🐛 fix ε accuracy

This commit is contained in:
远野千束 2024-08-27 21:39:36 +08:00
parent 5a0e2f189c
commit 39d056fb47
17 changed files with 518 additions and 356 deletions

6
.gitignore vendored
View File

@ -1,2 +1,8 @@
*script*
.idea*
# pdm toolchain
.pdm-build
.pdm-python
pdm.lock
.pdm-build/

183
main.py
View File

@ -1,153 +1,46 @@
# -*- coding: utf-8 -*-
from typing import overload
class Vector:
def __init__(self, x: float, y: float, z: float):
"""
Copyright (C) 2020-2024 LiteyukiStudio. All Rights Reserved
@Time : 2024/8/6 下午1:30
@Author : snowykami
@Email : snowykami@outlook.com
@File : main.py
@Software: PyCharm
向量
Args:
x: x轴分量
y: y轴分量
z: z轴分量
"""
import logging
self.x = x
self.y = y
self.z = z
@overload
def __mul__(self, other: float) -> 'Vector':
...
from mbcp.mp_math.line import Line3
from mbcp.mp_math.plane import Plane3
from mbcp.mp_math.point import Point3
@overload
def __mul__(self, other: 'Vector') -> float:
...
# def ac8s4e4():
# """
# 第八章第四节例4
# 问题求与两平面x-4z-3=0和2x-y-5z-1=0的交线平行且过点(-3, 2, 5)的直线方程。
# """
# correct_ans = Line3(4, 3, 1, 1)
#
# pl1 = Plane3(1, 0, -4, -3)
# pl2 = Plane3(2, -1, -5, -1)
# p = Point3(-3, 2, 5)
# """解法1"""
# # 求直线方向向量s
# s = pl1.normal @ pl2.normal
# actual_ans = Line3.from_point_and_direction(p, s)
#
# logging.info(f"正确答案:{correct_ans} 实际答案:{actual_ans}")
# assert actual_ans == correct_ans
#
# """解法2"""
# # 过点p且与pl1平行的平面pl3
# pl3 = pl1.cal_parallel_plane3(p)
# # 过点p且与pl2平行的平面pl4
# pl4 = pl2.cal_parallel_plane3(p)
# # 求pl3和pl4的交线
# actual_ans = pl3.cal_intersection_line3(pl4)
# print(pl3, pl4, actual_ans)
#
# logging.info(f"正确答案:{correct_ans} 实际答案:{actual_ans}")
# assert actual_ans == correct_ans
#
#
# ac8s4e4()
import logging
def __mul__(self, other):
"""
点乘和数乘
Args:
other:
from mbcp.mp_math.mp_math_typing import RealNumber
from mbcp.mp_math.utils import Approx
Returns:
"""
if isinstance(other, (float, int)):
return Vector(self.x * other, self.y * other, self.z * other)
elif isinstance(other, Vector):
return self.x * other.x + self.y * other.y + self.z * other.z
else:
raise TypeError(f"unsupported operand type(s) for *: 'Vector' and '{type(other)}'")
def __rmul__(self, other: float) -> 'Vector':
return self.__mul__(other)
def three_var_func(x: RealNumber, y: RealNumber) -> RealNumber:
return x ** 3 * y ** 2 - 3 * x * y ** 3 - x * y + 1
v: Vector = Vector(1, 2, 3) * 3.0
v2: Vector = 3.0 * Vector(1, 2, 3)
class TestPartialDerivative:
# 样例来源:同济大学《高等数学》第八版下册 第九章第二节 例6
def test_2v_1o_1v(self):
"""测试二元函数关于第一个变量(x)的一阶偏导 df/dx"""
from mbcp.mp_math.utils import Approx
from mbcp.mp_math.equation import get_partial_derivative_func
partial_derivative_func = get_partial_derivative_func(three_var_func, 0)
# assert partial_derivative_func(1, 2, 3) == 4.0
def df_dx(x, y):
"""原函数关于x的偏导"""
return 3 * (x ** 2) * (y ** 2) - 3 * (y ** 3) - y
logging.info(f"Expected: {df_dx(1, 2)}, Actual: {partial_derivative_func(1, 2)}")
assert Approx(partial_derivative_func(1, 2)) == df_dx(1, 2)
def test_2v_1o_2v(self):
"""测试二元函数关于第二个变量(y)的一阶偏导 df/dy"""
from mbcp.mp_math.utils import Approx
from mbcp.mp_math.equation import get_partial_derivative_func
partial_derivative_func = get_partial_derivative_func(three_var_func, 1)
def df_dy(x, y):
"""原函数关于y的偏导"""
return 2 * (x ** 3) * y - 9 * x * (y ** 2) - x
logging.info(f"Expected: {df_dy(1, 2)}, Actual: {partial_derivative_func(1, 2)}")
assert Approx(partial_derivative_func(1, 2)) == df_dy(1, 2)
def test_2v_2o_12v(self):
"""高阶偏导d^2f/(dxdy)"""
from mbcp.mp_math.utils import Approx
from mbcp.mp_math.equation import get_partial_derivative_func
partial_derivative_func = get_partial_derivative_func(three_var_func, (0, 1))
def df_dxdy(x, y):
"""原函数关于y和x的偏导"""
return 6 * x ** 2 * y - 9 * y ** 2 - 1
logging.info(f"Expected: {df_dxdy(1, 2)}, Actual: {partial_derivative_func(1, 2)}")
assert Approx(partial_derivative_func(1, 2)) == df_dxdy(1, 2)
def test_2v_2o_1v2(self):
"""二阶偏导d^2f/(dx^2)"""
from mbcp.mp_math.utils import Approx
from mbcp.mp_math.equation import get_partial_derivative_func
partial_derivative_func = get_partial_derivative_func(three_var_func, (0, 0))
def df_dydx(x, y):
"""原函数关于x和y的偏导"""
return 6 * x * y ** 2
logging.info(f"Expected: {df_dydx(1, 2)}, Actual: {partial_derivative_func(1, 2)}")
assert Approx(partial_derivative_func(1, 2)) == df_dydx(1, 2)
def test_2v_3o_1v3(self):
"""高阶偏导d^3f/(dx^3)"""
from mbcp.mp_math.utils import Approx
from mbcp.mp_math.equation import get_partial_derivative_func
partial_derivative_func = get_partial_derivative_func(three_var_func, (0, 0, 0))
def d3f_dx3(x, y):
"""原函数关于x的三阶偏导"""
return 6 * (y ** 2)
logging.info(f"Expected: {d3f_dx3(1, 2)}, Actual: {partial_derivative_func(1, 2)}")
assert Approx(partial_derivative_func(1, 2)) == d3f_dx3(1, 2)
def test_possible_error(self):
from mbcp.mp_math.equation import get_partial_derivative_func
def two_vars_func(x: RealNumber, y: RealNumber) -> RealNumber:
return x ** 2 * y ** 2
partial_func = get_partial_derivative_func(two_vars_func, 0)
partial_func_2 = get_partial_derivative_func(two_vars_func, (0, 0))
assert Approx(partial_func_2(1, 2)) == 8
TestPartialDerivative().test_2v_1o_1v()
TestPartialDerivative().test_2v_1o_2v()
TestPartialDerivative().test_2v_2o_12v()
TestPartialDerivative().test_2v_2o_1v2()
TestPartialDerivative().test_2v_3o_1v3()
TestPartialDerivative().test_possible_error()
print(v, v2)

View File

@ -10,7 +10,7 @@ Copyright (C) 2020-2024 LiteyukiStudio. All Rights Reserved
"""
from typing import overload
from .const import PI
from .const import PI # type: ignore
class AnyAngle:
@ -27,7 +27,7 @@ class AnyAngle:
self.radian = value * PI / 180
@property
def complementary(self) -> "AnyAngle":
def complementary(self) -> 'AnyAngle':
"""
余角两角的和为90°
Returns:
@ -36,7 +36,7 @@ class AnyAngle:
return AnyAngle(PI / 2 - self.minimum_positive.radian, is_radian=True)
@property
def supplementary(self) -> "AnyAngle":
def supplementary(self) -> 'AnyAngle':
"""
补角两角的和为180°
Returns:
@ -54,7 +54,7 @@ class AnyAngle:
return self.radian * 180 / PI
@property
def minimum_positive(self) -> "AnyAngle":
def minimum_positive(self) -> 'AnyAngle':
"""
最小正角
Returns:
@ -63,7 +63,7 @@ class AnyAngle:
return AnyAngle(self.radian % (2 * PI))
@property
def maximum_negative(self) -> "AnyAngle":
def maximum_negative(self) -> 'AnyAngle':
"""
最大负角
Returns:
@ -71,21 +71,21 @@ class AnyAngle:
"""
return AnyAngle(-self.radian % (2 * PI), is_radian=True)
def __add__(self, other: "AnyAngle") -> "AnyAngle":
def __add__(self, other: 'AnyAngle') -> 'AnyAngle':
return AnyAngle(self.radian + other.radian, is_radian=True)
def __sub__(self, other: "AnyAngle") -> "AnyAngle":
def __sub__(self, other: 'AnyAngle') -> 'AnyAngle':
return AnyAngle(self.radian - other.radian, is_radian=True)
def __mul__(self, other: float) -> "AnyAngle":
def __mul__(self, other: float) -> 'AnyAngle':
return AnyAngle(self.radian * other, is_radian=True)
@overload
def __truediv__(self, other: float) -> "AnyAngle":
def __truediv__(self, other: float) -> 'AnyAngle':
...
@overload
def __truediv__(self, other: "AnyAngle") -> float:
def __truediv__(self, other: 'AnyAngle') -> float:
...
def __truediv__(self, other):

View File

@ -8,87 +8,55 @@ Copyright (C) 2020-2024 LiteyukiStudio. All Rights Reserved
@File : other.py
@Software: PyCharm
"""
import math
from typing import TYPE_CHECKING, overload
from typing import TYPE_CHECKING
from .mp_math_typing import OneSingleVarFunc, RealNumber
from .utils import sign_format
from .vector import Vector3
if TYPE_CHECKING:
from .angle import AnyAngle
from .plane import Plane3
from .point import Point3
class Line3:
def __init__(self, a: float, b: float, c: float, d: float):
def __init__(self, point: 'Point3', direction: 'Vector3'):
"""
三维空间中的直线
三维空间中的直线由一个点和一个方向向量确定
Args:
a: 直线方程的系数a
b: 直线方程的系数b
c: 直线方程的系数c
d: 直线方程的常数项d
point: 直线上的一点
direction: 直线的方向向量
"""
self.a = a
self.b = b
self.c = c
self.d = d
self.point = point
self.direction = direction
def cal_angle(self, other: "Line3") -> "AnyAngle":
def cal_angle(self, other: 'Line3') -> 'AnyAngle':
"""
计算直线和直线或面之间的夹角
计算直线和直线之间的夹角
Args:
other: 另一条直线或面
other: 另一条直线
Returns:
夹角弧度
Raises:
TypeError: 不支持的类型
"""
if isinstance(other, Line3):
return self.direction.cal_angle(other.direction)
elif isinstance(other, Plane3):
return self.direction.cal_angle(other.normal).complementary # 方向向量和法向量的夹角的余角
else:
raise TypeError(f"Unsupported type: {type(other)}")
@property
def direction(self) -> "Vector3":
"""
直线的方向向量
Returns:
方向向量
"""
return Vector3(self.a, self.b, self.c)
def cal_intersection(self, line: "Line3") -> "Point3":
def cal_intersection(self, other: 'Line3') -> 'Point3':
"""
计算两条直线的交点
Args:
line: 另一条直线
other: 另一条直线
Returns:
交点
"""
if self.is_parallel(line):
if self.is_parallel(other):
raise ValueError("Lines are parallel and do not intersect.")
if self.is_collinear(line):
raise ValueError("Lines are collinear and do not have a single intersection point.")
if not self.is_coplanar(line):
if not self.is_coplanar(other):
raise ValueError("Lines are not coplanar and do not intersect.")
return self.point + self.direction.cross(other.direction)
a1, b1, c1, d1 = self.a, self.b, self.c, self.d
a2, b2, c2, d2 = line.a, line.b, line.c, line.d
t = (b1 * (c2 * d1 - c1 * d2) - b2 * (c1 * d1 - c2 * d2)) / (b1 * c2 - b2 * c1)
x = self.a * t + self.b * (-d1 / self.b)
y = -self.b * t + self.a * (d1 / self.a)
z = 0
return Point3(x, y, z)
def cal_perpendicular(self, point: "Point3") -> "Line3":
def cal_perpendicular(self, point: 'Point3') -> 'Line3':
"""
计算直线经过指定点p的垂线
Args:
@ -96,64 +64,78 @@ class Line3:
Returns:
垂线
"""
a = -self.b
b = self.a
c = 0
d = -(a * point.x + b * point.y + self.c * point.z)
return Line3(a, b, c, d)
return Line3(point, self.direction.cross(point - self.point))
def is_parallel(self, line: "Line3") -> bool:
def get_point(self, t: RealNumber) -> 'Point3':
"""
获取直线上的点同一条直线但起始点和方向向量不同则同一个t对应的点不同
Args:
t: 参数t
Returns:
"""
return self.point + t * self.direction
def get_parametric_equations(self) -> tuple[OneSingleVarFunc, OneSingleVarFunc, OneSingleVarFunc]:
"""
获取直线的参数方程
Returns:
x(t), y(t), z(t)
"""
return (lambda t: self.point.x + self.direction.x * t,
lambda t: self.point.y + self.direction.y * t,
lambda t: self.point.z + self.direction.z * t)
def is_parallel(self, other: 'Line3') -> bool:
"""
判断两条直线是否平行
直线平行的条件是它们的法向量成比例
Args:
line: 另一条直线
other: 另一条直线
Returns:
是否平行
"""
return self.direction.is_parallel(line.direction)
return self.direction.is_parallel(other.direction)
def is_collinear(self, line: "Line3") -> bool:
def is_collinear(self, other: 'Line3') -> bool:
"""
判断两条直线是否共线
直线共线的条件是它们的法向量成比例且常数项也成比例
Args:
line: 另一条直线
other: 另一条直线
Returns:
是否共线
"""
return self.is_parallel(line) and (self.d * line.b - self.b * line.d) / (self.a * line.b - self.b * line.a) == 0
return self.is_parallel(other) and (self.point - other.point).is_parallel(self.direction)
def is_coplanar(self, line: "Line3") -> bool:
def is_coplanar(self, other: 'Line3') -> bool:
"""
判断两条直线是否共面
两条直线共面的条件是它们的方向向量和法向量的叉乘为零向量
Args:
line: 另一条直线
other: 另一条直线
Returns:
是否共面
"""
direction1 = (-self.c, 0, self.a)
direction2 = (line.c, -line.b, 0)
cross_product = direction1[0] * direction2[1] - direction1[1] * direction2[0]
return cross_product == 0
return self.direction.cross(other.direction).is_parallel(self.direction)
def simplify(self):
"""
简化直线方程等价相等
自体简化不返回值
按照可行性一次对x y z 0 处理并对向量单位化
"""
self.direction.normalize()
# 平行与zy平面x始终为0
if self.direction.x == 0:
self.point.x = 0
# 平行与xz平面y始终为0
if self.direction.y == 0:
self.point.y = 0
# 平行与xy平面z始终为0
if self.direction.z == 0:
self.point.z = 0
@classmethod
def from_point_and_direction(cls, point: "Point3", direction: "Vector3") -> "Line3":
"""
工厂函数 由点和方向向量构造直线(点向式构造)
Args:
point:
direction: 方向向量
Returns:
直线
"""
a, b, c = direction.x, direction.y, direction.z
d = -(a * point.x + b * point.y + c * point.z)
return cls(a, b, c, d)
@classmethod
def from_two_points(cls, p1: "Point3", p2: "Point3") -> "Line3":
def from_two_points(cls, p1: 'Point3', p2: 'Point3') -> 'Line3':
"""
工厂函数 由两点构造直线
Args:
@ -163,21 +145,45 @@ class Line3:
直线
"""
direction = p2 - p1
return cls.from_point_and_direction(p1, direction)
return cls(p1, direction)
def __and__(self, other: 'Line3') -> 'Point3':
"""
计算两条直线点集合的交集交点
Args:
other: 另一条直线
Returns:
交点
"""
return self.cal_intersection(other)
def __eq__(self, other) -> bool:
"""
判断两条直线是否等价
v1 // v2 (p1 - p2) // v1
Args:
other:
Returns:
"""
return self.a / other.a == self.b / other.b == self.c / other.c == self.d / other.d
def __repr__(self):
return f"Line3({self.a}, {self.b}, {self.c}, {self.d})"
return self.direction.is_parallel(other.direction) and (self.point - other.point).is_parallel(self.direction)
def __str__(self):
return f"Line3({self.a}, {self.b}, {self.c}, {self.d})"
"""
返回点向式x-x0
Returns:
"""
s = "Line3: "
if self.direction.x != 0:
s += f"(x{sign_format(-self.point.x)})/{self.direction.x}"
if self.direction.y != 0:
s += f" = (y{sign_format(-self.point.y)})/{self.direction.y}"
if self.direction.z != 0:
s += f" = (z{sign_format(-self.point.z)})/{self.direction.z}"
return s
def __repr__(self):
return f"Line3({self.point}, {self.direction})"

View File

@ -3,13 +3,14 @@
平面模块
"""
import math
from typing import TYPE_CHECKING
from typing import TYPE_CHECKING, overload
import numpy as np
from .vector import Vector3
from .vector import Vector3, zero_vector3
from .line import Line3
from .point import Point3
from .utils import sign
if TYPE_CHECKING:
from .angle import AnyAngle
@ -30,7 +31,7 @@ class Plane3:
self.c = c
self.d = d
def cal_angle(self, other: "Line3 | Plane3") -> "AnyAngle":
def cal_angle(self, other: 'Line3 | Plane3') -> 'AnyAngle':
"""
计算平面与平面之间的夹角
Args:
@ -43,11 +44,11 @@ class Plane3:
if isinstance(other, Line3):
return self.normal.cal_angle(other.direction).complementary
elif isinstance(other, Plane3):
return AnyAngle(math.acos(self.normal * other.normal / (self.normal.length * other.normal.length)), is_radian=True)
return AnyAngle(math.acos(self.normal @ other.normal / (self.normal.length * other.normal.length)), is_radian=True)
else:
raise TypeError(f"Unsupported type: {type(other)}")
def cal_distance(self, other: "Plane3 | Point3") -> float:
def cal_distance(self, other: 'Plane3 | Point3') -> float:
"""
计算平面与平面或点之间的距离
Args:
@ -64,27 +65,58 @@ class Plane3:
else:
raise TypeError(f"Unsupported type: {type(other)}")
def cal_intersection_line3(self, other: "Plane3") -> "Line3":
def cal_intersection_line3(self, other: 'Plane3') -> 'Line3':
"""
计算两平面的交线该方法有问题待修复
Args:
other: 另一个平面
Returns:
交线
Raises:
"""
# 计算两法向量的叉积作为交线的方向向量
s = self.normal.cross(other.normal) # 交线的方向向量
# 联立两平面方程求交线的一点
# 两平面方程联立得到的方程组
# | a1x + b1y + c1z = -d1
# | a2x + b2y + c2z = -d2
# 用numpy解方程组
a = np.array([[self.a, self.b, self.c], [other.a, other.b, other.c]])
b = np.array([-self.d, -other.d])
p = np.linalg.lstsq(a, b, rcond=None)[0]
return Line3.from_point_and_direction(Point3(*p), s)
if self.normal.is_parallel(other.normal):
raise ValueError("Planes are parallel and have no intersection.")
direction = self.normal.cross(other.normal) # 法向量叉乘得到方向向量
# 寻找直线上的一点依次假设x=0, y=0, z=0找到合适的点
x, y, z = 0, 0, 0
# 依次判断条件假设x=0, y=0, z=0找到合适的点
# 先假设其中一个系数不为0则令此坐标为0构建增广矩阵解出另外两个坐标
if self.a != 0 and other.a != 0:
A = np.array([[self.b, self.c], [other.b, other.c]])
B = np.array([-self.d, -other.d])
y, z = np.linalg.solve(A, B)
elif self.b != 0 and other.b != 0:
A = np.array([[self.a, self.c], [other.a, other.c]])
B = np.array([-self.d, -other.d])
x, z = np.linalg.solve(A, B)
elif self.c != 0 and other.c != 0:
A = np.array([[self.a, self.b], [other.a, other.b]])
B = np.array([-self.d, -other.d])
x, y = np.linalg.solve(A, B)
def cal_parallel_plane3(self, point: "Point3") -> "Plane3":
return Line3(Point3(x, y, z), direction)
def cal_intersection_point3(self, other: 'Line3') -> 'Point3':
"""
计算平面与直线的交点
Args:
other: 不与平面平行或在平面上的直线
Returns:
交点
Raises:
ValueError: 平面与直线平行或重合
"""
# 若平面的法向量与直线方向向量垂直,则直线与平面平行或重合
if self.normal @ other.direction == 0:
raise ValueError("The plane and the line are parallel or coincident.")
# 获取直线的参数方程
# 代入平面方程解出t
x, y, z = other.get_parametric_equations()
t = (-(self.a * other.point.x + self.b * other.point.y + self.c * other.point.z + self.d) /
(self.a * other.direction.x + self.b * other.direction.y + self.c * other.direction.z))
return Point3(x(t), y(t), z(t))
def cal_parallel_plane3(self, point: 'Point3') -> 'Plane3':
"""
计算平行于该平面且过指定点的平面
Args:
@ -95,7 +127,7 @@ class Plane3:
return Plane3.from_point_and_normal(point, self.normal)
@property
def normal(self) -> "Vector3":
def normal(self) -> 'Vector3':
"""
平面的法向量
Returns:
@ -104,7 +136,7 @@ class Plane3:
return Vector3(self.a, self.b, self.c)
@classmethod
def from_point_and_normal(cls, point: "Point3", normal: "Vector3") -> "Plane3":
def from_point_and_normal(cls, point: 'Point3', normal: 'Vector3') -> 'Plane3':
"""
工厂函数 由点和法向量构造平面(点法式构造)
Args:
@ -117,8 +149,93 @@ class Plane3:
d = -a * point.x - b * point.y - c * point.z # d = -ax - by - cz
return cls(a, b, c, d)
@classmethod
def from_three_points(cls, p1: 'Point3', p2: 'Point3', p3: 'Point3') -> 'Plane3':
"""
工厂函数 由三点构造平面
Args:
p1: 点1
p2: 点2
p3: 点3
Returns:
平面
"""
# 两个向量
v1 = p2 - p1
v2 = p3 - p1
# 法向量
normal = v1.cross(v2)
return cls.from_point_and_normal(p1, normal)
@classmethod
def from_two_lines(cls, l1: 'Line3', l2: 'Line3') -> 'Plane3':
"""
工厂函数 由两直线构造平面
Args:
l1: 直线1
l2: 直线2
Returns:
平面
"""
v1 = l1.direction
v2 = l2.point - l1.point
if v2 == zero_vector3:
v2 = l2.get_point(1) - l1.point
return cls.from_point_and_normal(l1.point, v1.cross(v2))
@classmethod
def from_point_and_line(cls, point: 'Point3', line: 'Line3') -> 'Plane3':
"""
工厂函数 由点和直线构造平面
Args:
point: 面上一点
line: 面上直线不包含点
Returns:
平面
"""
return cls.from_point_and_normal(point, line.direction)
def __repr__(self):
return f"Plane3({self.a}, {self.b}, {self.c}, {self.d})"
def __str__(self):
return f"{self.a}x + {self.b}y + {self.c}z + {self.d} = 0"
s = "Plane3: "
if self.a != 0:
s += f"{sign(self.a, only_neg=True)}{abs(self.a)}x"
if self.b != 0:
s += f" {sign(self.b)} {abs(self.b)}y"
if self.c != 0:
s += f" {sign(self.c)} {abs(self.c)}z"
if self.d != 0:
s += f" {sign(self.d)} {abs(self.d)}"
return s + " = 0"
@overload
def __and__(self, other: 'Line3') -> 'Point3 | None':
...
@overload
def __and__(self, other: 'Plane3') -> 'Line3 | None':
...
def __and__(self, other):
"""
取两平面的交集人话交线
Args:
other:
Returns:
不平行平面的交线平面平行返回None
"""
if isinstance(other, Plane3):
if self.normal.is_parallel(other.normal):
return None
return self.cal_intersection_line3(other)
elif isinstance(other, Line3):
if self.normal @ other.direction == 0:
return None
return self.cal_intersection_point3(other)
else:
raise TypeError(f"unsupported operand type(s) for &: 'Plane3' and '{type(other)}'")
def __rand__(self, other: 'Line3') -> 'Point3':
return self.cal_intersection_point3(other)

View File

@ -8,9 +8,10 @@ class Point3:
def __init__(self, x: float, y: float, z: float):
"""
笛卡尔坐标系中的点
:param x:
:param y:
:param z:
Args:
x: x 坐标
y: y 坐标
z: z 坐标
"""
self.x = x
self.y = y
@ -31,26 +32,30 @@ class Point3:
"""
P + V -> P
P + P -> P
:param other:
:return:
Args:
other:
Returns:
"""
return Point3(self.x + other.x, self.y + other.y, self.z + other.z)
def __eq__(self, other):
"""
判断两个点是否相等
Args:
other:
Returns:
"""
return self.x == other.x and self.y == other.y and self.z == other.z
def __sub__(self, other: "Point3") -> "Vector3":
"""
P - P -> V
P - V -> P 已在 :class:`Vector3` 中实现
:param other:
:return:
Args:
other:
Returns:
"""
from .vector import Vector3
return Vector3(self.x - other.x, self.y - other.y, self.z - other.z)
def __truediv__(self, other: float) -> "Point3":
"""
P / n -> P
:param other:
:return:
"""
return Point3(self.x / other, self.y / other, self.z / other)

View File

@ -56,3 +56,38 @@ def approx(x: float, y: float = 0.0, epsilon: float = 0.0001) -> bool:
是否近似相等
"""
return abs(x - y) < epsilon
def sign(x: float, only_neg: bool = False) -> str:
"""获取数的符号。
Args:
x:
only_neg: 是否只返回负数的符号
Returns:
符号 + - ""
"""
if x > 0:
return "+" if not only_neg else ""
elif x < 0:
return "-"
else:
return ""
def sign_format(x: float, only_neg: bool = False) -> str:
"""格式化符号数
-1 -> -1
1 -> +1
0 -> ""
Args:
x:
only_neg: 是否只返回负数的符号
Returns:
符号 + - ""
"""
if x > 0:
return f"+{x}" if not only_neg else f"{x}"
elif x < 0:
return f"-{abs(x)}"
else:
return ""

View File

@ -1,6 +1,7 @@
import math
from typing import overload, TYPE_CHECKING
from .mp_math_typing import RealNumber
from .point import Point3
if TYPE_CHECKING:
@ -10,10 +11,11 @@ if TYPE_CHECKING:
class Vector3:
def __init__(self, x: float, y: float, z: float):
"""
笛卡尔坐标系中的向量
:param x:
:param y:
:param z:
3维向量
Args:
x: x轴分量
y: y轴分量
z: z轴分量
"""
self.x = x
self.y = y
@ -27,7 +29,7 @@ class Vector3:
Returns:
夹角
"""
return AnyAngle(math.acos(self * other / (self.length * other.length)), is_radian=True)
return AnyAngle(math.acos(self @ other / (self.length * other.length)), is_radian=True)
def is_parallel(self, other: 'Vector3') -> bool:
"""
@ -37,20 +39,39 @@ class Vector3:
Returns:
是否平行
"""
return self @ other == Vector3(0, 0, 0)
return self.cross(other) == Vector3(0, 0, 0)
def cross(self, other: 'Vector3') -> 'Vector3':
"""
向量积 叉乘V1 @ V2 -> V3
向量积 叉乘v1 cross v2 -> v3
返回如下行列式的结果
``i j k``
``x1 y1 z1``
``x2 y2 z2``
Args:
other:
Returns:
叉乘结果为0向量则两向量平行否则垂直于两向量
行列式的结果
"""
return Vector3(self.y * other.z - self.z * other.y,
self.z * other.x - self.x * other.z,
self.x * other.y - self.y * other.x)
def normalize(self):
"""
将向量归一化
自体归一化不返回值
"""
length = self.length
self.x /= length
self.y /= length
self.z /= length
@property
def length(self) -> float:
"""
@ -117,7 +138,7 @@ class Vector3:
...
@overload
def __sub__(self, other: 'Point3') -> 'Point3':
def __sub__(self, other: 'Point3') -> "Point3":
...
def __sub__(self, other):
@ -133,9 +154,9 @@ class Vector3:
elif isinstance(other, Point3):
return Point3(self.x - other.x, self.y - other.y, self.z - other.z)
else:
raise TypeError(f"unsupported operand type(s) for -: 'Vector3' and '{type(other)}'")
raise TypeError(f"unsupported operand type(s) for -: \"Vector3\" and \"{type(other)}\"")
def __rsub__(self, other: Point3):
def __rsub__(self, other: 'Point3'):
"""
P - V -> P
Args:
@ -150,54 +171,41 @@ class Vector3:
raise TypeError(f"unsupported operand type(s) for -: '{type(other)}' and 'Vector3'")
@overload
def __mul__(self, other: float) -> 'Vector3':
def __mul__(self, other: RealNumber) -> 'Vector3':
...
@overload
def __mul__(self, other: 'Vector3') -> float:
def __mul__(self, other: 'Vector3') -> 'Vector3':
...
def __mul__(self, other):
def __mul__(self, other: 'RealNumber | Vector3') -> 'Vector3':
"""
点乘法包括点乘和数乘
V * V -> float\n
数组运算 非点乘点乘使用@叉乘使用cross
Args:
other:
Returns:
float
Raises:
TypeError: 不支持的类型
"""
if isinstance(other, (int, float)):
if isinstance(other, RealNumber):
return Vector3(self.x * other, self.y * other, self.z * other)
elif isinstance(other, Vector3):
return self.x * other.x + self.y * other.y + self.z * other.z
return Vector3(self.x * other.x, self.y * other.y, self.z * other.z)
else:
raise TypeError(f"unsupported operand type(s) for *: 'Vector3' and '{type(other)}'")
def __rmul__(self, other: float) -> 'Vector3':
"""
右乘
Args:
other:
Returns:
乘积
"""
def __rmul__(self, other: RealNumber) -> 'Vector3':
return Vector3(self.x * other, self.y * other, self.z * other)
def __matmul__(self, other: 'Vector3') -> 'Vector3':
def __matmul__(self, other: 'Vector3') -> float:
"""
向量积 叉乘V1 @ V2 -> V3
点乘
Args:
other:
Returns:
叉乘结果为0向量则两向量平行否则垂直于两向量
"""
return Vector3(self.y * other.z - self.z * other.y,
self.z * other.x - self.x * other.z,
self.x * other.y - self.y * other.x)
return self.x * other.x + self.y * other.y + self.z * other.z
def __truediv__(self, other: float) -> 'Vector3':
def __truediv__(self, other: RealNumber) -> 'Vector3':
return Vector3(self.x / other, self.y / other, self.z / other)
def __neg__(self):
@ -208,3 +216,16 @@ class Vector3:
def __str__(self):
return f"Vector3({self.x}, {self.y}, {self.z})"
zero_vector3 = Vector3(0, 0, 0)
"""零向量"""
x_axis = Vector3(1, 0, 0)
"""x轴单位向量"""
y_axis = Vector3(0, 1, 0)
"""y轴单位向量"""
z_axis = Vector3(0, 0, 1)
"""z轴单位向量"""
v1: Vector3 = Vector3(1, 2, 3) * 3.0
v2: Vector3 = 3.0 * Vector3(1, 2, 3)

0
py.typed Normal file
View File

23
pyproject.toml Normal file
View File

@ -0,0 +1,23 @@
[project]
name = "mbcp"
version = "0.1.0"
description = "A tool for Minecraft particle production"
authors = [
{name = "snowykami", email = "snowykami@outlook.com"},
]
dependencies = [
"pytest~=8.3.2",
"numpy~=2.0.1",
"liteyukibot>=6.3.9",
]
requires-python = ">=3.10"
readme = "README.md"
license = {text = "MIT"}
[build-system]
requires = ["pdm-backend"]
build-backend = "pdm.backend"
[tool.pdm]
distribution = true

View File

@ -1,2 +0,0 @@
pytest~=8.3.2
numpy~=2.0.1

0
tests/__init__.py Normal file
View File

32
tests/answer.py Normal file
View File

@ -0,0 +1,32 @@
# -*- coding: utf-8 -*-
"""
Copyright (C) 2020-2024 LiteyukiStudio. All Rights Reserved
@Time : 2024/8/27 下午1:03
@Author : snowykami
@Email : snowykami@outlook.com
@File : .answer.py
@Software: PyCharm
"""
from liteyuki.log import logger # type: ignore
def output_answer(correct_ans, actual_ans, question: str = None):
"""
输出答案
Args:
correct_ans:
actual_ans:
question:
Returns:
"""
print("")
if question is not None:
logger.info(f"问题:{question}")
r = correct_ans == actual_ans
if r:
logger.success(f"测试正确 正确答案:{correct_ans} 实际答案:{actual_ans}")
else:
logger.error(f"测试错误 正确答案:{correct_ans} 实际答案:{actual_ans}")

View File

@ -13,21 +13,8 @@ import logging
from mbcp.mp_math.point import Point3
from mbcp.mp_math.vector import Vector3
from mbcp.mp_math.line import Line3
from tests.answer import output_answer
class TestLine3:
def test_point_and_normal_factory(self):
"""
测试通过点和法向量构造直线
"""
correct_ans = Line3(1, -2, 3, -8)
p = Point3(2, -3, 0)
n = Vector3(1, -2, 3)
actual_ans = Line3.from_point_and_direction(p, n)
logging.info(f"正确答案:{correct_ans} 实际答案:{actual_ans}")
assert actual_ans == correct_ans

View File

@ -12,6 +12,8 @@ import logging
from mbcp.mp_math.line import Line3
from mbcp.mp_math.plane import Plane3
from mbcp.mp_math.point import Point3
from mbcp.mp_math.vector import Vector3
class TestPlane3:
@ -20,10 +22,10 @@ class TestPlane3:
"""
测试平面的交线
"""
correct_ans = Line3(4, 3, 1, 1)
correct_ans = Line3(Point3(-3, 2, 5), Vector3(4, 3, 1))
pl1 = Plane3(1, 0, -4, 23)
pl2 = Plane3(2, -1, -5, 33)
actual_ans = pl1.cal_intersection_line3(pl2)
actual_ans = pl1 & pl2 # 平面交线
logging.info(f"正确答案:{correct_ans} 实际答案:{actual_ans}")
assert actual_ans == correct_ans

View File

@ -12,6 +12,8 @@ import logging
from mbcp.mp_math.vector import Vector3
from tests.answer import output_answer
class TestVector3:
@ -23,7 +25,7 @@ class TestVector3:
"""
v1 = Vector3(1, 2, 3)
v2 = Vector3(3, 4, 5)
actual_ans = v1 @ v2
actual_ans = v1.cross(v2)
correct_ans = Vector3(-2, 4, -2)
logging.info(f"正确答案{correct_ans} 实际答案{v1 @ v2}")
@ -34,18 +36,20 @@ class TestVector3:
测试判断向量是否平行
Returns:
"""
"""小题1"""
correct_ans = True
v1 = Vector3(1, 2, 3)
v2 = Vector3(3, 6, 9)
actual_ans = v1.is_parallel(v2)
correct_ans = True
logging.info("v1和v2是否平行%s", v1.is_parallel(v2))
output_answer(correct_ans, actual_ans)
assert correct_ans == actual_ans
"""小题2"""
correct_ans = False
v1 = Vector3(1, 2, 3)
v2 = Vector3(3, 6, 8)
actual_ans = v1.is_parallel(v2)
correct_ans = False
logging.info("v1和v2是否平行%s", v1.is_parallel(v2))
output_answer(correct_ans, actual_ans)
assert correct_ans == actual_ans

View File

@ -2,11 +2,12 @@
"""
应用题测试集
"""
import logging
from liteyuki.log import logger # type: ignore
from mbcp.mp_math.line import Line3
from mbcp.mp_math.plane import Plane3
from mbcp.mp_math.point import Point3
from mbcp.mp_math.vector import Vector3
from .answer import output_answer
class TestWordProblem:
@ -16,17 +17,17 @@ class TestWordProblem:
同济大学高等数学第八版 下册 第八章第四节例4
问题求与两平面x-4z-3=0和2x-y-5z-1=0的交线平行且过点(-3, 2, 5)的直线方程
"""
correct_ans = Line3(4, 3, 1, 1)
question = "求与两平面x-4z-3=0和2x-y-5z-1=0的交线平行且过点(-3, 2, 5)的直线方程。"
correct_ans = Line3(Point3(-3, 2, 5), Vector3(4, 3, 1))
pl1 = Plane3(1, 0, -4, -3)
pl2 = Plane3(2, -1, -5, -1)
p = Point3(-3, 2, 5)
"""解法1"""
# 求直线方向向量s
s = pl1.normal @ pl2.normal
actual_ans = Line3.from_point_and_direction(p, s)
s = pl1.normal.cross(pl2.normal)
actual_ans = Line3(p, s)
logging.info(f"正确答案:{correct_ans} 实际答案:{actual_ans}")
output_answer(correct_ans, actual_ans, question)
assert actual_ans == correct_ans
"""解法2"""
@ -36,8 +37,40 @@ class TestWordProblem:
pl4 = pl2.cal_parallel_plane3(p)
# 求pl3和pl4的交线
actual_ans = pl3.cal_intersection_line3(pl4)
print(pl3, pl4, actual_ans)
logging.info(f"正确答案:{correct_ans} 实际答案:{actual_ans}")
output_answer(correct_ans, actual_ans, question)
assert actual_ans == correct_ans
def test_c8s4e5(self):
"""
同济大学高等数学第八版 下册 第八章第四节例5
求直线(x-2)/1=(y-3)/1=(z-4)/2与平面2x+y+z-6=0的交点
"""
question = "求直线(x-2)/1=(y-3)/1=(z-4)/2与平面2x+y+z-6=0的交点。"
"""正确答案"""
correct_ans = Point3(1, 2, 2)
"""题目已知量"""
line = Line3(Point3(2, 3, 4), Vector3(1, 1, 2))
plane = Plane3(2, 1, 1, -6)
""""""
actual_ans = plane & line
output_answer(correct_ans, actual_ans, question)
def test_c8s4e6(self):
question = "求过点(2, 3, 1)且与直线(x+1)/3 = (y-1)/2 = z/-1垂直相交的直线的方程。"
"""正确答案"""
correct_ans = Line3(Point3(2, 1, 3), Vector3(2, -1, 4))
"""题目已知量"""
point = Point3(2, 3, 1)
line = Line3(Point3(-1, 1, 0), Vector3(3, 2, -1))
""""""
# 先作平面过点且垂直与已知直线
pl = line.cal_perpendicular(point)
logger.debug(line.get_point(1))
# output_answer(correct_ans, actual_ans, question)