to content

mbcp.mp_math.const

説明: 本模块定义了一些常用的常量

var PI

  • 説明: 常量 π

  • デフォルト: math.pi

var E

  • 説明: 自然对数的底 exp(1)

  • デフォルト: math.e

var GOLDEN_RATIO

  • 説明: 黄金分割比

  • デフォルト: (1 + math.sqrt(5)) / 2

var GAMMA

  • 説明: 欧拉常数

  • デフォルト: 0.5772156649015329

var EPSILON

  • 説明: 精度误差

  • デフォルト: 0.0001

var APPROX

  • 説明: 约等于判定误差

  • デフォルト: 0.001

VitePress で構築されたドキュメント | litedoc によって生成されたAPIリファレンス

- + \ No newline at end of file diff --git a/ja/api/mp_math/equation.html b/ja/api/mp_math/equation.html index 7491406..2eb8034 100644 --- a/ja/api/mp_math/equation.html +++ b/ja/api/mp_math/equation.html @@ -8,8 +8,8 @@ - - + + @@ -83,7 +83,7 @@ return high_order_partial_derivative_func else: raise ValueError('Invalid var type') - + \ No newline at end of file diff --git a/ja/api/mp_math/function.html b/ja/api/mp_math/function.html index 7a4651b..67906f6 100644 --- a/ja/api/mp_math/function.html +++ b/ja/api/mp_math/function.html @@ -8,8 +8,8 @@ - - + + @@ -60,7 +60,7 @@ """@litedoc-hide""" return func(*args, *args2) return curried_func - + \ No newline at end of file diff --git a/ja/api/mp_math/index.html b/ja/api/mp_math/index.html index 40a1b7e..ebd53bd 100644 --- a/ja/api/mp_math/index.html +++ b/ja/api/mp_math/index.html @@ -8,8 +8,8 @@ - - + + @@ -19,7 +19,7 @@
Skip to content

mbcp.mp_math

説明: 本包定义了一些常用的导入,可直接从mbcp.mp_math导入使用 导入的类有:

VitePress で構築されたドキュメント | litedoc によって生成されたAPIリファレンス

- + \ No newline at end of file diff --git a/ja/api/mp_math/line.html b/ja/api/mp_math/line.html index cc1ac9b..6608fc2 100644 --- a/ja/api/mp_math/line.html +++ b/ja/api/mp_math/line.html @@ -8,8 +8,8 @@ - - + + @@ -192,7 +192,7 @@ [`bool`](https%3A//docs.python.org/3/library/functions.html#bool): 是否等价 """ return self.direction.is_parallel(other.direction) and (self.point - other.point).is_parallel(self.direction) - + \ No newline at end of file diff --git a/ja/api/mp_math/mp_math.html b/ja/api/mp_math/mp_math.html index ade597e..c08e96d 100644 --- a/ja/api/mp_math/mp_math.html +++ b/ja/api/mp_math/mp_math.html @@ -8,8 +8,8 @@ - - + + @@ -19,7 +19,7 @@
Skip to content

mbcp.mp_math

説明: 本包定义了一些常用的导入,可直接从mbcp.mp_math导入使用 导入的类有:

VitePress で構築されたドキュメント | litedoc によって生成されたAPIリファレンス

- + \ No newline at end of file diff --git a/ja/api/mp_math/mp_math_typing.html b/ja/api/mp_math/mp_math_typing.html index a36c752..2040e52 100644 --- a/ja/api/mp_math/mp_math_typing.html +++ b/ja/api/mp_math/mp_math_typing.html @@ -8,8 +8,8 @@ - - + + @@ -19,7 +19,7 @@
Skip to content

mbcp.mp_math.mp_math_typing

説明: 本模块用于内部类型提示

var RealNumber

  • 説明: 实数

  • タイプ: TypeAlias

  • デフォルト: int | float

var Number

  • 説明: 数

  • タイプ: TypeAlias

  • デフォルト: RealNumber | complex

var SingleVar

  • 説明: 单变量

  • デフォルト: TypeVar('SingleVar', bound=Number)

var ArrayVar

  • 説明: 数组变量

  • デフォルト: TypeVar('ArrayVar', bound=Iterable[Number])

var Var

  • 説明: 变量

  • タイプ: TypeAlias

  • デフォルト: SingleVar | ArrayVar

var OneSingleVarFunc

  • 説明: 一元单变量函数

  • タイプ: TypeAlias

  • デフォルト: Callable[[SingleVar], SingleVar]

var OneArrayFunc

  • 説明: 一元数组函数

  • タイプ: TypeAlias

  • デフォルト: Callable[[ArrayVar], ArrayVar]

var OneVarFunc

  • 説明: 一元函数

  • タイプ: TypeAlias

  • デフォルト: OneSingleVarFunc | OneArrayFunc

var TwoSingleVarsFunc

  • 説明: 二元单变量函数

  • タイプ: TypeAlias

  • デフォルト: Callable[[SingleVar, SingleVar], SingleVar]

var TwoArraysFunc

  • 説明: 二元数组函数

  • タイプ: TypeAlias

  • デフォルト: Callable[[ArrayVar, ArrayVar], ArrayVar]

var TwoVarsFunc

  • 説明: 二元函数

  • タイプ: TypeAlias

  • デフォルト: TwoSingleVarsFunc | TwoArraysFunc

var ThreeSingleVarsFunc

  • 説明: 三元单变量函数

  • タイプ: TypeAlias

  • デフォルト: Callable[[SingleVar, SingleVar, SingleVar], SingleVar]

var ThreeArraysFunc

  • 説明: 三元数组函数

  • タイプ: TypeAlias

  • デフォルト: Callable[[ArrayVar, ArrayVar, ArrayVar], ArrayVar]

var ThreeVarsFunc

  • 説明: 三元函数

  • タイプ: TypeAlias

  • デフォルト: ThreeSingleVarsFunc | ThreeArraysFunc

var MultiSingleVarsFunc

  • 説明: 多元单变量函数

  • タイプ: TypeAlias

  • デフォルト: Callable[..., SingleVar]

var MultiArraysFunc

  • 説明: 多元数组函数

  • タイプ: TypeAlias

  • デフォルト: Callable[..., ArrayVar]

var MultiVarsFunc

  • 説明: 多元函数

  • タイプ: TypeAlias

  • デフォルト: MultiSingleVarsFunc | MultiArraysFunc

VitePress で構築されたドキュメント | litedoc によって生成されたAPIリファレンス

- + \ No newline at end of file diff --git a/ja/api/mp_math/plane.html b/ja/api/mp_math/plane.html index d6e8fd4..a4498e9 100644 --- a/ja/api/mp_math/plane.html +++ b/ja/api/mp_math/plane.html @@ -8,8 +8,8 @@ - - + + @@ -224,7 +224,7 @@ """ return self.approx(other)

def __rand__(self, other: Line3) -> Point3

ソースコード または GitHubで表示
python
def __rand__(self, other: 'Line3') -> 'Point3':
     return self.cal_intersection_point3(other)
- + \ No newline at end of file diff --git a/ja/api/mp_math/point.html b/ja/api/mp_math/point.html index 7403046..eb8f50f 100644 --- a/ja/api/mp_math/point.html +++ b/ja/api/mp_math/point.html @@ -8,8 +8,8 @@ - - + + @@ -70,7 +70,7 @@ """ from .vector import Vector3 return Vector3(self.x - other.x, self.y - other.y, self.z - other.z) - + \ No newline at end of file diff --git a/ja/api/mp_math/segment.html b/ja/api/mp_math/segment.html index aa86ada..7f9bc8a 100644 --- a/ja/api/mp_math/segment.html +++ b/ja/api/mp_math/segment.html @@ -8,8 +8,8 @@ - - + + @@ -33,7 +33,7 @@ self.length = self.direction.length '中心点' self.midpoint = Point3((self.p1.x + self.p2.x) / 2, (self.p1.y + self.p2.y) / 2, (self.p1.z + self.p2.z) / 2) - + \ No newline at end of file diff --git a/ja/api/mp_math/utils.html b/ja/api/mp_math/utils.html index eba17ae..d04d720 100644 --- a/ja/api/mp_math/utils.html +++ b/ja/api/mp_math/utils.html @@ -8,8 +8,8 @@ - - + + @@ -87,7 +87,7 @@ return f'-{abs(x)}' else: return '' - + \ No newline at end of file diff --git a/ja/api/mp_math/vector.html b/ja/api/mp_math/vector.html index 975a324..d723484 100644 --- a/ja/api/mp_math/vector.html +++ b/ja/api/mp_math/vector.html @@ -8,35 +8,35 @@ - - + + - + -
Skip to content

mbcp.mp_math.vector

説明: 本模块定义了3维向量的类Vector3,以及一些常用的向量。

class Vector3

def __init__(self, x: float, y: float, z: float)

説明: 3维向量

引数:

  • x: x轴分量
  • y: y轴分量
  • z: z轴分量
ソースコード または GitHubで表示
python
def __init__(self, x: float, y: float, z: float):
+    
Skip to content

mbcp.mp_math.vector

説明: 本模块定义了3维向量的类Vector3,以及一些常用的向量。

class Vector3

def __init__(self, x: float, y: float, z: float)

説明: 3维向量

引数:

  • x (float): x轴分量
  • y (float): y轴分量
  • z (float): z轴分量
ソースコード または GitHubで表示
python
def __init__(self, x: float, y: float, z: float):
     """
         3维向量
         Args:
-            x: x轴分量
-            y: y轴分量
-            z: z轴分量
+            x ([`float`](https%3A//docs.python.org/3/library/functions.html#float)): x轴分量
+            y (`float`): y轴分量
+            z (`float`): z轴分量
         """
     self.x = x
     self.y = y
-    self.z = z

def approx(self, other: Vector3, epsilon: float = APPROX) -> bool

説明: 判断两个向量是否近似相等。

引数:

  • other:
  • epsilon:

戻り値: 是否近似相等

ソースコード または GitHubで表示
python
def approx(self, other: 'Vector3', epsilon: float=APPROX) -> bool:
+    self.z = z

def approx(self, other: Vector3, epsilon: float = APPROX) -> bool

説明: 判断两个向量是否近似相等。

引数:

戻り値: bool: 是否近似相等

ソースコード または GitHubで表示
python
def approx(self, other: 'Vector3', epsilon: float=APPROX) -> bool:
     """
         判断两个向量是否近似相等。
         Args:
-            other:
-            epsilon:
+            other ([`Vector3`](#class-vector3)): 另一个向量
+            epsilon ([`float`](https%3A//docs.python.org/3/library/functions.html#float)): 误差
 
         Returns:
-            是否近似相等
+            [`bool`](https%3A//docs.python.org/3/library/functions.html#bool): 是否近似相等
         """
     return all([abs(self.x - other.x) < epsilon, abs(self.y - other.y) < epsilon, abs(self.z - other.z) < epsilon])

def cal_angle(self, other: Vector3) -> AnyAngle

説明: 计算两个向量之间的夹角。

引数:

戻り値: AnyAngle: 夹角

ソースコード または GitHubで表示
python
def cal_angle(self, other: 'Vector3') -> 'AnyAngle':
     """
@@ -215,7 +215,7 @@
             [`Vector3`](#class-vector3): 负向量
         """
     return Vector3(-self.x, -self.y, -self.z)

var zero_vector3

  • 説明: 零向量

  • タイプ: Vector3

  • デフォルト: Vector3(0, 0, 0)

var x_axis

  • 説明: x轴单位向量

  • タイプ: Vector3

  • デフォルト: Vector3(1, 0, 0)

var y_axis

  • 説明: y轴单位向量

  • タイプ: Vector3

  • デフォルト: Vector3(0, 1, 0)

var z_axis

  • 説明: z轴单位向量

  • タイプ: Vector3

  • デフォルト: Vector3(0, 0, 1)

VitePress で構築されたドキュメント | litedoc によって生成されたAPIリファレンス

- + \ No newline at end of file diff --git a/ja/api/particle/index.html b/ja/api/particle/index.html index 648c907..756c66f 100644 --- a/ja/api/particle/index.html +++ b/ja/api/particle/index.html @@ -8,8 +8,8 @@ - - + + @@ -19,7 +19,7 @@ - + \ No newline at end of file diff --git a/ja/api/particle/particle.html b/ja/api/particle/particle.html index 0436d37..5804277 100644 --- a/ja/api/particle/particle.html +++ b/ja/api/particle/particle.html @@ -8,8 +8,8 @@ - - + + @@ -19,7 +19,7 @@ - + \ No newline at end of file diff --git a/ja/api/presets/index.html b/ja/api/presets/index.html index ed35dee..cd25dc3 100644 --- a/ja/api/presets/index.html +++ b/ja/api/presets/index.html @@ -8,8 +8,8 @@ - - + + @@ -19,7 +19,7 @@ - + \ No newline at end of file diff --git a/ja/api/presets/model/index.html b/ja/api/presets/model/index.html index c0bf39e..7b79619 100644 --- a/ja/api/presets/model/index.html +++ b/ja/api/presets/model/index.html @@ -8,8 +8,8 @@ - - + + @@ -36,7 +36,7 @@ y_array = radius * np.sin(phi_list) * np.sin(theta_list) z_array = radius * np.cos(phi_list) return [Point3(x_array[i], y_array[i], z_array[i]) for i in range(num)]

VitePress で構築されたドキュメント | litedoc によって生成されたAPIリファレンス

- + \ No newline at end of file diff --git a/ja/api/presets/model/model.html b/ja/api/presets/model/model.html index c335892..17ad616 100644 --- a/ja/api/presets/model/model.html +++ b/ja/api/presets/model/model.html @@ -8,8 +8,8 @@ - - + + @@ -36,7 +36,7 @@ y_array = radius * np.sin(phi_list) * np.sin(theta_list) z_array = radius * np.cos(phi_list) return [Point3(x_array[i], y_array[i], z_array[i]) for i in range(num)] - + \ No newline at end of file diff --git a/ja/api/presets/presets.html b/ja/api/presets/presets.html index 9d91dd8..eb62c22 100644 --- a/ja/api/presets/presets.html +++ b/ja/api/presets/presets.html @@ -8,8 +8,8 @@ - - + + @@ -19,7 +19,7 @@
- + \ No newline at end of file diff --git a/ja/guide/index.html b/ja/guide/index.html index 76f23c1..4756dbc 100644 --- a/ja/guide/index.html +++ b/ja/guide/index.html @@ -8,8 +8,8 @@ - - + + @@ -19,7 +19,7 @@
Skip to content

开始不了一点

12x111

VitePress で構築されたドキュメント | litedoc によって生成されたAPIリファレンス

- + \ No newline at end of file diff --git a/ja/index.html b/ja/index.html index e341f72..67ba1d1 100644 --- a/ja/index.html +++ b/ja/index.html @@ -8,8 +8,8 @@ - - + + @@ -19,7 +19,7 @@
Skip to content

MBCP

More basic change particle

ジオメトリ演算とパーティクル作成のためのライブラリ

MBCP logo

VitePress で構築されたドキュメント | litedoc によって生成されたAPIリファレンス

- + \ No newline at end of file diff --git a/ja/refer/index.html b/ja/refer/index.html index 6cdfd42..5f671a9 100644 --- a/ja/refer/index.html +++ b/ja/refer/index.html @@ -8,8 +8,8 @@ - - + + @@ -19,7 +19,7 @@
Skip to content

Reference

Help us to improve the documentation

VitePress で構築されたドキュメント | litedoc によって生成されたAPIリファレンス

- + \ No newline at end of file diff --git a/refer/function/curry.html b/refer/function/curry.html index 294b099..5a426a1 100644 --- a/refer/function/curry.html +++ b/refer/function/curry.html @@ -8,8 +8,8 @@ - - + + @@ -19,7 +19,7 @@
Skip to content

文档由 VitePress 构建 | API引用由 litedoc 生成

- + \ No newline at end of file diff --git a/refer/function/function.html b/refer/function/function.html index e71aaca..d8751f9 100644 --- a/refer/function/function.html +++ b/refer/function/function.html @@ -8,8 +8,8 @@ - - + + @@ -19,7 +19,7 @@
Skip to content

文档由 VitePress 构建 | API引用由 litedoc 生成

- + \ No newline at end of file diff --git a/refer/index.html b/refer/index.html index 0ff33f0..5227b89 100644 --- a/refer/index.html +++ b/refer/index.html @@ -8,8 +8,8 @@ - - + + @@ -19,7 +19,7 @@
Skip to content

Reference

Help us to improve the documentation

文档由 VitePress 构建 | API引用由 litedoc 生成

- + \ No newline at end of file diff --git a/zht/api/api.html b/zht/api/api.html index e911086..31adf7f 100644 --- a/zht/api/api.html +++ b/zht/api/api.html @@ -8,18 +8,18 @@ - - + + - + -
Skip to content

mbcp

説明: 本模块是主模块,提供了一些工具 可导入

mbcp.mp_math:数学工具

mbcp.particle:粒子生成工具

mbcp.presets:预设

文檔由 VitePress 構建 | API引用由 litedoc 生成

- +
+ \ No newline at end of file diff --git a/zht/api/index.html b/zht/api/index.html index 69855aa..5d97c73 100644 --- a/zht/api/index.html +++ b/zht/api/index.html @@ -8,18 +8,18 @@ - - + + - + -
Skip to content

mbcp

説明: 本模块是主模块,提供了一些工具 可导入

mbcp.mp_math:数学工具

mbcp.particle:粒子生成工具

mbcp.presets:预设

文檔由 VitePress 構建 | API引用由 litedoc 生成

- +
+ \ No newline at end of file diff --git a/zht/api/mp_math/angle.html b/zht/api/mp_math/angle.html index 8cf3bd9..95bccee 100644 --- a/zht/api/mp_math/angle.html +++ b/zht/api/mp_math/angle.html @@ -8,8 +8,8 @@ - - + + @@ -117,7 +117,7 @@ if isinstance(other, AnyAngle): return self.radian / other.radian return AnyAngle(self.radian / other, is_radian=True) - + \ No newline at end of file diff --git a/zht/api/mp_math/const.html b/zht/api/mp_math/const.html index 357f4df..767a67d 100644 --- a/zht/api/mp_math/const.html +++ b/zht/api/mp_math/const.html @@ -8,8 +8,8 @@ - - + + @@ -19,7 +19,7 @@
Skip to content

mbcp.mp_math.const

説明: 本模块定义了一些常用的常量

var PI

  • 説明: 常量 π

  • 默認值: math.pi

var E

  • 説明: 自然对数的底 exp(1)

  • 默認值: math.e

var GOLDEN_RATIO

  • 説明: 黄金分割比

  • 默認值: (1 + math.sqrt(5)) / 2

var GAMMA

  • 説明: 欧拉常数

  • 默認值: 0.5772156649015329

var EPSILON

  • 説明: 精度误差

  • 默認值: 0.0001

var APPROX

  • 説明: 约等于判定误差

  • 默認值: 0.001

文檔由 VitePress 構建 | API引用由 litedoc 生成

- + \ No newline at end of file diff --git a/zht/api/mp_math/equation.html b/zht/api/mp_math/equation.html index e80abf4..689517b 100644 --- a/zht/api/mp_math/equation.html +++ b/zht/api/mp_math/equation.html @@ -8,8 +8,8 @@ - - + + @@ -83,7 +83,7 @@ return high_order_partial_derivative_func else: raise ValueError('Invalid var type') - + \ No newline at end of file diff --git a/zht/api/mp_math/function.html b/zht/api/mp_math/function.html index f664a2b..06333ab 100644 --- a/zht/api/mp_math/function.html +++ b/zht/api/mp_math/function.html @@ -8,8 +8,8 @@ - - + + @@ -60,7 +60,7 @@ """@litedoc-hide""" return func(*args, *args2) return curried_func - + \ No newline at end of file diff --git a/zht/api/mp_math/index.html b/zht/api/mp_math/index.html index 63ca121..a331ed3 100644 --- a/zht/api/mp_math/index.html +++ b/zht/api/mp_math/index.html @@ -8,8 +8,8 @@ - - + + @@ -19,7 +19,7 @@
Skip to content

mbcp.mp_math

説明: 本包定义了一些常用的导入,可直接从mbcp.mp_math导入使用 导入的类有:

文檔由 VitePress 構建 | API引用由 litedoc 生成

- + \ No newline at end of file diff --git a/zht/api/mp_math/line.html b/zht/api/mp_math/line.html index e22926d..06b7495 100644 --- a/zht/api/mp_math/line.html +++ b/zht/api/mp_math/line.html @@ -8,8 +8,8 @@ - - + + @@ -192,7 +192,7 @@ [`bool`](https%3A//docs.python.org/3/library/functions.html#bool): 是否等价 """ return self.direction.is_parallel(other.direction) and (self.point - other.point).is_parallel(self.direction) - + \ No newline at end of file diff --git a/zht/api/mp_math/mp_math.html b/zht/api/mp_math/mp_math.html index 0383083..a0d9191 100644 --- a/zht/api/mp_math/mp_math.html +++ b/zht/api/mp_math/mp_math.html @@ -8,8 +8,8 @@ - - + + @@ -19,7 +19,7 @@
Skip to content

mbcp.mp_math

説明: 本包定义了一些常用的导入,可直接从mbcp.mp_math导入使用 导入的类有:

文檔由 VitePress 構建 | API引用由 litedoc 生成

- + \ No newline at end of file diff --git a/zht/api/mp_math/mp_math_typing.html b/zht/api/mp_math/mp_math_typing.html index 9f28355..11ebe02 100644 --- a/zht/api/mp_math/mp_math_typing.html +++ b/zht/api/mp_math/mp_math_typing.html @@ -8,8 +8,8 @@ - - + + @@ -19,7 +19,7 @@
Skip to content

mbcp.mp_math.mp_math_typing

説明: 本模块用于内部类型提示

var RealNumber

  • 説明: 实数

  • 類型: TypeAlias

  • 默認值: int | float

var Number

  • 説明: 数

  • 類型: TypeAlias

  • 默認值: RealNumber | complex

var SingleVar

  • 説明: 单变量

  • 默認值: TypeVar('SingleVar', bound=Number)

var ArrayVar

  • 説明: 数组变量

  • 默認值: TypeVar('ArrayVar', bound=Iterable[Number])

var Var

  • 説明: 变量

  • 類型: TypeAlias

  • 默認值: SingleVar | ArrayVar

var OneSingleVarFunc

  • 説明: 一元单变量函数

  • 類型: TypeAlias

  • 默認值: Callable[[SingleVar], SingleVar]

var OneArrayFunc

  • 説明: 一元数组函数

  • 類型: TypeAlias

  • 默認值: Callable[[ArrayVar], ArrayVar]

var OneVarFunc

  • 説明: 一元函数

  • 類型: TypeAlias

  • 默認值: OneSingleVarFunc | OneArrayFunc

var TwoSingleVarsFunc

  • 説明: 二元单变量函数

  • 類型: TypeAlias

  • 默認值: Callable[[SingleVar, SingleVar], SingleVar]

var TwoArraysFunc

  • 説明: 二元数组函数

  • 類型: TypeAlias

  • 默認值: Callable[[ArrayVar, ArrayVar], ArrayVar]

var TwoVarsFunc

  • 説明: 二元函数

  • 類型: TypeAlias

  • 默認值: TwoSingleVarsFunc | TwoArraysFunc

var ThreeSingleVarsFunc

  • 説明: 三元单变量函数

  • 類型: TypeAlias

  • 默認值: Callable[[SingleVar, SingleVar, SingleVar], SingleVar]

var ThreeArraysFunc

  • 説明: 三元数组函数

  • 類型: TypeAlias

  • 默認值: Callable[[ArrayVar, ArrayVar, ArrayVar], ArrayVar]

var ThreeVarsFunc

  • 説明: 三元函数

  • 類型: TypeAlias

  • 默認值: ThreeSingleVarsFunc | ThreeArraysFunc

var MultiSingleVarsFunc

  • 説明: 多元单变量函数

  • 類型: TypeAlias

  • 默認值: Callable[..., SingleVar]

var MultiArraysFunc

  • 説明: 多元数组函数

  • 類型: TypeAlias

  • 默認值: Callable[..., ArrayVar]

var MultiVarsFunc

  • 説明: 多元函数

  • 類型: TypeAlias

  • 默認值: MultiSingleVarsFunc | MultiArraysFunc

文檔由 VitePress 構建 | API引用由 litedoc 生成

- + \ No newline at end of file diff --git a/zht/api/mp_math/plane.html b/zht/api/mp_math/plane.html index c664fa6..9898326 100644 --- a/zht/api/mp_math/plane.html +++ b/zht/api/mp_math/plane.html @@ -8,8 +8,8 @@ - - + + @@ -224,7 +224,7 @@ """ return self.approx(other)

def __rand__(self, other: Line3) -> Point3

源碼於GitHub上查看
python
def __rand__(self, other: 'Line3') -> 'Point3':
     return self.cal_intersection_point3(other)
- + \ No newline at end of file diff --git a/zht/api/mp_math/point.html b/zht/api/mp_math/point.html index 11aad40..22e1a3f 100644 --- a/zht/api/mp_math/point.html +++ b/zht/api/mp_math/point.html @@ -8,8 +8,8 @@ - - + + @@ -70,7 +70,7 @@ """ from .vector import Vector3 return Vector3(self.x - other.x, self.y - other.y, self.z - other.z) - + \ No newline at end of file diff --git a/zht/api/mp_math/segment.html b/zht/api/mp_math/segment.html index 5a9fe0e..b953d64 100644 --- a/zht/api/mp_math/segment.html +++ b/zht/api/mp_math/segment.html @@ -8,8 +8,8 @@ - - + + @@ -33,7 +33,7 @@ self.length = self.direction.length '中心点' self.midpoint = Point3((self.p1.x + self.p2.x) / 2, (self.p1.y + self.p2.y) / 2, (self.p1.z + self.p2.z) / 2) - + \ No newline at end of file diff --git a/zht/api/mp_math/utils.html b/zht/api/mp_math/utils.html index 14c83f6..2e55e1d 100644 --- a/zht/api/mp_math/utils.html +++ b/zht/api/mp_math/utils.html @@ -8,8 +8,8 @@ - - + + @@ -87,7 +87,7 @@ return f'-{abs(x)}' else: return '' - + \ No newline at end of file diff --git a/zht/api/mp_math/vector.html b/zht/api/mp_math/vector.html index a975ba5..55d6d9e 100644 --- a/zht/api/mp_math/vector.html +++ b/zht/api/mp_math/vector.html @@ -8,35 +8,35 @@ - - + + - + -
Skip to content

mbcp.mp_math.vector

説明: 本模块定义了3维向量的类Vector3,以及一些常用的向量。

class Vector3

def __init__(self, x: float, y: float, z: float)

説明: 3维向量

變數説明:

  • x: x轴分量
  • y: y轴分量
  • z: z轴分量
源碼於GitHub上查看
python
def __init__(self, x: float, y: float, z: float):
+    
Skip to content

mbcp.mp_math.vector

説明: 本模块定义了3维向量的类Vector3,以及一些常用的向量。

class Vector3

def __init__(self, x: float, y: float, z: float)

説明: 3维向量

變數説明:

  • x (float): x轴分量
  • y (float): y轴分量
  • z (float): z轴分量
源碼於GitHub上查看
python
def __init__(self, x: float, y: float, z: float):
     """
         3维向量
         Args:
-            x: x轴分量
-            y: y轴分量
-            z: z轴分量
+            x ([`float`](https%3A//docs.python.org/3/library/functions.html#float)): x轴分量
+            y (`float`): y轴分量
+            z (`float`): z轴分量
         """
     self.x = x
     self.y = y
-    self.z = z

def approx(self, other: Vector3, epsilon: float = APPROX) -> bool

説明: 判断两个向量是否近似相等。

變數説明:

  • other:
  • epsilon:

返回: 是否近似相等

源碼於GitHub上查看
python
def approx(self, other: 'Vector3', epsilon: float=APPROX) -> bool:
+    self.z = z

def approx(self, other: Vector3, epsilon: float = APPROX) -> bool

説明: 判断两个向量是否近似相等。

變數説明:

返回: bool: 是否近似相等

源碼於GitHub上查看
python
def approx(self, other: 'Vector3', epsilon: float=APPROX) -> bool:
     """
         判断两个向量是否近似相等。
         Args:
-            other:
-            epsilon:
+            other ([`Vector3`](#class-vector3)): 另一个向量
+            epsilon ([`float`](https%3A//docs.python.org/3/library/functions.html#float)): 误差
 
         Returns:
-            是否近似相等
+            [`bool`](https%3A//docs.python.org/3/library/functions.html#bool): 是否近似相等
         """
     return all([abs(self.x - other.x) < epsilon, abs(self.y - other.y) < epsilon, abs(self.z - other.z) < epsilon])

def cal_angle(self, other: Vector3) -> AnyAngle

説明: 计算两个向量之间的夹角。

變數説明:

返回: AnyAngle: 夹角

源碼於GitHub上查看
python
def cal_angle(self, other: 'Vector3') -> 'AnyAngle':
     """
@@ -215,7 +215,7 @@
             [`Vector3`](#class-vector3): 负向量
         """
     return Vector3(-self.x, -self.y, -self.z)

var zero_vector3

  • 説明: 零向量

  • 類型: Vector3

  • 默認值: Vector3(0, 0, 0)

var x_axis

  • 説明: x轴单位向量

  • 類型: Vector3

  • 默認值: Vector3(1, 0, 0)

var y_axis

  • 説明: y轴单位向量

  • 類型: Vector3

  • 默認值: Vector3(0, 1, 0)

var z_axis

  • 説明: z轴单位向量

  • 類型: Vector3

  • 默認值: Vector3(0, 0, 1)

文檔由 VitePress 構建 | API引用由 litedoc 生成

- + \ No newline at end of file diff --git a/zht/api/particle/index.html b/zht/api/particle/index.html index b4768d8..742619a 100644 --- a/zht/api/particle/index.html +++ b/zht/api/particle/index.html @@ -8,8 +8,8 @@ - - + + @@ -19,7 +19,7 @@ - + \ No newline at end of file diff --git a/zht/api/particle/particle.html b/zht/api/particle/particle.html index 5d183d4..6731a5a 100644 --- a/zht/api/particle/particle.html +++ b/zht/api/particle/particle.html @@ -8,8 +8,8 @@ - - + + @@ -19,7 +19,7 @@ - + \ No newline at end of file diff --git a/zht/api/presets/index.html b/zht/api/presets/index.html index b44fc1f..1f5aa4e 100644 --- a/zht/api/presets/index.html +++ b/zht/api/presets/index.html @@ -8,8 +8,8 @@ - - + + @@ -19,7 +19,7 @@ - + \ No newline at end of file diff --git a/zht/api/presets/model/index.html b/zht/api/presets/model/index.html index f7326d5..245018d 100644 --- a/zht/api/presets/model/index.html +++ b/zht/api/presets/model/index.html @@ -8,8 +8,8 @@ - - + + @@ -36,7 +36,7 @@ y_array = radius * np.sin(phi_list) * np.sin(theta_list) z_array = radius * np.cos(phi_list) return [Point3(x_array[i], y_array[i], z_array[i]) for i in range(num)]

文檔由 VitePress 構建 | API引用由 litedoc 生成

- + \ No newline at end of file diff --git a/zht/api/presets/model/model.html b/zht/api/presets/model/model.html index 32edf6d..019f4fa 100644 --- a/zht/api/presets/model/model.html +++ b/zht/api/presets/model/model.html @@ -8,8 +8,8 @@ - - + + @@ -36,7 +36,7 @@ y_array = radius * np.sin(phi_list) * np.sin(theta_list) z_array = radius * np.cos(phi_list) return [Point3(x_array[i], y_array[i], z_array[i]) for i in range(num)] - + \ No newline at end of file diff --git a/zht/api/presets/presets.html b/zht/api/presets/presets.html index d6b3c0d..2ae5f50 100644 --- a/zht/api/presets/presets.html +++ b/zht/api/presets/presets.html @@ -8,8 +8,8 @@ - - + + @@ -19,7 +19,7 @@
- + \ No newline at end of file diff --git a/zht/guide/index.html b/zht/guide/index.html index b852ffd..fa7ef94 100644 --- a/zht/guide/index.html +++ b/zht/guide/index.html @@ -8,8 +8,8 @@ - - + + @@ -19,7 +19,7 @@
Skip to content

开始不了一点

12x111

文檔由 VitePress 構建 | API引用由 litedoc 生成

- + \ No newline at end of file diff --git a/zht/index.html b/zht/index.html index fd6b40b..899a469 100644 --- a/zht/index.html +++ b/zht/index.html @@ -8,8 +8,8 @@ - - + + @@ -19,7 +19,7 @@
Skip to content

MBCP

更多基礎變化粒子

用於幾何運算和 當個創世神 粒子製作的軟體庫

MBCP logo

文檔由 VitePress 構建 | API引用由 litedoc 生成

- + \ No newline at end of file diff --git a/zht/refer/index.html b/zht/refer/index.html index 44a91bc..1aa895c 100644 --- a/zht/refer/index.html +++ b/zht/refer/index.html @@ -8,8 +8,8 @@ - - + + @@ -19,7 +19,7 @@
Skip to content

Reference

Help us to improve the documentation

文檔由 VitePress 構建 | API引用由 litedoc 生成

- + \ No newline at end of file