mbcp/api/mp_math/equation.html

103 lines
51 KiB
HTML
Raw Normal View History

<!DOCTYPE html>
<html lang="zh-Hans" dir="ltr">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width,initial-scale=1">
<title>mbcp.mp_math.equation | MBCP docs</title>
<meta name="description" content="一个用于Minecraft粒子计算和生成的库">
<meta name="generator" content="VitePress v1.3.4">
<link rel="preload stylesheet" href="/assets/style.CTLFORxu.css" as="style">
<script type="module" src="/assets/app.DSCSdM_3.js"></script>
<link rel="preload" href="/assets/inter-roman-latin.Di8DUHzh.woff2" as="font" type="font/woff2" crossorigin="">
<link rel="modulepreload" href="/assets/chunks/theme.CIS5wKR_.js">
<link rel="modulepreload" href="/assets/chunks/framework.C94oF1kp.js">
<link rel="modulepreload" href="/assets/api_mp_math_equation.md.DpRfW_6Z.lean.js">
<script id="check-dark-mode">(()=>{const e=localStorage.getItem("vitepress-theme-appearance")||"auto",a=window.matchMedia("(prefers-color-scheme: dark)").matches;(!e||e==="auto"?a:e==="dark")&&document.documentElement.classList.add("dark")})();</script>
<script id="check-mac-os">document.documentElement.classList.toggle("mac",/Mac|iPhone|iPod|iPad/i.test(navigator.platform));</script>
</head>
<body>
<div id="app"><div class="Layout" data-v-22f859ac><!--[--><!--]--><!--[--><span tabindex="-1" data-v-3e86afbf></span><a href="#VPContent" class="VPSkipLink visually-hidden" data-v-3e86afbf> Skip to content </a><!--]--><!----><header class="VPNav" data-v-22f859ac data-v-2a4e514e><div class="VPNavBar has-sidebar top" data-v-2a4e514e data-v-1303e283><div class="wrapper" data-v-1303e283><div class="container" data-v-1303e283><div class="title" data-v-1303e283><div class="VPNavBarTitle has-sidebar" data-v-1303e283 data-v-10b95b50><a class="title" href="/" data-v-10b95b50><!--[--><!--]--><!----><span data-v-10b95b50>MBCP docs</span><!--[--><!--]--></a></div></div><div class="content" data-v-1303e283><div class="content-body" data-v-1303e283><!--[--><!--]--><div class="VPNavBarSearch search" data-v-1303e283><!----></div><nav aria-labelledby="main-nav-aria-label" class="VPNavBarMenu menu" data-v-1303e283 data-v-0fb289c1><span id="main-nav-aria-label" class="visually-hidden" data-v-0fb289c1> Main Navigation </span><!--[--><!--[--><a class="VPLink link VPNavBarMenuLink" href="/guide/" tabindex="0" data-v-0fb289c1 data-v-ad4a8b64><!--[--><span data-v-ad4a8b64>快速开始</span><!--]--></a><!--]--><!--[--><a class="VPLink link VPNavBarMenuLink" href="/api/" tabindex="0" data-v-0fb289c1 data-v-ad4a8b64><!--[--><span data-v-ad4a8b64>API文档</span><!--]--></a><!--]--><!--[--><a class="VPLink link VPNavBarMenuLink" href="/demo/" tabindex="0" data-v-0fb289c1 data-v-ad4a8b64><!--[--><span data-v-ad4a8b64>实例</span><!--]--></a><!--]--><!--]--></nav><div class="VPFlyout VPNavBarTranslations translations" data-v-1303e283 data-v-cd7b67e8 data-v-ec8c49bc><button type="button" class="button" aria-haspopup="true" aria-expanded="false" aria-label="Change language" data-v-ec8c49bc><span class="text" data-v-ec8c49bc><span class="vpi-languages option-icon" data-v-ec8c49bc></span><!----><span class="vpi-chevron-down text-icon" data-v-ec8c49bc></span></span></button><div class="menu" data-v-ec8c49bc><div class="VPMenu" data-v-ec8c49bc data-v-9990563e><!----><!--[--><!--[--><div class="items" data-v-cd7b67e8><p class="title" data-v-cd7b67e8>简体中文</p><!--[--><div class="VPMenuLink" data-v-cd7b67e8 data-v-79776a7a><a class="VPLink link" href="/en/api/mp_math/equation.html" data-v-79776a7a><!--[-->English<!--]--></a></div><div class="VPMenuLink" data-v-cd7b67e8 data-v-79776a7a><a class="VPLink link" href="/ja/api/mp_math/equation.html" data-v-79776a7a><!--[-->日本語<!--]--></a></div><div class="VPMenuLink" data-v-cd7b67e8 data-v-79776a7a><a class="VPLink link" href="/zht/api/mp_math/equation.html" data-v-79776a7a><!--[-->繁體中文<!--]--></a></div><!--]--></div><!--]--><!--]--></div></div></div><div class="VPNavBarAppearance appearance" data-v-1303e283 data-v-2a6692f8><button class="VPSwitch VPSwitchAppearance" type="button" role="switch" title="Switch to dark theme" aria-checked="false" data-v-2a6692f8 data-v-3a50aa5c data-v-d82e607b><span class="check" data-v-d82e607b><span class="icon" data-v-d82e607b><!--[--><span class="vpi-sun sun" data-v-3a50aa5c></span><span class="vpi-moon moon" data-v-3a50aa5c></span><!--]--></span></span></button></div><div class="VPSocialLinks VPNavBarSocialLinks social-links" data-v-1303e283 data-v-f3b91b3a data-v-fa18fe49><!--[--><a class="VPSocialLink no-icon" href="https://github.com/snowykami/mbcp" aria-label="github" target="_blank" rel="noopener" data-v-fa18fe49 data-v-b0526bd7><span class="vpi-social-github" /></a><!--]--></div><div class="VPFlyout VPNavBarExtra extra" data-v-1303e283 data-v-2fc967b6 data-v-ec8c49bc><button type="button" class="button" aria-haspopup="true" aria-expanded="false" aria-label="extra navigation" data-v-ec8c49bc><span class="vpi-more-horizontal icon" data-v-ec8c49bc></span></button><div class="menu" data-v-ec8c49bc><div class="VPMenu" data-v-ec8c49bc data-v-9990563e><!----><!--[--><!--[--><div class="group translations" data-v-2fc967b6><p class="trans-title" data-v-2fc967b6>简体中文</p><!--[--><div class="VPMenuLink" data-v-2fc967b6 data-v-79776a7a><a class="VPLin
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 曲线方程。</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Args:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> x_func: x函数</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> y_func: y函数</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> z_func: z函数</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.x_func </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> x_func</span></span>
<span class="line"><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.y_func </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> y_func</span></span>
<span class="line"><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.z_func </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> z_func</span></span></code></pre></div></details><h4 id="def-call-self-t-var-point3-tuple-point3" tabindex="-1"><em><strong>def</strong></em> <code>__call__(self, *t: Var) -&gt; Point3 | tuple[Point3, ...]</code> <a class="header-anchor" href="#def-call-self-t-var-point3-tuple-point3" aria-label="Permalink to &quot;***def*** `__call__(self, *t: Var) -&gt; Point3 | tuple[Point3, ...]`&quot;"></a></h4><p><strong>说明</strong>: 计算曲线上的点。</p><p><strong>参数</strong>:</p><blockquote><ul><li>*t:</li><li>参数:</li></ul></blockquote><p><strong>返回</strong>: 目标点</p><details><summary><b>源代码</b></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> __call__</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">t: Var) -&gt; Point3 </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">|</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> tuple[Point3, </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">...</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">]:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 计算曲线上的点。</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Args:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> *t:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 参数</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Returns:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 目标点</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> if</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> len</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(t) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">==</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> 1</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> Point3(</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.x_func(t[</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">0</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">]), </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.y_func(t[</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">0</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">]), </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.z_func(t[</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">0</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">]))</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> else</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> tuple</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">([Point3(x, y, z) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">for</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> x, y, z </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">in</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> zip</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.x_func(t), </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.y_func(t), </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.z_func(t))])</span></span></code></pre></div></details><h3 id="def-get-partial-derivative-func-func-multivarsfunc-var-int-tuple-int-epsilon-number-epsilon-multivarsfunc" tabindex="-1"><em><strong>def</strong></em> <code>get_partial_derivative_func(func: MultiVarsFunc, var: int | tuple[int, ...], epsilon: Number = EPSILON) -&gt; MultiVarsFunc</code> <a class="header-anchor" href="#def-get-partial-derivative-func-func-multivarsfunc-var-int-tuple-int-epsilon-number-epsilon-multivarsfunc" aria-label="Permalink to &quot;***def*** `get_partial_derivative_func(func: MultiVarsFunc, var: int | tuple[int, ...], epsilon: Number = EPSILON) -&gt; MultiVarsFunc`&quot;"></a></h3><p><strong>说明</strong>: 求N元函数一阶偏导函数。这玩意不太稳定慎用。</p><div class="warning custom-block github-alert"><p class="custom-block-title">WARNING</p><p>目前数学界对于一个函数的导函数并没有通解的说法,因此该函数的稳定性有待提升</p></div><p><strong>参数</strong>:</p><blockquote><ul><li>func: 函数</li><li>var: 变量位置,可为整数(一阶偏导)或整数元组(高阶偏导)</li><li>epsilon: 偏移量</li></ul></blockquote><p><strong>返回</strong>: 偏导函数</p><p><strong>引发</strong>:</p><blockquote><ul><li>ValueError 无效变量类型</li></ul></blockquote><details><summary><b>源代码</b></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> get_partial_derivative_func</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(func: MultiVarsFunc, var: </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">int</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> |</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> tuple[</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">int</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">, </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">...</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">], epsilon: Number</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">EPSILON</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) -&gt; MultiVarsFunc:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 求N元函数一阶偏导函数。这玩意不太稳定慎用。</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &gt; [!warning]</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &gt; 目前数学界对于一个函数的导函数并没有通解的说法,因此该函数的稳定性有待提升</span></span>
<span class="line"></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Args:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> func: 函数</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> var: 变量位置,可为整数(一阶偏导)或整数元组(高阶偏导)</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> epsilon: 偏移量</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Returns:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 偏导函数</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Raises:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> ValueError: 无效变量类型</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> if</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> isinstance</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(var, </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">int</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">):</span></span>
<span class="line"></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> partial_derivative_func</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">args: Var) -&gt; Var:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;@litedoc-hide&quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> args_list_plus </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> list</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(args)</span></span>
<span class="line"><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> args_list_plus[var] </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">+=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> epsilon</span></span>
<span class="line"><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> args_list_minus </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> list</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(args)</span></span>
<span class="line"><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> args_list_minus[var] </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> epsilon</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> (func(</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">args_list_plus) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> func(</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">args_list_minus)) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">/</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> (</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">2</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> *</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> epsilon)</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> partial_derivative_func</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> elif</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> isinstance</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(var, </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">tuple</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">):</span></span>
<span class="line"></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> high_order_partial_derivative_func</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">args: Var) -&gt; Var:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> @litedoc-hide</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 求高阶偏导函数</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Args:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> *args: 参数</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Returns:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 高阶偏导数值</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> result_func </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> func</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> for</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> v </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">in</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> var:</span></span>
<span class="line"><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> result_func </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> get_partial_derivative_func(result_func, v, epsilon)</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> result_func(</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">args)</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> high_order_partial_derivative_func</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> else</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> raise</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> ValueError</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(</span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Invalid var type&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">)</span></span></code></pre></div></details><h3 id="def-curry-func-multivarsfunc-args-var-onevarfunc" tabindex="-1"><em><strong>def</strong></em> <code>curry(func: MultiVarsFunc, *args: Var) -&gt; OneVarFunc</code> <a class="header-anchor" href="#def-curry-func-multivarsfunc-args-var-onevarfunc" aria-label="Permalink to &quot;***def*** `curry(func: MultiVarsFunc, *args: Var) -&gt; OneVarFunc`&quot;"></a></h3><p><strong>说明</strong>: 对多参数函数进行柯里化。</p><div class="tip custom-block github-alert"><p class="custom-block-title">TIP</p><p>有关函数柯里化,可参考<a href="https://zhuanlan.zhihu.com/p/355859667" target="_blank" rel="noreferrer">函数式编程--柯理化Currying</a></p></div><p><strong>参数</strong>:</p><blockquote><ul><li>func: 函数</li><li>*args: 参数</li></ul></blockquote><p><strong>返回</strong>: 柯里化后的函数</p><details><summary><b>源代码</b></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> curry</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(func: MultiVarsFunc, </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">args: Var) -&gt; OneVarFunc:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 对多参数函数进行柯里化。</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &gt; [!tip]</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &gt; 有关函数柯里化,可参考[函数式编程--柯理化Currying](https://zhuanlan.zhihu.com/p/355859667)</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Args:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> func: 函数</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> *args: 参数</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Returns:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 柯里化后的函数</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;</span></span>
<span class="line"></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> curried_func</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">args2: Var) -&gt; Var:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;@litedoc-hide&quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> func(</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">args, </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">args2)</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> curried_func</span></span></code></pre></div></details></div></div></main><footer class="VPDocFooter" data-v-40342069 data-v-a4b38bd6><!--[--><!--]--><!----><nav class="prev-next" aria-labelledby="doc-footer-aria-label" data-v-a4b38bd6><span class="visually-hidden" id="doc-footer-aria-label" data-v-a4b38bd6>Pager</span><div class="pager" data-v-a4b38bd6><a class="VPLink link pager-link prev" href="/api/mp_math/const.html" data-v-a4b38bd6><!--[--><span class="desc" data-v-a4b38bd6>Previous page</span><span class="title" data-v-a4b38bd6>mbcp.mp_math.const</span><!--]--></a></div><div class="pager" data-v-a4b38bd6><a class="VPLink link pager-link next" href="/api/mp_math/function.html" data-v-a4b38bd6><!--[--><span class="desc" data-v-a4b38bd6>Next page</span><span class="title" data-v-a4b38bd6>mbcp.mp_math.function</span><!--]--></a></div></nav></footer><!--[--><!--]--></div></div></div><!--[--><!--]--></div></div><footer class="VPFooter has-sidebar" data-v-22f859ac data-v-e3ca6860><div class="container" data-v-e3ca6860><p class="message" data-v-e3ca6860>文档由 <a href="https://vitepress.dev/">VitePress</a> 构建 | API引用由 <a href="https://github.com/LiteyukiStudio/litedoc">litedoc</a> 生成</p><p class="copyright" data-v-e3ca6860>Copyright (C) 2020-2024 SnowyKami. All Rights Reserved</p></div></footer><!--[--><!--]--></div></div>
<script>window.__VP_HASH_MAP__=JSON.parse("{\"api_index.md\":\"C_wESrrY\",\"api_mp_math_angle.md\":\"vKQLLqTS\",\"api_mp_math_const.md\":\"BAf8mK4W\",\"api_mp_math_equation.md\":\"DpRfW_6Z\",\"api_mp_math_function.md\":\"Cj4FyaYl\",\"api_mp_math_index.md\":\"BNf7bQqL\",\"api_mp_math_line.md\":\"DPWL9O-M\",\"api_mp_math_mp_math_typing.md\":\"DlnJmkos\",\"api_mp_math_plane.md\":\"DTAJAb0P\",\"api_mp_math_point.md\":\"vtgIded6\",\"api_mp_math_segment.md\":\"D-8aRB8W\",\"api_mp_math_utils.md\":\"DaaoR634\",\"api_mp_math_vector.md\":\"BTnPeAKR\",\"api_particle_index.md\":\"Cm3Vk-es\",\"api_presets_index.md\":\"CD62I2gv\",\"api_presets_model_index.md\":\"gO0Notp6\",\"demo_index.md\":\"D-H9zRUE\",\"en_api_index.md\":\"Dj_5nFTt\",\"en_api_mp_math_angle.md\":\"Bu07wjnV\",\"en_api_mp_math_const.md\":\"gGpXUShq\",\"en_api_mp_math_equation.md\":\"DqlD6s-6\",\"en_api_mp_math_function.md\":\"Bgn-YygZ\",\"en_api_mp_math_index.md\":\"BEjLBMpH\",\"en_api_mp_math_line.md\":\"BGq09mco\",\"en_api_mp_math_mp_math_typing.md\":\"Dnl2aJQ4\",\"en_api_mp_math_plane.md\":\"C3KPGKE4\",\"en_api_mp_math_point.md\":\"D7ZdR7VM\",\"en_api_mp_math_segment.md\":\"DMW-YUfw\",\"en_api_mp_math_utils.md\":\"B3i5gz_2\",\"en_api_mp_math_vector.md\":\"CgtIoM4A\",\"en_api_particle_index.md\":\"BfyNQiRg\",\"en_api_presets_index.md\":\"BWb2fpTg\",\"en_api_presets_model_index.md\":\"pbEu-669\",\"en_guide_index.md\":\"DrDHTYCZ\",\"en_index.md\":\"MCm69eyE\",\"guide_index.md\":\"Cfmzk2IH\",\"index.md\":\"BjJ9-kbE\",\"ja_api_index.md\":\"CnUeuifx\",\"ja_api_mp_math_angle.md\":\"DTK1PNuJ\",\"ja_api_mp_math_const.md\":\"DGXAgDfn\",\"ja_api_mp_math_equation.md\":\"Bt8bfjRZ\",\"ja_api_mp_math_function.md\":\"Bx9H66-W\",\"ja_api_mp_math_index.md\":\"CTZZ-p9Z\",\"ja_api_mp_math_line.md\":\"DYJV4KNE\",\"ja_api_mp_math_mp_math_typing.md\":\"BNymgrCT\",\"ja_api_mp_math_plane.md\":\"D-yHaxP-\",\"ja_api_mp_math_point.md\":\"DjHRkHI5\",\"ja_api_mp_math_segment.md\":\"37V8kAc1\",\"ja_api_mp_math_utils.md\":\"BbdhM1tp\",\"ja_api_mp_math_vector.md\":\"BBVnCwJa\",\"ja_api_particle_index.md\":\"Jr41Y3TS\",\"ja_api_presets_index.md\":\"CQqdQbIZ\",\"ja_api_presets_model_index.md\":\"C-Ypf-qh\",\"ja_guide_index.md\":\"BxGnZYwR\",\"ja_index.md\":\"CtozMsIU\",\"zht_api_index.md\":\"CgZH6aHQ\",\"zht_api_mp_math_angle.md\":\"lzcXwnW6\",\"zht_api_mp_math_const.md\":\"xwQvuYck\",\"zht_api_mp_math_equation.md\":\"Bn6MiQ1c\",\"zht_api_mp_math_function.md\":\"C6pPUbwO\",\"zht_api_mp_math_index.md\":\"mmeMMriu\",\"zht_api_mp_math_line.md\":\"DX62bgjZ\",\"zht_api_mp_math_mp_math_typing.md\":\"CNiSnuMw\",\"zht_api_mp_math_plane.md\":\"DJ_9NQFz\",\"zht_api_mp_math_point.md\":\"D1nAiRP0\",\"zht_api_mp_math_segment.md\":\"CMRey-MG\",\"zht_api_mp_math_utils.md\":\"BDpW2Fd4\",\"zht_api_mp_math_vector.md\":\"DGVOQo3Y\",\"zht_api_particle_index.md\":\"8GaGB1ul\",\"zht_api_presets_index.md\":\"DvOViSox\",\"zht_api_presets_model_index.md\":\"BJWX_k6K\",\"zht_guide_index.md\":\"CsuFVFxu\",\"zht_index.md\":\"V9U3SwDR\"}");window.__VP_SITE_DATA__=JSON.parse("{\"lang\":\"en-US\",\"dir\":\"ltr\",\"title\":\"MBCP docs\",\"description\":\"MBCP library docs\",\"base\":\"/\",\"head\":[],\"router\":{\"prefetchLinks\":true},\"appearance\":true,\"themeConfig\":{\"sidebar\":{\"/api/\":{\"base\":\"/api/\",\"items\":[{\"text\":\"mp_math\",\"items\":[{\"text\":\"mbcp.mp_math.angle\",\"link\":\"mp_math/angle\"},{\"text\":\"mbcp.mp_math.const\",\"link\":\"mp_math/const\"},{\"text\":\"mbcp.mp_math.equation\",\"link\":\"mp_math/equation\"},{\"text\":\"mbcp.mp_math.function\",\"link\":\"mp_math/function\"},{\"text\":\"mbcp.mp_math\",\"link\":\"mp_math/\"},{\"text\":\"mbcp.mp_math.line\",\"link\":\"mp_math/line\"},{\"text\":\"mbcp.mp_math.mp_math_typing\",\"link\":\"mp_math/mp_math_typing\"},{\"text\":\"mbcp.mp_math.plane\",\"link\":\"mp_math/plane\"},{\"text\":\"mbcp.mp_math.point\",\"link\":\"mp_math/point\"},{\"text\":\"mbcp.mp_math.segment\",\"link\":\"mp_math/segment\"},{\"text\":\"mbcp.mp_math.utils\",\"link\":\"mp_math/utils\"},{\"text\":\"mbcp.mp_math.vector\",\"link\":\"mp_math/vector\"}],\"collapsed\":true},{\"text\
</body>
</html>