mbcp/docs/api/mp_math/plane.md

553 lines
11 KiB
Markdown
Raw Normal View History

2024-08-28 10:52:17 +08:00
---
title: mbcp.mp\nmath.plane
order: 1
icon: laptop-code
category: API
---
### ***class*** `Plane3`
###   ***def*** `__init__(self, a: float, b: float, c: float, d: float) -> None`
 平面方程ax + by + cz + d = 0
Args:
a:
b:
c:
d:
<details>
<summary>源代码</summary>
```python
def __init__(self, a: float, b: float, c: float, d: float):
"""
平面方程ax + by + cz + d = 0
Args:
a:
b:
c:
d:
"""
self.a = a
self.b = b
self.c = c
self.d = d
```
</details>
### &emsp; ***def*** `approx(self, other: 'Plane3', epsilon: float) -> bool`
&emsp;判断两个平面是否近似相等。
Args:
other:
epsilon:
Returns:
是否近似相等
<details>
<summary>源代码</summary>
```python
def approx(self, other: 'Plane3', epsilon: float=APPROX) -> bool:
"""
判断两个平面是否近似相等。
Args:
other:
epsilon:
Returns:
是否近似相等
"""
if self.a != 0:
k = other.a / self.a
return approx(other.b, self.b * k) and approx(other.c, self.c * k) and approx(other.d, self.d * k)
elif self.b != 0:
k = other.b / self.b
return approx(other.a, self.a * k) and approx(other.c, self.c * k) and approx(other.d, self.d * k)
elif self.c != 0:
k = other.c / self.c
return approx(other.a, self.a * k) and approx(other.b, self.b * k) and approx(other.d, self.d * k)
else:
return False
```
</details>
### &emsp; ***def*** `cal_angle(self, other: 'Line3 | Plane3') -> 'AnyAngle'`
&emsp;计算平面与平面之间的夹角。
Args:
other: 另一个平面
Returns:
夹角弧度
Raises:
TypeError: 不支持的类型
<details>
<summary>源代码</summary>
```python
def cal_angle(self, other: 'Line3 | Plane3') -> 'AnyAngle':
"""
计算平面与平面之间的夹角。
Args:
other: 另一个平面
Returns:
夹角弧度
Raises:
TypeError: 不支持的类型
"""
if isinstance(other, Line3):
return self.normal.cal_angle(other.direction).complementary
elif isinstance(other, Plane3):
return AnyAngle(math.acos(self.normal @ other.normal / (self.normal.length * other.normal.length)), is_radian=True)
else:
raise TypeError(f'Unsupported type: {type(other)}')
```
</details>
### &emsp; ***def*** `cal_distance(self, other: 'Plane3 | Point3') -> float`
&emsp;计算平面与平面或点之间的距离。
Args:
other: 另一个平面或点
Returns:
距离
Raises:
TypeError: 不支持的类型
<details>
<summary>源代码</summary>
```python
def cal_distance(self, other: 'Plane3 | Point3') -> float:
"""
计算平面与平面或点之间的距离。
Args:
other: 另一个平面或点
Returns:
距离
Raises:
TypeError: 不支持的类型
"""
if isinstance(other, Plane3):
return 0
elif isinstance(other, Point3):
return abs(self.a * other.x + self.b * other.y + self.c * other.z + self.d) / (self.a ** 2 + self.b ** 2 + self.c ** 2) ** 0.5
else:
raise TypeError(f'Unsupported type: {type(other)}')
```
</details>
### &emsp; ***def*** `cal_intersection_line3(self, other: 'Plane3') -> 'Line3'`
&emsp;计算两平面的交线。该方法有问题,待修复。
Args:
other: 另一个平面
Returns:
交线
Raises:
<details>
<summary>源代码</summary>
```python
def cal_intersection_line3(self, other: 'Plane3') -> 'Line3':
"""
计算两平面的交线。该方法有问题,待修复。
Args:
other: 另一个平面
Returns:
交线
Raises:
"""
if self.normal.is_parallel(other.normal):
raise ValueError('Planes are parallel and have no intersection.')
direction = self.normal.cross(other.normal)
x, y, z = (0, 0, 0)
if self.a != 0 and other.a != 0:
A = np.array([[self.b, self.c], [other.b, other.c]])
B = np.array([-self.d, -other.d])
y, z = np.linalg.solve(A, B)
elif self.b != 0 and other.b != 0:
A = np.array([[self.a, self.c], [other.a, other.c]])
B = np.array([-self.d, -other.d])
x, z = np.linalg.solve(A, B)
elif self.c != 0 and other.c != 0:
A = np.array([[self.a, self.b], [other.a, other.b]])
B = np.array([-self.d, -other.d])
x, y = np.linalg.solve(A, B)
return Line3(Point3(x, y, z), direction)
```
</details>
### &emsp; ***def*** `cal_intersection_point3(self, other: 'Line3') -> 'Point3'`
&emsp;计算平面与直线的交点。
Args:
other: 不与平面平行或在平面上的直线
Returns:
交点
Raises:
ValueError: 平面与直线平行或重合
<details>
<summary>源代码</summary>
```python
def cal_intersection_point3(self, other: 'Line3') -> 'Point3':
"""
计算平面与直线的交点。
Args:
other: 不与平面平行或在平面上的直线
Returns:
交点
Raises:
ValueError: 平面与直线平行或重合
"""
if self.normal @ other.direction == 0:
raise ValueError('The plane and the line are parallel or coincident.')
x, y, z = other.get_parametric_equations()
t = -(self.a * other.point.x + self.b * other.point.y + self.c * other.point.z + self.d) / (self.a * other.direction.x + self.b * other.direction.y + self.c * other.direction.z)
return Point3(x(t), y(t), z(t))
```
</details>
### &emsp; ***def*** `cal_parallel_plane3(self, point: 'Point3') -> 'Plane3'`
&emsp;计算平行于该平面且过指定点的平面。
Args:
point: 指定点
Returns:
平面
<details>
<summary>源代码</summary>
```python
def cal_parallel_plane3(self, point: 'Point3') -> 'Plane3':
"""
计算平行于该平面且过指定点的平面。
Args:
point: 指定点
Returns:
平面
"""
return Plane3.from_point_and_normal(point, self.normal)
```
</details>
### &emsp; ***def*** `is_parallel(self, other: 'Plane3') -> bool`
&emsp;判断两个平面是否平行。
Args:
other: 另一个平面
Returns:
是否平行
<details>
<summary>源代码</summary>
```python
def is_parallel(self, other: 'Plane3') -> bool:
"""
判断两个平面是否平行。
Args:
other: 另一个平面
Returns:
是否平行
"""
return self.normal.is_parallel(other.normal)
```
</details>
### &emsp; ***@property***
### &emsp; ***def*** `normal(self: Any) -> 'Vector3'`
&emsp;平面的法向量。
Returns:
法向量
<details>
<summary>源代码</summary>
```python
@property
def normal(self) -> 'Vector3':
"""
平面的法向量。
Returns:
法向量
"""
return Vector3(self.a, self.b, self.c)
```
</details>
### &emsp; ***@classmethod***
### &emsp; ***def*** `from_point_and_normal(cls: Any, point: 'Point3', normal: 'Vector3') -> 'Plane3'`
&emsp;工厂函数 由点和法向量构造平面(点法式构造)。
Args:
point: 平面上的一点
normal: 法向量
Returns:
平面
<details>
<summary>源代码</summary>
```python
@classmethod
def from_point_and_normal(cls, point: 'Point3', normal: 'Vector3') -> 'Plane3':
"""
工厂函数 由点和法向量构造平面(点法式构造)。
Args:
point: 平面上的一点
normal: 法向量
Returns:
平面
"""
a, b, c = (normal.x, normal.y, normal.z)
d = -a * point.x - b * point.y - c * point.z
return cls(a, b, c, d)
```
</details>
### &emsp; ***@classmethod***
### &emsp; ***def*** `from_three_points(cls: Any, p1: 'Point3', p2: 'Point3', p3: 'Point3') -> 'Plane3'`
&emsp;工厂函数 由三点构造平面。
Args:
p1: 点1
p2: 点2
p3: 点3
Returns:
平面
<details>
<summary>源代码</summary>
```python
@classmethod
def from_three_points(cls, p1: 'Point3', p2: 'Point3', p3: 'Point3') -> 'Plane3':
"""
工厂函数 由三点构造平面。
Args:
p1: 点1
p2: 点2
p3: 点3
Returns:
平面
"""
v1 = p2 - p1
v2 = p3 - p1
normal = v1.cross(v2)
return cls.from_point_and_normal(p1, normal)
```
</details>
### &emsp; ***@classmethod***
### &emsp; ***def*** `from_two_lines(cls: Any, l1: 'Line3', l2: 'Line3') -> 'Plane3'`
&emsp;工厂函数 由两直线构造平面。
Args:
l1: 直线1
l2: 直线2
Returns:
平面
<details>
<summary>源代码</summary>
```python
@classmethod
def from_two_lines(cls, l1: 'Line3', l2: 'Line3') -> 'Plane3':
"""
工厂函数 由两直线构造平面。
Args:
l1: 直线1
l2: 直线2
Returns:
平面
"""
v1 = l1.direction
v2 = l2.point - l1.point
if v2 == zero_vector3:
v2 = l2.get_point(1) - l1.point
return cls.from_point_and_normal(l1.point, v1.cross(v2))
```
</details>
### &emsp; ***@classmethod***
### &emsp; ***def*** `from_point_and_line(cls: Any, point: 'Point3', line: 'Line3') -> 'Plane3'`
&emsp;工厂函数 由点和直线构造平面。
Args:
point: 面上一点
line: 面上直线,不包含点
Returns:
平面
<details>
<summary>源代码</summary>
```python
@classmethod
def from_point_and_line(cls, point: 'Point3', line: 'Line3') -> 'Plane3':
"""
工厂函数 由点和直线构造平面。
Args:
point: 面上一点
line: 面上直线,不包含点
Returns:
平面
"""
return cls.from_point_and_normal(point, line.direction)
```
</details>
### ***var*** `direction = self.normal.cross(other.normal)`
### ***var*** `t = -(self.a * other.point.x + self.b * other.point.y + self.c * other.point.z + self.d) / (self.a * other.direction.x + self.b * other.direction.y + self.c * other.direction.z)`
### ***var*** `d = -a * point.x - b * point.y - c * point.z`
### ***var*** `v1 = p2 - p1`
### ***var*** `v2 = p3 - p1`
### ***var*** `normal = v1.cross(v2)`
### ***var*** `v1 = l1.direction`
### ***var*** `v2 = l2.point - l1.point`
### ***var*** `s = 'Plane3: '`
### ***var*** `k = other.a / self.a`
### ***var*** `A = np.array([[self.b, self.c], [other.b, other.c]])`
### ***var*** `B = np.array([-self.d, -other.d])`
### ***var*** `v2 = l2.get_point(1) - l1.point`
### ***var*** `k = other.b / self.b`
### ***var*** `A = np.array([[self.a, self.c], [other.a, other.c]])`
### ***var*** `B = np.array([-self.d, -other.d])`
### ***var*** `k = other.c / self.c`
### ***var*** `A = np.array([[self.a, self.b], [other.a, other.b]])`
### ***var*** `B = np.array([-self.d, -other.d])`